JP2005508738A - 燃焼空気の前処理のための電極放電非熱プラズマ装置(反応器) - Google Patents

燃焼空気の前処理のための電極放電非熱プラズマ装置(反応器) Download PDF

Info

Publication number
JP2005508738A
JP2005508738A JP2003543732A JP2003543732A JP2005508738A JP 2005508738 A JP2005508738 A JP 2005508738A JP 2003543732 A JP2003543732 A JP 2003543732A JP 2003543732 A JP2003543732 A JP 2003543732A JP 2005508738 A JP2005508738 A JP 2005508738A
Authority
JP
Japan
Prior art keywords
hole
combustion air
electrode
inner electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003543732A
Other languages
English (en)
Inventor
リカット,パスカル
ヒューストン,エドワード
クロエ,リチャード
Original Assignee
プラズマゾル・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プラズマゾル・コーポレイション filed Critical プラズマゾル・コーポレイション
Publication of JP2005508738A publication Critical patent/JP2005508738A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/16Reforming naphtha with electric, electromagnetic, or mechanical vibrations; by particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/02Thermal reforming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/68Treating the combustion air or gas, e.g. by filtering, or moistening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】実質的に大気圧において非熱プラズマにさらすことにより燃焼空気を前処理するための装置及びその操作方法。
【解決手段】この装置は内側電極(110)を含み、内側電極はその中に形成され燃料を受け取るための長手方向のチャネルを有する。外側誘電体層(145)は内側電極(110)から所定の距離だけ離間しており、その間において処理対象の燃焼空気(100)を受け取るための非熱大気圧プラズマ処理領域(130)が形成されている。外側誘電体(145)は、少なくとも一個の貫通孔(例えばキャピラリーやスロット)を有し、その貫通孔から非熱プラズマが放射される。この少なくとも一個の貫通孔と流体連通関係にあるように少なくとも一個の外側電極(例えばピンやリングの形状)が設けられている。処理された燃焼空気は、混合領域(135)において燃料と混合される。この前処理装置は、非密封型の燃焼バーナにも密封型の燃焼バーナにも設けることができる。

