JP2005507246A5 - - Google Patents

Download PDF

Info

Publication number
JP2005507246A5
JP2005507246A5 JP2003523490A JP2003523490A JP2005507246A5 JP 2005507246 A5 JP2005507246 A5 JP 2005507246A5 JP 2003523490 A JP2003523490 A JP 2003523490A JP 2003523490 A JP2003523490 A JP 2003523490A JP 2005507246 A5 JP2005507246 A5 JP 2005507246A5
Authority
JP
Japan
Prior art keywords
sequence
polypeptide
sequences
sds
nucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003523490A
Other languages
Japanese (ja)
Other versions
JP2005507246A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2002/009517 external-priority patent/WO2003018631A2/en
Publication of JP2005507246A publication Critical patent/JP2005507246A/en
Publication of JP2005507246A5 publication Critical patent/JP2005507246A5/ja
Pending legal-status Critical Current

Links

Description

本明細書において「示差的発現遺伝子」とは、本明細書で開示される(例えば、配列番号1または配列番号24で示される)DNA配列の少なくとも1つを含む遺伝子;(b)本明細書で開示される(例えば、配列番号2または配列番号25で示される)DNA配列によりコードされるアミノ酸配列をコードするいずれかのDNA配列;または(c)本明細書で開示されるコード配列と実質的に同じいずれかのDNA配列をさす。例えば、本発明は多くの異なる種のNgRH2遺伝子およびそれらのコードするタンパク質を提供する。特定の実施形態では、これらNgRH2遺伝子およびタンパク質は脊椎動物、より詳しくは哺乳類由来のものである。本発明の好ましい実施形態では、NgRH2遺伝子およびタンパク質はヒト由来ものである。その最も広い意味において「実質的に同じ」とは、本明細書でヌクレオチド配列に関しては、参照ヌクレオチド配列に相当するヌクレオチド配列を意味し、相当する配列とは参照ヌクレオチド配列によりコードされるポリペプチドと実質的に同じ構造および機能を有するポリペプチドをコードし、例えばそれらは全長(野生型)NgRH2タンパク質に関連する1以上の既知の機能的活性(例えば、脊髄または脳におけるニューロンの再生の阻害、基質に対する増殖制限特性の付与、神経細胞および腫瘍細胞の拡散および移動、背根神経節神経突起の発芽後成長の阻害、背根神経節成長円錐崩壊の誘導、in vitroにおけるNIH 3T3細胞の拡散遮断、PC12神経突起発芽後成長の遮断、柔軟性の制限)を示しうる。望ましくはこの実質的に同じヌクレオチド配列は、参照ヌクレオチド配列によりコードされるポリペプチドをコードする。実質的に同じヌクレオチド配列と参照ヌクレオチド配列の間の同一性%は望ましくは少なくとも80%、より望ましくは少なくとも85%、好ましくは少なくとも90%、より好ましくは少なくとも95、96、97、98%、いっそう好ましくは少なくとも99%である。配列比較はSmith-Waterman配列アライメントアルゴリズムを用いて行う(例えば、Waterman, M.S. Introduction to Computational Biology: Maps, sequences and genomes. Chapman & Hall. London: 1995. ISBN 0-412-99391-0参照)。参照ヌクレオチド配列と「実質的に同じ」ヌクレオチド配列は、50℃、7%ドデシル硫酸ナトリウム(SDS)、0.5M NaPO4、1mM EDTA中で(50℃、2X SSC、0.1% SDSで洗浄)、より望ましくは50℃、7%ドデシル硫酸ナトリウム(SDS)、0.5M NaPO4、1mM EDTA中で(50℃、1X SSC、0.1% SDSで洗浄)、いっそう望ましくは50℃、7%ドデシル硫酸ナトリウム(SDS)、0.5M NaPO4、1mM EDTA中で(50℃、0.5X SSC、0.1% SDSで洗浄)、好ましくは50℃、7%ドデシル硫酸ナトリウム(SDS)、0.5M NaPO4、1mM EDTA中で(50℃、0.1X SSC、0.1% SDSで洗浄)、より好ましくは50℃、7%ドデシル硫酸ナトリウム(SDS)、0.5M NaPO4、1mM EDTA中で(65℃、0.1X SSC、0.1% SDSで洗浄)参照ヌクレオチド配列とハイブリダイズし、やはり機能的に同等な遺伝子産物をコードする。 As used herein, “differentially expressed gene” refers to a gene comprising at least one of the DNA sequences disclosed herein (eg, represented by SEQ ID NO: 1 or SEQ ID NO: 24); (b) Any DNA sequence encoding the amino acid sequence encoded by the DNA sequence disclosed in (eg, represented by SEQ ID NO: 2 or SEQ ID NO: 25); or (c) substantially identical to the coding sequence disclosed herein Refers to any one of the same DNA sequences. For example, the present invention provides a number of different species of NgRH2 genes and their encoded proteins. In certain embodiments, these NgRH2 genes and proteins are derived from vertebrates, more particularly mammals. In a preferred embodiment of the invention, the NgRH2 gene and protein are of human origin. In its broadest sense, “substantially the same” as used herein in reference to a nucleotide sequence means a nucleotide sequence corresponding to a reference nucleotide sequence, which corresponds to a polypeptide encoded by the reference nucleotide sequence. Encode polypeptides having substantially the same structure and function, for example, they are one or more known functional activities associated with the full-length (wild-type) NgRH2 protein (eg, inhibition of neuronal regeneration in the spinal cord or brain, substrate Proliferation-restricting properties, neuronal and tumor cell diffusion and migration, inhibition of dorsal root ganglion neurite outgrowth growth, induction of dorsal root ganglion growth cone collapse, NIH 3T3 cell diffusion block in vitro, PC12 neurite outgrowth growth blockage, limited flexibility). Desirably this substantially identical nucleotide sequence encodes a polypeptide encoded by a reference nucleotide sequence. The percent identity between substantially the same nucleotide sequence and the reference nucleotide sequence is desirably at least 80%, more desirably at least 85%, preferably at least 90%, more preferably at least 95, 96, 97, 98%, and more Preferably it is at least 99%. Sequence comparison is performed using the Smith-Waterman sequence alignment algorithm (see, eg, Waterman, MS Introduction to Computational Biology: Maps, sequences and genomes. Chapman & Hall. London: 1995. ISBN 0-412-99391-0). Nucleotide sequences that are “substantially the same” as the reference nucleotide sequence are 50 ° C., 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO 4 , 1 mM EDTA (washed with 50 ° C., 2 × SSC, 0.1% SDS) and more Desirably 50 ° C., 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO 4 , 1 mM EDTA (washed with 50 ° C., 1 × SSC, 0.1% SDS), more desirably 50 ° C., 7% sodium dodecyl sulfate (SDS ), 0.5 M NaPO 4 , 1 mM EDTA (washed with 50 ° C., 0.5 × SSC, 0.1% SDS), preferably 50 ° C., 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO 4 , 1 mM EDTA ( 50 ℃, 0.1X SSC, washed with 0.1% SDS), more preferably 50 ° C., 7% sodium dodecyl sulfate (SDS), 0.5M NaPO 4, in 1mM EDTA (65 ℃, 0.1X SSC , with 0.1% SDS Wash) hybridizes to the reference nucleotide sequence and also encodes a functionally equivalent gene product.

