JP2005501420A - Color image sensor on transparent substrate and method for manufacturing the same - Google Patents
Color image sensor on transparent substrate and method for manufacturing the same Download PDFInfo
- Publication number
- JP2005501420A JP2005501420A JP2003523013A JP2003523013A JP2005501420A JP 2005501420 A JP2005501420 A JP 2005501420A JP 2003523013 A JP2003523013 A JP 2003523013A JP 2003523013 A JP2003523013 A JP 2003523013A JP 2005501420 A JP2005501420 A JP 2005501420A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- layer
- wafer
- color filter
- transmissive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000000151 deposition Methods 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 5
- 239000004033 plastic Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 4
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 abstract description 37
- 229910052710 silicon Inorganic materials 0.000 abstract description 37
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 36
- 235000012431 wafers Nutrition 0.000 description 54
- 239000010410 layer Substances 0.000 description 46
- 238000002513 implantation Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000012993 chemical processing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010028 chemical finishing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1892—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1464—Back illuminated imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14645—Colour imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02162—Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
本発明は、小型カメラ製造用カラー画像センサと、該センサの製造方法に関する。当該画像センサは、モザイク状カラーフィルタ(18)と、感光領域を備える非常に薄いシリコン層(30)と、透過性基板を介した感光領域の照射により生成された電荷の収集を可能にする画像検出回路を定義する導電層(14)及び絶縁層(16)のスタックとが上部に連続的に重畳されている透過性基板(40)を備える。透過性基板(40)はガラス又はプラスチック材料から作られる。当該製造方法は、感光回路をシリコンウェハ上に形成することと、該ウェハを仮基板上に移載することと、該ウェハを約3ないし30マイクロメートルの厚さに薄化することと、カラーフィルタを残りのシリコン層表面に堆積させることと、該構造を透過性の最終基板に移載して仮基板を除去することからなる。
【選択図】図6The present invention relates to a color image sensor for manufacturing a small camera and a method for manufacturing the sensor. The image sensor comprises a mosaic color filter (18), a very thin silicon layer (30) with a photosensitive area, and an image that allows the collection of charges generated by irradiation of the photosensitive area through a transparent substrate. A conductive substrate (14) defining a detection circuit and a stack of insulating layers (16) are provided