Description

関連出願の表示
本願は、2000年12月15日出願の米国特許出願第09/738923号、2001年8月2日出願の同第60/309502号、及び2002年2月19日出願の同第60/358340号の利益の享受を請求するものであり、これら各々の全体を本明細書の一部を構成するものとしてここに援用する。
発明の技術分野
本発明は、プラズマを利用するシステム及び方法、特に、燃焼空気の前処理のための環状電極放電非熱プラズマ装置及びその操作方法に関する。
火炎をプラズマで強力化する研究は数十年以上前から行われている。燃焼用の空気の前処理が有利であることはよく知られている。即ち、より低燃空比且つより低温での燃焼が可能となるため、高燃料効率が達成できると共に排出量を低減させることができる。
一般に、燃焼プロセスの開始・維持は、気体を或る温度(通常はおよそ1000℃のオーダー)に加熱し、解離や酸化反応を開始させることができるO、OH、H等のフリーラジカルを発生させることにより行う。炭化水素のみからなる気体の場合、完全な分子変換が行われれば、大気中に直接放出できる二酸化炭素及び水が形成される。分子変換の化学的効率は、炭素結合を効果的に切ることができるフリーラジカルの発生と伝播に依存する。また、これらラジカルの生成効率や濃度は、主に燃焼ガスの温度に依存している。このような変換に必要な高い温度を達成するためには、気体媒体に非常に大きなエンタルピーを投入しなければならない。十分高い温度の実現は、焼却炉や熱電アーク等を用いた直接加熱により行うことができる。最近、これに替わる効率的なラジカル生成及び燃焼促進方法が、非熱プラズマを生成する放電において達成しうる可能性が示されており、ペネトラント(Penetrante)B.M.及びシュルテス(Schultheis)S.E.による「汚染物質制御のための非熱プラズマ技法(Non-Thermal Plasma Techniques for Pollution Control)」、NATO ASI Series G、第34巻、パートA及びB(1992)と称する刊行物においても開示されている。
プラズマとは、イオン化した気体の領域を示すのに用いられる用語である。プラズマの生成は、周囲気体の加熱(火炎等)や電気エネルギーによる電子の選択的な活性化(放電等)により行うことができる。非熱プラズマ(NTP)は、局所的熱力学的平衡(LTE)に達していない、周囲気体分子に比べ電子平均エネルギーが非常に高いという特徴を有するイオン化された気体である。NTPにおいては、周囲の気体を加熱するとしても最小限の加熱に留めつつ高活性化された電子を生成するにあたり、その電子エネルギーを特定の優先方向に向けさせることができる。しかし、このエネルギーの略全てが、電子衝突による気体の直接的な励起や解離、イオン化に使用されてしまう。
化学的燃焼から取り出される全エンタルピーを更に高め、規制排出物を減少させるために放電を用いるという考えは、数十年に亘って研究されているものの一つであり、チェン(Chen)D.C.C.、ロートン(Lawton)J.及びワインバーグ(Weinberg)F.J.により「燃焼に関するシンポジウム(第10回)(Tenth Symposium on Combustion)」と称する刊行物、743〜754頁(1965)に開示されている。チェンらは、彼自身やその当時の他の研究者が試した方法や直面した問題について述べている。この考えは、大量の(bulk)燃料−空気混合物を熱により加熱するのではなくむしろ電気により適切な分子を「加熱する」ことにより、燃焼プロセスに必要なフリーラジカル前駆体を作り出すというものであった。そこで直面した問題は今日でも未解決であり、主に次の二点に集約される。即ち、i)フリーラジカルを均一に生成すること、ii)化学反応から得られるエネ
ルギーより多くのエネルギーを消費しないことである。
燃焼プロセスを改善するために当初行われていたアーク放電を用いる試みには幾つかの問題点があった。アーク放電自体は細い高温の線として現れる。この線の直径は10ミクロンに過ぎないため、少量の反応物質しか処理できない。また、処理された反応物質はあまりに高温に加熱されてしまうため、化学反応により得られたエネルギーは、消費される電気エネルギーと比較すると微々たるものとなってしまう。このエネルギーを燃料−空気混合物の全体に「広げる」試みが、拡散方法を改善して、即ち乱流を用いたり、磁場を与える等してアーク線自体を全体に行き渡るように動かしたりして行われてきたが、有効でもなく実用的でもないことが判明した。