2以上の配列の同一性および類似性を比較する方法は当技術分野で周知のものである。よって例えば、Wisconsin配列解析パッケージ、バージョン9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984、Genetics Computer Group, Madison, Wisconsin, USAから入手可能)で利用できるプログラム、例えばBESTFITおよびGAPプログラムを用いて2つのポリヌクレオチド間の同一性%、ならびに2つのポリペプチド配列間の同一性%および類似性%を求めることができる。BESTFITではSmith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981)の「ローカルホモロジー」アルゴリズムを用い、2つの配列間で最も類似性の高い1つの領域を見つけ出す。BESTFITは長さの異なる2つポリヌクレオチドまたは2つのポリペプチド配列の比較に適しており、このプログラムでは短い方の配列が長い方の配列の一部に相当すると仮定する。これに対して、GAPは2つの配列をアラインし、Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970)のアルゴリズムに従って「最大類似性」を探す。GAPはほぼ同じ長さの配列の比較適しており、アライメントは全長にわたって予測する。好ましくは、各プログラムで用いるパラメーター「Gap Weight」および「Length Weight」はそれぞれポリヌクレオチド配列については50および3であり、ポリペプチド配列については12および4である。好ましくは、同一性%および類似性は比較する2つの配列が最適にアラインされたときに求められる。配列間の同一性および/または類似性を決定する他のプログラムも当技術分野で公知であり、例えばBLAST系のプログラム(Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F et al, Nucleic Acids Res., 25:389-3402, 1997、National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USAから入手可能であり、NCBIホームページ www.ncbi.nlm.nih.govにアクセスできる)およびFASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988、Wisconsin配列解析パッケージの一部として入手可能)がある。 Methods for comparing the identity and similarity of two or more sequences are well known in the art. Thus, for example, programs available in the Wisconsin sequence analysis package, version 9.1 (available from Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, Genetics Computer Group, Madison, Wisconsin, USA), such as BESTFIT and GAP The program can be used to determine the percent identity between two polynucleotides, and the percent identity and percent similarity between two polypeptide sequences. BESTFIT uses the “local homology” algorithm of Smith and Waterman (J Mol Biol, 147,195-197, 1981, Advances in Applied Mathematics, 2, 482-489, 1981), and the one with the highest similarity between the two sequences. Find an area. BESTFIT is suitable for comparing two polynucleotide or two polypeptide sequences of different lengths, and the program assumes that the shorter sequence corresponds to a portion of the longer sequence. In contrast, GAP aligns the two sequences and looks for “maximum similarity” according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970). GAP is suitable for comparison of approximately the same length of the array, alignment to predict over the entire length. Preferably, the parameters “Gap Weight” and “Length Weight” used in each program are 50 and 3 for the polynucleotide sequence and 12 and 4 for the polypeptide sequence, respectively. Preferably,% identity and similarity are determined when the two sequences to be compared are optimally aligned. Other programs for determining identity and / or similarity between sequences are also known in the art, such as BLAST-based programs (Altschul SF et al, J Mol Biol, 215, 403-410, 1990, Altschul SF Available from et al, Nucleic Acids Res., 25: 389-3402, 1997, National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA, and can be accessed from the NCBI homepage www.ncbi.nlm.nih.gov ) And FASTA (Pearson WR, Methods in Enzymology, 183, 63-99, 1990; Pearson WR and Lipman DJ, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin sequence analysis package) There is.