with a transmissive substrate (40) continuously superposed thereon. The transmissive substrate (40) is made from a glass or plastic material. The manufacturing method includes forming a photosensitive circuit on a silicon wafer, transferring the wafer onto a temporary substrate, thinning the wafer to a thickness of about 3 to 30 micrometers, Depositing the filter on the remaining silicon layer surface and transferring the structure to a transmissive final substrate and removing the temporary substrate.
[Selection] Figure 6
Description
【技術分野】
【0001】
本発明は電子画像センサ、特に携帯電話に組み込まれるような小型カメラの製造を可能にする寸法の、非常に小さなサイズのセンサに関する。
【背景技術】
【0002】
非常に小型であるだけでなく、この種の画像センサは、弱い光の下でも高感度を有し、高い測色性能を有しているべきである。
さらに、価格が法外にならないように最も経済的な方法でカメラ全体を製造する必要がある。
このことを達成するために、第一に、画像センサと電子処理回路を、可能であれば同じシリコン基板上に製造することが求められ、第二に、様々な層の堆積、エッチング、熱処理作業等を、同一のセンサを多数含むシリコンウェハ上で可能な限り集約的に行い、次いで該ウェハを独立したセンサに切り分けることが求められる。
しかし、これまでに提案されてきたカラー画像センサの製造方法及びそれらセンサの構造は、この点から見て完全に満足のいくものではない。その製造方法は産業上効果的でなく;依然として非常に高価であり、大量生産に適用するには効率が低すぎ、そうでない場合は、画像センサの性能が十分でない。
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明は、高い品質と、特に優れた小型性、高感度及び高い測色性能を提示しつつも製造コストを最小限に抑える製造方法と、それに対応する画像センサを提案する。
【課題を解決するための手段】
【0004】
このために、本発明は:
−半導体ウェハの前面に、画像検出回路を備え且つそれぞれが各画像センサに対応する一連の活性領域を形成することと、ここで各活性領域は入力/出力パッドに囲まれている
−ウェハの前面を仮の支持基板の前面に対して移載することと、
−画像検出回路を備える薄い半導体層を基板に残して、半導体ウェハの厚さの大部分を除去することからなり、
−第一に、このようにして薄化された半導体層上に、カラーフィルタ層を堆積させ、次いでエッチングすることと、
−第二に、該カラーフィルタのエッチング後、仮基板及びウェハ全体の、カラーフィルタを支える側を、透過性の最終基板に移載することと、
−次いで、仮基板の少なくとも大部分を除去し、入力/出力パッドへのアクセスを容易にすることと、
−最後に、基板を個々のセンサに切り分けること
を特徴とする画像センサの製造方法を提案する。
【0005】
薄化された層の半導体材料は単結晶材料であるのが好ましく、最も一般的な可視光下での用途の場合は特にシリコンが好ましい。
仮基板は、センサを外部へ接続できる入力/出力パッドが露出されるように完全に除去されてよい。しかし、半導体ウェハを保護する薄層が残るように部分的にのみ除去することもできる。この場合、該薄層には、入力/出力パッドにアクセスするための孔を形成する必要がある。
【0006】
好適には、活性領域は感光要素のマトリクスを備え、さらに該マトリクスの制御回路と、活性領域の感光要素から発される信号を受信する、それに関連する画像処理回路を備える。このようにマトリクスと関連する回路は、マトリクスだけが光に曝されるようにアルミニウム層によって光から遮断されるのが好ましい。該アルミニウム層は透過性基板上に形成される。
【0007】
仮基板への半導体ウェハの移載は、接着、標準的なはんだ付け、陽極ボンディング、又は単純に分子レベルで密着させることにより(つまり、良好な平坦性を有する2つの表面間での非常に強い接触力を介して)行うことができる。仮基板から最終基板への移載は、ボンディング又は分子レベルで密着させることにより行われるのが好ましいであろう。
基板への移載後且つフィルタの堆積前に、半導体ウェハの薄化を多くの様々な方法:ラッピングによる薄化、化学的な薄化、両方のタイプの薄化の組合せ(まず機械的な薄化を施し続いて化学的な仕上げ、又は化学薬品の存在下での機械加工)で行うことができる。薄化は、所望の切り分けレベルでウェハを予め脆化することによって、特に所望の切り分け面での深さ方向への水素注入によっても行うことができる。この場合、水素注入は、基板へのウェハの移載前、半導体ウェハに浅く行われる。次いで、基板と接触する薄い半導体層を残して、注入された切り分け面のレベルでウェハを分離する熱処理によって、薄化が行われる。