燃焼を改善するのに必要なプラズマの種類は、非熱であり、実質的に大気圧で操作でき、比較的大きな体積に亘って略均一に生成できるものでなければならない。非熱プラズマは高エネルギーの電子(通常は1eV程度〜10eV程度の範囲)を生成でき、これにより、大量の気体を非常な高温に至らしめるようなエンタルピーを該気体に投入することなく、フリーラジカルを効果的に生成できる。これについては、ペネトラント(Penetrante)らの「Non-Thermal Plasma Techniques for Abatement of Volatile Organic Compounds and Nitrogen Oxides(揮発性有機化合物や窒素酸化物の減少のための非熱プラズマ技法)」、INP Report XIII;B.ミュラー(Mueller)編、18〜46頁(1996)と称する刊行物や、タルノフスキー(Tarnovsky)V.とベッカー(Becker)K.による「Plasma Sources Science and Technology(プラズマ源の科学と技術)」4、307(1995)と称する刊行物において認識されている。
従って、燃焼空気の前処理のために非熱プラズマを発生するための効率的で実用的な自己安定型放電電極を開発することにより、これらの研究を実用化することが望まれている。
上述の問題点を解決するため、本発明では、自己安定型放電電極、即ちキャピラリー電極(米国特許出願第09/738923号に開示)やスロット電極(米国特許仮出願第60/358340号に開示)を用いる。本発明の技法は、従来技術のプラズマ生成法と比べ、少なくとも次の3点において有利である。
(a)プラズマの単位体積あたり利用できるエネルギー効率が高い。
(b)大気圧、大気温度で使用する反応器を簡単に製造し、その規模を容易に変更できる。
(c)電力対プラズマ体積の比を実質的に下げることができ、システムの床面積を比較的小さくできる。
本発明は、非熱大気圧プラズマを用いて燃焼空気を前処理することにより、燃焼プロセスを改良すると共に燃焼により副生される汚染副産物を低減させる装置、及びその操作方法に関する。特に、キャピラリー電極やスロット電極構成を用いることができ、これにより必要数のフリーラジカルを生成するために十分な体積のプラズマを維持すると共に、燃料−空気混合物の全体に亘ってこれらを分散させる。
本発明の一実施形態は、実質的に大気圧において燃焼空気を非熱プラズマにさらすことにより前処理するための装置に係る。この装置は内側電極を含み、内側電極はその中に形成され燃料を受け取るための長手方向のチャネルを有する。外側誘電体層は内側電極から所定の距離だけ離間しており、その間において処理対象の燃焼空気を受け取るための非熱大気圧プラズマ領域が形成されている。外側誘電体は、少なくとも一個の貫通孔(例えばキャピラリーやスロット)を有し、その貫通孔から非熱プラズマが放射される。この少なくとも一個の貫通孔と流体連通関係にあるように少なくとも一個の外側電極(例えばピンやリングの形状)が設けられている。処理された燃焼空気は、燃料と混合領域において混合される。この前処理装置は、非密封型の燃焼バーナにも密封型の燃焼バーナにも設けることができる。
本発明はまた、上述の装置を操作する方法も含んでおり、該方法においては、処理対象の流体(燃焼空気)を非熱大気圧プラズマ領域において受取り、該領域において非熱プラズマにさらす。燃料は、別の通路から受取り、非熱プラズマにさらされないようになっている。燃料及び処理された流体は、燃焼領域に入る前に混合領域において互いに混合される。
本発明の更に別の実施形態は、実質的に大気圧において非熱プラズマにさらすことにより燃焼空気を前処理するための装置に係るものであり、該装置は2個の個別の通路を有している。第一の通路は、処理対象の燃焼空気を受け取る。この第一の通路は、内側電極と、内側電極から所定の距離だけ離間している外側誘電体層とにより画定されて形成されており、その間において処理対象の燃焼空気を受け取るための非熱大気圧プラズマ領域が形成されている。外側誘電体は、少なくとも一個の貫通孔を有し、該貫通孔を通って非熱プラズマが放射される。加えて、この装置は更に、前記少なくとも一個の貫通孔と流体連通関係にあるように設けられた少なくとも一個の外側電極を有する。第二の通路は燃料を受け取る。第二の通路は第一の通路と離間しており、これら2本の通路は、その各出力端が処理された燃焼空気と燃料とを受け取るための混合領域を形成するように設けられている。
本発明の上述した特徴及びその他の特徴は、以下の詳細な説明及び本発明の例示的実施形態を示す図面からより容易に明らかとなるであろう。いくつかの図に亘り、類似の符号は同様な要素を表す。
本発明に係るセグメント化電極キャピラリー放電非熱プラズマ反応器は、燃焼に必要な一以上の化学剤(即ち、燃焼空気、燃焼可能な燃料、或いはこれらを予め混合した物)を含有する処理対象の流体(気体、蒸気と気体の混合物等)が、実際の燃焼プロセスに付される前に高密度のプラズマにさらされるように設計されている。流体をプラズマにさらすと、フリーラジカルが発生し、フリーラジカルは燃焼の活性エネルギーを下げ、その結果、全体の燃焼温度が下がる。処理対象の流体を加熱する場合でも最小限の加熱に留めつつ所望の化学反応を効果的に開始させる或いは促進する条件を用いて化学反応を特定的に起こさせることができるように、プラズマ特性を変化させることが望ましい。