このスクリーニング法では単に、候補化合物とポリペプチドとの、またはそのポリペプチドもしくはその融合タンパク質を含む細胞もしくは膜との結合を、候補化合物と直接または間接的に会合した標識の手段によって測定すればよい。あるいは、このスクリーニング法は標識競合物(例えばアゴニストまたはアンタゴニスト)に対する候補化合物とポリペプチドの競合的結合を測定または検出(定性的または定量的)することを含みうる。さらにこれらのスクリーニング法では、ポリペプチドを含む細胞に適当な検出系を用い、候補化合物がポリペプチドの活性化または阻害によって生成するシグナルを生じるかどうかを試験してもよい。活性化の阻害剤は一般には既知のアゴニストの存在下でアッセイし、候補化合物の存在による、アゴニストによる活性化における作用を観測する。さらに、これらのスクリーニング法は単に、候補化合物と、本発明のポリペプチドを含有する溶液とを混合して混合物とし、その混合物におけるNgRH2結合または活性を測定し、その混合物のNgRH2結合または活性を、候補化合物を含まない対照混合物と比較するステップを含んでもよい。本発明のポリペプチドは従来の能力の低いスクリーニング法において用いてもよいし、ハイスループットスクリーニング(HTS)形式で用いてもよい。このようなHTS形式は十分確立されている96ウェル、さらに最近の384ウェルマイクロタイタープレートを含むだけでなく、Schullek et al, Anal Biochem., 246, 20-29, (1997)により記載されているナノウェル法などの新しい方法も含む。 In this screening method, the binding between the candidate compound and the polypeptide, or the cell or membrane containing the polypeptide or the fusion protein thereof may be measured by means of a label associated directly or indirectly with the candidate compound. . Alternatively, the screening method may involve labeled competitor (e.g. agonist or antagonist) measuring or detecting the competitive binding of a candidate compound to the polypeptide against (qualitative or quantitative). Further, in these screening methods, a detection system suitable for cells containing the polypeptide may be used to test whether the candidate compound produces a signal generated upon activation or inhibition of the polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist due to the presence of the candidate compound is observed. Furthermore, these screening methods simply mix a candidate compound with a solution containing the polypeptide of the present invention to form a mixture, measure NgRH2 binding or activity in the mixture, and determine the NgRH2 binding or activity of the mixture, Comparing to a control mixture that does not include the candidate compound may be included. The polypeptides of the present invention may be used in conventional low-capacity screening methods or in a high-throughput screening (HTS) format. Such HTS formats not only include well-established 96-well and more recent 384-well microtiter plates, but are also described by Schullek et al, Anal Biochem., 246, 20-29, (1997) New methods such as the nanowell method are also included.

このように発明者らはこのタンパク質の特性決定に関して、最近記載されているNogo-66のレセプターのホモログであると同定したことを記載する。NgRH2は一次構造、生化学的特性および発現パターンの点でNgRとの関連が強い。上記に示した複数の系統の証拠は、NgRおよび新たに同定されたホモログNgRH2が新規なタンパク質ファミリーのメンバーであるという結論を支持するものである。 Thus, the inventors describe that the protein has been identified as a homologue of the recently described Nogo-66 receptor for characterization. NgRH2 is strongly related to NgR in terms of primary structure, biochemical properties and expression pattern. The multiple lineage evidence presented above supports the conclusion that NgR and the newly identified homolog NgRH2 are members of a novel protein family.