ウェハの非常に良好な薄化により、移載前は数百マイクロメートルだったその厚さが、基板への移載後は3ないし20マイクロメートルに減る。薄化は、測色性能と感度を向上させるため、センサの品質における重要な要因である。薄化されていないセンサで、画像検出回路を定義する複数の絶縁及び導電層が形成されている側から光が照射されると、カラーフィルタを横断した光は、異なる色に対応する感光ドットに散乱され、測色性能が低下する。さらに、薄いセンサでは、薄化されていないセンサの場合よりも光子がより広いシリコン領域に到達するため、感度が向上する。これは、光子が、各感光ドットに対応する表面領域の大部分を占める不透過性の金属層によっては遮断されないからである。
【0008】
しかしながら、薄化後、シリコンは剛性を失い非常に脆くなるので、薄化によって製造における問題が複雑化することと、さらには画像検出回路と外部を接続する問題が生じることが理解されるであろう。本発明の解決策は、この難題を軽減し、効率の高い画像センサの製造を可能にするものである。
【0009】
最終的なセンサにおいて、光は透過性の最終基板を通って受け取られ、接続パッドはそれと反対側に配置されており、よって該センサはフリップチップ技術(ここで、該接続パッドを有するチップは、プリント回路基板に対して上下逆である)で取り付けることができる。透過性基板(ガラス又はプラスチック製)を通る光の損失は少ない。
最終基板とシリコン層は密着するので、ウェハの能動回路要素は良好に保護される。
例えば、直径15ないし20センチメートルの基板の場合、最終基板の厚さは約500マイクロメートルであり;シリコンウェハの厚さは、薄化前は(直径15ないし30センチメートルで)500ないし1000マイクロメートルで、薄化後は3ないし20マイクロメートルである。
シリコンウェハを中間基板に移載する前、且つ該中間基板を最終基板に移載する前に、例えばポリイミドから作られた平坦化層がシリコンウェハ上に堆積されてもよい。
特定の場合、中間基板は、一回分の製造に使用した後、また別の回に再使用できることに注意されたい。
【0010】
従って、本発明の目的は、光が、感光領域のマトリクスアレイに到達する前に導電層の体系に接触することなく、透過性基板、カラーフィルタ、感光半導体領域、次いで、絶縁及び導電層のスタックの順序でそれらを通過するように、モザイク状カラーフィルタと、感光領域のマトリクスアレイが形成されている非常に薄い単結晶半導体層(最大厚さが数十マイクロメートル)と、透過性基板を介した感光領域の照射により生成された電荷の収集を可能にする絶縁及び導電層のスタックとが上部に連続的に重畳されている透過性基板を備える画像センサである。
透過性基板は、ガラス又はプラスチック製であるのが好ましいが、セラミック又は結晶性物質から作られてもよい。
本発明の他の特徴及び利点は、添付の図面を参照する以下の詳細な説明から明らかになるであろう。
【0011】
図1は、複数の画像センサの画像検出回路が従来技術を用いて作られたシリコンウェハの一般的な構造を示す。
シリコンウェハ10は、直径150ないし300ミリメートルの場合、数百マイクロメートルの厚さを有する。
画像検出回路(感光ドット、トランジスタ及び相互接続のマトリクス)がシリコンウェハの一面に加工され、この面は前面と呼ぶことができ、図1における上方面である。該加工とは、第一に、特に感光領域12を形成するためにウェハの上方面からシリコンに行われる様々な拡散及び注入作業を意味し、第二に、感光領域12の最表面にスタックを形成する導電層14及び絶縁層16の堆積及びエッチングのための連続的な作業を意味する。絶縁及び導電層は画像検出回路の一部をなし、センサに映された画像によって感光領域に生成される電荷の収集を可能にする。
導電層14の1つ、原則的には最後に堆積された層が、感光ドットのマトリクスを備える活性領域の周辺に各センサの入力/出力パッド(図1には該パッドは図示されていない)を形成する働きをする。
【0012】
センサが従来技術によって製造される場合、モザイク状のカラーフィルタはウェハ表面に堆積されることになる。
本発明では、この段階ではカラーフィルタは堆積されず、ウェハの前面が仮基板20(図2)に移載される。仮基板20は、製造中の構造の剛性を確保するためにウェハ10と同一の直径と類似の厚さを有するウェハである。また、別のシリコンウェハで構成されてもよい。移載は、絶縁及び導電層のスタックの堆積及びエッチング作業によってシリコンウェハの前面に形成された凹凸を埋める働きをする平坦化層を堆積させた後に行うことができる。該平坦化層は透過性である必要はない。
【0013】
図2は、活性領域ZAと該領域ZA周辺の接続パッド22を備える独立したセンサの全体を示すために、図1よりも小さい尺度で構造を表したものである。導電層14と接触する又は層14の一部をなすパッド22は、2つのウェハ10及び20の間の接触面と同一平面上にあることが好ましい;平坦化層が堆積されている場合は、該層がパッド22を覆わないことを確実にすることが好ましい。しかし、パッドが平坦化層に覆われる場合、加工プロセスの最後に、これらパッドにアクセスするための孔をいずれにしても形成できることは後に説明する。
シリコンウェハの支持ウェハ20への移載は複数の手段で行うことができる。最も単純な手段は、接触する表面の平坦性が良好であると非常に強い接触力が生成されるので、分子レベルで密着させることによってウェハを保持するというものである。接着も可能である。
【0014】
シリコンウェハの前面が支持ウェハに移載された後、層のスタックの厚さを含めて約8ないし30マイクロメートルの厚さだけが残るように、シリコンウェハの厚さの大部分が除去される。シリコンウェハの残る部分は、数マイクロメートル(例えば5ないし10マイクロメートル)の層14、16のスタックの重畳と、約3ないし20マイクロメートルの、感光領域12を含む残りのシリコンの厚さだけである。該残りの厚さは、図1の感光領域12を含む図3の層30の厚さである。