図1は、本発明に係る環状セグメント化電極プラズマ前処理バーナシステムの例を示すものであって、バーナを一本だけ取り出して見た断面図である。このシステムは、円筒中空の外側誘電体層145と、その中に設けられた中空の内側電極110とを含む。好ましい実施形態では、内側電極110は外側誘電体層145と略同心状に設けられると共に所定の距離だけ離間しており、それらの間に非熱大気圧プラズマ領域130が形成される。燃焼空気入口100は非熱大気圧プラズマ領域130と流体連通関係にある。内側電極110の中には、燃料入口105から受け入れた燃料をプラズマにさらすことなく通過させるチャネルが設けられている。燃料源としては、液体状や気体状の任意の燃焼可能な材料を用いることができる。内側電極110は好ましくは、誘電体コーティング或いは誘電体層115により覆われている。好ましくは、外側誘電体層145には、半径方向外方に向かって複数のキャピラリー125が設けられている。各キャピラリーには、セグメント化電極ピン120が部分的に埋め込まれている。
動作時、処理対象の燃焼空気は、燃焼空気入口100で受け取られ、非熱大気圧プラズマ領域130に入る。この領域において、該燃焼空気は、内側電極110とセグメント化ピン電極120の間に電圧差を与えたときにキャピラリー125から放出される非熱プラズマにさらされる。処理された燃焼空気は、非熱大気圧プラズマ領域130を通って進み、内側電極110の中空チャネルを通って受け取られた燃料と混合領域135において混合される。好ましい実施形態においては、混合領域135は外側誘電体層145の内部で且つ内側電極110(外側誘電体層145の全長までは延設されていない)の上方に設けられる。最後に、混合物は外側誘電体層145から出て燃焼領域140に入る。
本発明に係る環状キャピラリー電極プラズマ前処理バーナシステム一個の第二の実施形態の断面図を図2aに示す。第一の実施形態(図1)は通路が一本であったのに対し、第二の実施形態(図2a)では、空気と燃料を流すために個別の離間した通路が二本設けられている。燃焼空気は、プラズマ処理のための燃焼空気前処理ユニット200を通って流れてから、燃料入口205を通って流れてきた燃料と混合される。燃焼空気前処理ユニット200は中実の内側電極210を含む。この内側電極は好ましくは、誘電性の外側コーティング215を有する。この場合においても、複数のキャピラリー220が好ましくは外側誘電体245を貫通して半径方向外側に向けて設けられており、キャピラリー220の一部又は全部に電極ピン225を埋め込んでもよい。
動作時、燃焼空気は、外側誘電体245と内側電極210との間に設けられた通路、即ち非熱大気圧プラズマ領域230を通って流れる。非熱大気圧プラズマ領域230内で、燃焼空気は、キャピラリー220から放射された非熱プラズマにさらされる。プラズマで処理された燃焼空気は燃料口205からの燃料と混合領域235内で混合され、混合物は燃焼領域240に進む。
図2bは、図2aに示した実施形態の変形例である。図2bに示した実施形態における燃焼空気処理ユニット250は、中空(中実ではなく)の内側電極255を使用しており、該電極は好ましくは誘電体層260で覆われている。電気的には、この電極は、図2aに示した中実の内側電極210と同じ挙動をする。内側電極255の中空チャネルは、別の物質、例えば未処理空気や燃料添加剤等を混合領域235に導入するための添加剤口265として機能し、これにより非熱大気圧プラズマ領域230を迂回する道が作られ、燃料が混合領域235に到達する前に混合してしまうのを防ぐ。
図1、図2a、図2bの上述の実施形態には、非密閉型のバーナ配列に用いられる本発明に係るプラズマ前処理ユニットの例が示されている。図3は、密閉型バーナ配列等において使用できる例示的なプラズマ前処理ユニット300を示す。密閉型バーナ配列としては、例えばボイラにおいて見られるものや、車のエンジンのシリンダ等内燃チャンバに用いられるもの等が挙げられる。前処理ユニットに使用される燃料は、固体、液体、気体又はこれらの状態の任意の組合せとすることができる。また、燃料−空気の気体状混合物に対しても、この装置を用いて燃焼チャンバに入る前に処理することもできる。
プラズマ前処理ユニット300は、全体を符号310の四角で示す密閉型バーナ/内燃チャンバの空気取込部305の上流に配置される。プラズマ前処理ユニット300は、図2aの燃焼空気処理ユニット200と同様のものである。具体的には、プラズマ前処理ユニット300は内側電極315を含む。内側電極315は、図3においては中実のものとして示されているが、その中にチャネルを有していてもよい。中空の内側電極を用いる場合、その中を通して別の化学添加剤を導入することができ、これにより非熱大気圧プラズマ領域335をバイパスさせてプラズマ処理済みの空気のみと混合させる。好ましくは、内側電極315は、誘電性のコーティング或いは層320を有する。複数の電極ピン330が、外側誘電体340を貫通して半径方向外側に向けて設けられた各々のキャピラリーに部分的にそれぞれ埋め込まれている。燃焼空気は、内側電極315と外側誘電体340との間に画定された非熱大気圧プラズマ領域335を通って流れ、キャピラリー325から放射された非熱プラズマにさらされる。プラズマ処理された空気は、添加剤と混合された後或いは混合されないまま、空気取込部305を通って進み、密閉型バーナ/内燃チャンバ310に入る。