JP2003523490A 2001-08-27 2002-08-26 Nogo receptor homologues and their use Pending JP2005507246A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31511001P 2001-08-27 2001-08-27
PCT/EP2002/009517 WO2003018631A2 (en) 2001-08-27 2002-08-26 Nogo receptor homologues and their use

Publications (2)

Publication Number Publication Date
JP2005507246A JP2005507246A (en) 2005-03-17
JP2005507246A5 true JP2005507246A5 (en) 2006-01-05

Family

ID=23222931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003523490A Pending JP2005507246A (en) 2001-08-27 2002-08-26 Nogo receptor homologues and their use

Country Status (5)

Country Link
US (2) US20040259092A1 (en)
EP (1) EP1423427A2 (en)
JP (1) JP2005507246A (en)
AU (1) AU2002331180A1 (en)
WO (1) WO2003018631A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119165B2 (en) 2000-01-12 2006-10-10 Yale University Nogo receptor-mediated blockade of axonal growth
DE50113568D1 (en) * 2000-09-02 2008-03-20 Gruenenthal Gmbh ANTISENSE OLIGONUCLEOTIDES AGAINST VR 1
DK1325130T3 (en) 2000-10-06 2010-05-25 Univ Yale Nogo Receptor Homologs
US7309485B2 (en) * 2001-12-03 2007-12-18 Children's Medical Center Corporation Reducing myelin-mediated inhibition of axon regeneration
AU2003246254A1 (en) * 2002-07-05 2004-01-23 Shionogi And Co., Ltd. NOVEL Nogo RECEPTOR-LIKE POLYPEPTIDE AND DNA THEREOF
BR0313331A (en) 2002-08-10 2007-07-24 Univ Yale nogo receptor antagonists
US7541335B2 (en) * 2003-04-04 2009-06-02 University Of Rochester Nogo-receptors and methods of use
US20070065429A1 (en) * 2003-04-16 2007-03-22 Biogen Idec Ma Inc. Nogo-receptor antagonists for the treatment of conditions involving amyloid plaques
US20090131327A1 (en) * 2005-04-29 2009-05-21 Patrick Doherty Nogo receptor functional motifs and peptide mimetics related thereto and methods of using the same
EP1904091A4 (en) 2005-07-07 2009-12-23 Univ Yale Compositions and methods for suppressing axonal growth inhibition
ES2550099T3 (en) 2006-01-27 2015-11-04 Biogen Ma Inc. Nogo receptor antagonists

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215051A (en) * 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
US4376110A (en) * 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6043024A (en) * 1997-04-18 2000-03-28 Abbott Laboratories Use of one-dimensional nuclear magnetic resonance to identify ligands to target biomolecules
CZ20022438A3 (en) * 2000-01-12 2002-10-16 Yale University Nucleic acid encoding Nogo receptor, isolated polypeptide, and pharmaceutical preparation for stimulating growth of axons
DK1325130T3 (en) * 2000-10-06 2010-05-25 Univ Yale Nogo Receptor Homologs

Similar Documents

Publication Publication Date Title
Masuda et al. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors
Labeit et al. Towards a molecular understanding of titin.
EP1270724A2 (en) Guanosine triphosphate-binding protein coupled receptors
Dowell et al. Yeast assays for G-protein-coupled receptors
Byers et al. Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin.
Cao et al. TRAF6 is a signal transducer for interleukin-1
Kaushansky et al. System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties
JP2005507246A5 (en)
US20070009916A1 (en) Guanosine triphosphate-binding protein coupled receptors
CA2529863A1 (en) Peptide combos and their uses
Zencir et al. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein
Browning et al. Phosphorylation of the GABA A receptor by cAMP-dependent protein kinase and by protein kinase C: analysis of the substrate domain
Wirschell et al. IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding
Plowman et al. Unravelling the proteome of wool: towards markers of wool quality traits
Katoh et al. Comparative genomics on SLIT1, SLIT2, and SLIT3 orthologs
JP2005520498A5 (en)
EP1284298A3 (en) Identification and use of molecules implicated in pain
JP2005502344A5 (en)
Katoh et al. Identification and characterization of human GUKH2 gene in silico
Hernández-Espinosa et al. Sites phosphorylated in human α1B-adrenoceptors in response to noradrenaline and phorbol myristate acetate
US20030170744A1 (en) Multiplexed analysis of cellular responses using endogenous reporter genes
Oe et al. Muscle type specific expression of tropomyosin isoforms in bovine skeletal muscles
Esmaeilzadeh-Gharehdaghi et al. S3440P substitution in C-terminal region of human Reelin dramatically impairs secretion of Reelin from HEK 293T cells
WO1999023116B1 (en) ASSAY EMPLOYING CadC FUSION PROTEINS
US20080280303A1 (en) G-protein coupled receptors high-throughput functional assay