薄化作業は、機械加工(ラッピング)を施し仕上げに化学加工することによって、又は機械/化学加工によって、又は化学加工のみによって、又はさらには薄化シリコン層の境界を定めることとなる平面に脆化不純物を予め注入することを必要とする特定の分離方法によって行うことができる。
不純物の注入によって分離する場合、注入はシリコンウェハを支持ウェハに移載する前に行わなくてはならない。実際に、注入はシリコンウェハの前面に、該ウェハの全表面にわたって、切り分け面を定義する深さで行われる。事前の注入は水素注入であることが好ましい。これは、ウェハ製造の様々な段階で行うことができるが、注入された切り分け面に沿ったウェハの厚さの分離は、シリコンウェハが支持ウェハに取り付けられた後にしか行えない。
【0015】
薄化されたシリコン層30の上方面を、表面の不具合を解消するために処理(ファインラッピング、化学洗浄、機械/化学研磨等)することができ、その後カラーフィルタを堆積及びエッチングし、概略的な構造が図2のものである複数センサのウェハをつくり出すことができる。
続いて、モザイク状のカラーフィルタ18が層30(図4)の表面に堆積される。所望であれば、カラーフィルタの堆積前に、特に保護層、反射防止層及び他の層、例えばドープ塗料を塗られたシリコン層の電気活性に必要な層(電気分極層)といった、一又は複数の付加的な層を堆積させることができる。
必要であれば、平坦化層24がモザイク状フィルタに堆積される。該層はフィルタを覆う場合透過性でなくてはならない。次に、カラーフィルタを支える仮基板20の前面が、最終の透過性基板40(ガラス又はプラスチック製)に移載される。該基板は、仮基板及び最初のシリコンウェハと同様の直径を有するウェハの形態である。最終基板の厚さは、加工中の構造の剛性を確保するために少なくとも数百マイクロメートルである(図5)。
仮基板の最終基板への移載は、接着(透過性の接着剤での)又は分子レベルで密着させることによってなされる。
【0016】
仮基板20の大部分又はさらには全体が、機械的及び/又は化学的手段、又は例えば上述したような水素注入による脆化によって除去される。この場合、基板20を部分的に除去するために、支持ウェハ20への水素注入は、シリコンウェハをウェハ20に最初に移載する前に行わなければならない。このことは、ウェハ20への移載と基板40への移載との間に、水素注入された平面で破損を引き起こす虞のある温度での作業は何ら実施されないことを意味する。
図6の場合、基板20は、接続パッド22が構造の表面と同一平面で重なるまで完全に除去されている。
図7の場合、基板20は部分的にのみ除去されている。わずかな厚さ(可能であれば最大数マイクロメートル)が残されており、該厚さには、接続パッド22へのアクセス領域を開放するために、化学腐食又は他の手段を用いて孔70が形成されることとなる。
【0017】
図7の場合の接続パッドは「ワイヤボンディング」タイプのプリント回路基板との接続に使用されうる。光は透過性の最終基板40側から差し込まなければならないので、プリント回路基板は、感光活性領域と対向しているように面していなければならない。
図6の場合、接続パッド22は画像センサの上方面のレベルと同一平面で重なる。これらは、「ワイヤボンディング」又は「フリップチップ」タイプの接続(チップが、プリント回路基板の対応するパッドに対して該接続パッドと上下逆に配置される)に使用されうる。この場合、センサはプリント回路基板の上部から照射される。
接続パッド22が孔70内に押し込まれている図7のセンサでも同じくフリップチップタイプの組み立てを使用したい場合、以下の手順が行われることとなる:付加的な金属を堆積及びエッチングし、ここで該金属は孔70の底だけでなく、構造の外表面(つまり孔70が形成されている基板20の残りの部分の上方面)にも載せられる。構造の外部接続パッドはこうして孔70の外側に形成されることとなる。
【0018】
これら異なる実施形態において、基板40上に形成された構造は、接続パッドを用いてウェハ上で検査できる。該検査は、光の下、複数の画像パターン下、或いは他の条件下で実施できる。
構造は、加工プロセスの最後に、パッケージングのために各センサに切り分けられる。
カラーフィルタを支える薄化されたシリコン層に対して密接にあてがわれた最終基板は、フィルタとシリコンの双方を保護する。
【図面の簡単な説明】
【0019】
【図1】カラーフィルタ配置前のシリコンウェハ上に作られた画像センサの構造を示す。
【図2】シリコンウェハの前面を仮基板に移載する作業を示す。
【図3】薄化後のシリコンウェハを有する仮基板を示す。
【図4】モザイク状のカラーフィルタが堆積された薄化されたシリコン層を支える仮基板を示す。
【図5】仮基板のカラーフィルタを支える前面が移載されている最終基板を示す。
【図6】仮基板の全厚さを除去した後の最終基板を示す。
【図7】仮基板の全てではなく大部分が除去され、且つ接触部へのアクセス孔が形成されている代替実施形態を示す。【Technical field】
[0001]
The present invention relates to an electronic image sensor, in particular a sensor of very small size, dimensioned to allow the production of a miniature camera such as that incorporated into a mobile phone.