ここまで記載し図示してきた上述の前処置ユニットの実施形態は全て、外側誘電体を貫通して半径方向に設けられたキャピラリーに電極のピンが部分的に埋め込まれている例示的なセグメント化キャピラリー放電構成を用いて非熱プラズマを発生させるものである。しかしながら、電極ピンは、外側誘電体の外周に実質的に面一で設けてもよい。また、キャピラリーは外側誘電体を貫通して半径方向に設ける必要はなく、任意の所望の角度で設けることができる。更に、電極の形状は変更することができ、キャピラリーへの入口近傍に或いは入口と接触して設けたリング或いはディスクとすることができる。電極の幾何学的構成は、組み合わされるキャピラリーと流体連通関係にあるものである限り、任意のものが考えられ本発明の範囲に含まれる。これに替わる構成としては米国特許出願第09/738923号に示され記載されているものが挙げられるが、そこに示されるものが全てではない。キャピラリーの穴125の密度(数)、大きさ及び/又は間隔は、プラズマの物理的特性に合わせて変えることができる。物理的特性としては、体積、イオン密度及び/又は電子密度等が挙げられるが、これらに限定されるものではない。
これに替わる他の構成も考えられ、これも本発明の範囲に含まれる。図4aは、本発明に係るプラズマ処理ユニットの更に別の実施形態の斜視図である。この実施形態では、米国特許仮出願第60/358340号に開示されているスロット型電極放電構成を用いて非熱プラズマを発生させる。具体的には、このスロット型電極放電構成は内側電極405を含む。内側電極405は、中空でも中実でもよく、好ましくは誘電体層或いは誘電性コーティング410で覆われている。外側誘電体415は、好ましくは、内側電極405と同心状に且つ所定の距離だけ離間して設けられ、その間に非熱大気圧プラズマ領域420が形成される。複数のスロット400が外側誘電体415に設けられ、スロット型電極放電が形成される。図4aに示すように、スロット400は長手方向に配置されている。これに替わり、スロットは、例えば、長手方向軸に対して実質的に直角に配置してもよく、或いは螺旋状に配置してもよい。内側電極405とスロット電極の間には電源(図示せず)が接続される。各スロット400に埋め込まれるか或いはスロット400近傍に電極を設ける。例えば、テーパ付きブレードの形状の電極を、各スロットに部分的に挿入するか或いは各スロットの近傍に配置する。また、電極はワイヤ形状とすることもでき、この場合、スロットの長さ方向に対し実質的に平行に長手方向に配置され、スロットに埋め込まれるか或いはスロットの近傍に設けられる。
図4bは、図1に示したものと同様の開放バーナ配置に用いる図4aのプラズマ処理ユニットの断面図である。燃焼空気は、内側電極405(この例においては中空)と外側誘電体415の間の非熱プラズマ領域420を通って流れ、該領域においてスロット400から放射された非熱プラズマにより処理される。その後、処理された燃焼空気は混合領域425に入り、そこで内側電極405の内部に延びる中空チャネルを通って流れてきた燃料と混合される。その後、混合物は燃焼領域430に入る。
上に示し説明したプラズマ処理ユニットの構成は全て環状の形状に基づくものである。プラズマ処理の形状や大きさ、特に内側及び外側の電極や誘導体の形状や大きさは必ずしも環状とする必要はないものと理解されるべきである。所望であれば任意の形状の幾何配置とすることができる。
このように、本発明の新規な基本的特徴を、好ましい実施態様に即して図示し、説明し、指摘してきたが、当業者には、本発明の精神及び範囲から逸脱することなく、図示の装置の形状や詳細部及びその動作について、様々な省略、置換及び変更を行なうことができることが理解されよう。例えば、実質的に同一の方法で実質的に同一の機能を果たして同一の結果を達成する要素及び/又は工程の組合せは全て、本発明の範囲に含まれることが特に意図されている。記載した一実施形態における要素を別の実施形態に置換することも全て意図され考えられている。図面は必ずしも一定の縮尺で描かれているものではなく、元来、単に概念的なものであることも理解されるべきである。従って、本明細書に添付した特許請求の範囲によって示されるようにのみ限定されることを意図するものである。
本明細書に言及した、既に発行済みの特許、係属中の特許出願、刊行物、雑誌記事、書籍、その他の文献は全て、その全体を本明細書の一部を構成するものとしてここに援用する。
本発明に係る第一の例示的バーナ配置の断面図である。 本発明に係る第二の例示的バーナ配置の断面図である。 第三の例示的バーナ配置の実施形態の断面図であり、中実の内側電極が中空の内側電極に置き換えられ、中空の内側電極により、プラズマ処理領域をバイパスして混合領域へ到達する別の通路が提供されている状態を示す。 本発明に係るセグメント化電極キャピラリー放電システムを内燃チャンバの空気取込み部に設けた配置を示す断面図である。 スロット型電極放電プラズマ生成構成を有する本発明に係る円筒形状バーナの一部を示す斜視図である。 図4aのバーナの断面図である。

Claims (40)

  1. 実質的に大気圧で非熱プラズマにさらすことにより燃焼空気を前処理するための装置であって、
    燃料を受け取るための長手方向のチャネルを中に有する内側電極と、
    内側電極から所定の距離だけ離間してその間に処理対象の燃焼空気を受け取るための非熱大気圧プラズマ領域が形成されていると共に、少なくとも一個の貫通孔を非熱プラズマが該貫通孔を通って放射されるように有する外側誘電体層と、
    前記少なくとも一個の貫通孔と流体連通関係にあるように設けられた少なくとも一個の外側電極と、
    処理された燃焼空気と燃料とを受け取るための混合領域と
    を含む装置。
  2. 内側誘電体コーティングを更に含み、該コーティングは内側電極の周りに設けられている、請求項1に記載の装置。
  3. 外側誘電体が長手方向において内側電極を超えて延在する、請求項1に記載の装置。
  4. 貫通孔がキャピラリーである、請求項1に記載の装置。
  5. 外側電極がピン又はリングの形状である、請求項4に記載の装置。
  6. 貫通孔がスロットである、請求項1に記載の装置。
  7. スロットが、長手方向に、螺旋方向に、又は長手方向軸に対して実質的に直角な方向に配置されている、請求項6に記載の装置。
  8. 外側電極が、スロットに対して実質的に平行に設けられたワイヤ、又はテーパ付きブレードの形状である、請求項6に記載の装置。
  9. 外側電極が、貫通孔に部分的に挿入され、埋め込まれ、又は貫通孔の近傍に設けられている、請求項1に記載の装置。
  10. 実質的に大気圧で非熱プラズマにさらすことにより燃焼空気を前処理するための装置であって、該装置は、
    処理対象の燃焼空気を受け取るための第一の通路であって、内側電極と、内側電極から所定の距離だけ離間してその間に処理対象の燃焼空気を受け取るための非熱大気圧プラズマ領域が形成されていると共に、少なくとも一個の貫通孔を非熱プラズマが該貫通孔を通って放射されるように有する外側誘電体層とにより形成されている第一の通路と、
    前記少なくとも一個の貫通孔と流体連通関係にあるように設けられた少なくとも一個の外側電極と、
    燃料を受け取るための第二の通路とを有し、第二の通路は第一の通路から離間しており、第一の通路と第二の通路とは、それらの各出力端が処理された燃焼空気と燃料とを受け取るための混合領域を形成するように設けられている装置。
  11. 内側電極が中実である、請求項10に記載の装置。
  12. 内側電極が長手方向のチャネルを中に有する、請求項10に記載の装置。
  13. 貫通孔がキャピラリーである、請求項10に記載の装置。
  14. 外側電極がピン又はリングの形状である、請求項13に記載の装置。
  15. 貫通孔がスロットである、請求項10に記載の装置。
  16. スロットが、長手方向に、螺旋方向に又は長手方向軸に対して実質的に直角な方向に配置されている、請求項15に記載の装置。
  17. 外側電極が、スロットに対して実質的に平行に設けられたワイヤ、又はテーパ付きブレードの形状である、請求項15に記載の装置。
  18. 外側電極が、貫通孔に部分的に挿入され、埋め込まれ、又は貫通孔の近傍に設けられている、請求項10に記載の装置。
  19. 実質的に大気圧で非熱プラズマにさらすことにより燃焼空気を前処理するための装置の操作方法であって、該装置は、内側電極と、内側電極から所定の距離だけ離間してその間に非熱大気圧プラズマ領域が形成されていると共に、少なくとも一個の貫通孔を非熱プラズマが該貫通孔を通って放射されるように有する外側誘電体層と、前記少なくとも一個の貫通孔と流体連通関係にあるように設けられた少なくとも一個の外側電極とを備えており、該方法は、
    燃焼空気を非熱大気圧プラズマ領域内に受け取る工程と、
    燃焼空気を、非熱大気圧プラズマ領域に放射された非熱プラズマで処理する工程と、
    燃料を非熱プラズマにさらさないように別の通路から受け取る工程と、
    処理された燃焼空気と燃料とを混合領域において混合する工程と