[Background]
[0002]
In addition to being very small, this type of image sensor should have high sensitivity even under low light and high colorimetric performance.
Furthermore, it is necessary to manufacture the entire camera in the most economical way so that the price is not prohibitive.
In order to achieve this, firstly the image sensor and the electronic processing circuit are required to be manufactured on the same silicon substrate if possible, and secondly, various layer deposition, etching and heat treatment operations. Etc. are performed as intensively as possible on a silicon wafer containing many identical sensors, and the wafer is then cut into independent sensors.
However, the color image sensor manufacturing methods and the structures of the sensors proposed so far are not completely satisfactory in this respect. The manufacturing method is not industrially effective; it is still very expensive and is too inefficient for mass production applications, otherwise the performance of the image sensor is not sufficient.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0003]
The present invention proposes a manufacturing method that minimizes the manufacturing cost while presenting high quality, particularly excellent compactness, high sensitivity, and high colorimetric performance, and an image sensor corresponding thereto.
[Means for Solving the Problems]
[0004]
To this end, the present invention:
The front side of the semiconductor wafer is provided with an image detection circuit, each forming a series of active areas corresponding to each image sensor, wherein each active area is surrounded by input / output pads; To the front surface of the temporary support substrate,
-Removing a majority of the thickness of the semiconductor wafer, leaving a thin semiconductor layer with image detection circuitry on the substrate;
Firstly depositing a color filter layer on the semiconductor layer thus thinned and then etching;
-Second, after etching the color filter, transferring the side of the temporary substrate and the whole wafer that supports the color filter to the transmissive final substrate;
-Then removing at least most of the temporary substrate to facilitate access to the input / output pads;
-Finally, a method for manufacturing an image sensor, characterized in that the substrate is cut into individual sensors, is proposed.
[0005]
The semiconductor material of the thinned layer is preferably a single crystal material, and silicon is particularly preferred for the most common applications under visible light.
The temporary substrate may be completely removed so that the input / output pads that can connect the sensor to the outside are exposed. However, it can also be removed only partially so that a thin layer protecting the semiconductor wafer remains. In this case, it is necessary to form a hole in the thin layer for accessing the input / output pad.
[0006]
Preferably, the active area comprises a matrix of photosensitive elements and further comprises a control circuit for the matrix and associated image processing circuitry for receiving signals emitted from the photosensitive elements in the active area. Thus, the circuitry associated with the matrix is preferably shielded from light by the aluminum layer so that only the matrix is exposed to light. The aluminum layer is formed on a transmissive substrate.
[0007]
Transfer of a semiconductor wafer to a temporary substrate can be accomplished by bonding, standard soldering, anodic bonding, or simply adhesion at the molecular level (ie, very strong between two surfaces with good flatness) Via contact force). The transfer from the temporary substrate to the final substrate is preferably performed by bonding or adhesion at the molecular level.
After transfer to the substrate and before filter deposition, semiconductor wafer thinning can be done in many different ways: thinning by lapping, chemical thinning, a combination of both types of thinning (first mechanical thinning). Followed by chemical finishing or machining in the presence of chemicals). Thinning can also be performed by embrittlement of the wafer in advance at the desired cutting level, in particular by hydrogen implantation in the depth direction at the desired cutting surface. In this case, the hydrogen implantation is shallowly performed on the semiconductor wafer before the wafer is transferred to the substrate. Thinning is then performed by a heat treatment that separates the wafer at the level of the implanted slicing plane, leaving a thin semiconductor layer in contact with the substrate.
The very good thinning of the wafer reduces its thickness from several hundred micrometers before transfer to 3 to 20 micrometers after transfer to the substrate. Thinning is an important factor in sensor quality because it improves colorimetric performance and sensitivity. When light is irradiated from the side where a plurality of insulating and conductive layers defining the image detection circuit are formed by a non-thinned sensor, the light that has crossed the color filter is applied to photosensitive dots corresponding to different colors. Scattered and colorimetric performance decreases. Furthermore, the sensitivity of the thin sensor is improved because the photons reach a wider silicon region than in the case of a non-thinned sensor. This is because photons are not blocked by an impermeable metal layer occupying most of the surface area corresponding to each photosensitive dot.
[0008]
However, after thinning, silicon loses rigidity and becomes very brittle, so it is understood that thinning complicates manufacturing problems and further causes problems connecting the image detection circuit to the outside. Let's go. The solution of the present invention alleviates this challenge and allows for the production of highly efficient image sensors.