    を含む方法。
  20. 前記燃料を受け取る工程が、内側電極内に長手方向に設けられたチャネルに燃料を通す工程を更に含む、請求項19に記載の方法。
  21. 燃焼空気を受け取る工程が、内側電極と外側誘電体とにより画定された第一の通路に沿って燃焼空気を通す工程を含む、請求項19に記載の方法。
  22. 燃料を受け取る工程が、第一の通路とは別の第二の通路に沿って燃料を通す工程を含み、これら第一及び第二の通路は、その各出力端が混合領域を形成するように配置されている、請求項21に記載の方法。
  23. 装置が、内側誘電体コーティングを更に含み、該コーティングは内側電極の周りに設けられている、請求項19に記載の方法。
  24. 外側誘電体が長手方向において内側電極を超えて延在する、請求項19に記載の方法。
  25. 貫通孔がキャピラリーである、請求項19に記載の方法。
  26. 外側電極がピン又はリングの形状である、請求項25に記載の方法。
  27. 貫通孔がスロットである、請求項19に記載の方法。
  28. スロットが、長手方向に、螺旋方向に、又は長手方向軸に対して実質的に直角な方向に配置されている、請求項27に記載の方法。
  29. 外側電極が、スロットに対して実質的に平行に設けられたワイヤ、又はテーパ付きブレードの形状である、請求項27に記載の方法。
  30. 外側電極が、貫通孔に部分的に挿入され、埋め込まれ、又は貫通孔の近傍に設けられている、請求項19に記載の方法。
  31. 空気取込部を有する密閉された燃焼チャンバと、
    空気取込部に接続され、処理対象の燃焼空気を実質的に大気圧で非熱プラズマにさらすプラズマ前処理ユニットと
    を備え、プラズマ前処理ユニットは、
    内側電極と、
    内側電極から所定の距離だけ離間してその間に非熱大気圧プラズマ領域が形成されていると共に、少なくとも一個の貫通孔を非熱プラズマが該貫通孔を通って放射されるように有する外側誘電体層と、
    前記少なくとも一個の貫通孔と流体連通関係にあるように設けられた少なくとも一個の外側電極と
    を備えたシステム。
  32. 密閉された燃焼チャンバが、密閉されたバーナ又は内燃チャンバの一方である、請求項31に記載のシステム。
  33. 内側誘電体コーティングを更に含み、該コーティングは内側電極の周りに設けられている、請求項31に記載のシステム。
  34. 外側誘電体が長手方向において内側電極を超えて延在する、請求項31に記載のシステム。
  35. 貫通孔がキャピラリーである、請求項31に記載のシステム。
  36. 外側電極がピン又はリングの形状である、請求項35に記載の装置。
  37. 貫通孔がスロットである、請求項31に記載の装置。
  38. スロットが、長手方向に、螺旋方向に、又は長手方向軸に対して実質的に直角な方向に配置されている、請求項37に記載の装置。
  39. 外側電極が、スロットに対して実質的に平行に設けられたワイヤ、又はテーパ付きブレードの形状である、請求項37に記載の装置。
  40. 外側電極が、貫通孔に部分的に挿入され、埋め込まれ、又は貫通孔の近傍に設けられている、請求項31に記載のデバイス。
JP2003543732A 2001-08-02 2002-08-02 燃焼空気の前処理のための電極放電非熱プラズマ装置(反応器) Pending JP2005508738A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30950201P 2001-08-02 2001-08-02
US35834002P 2002-02-19 2002-02-19
PCT/US2002/024476 WO2003041854A1 (en) 2001-08-02 2002-08-02 Electrode discharge, non thermal plasma device (reactor) for the pre-treatment of combustion air

Publications (1)

Publication Number Publication Date
JP2005508738A true JP2005508738A (ja) 2005-04-07

Family

ID=26976859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003543732A Pending JP2005508738A (ja) 2001-08-02 2002-08-02 燃焼空気の前処理のための電極放電非熱プラズマ装置(反応器)

Country Status (4)

Country Link
EP (1) EP1427522A1 (ja)
JP (1) JP2005508738A (ja)
CA (1) CA2456198A1 (ja)
WO (1) WO2003041854A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032836B1 (ko) 2008-12-16 2011-05-06 부산대학교 산학협력단 직류 펄스형 대기압 글로우 플라즈마 발생장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114178A1 (en) * 2005-09-01 2009-05-07 Perriquest Defense Research Enterprises Llc Fuel injection device including plasma-inducing electrode arrays
ITVI20130212A1 (it) * 2013-08-09 2015-02-10 Unicenergy S R L Impianto di combustione ad elevato rendimento energetico e procedimento relativo
CN113217196B (zh) * 2021-03-03 2022-09-20 中国人民解放军空军工程大学 凹腔火焰稳定器自引气滑动弧等离子体射流点火器及点火方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322757B1 (en) * 1999-08-23 2001-11-27 Massachusetts Institute Of Technology Low power compact plasma fuel converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032836B1 (ko) 2008-12-16 2011-05-06 부산대학교 산학협력단 직류 펄스형 대기압 글로우 플라즈마 발생장치

Also Published As

Publication number Publication date
WO2003041854A1 (en) 2003-05-22
CA2456198A1 (en) 2003-05-22
EP1427522A1 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
US7029636B2 (en) Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air
US8601819B2 (en) Method and device for the combustion of hydrocarbon-containing fuels
US5284556A (en) Exhaust treatment system and method
US6818193B2 (en) Segmented electrode capillary discharge, non-thermal plasma apparatus and process for promoting chemical reactions
ES2247370T3 (es) Procedimiento de fabricacion de polvos de granos compuestos y dispositivo para realizacion del procedimiento.
US6606855B1 (en) Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas
US20040185396A1 (en) Combustion enhancement with silent discharge plasma
US6955794B2 (en) Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction
US20040134126A1 (en) Method for plasma-catalytic conversion of fuels that can be used in an internal combustion engine or a gas turbine into a synthetic gas and the plasma-catalytic converter used for same
RU2572895C2 (ru) Устройство и способ обработки газообразной среды и применение указанного устройства для обработки газообразной среды, жидкости, твердого тела, поверхности или любого их сочетания
US20230332564A1 (en) Intake plasma generator systems and methods
US20040168905A1 (en) Method of generating nitrogen oxides and pertaining system
JP2005508738A (ja) 燃焼空気の前処理のための電極放電非熱プラズマ装置(反応器)
US10293303B2 (en) Modular plasma reformer treatment system
KR100522168B1 (ko) 가열수단을 구비하는 플라즈마 반응장치
JP2005519729A (ja) 非熱放電プラズマによる化学プロセッシング
KR20050016269A (ko) 연소 공기 전처리용 전극 방전 저온 플라즈마 장치(반응기)
US11940146B2 (en) Superheated steam and efficient thermal plasma combined generation for high temperature reactions apparatus and method
JPH01103903A (ja) オゾン発生装置
WO2003078958A9 (en) Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction
JP2000274605A (ja) 触媒燃焼器
Pekárek et al. Effect of ultrasound waves on a hollow needle to plate electrical discharge in air or mixture of air with VOCs
JPH11270807A (ja) 新酸素種生成による炭化水素の燃焼方法
JPH1089617A (ja) 活性酸素種生成による炭化水素の燃焼方法