[0009]
In the final sensor, light is received through the transmissive final substrate and the connection pads are placed on the opposite side, so the sensor is flip-chip technology (where the chip with the connection pads is It can be mounted upside down with respect to the printed circuit board. There is little loss of light through the transmissive substrate (made of glass or plastic).
Since the final substrate and the silicon layer are in intimate contact, the active circuit elements of the wafer are well protected.
For example, for a 15 to 20 centimeter diameter substrate, the final substrate thickness is about 500 micrometers; the thickness of the silicon wafer is 500 to 1000 micrometers (with a diameter of 15 to 30 centimeters) before thinning. In meters, 3 to 20 micrometers after thinning.
Before transferring the silicon wafer to the intermediate substrate and before transferring the intermediate substrate to the final substrate, a planarizing layer made of, for example, polyimide may be deposited on the silicon wafer.
It should be noted that in certain cases, the intermediate substrate can be reused for another time after it has been used for one manufacturing.
[0010]
Accordingly, it is an object of the present invention to provide a transparent substrate, a color filter, a photosensitive semiconductor region, and then a stack of insulating and conductive layers without the light contacting the conductive layer system before reaching the matrix array of photosensitive regions. Through the mosaic color filters, a very thin single crystal semiconductor layer (maximum thickness of several tens of micrometers) on which a matrix array of photosensitive regions is formed, and a transparent substrate An image sensor comprising a transmissive substrate overlaid with a stack of insulating and conductive layers that enable collection of charges generated by irradiation of the exposed photosensitive area.
The transmissive substrate is preferably made of glass or plastic, but may be made of a ceramic or crystalline material.
Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings.
[0011]
FIG. 1 shows the general structure of a silicon wafer in which the image detection circuits of a plurality of image sensors are made using conventional techniques.
The silicon wafer 10 has a thickness of several hundred micrometers when the diameter is 150 to 300 millimeters.
An image detection circuit (photosensitive dots, transistors and interconnect matrix) is processed on one side of the silicon wafer, which can be referred to as the front side, which is the upper side in FIG. The processing means firstly various diffusion and implantation operations performed on the silicon from the upper surface of the wafer to form the photosensitive region 12, and secondly, a stack is formed on the outermost surface of the photosensitive region 12. It means a continuous operation for depositing and etching the conductive layer 14 and the insulating layer 16 to be formed. The insulating and conductive layers form part of the image detection circuit and allow the collection of charge generated in the photosensitive area by the image projected on the sensor.
One of the conductive layers 14, in principle the last deposited layer, is an input / output pad for each sensor around the active area with a matrix of photosensitive dots (the pads are not shown in FIG. 1). Work to form.
[0012]
If the sensor is manufactured according to the prior art, a mosaic color filter will be deposited on the wafer surface.
In the present invention, the color filter is not deposited at this stage, and the front surface of the wafer is transferred to the temporary substrate 20 (FIG. 2). The temporary substrate 20 is a wafer having the same diameter and similar thickness as the wafer 10 in order to ensure the rigidity of the structure being manufactured. Moreover, you may comprise with another silicon wafer. The transfer can be done after depositing a stack of insulating and conductive layers and depositing a planarizing layer that serves to fill the irregularities formed on the front surface of the silicon wafer by etching operations. The planarizing layer need not be transmissive.
[0013]
FIG. 2 shows the structure on a smaller scale than FIG. 1 in order to show the entire independent sensor including the active region ZA and the connection pads 22 around the region ZA. The pad 22 in contact with or forming part of the conductive layer 14 is preferably coplanar with the contact surface between the two wafers 10 and 20; if a planarization layer is deposited, It is preferable to ensure that the layer does not cover the pad 22. However, when pads are covered with a planarization layer, it will be described later that holes for accessing these pads can be formed at any time at the end of the processing process.
The transfer of the silicon wafer onto the support wafer 20 can be performed by a plurality of means. The simplest means is to hold the wafer by bringing it into close contact at the molecular level because a very strong contact force is generated if the flatness of the contacting surface is good. Bonding is also possible.
[0014]
After the front side of the silicon wafer is transferred to the support wafer, most of the thickness of the silicon wafer is removed so that only a thickness of about 8 to 30 micrometers, including the thickness of the stack of layers, remains. . The remaining portion of the silicon wafer is only a stack of several micrometer (eg, 5 to 10 micrometer) layers 14, 16 and the remaining silicon thickness, including the photosensitive region 12, of about 3 to 20 micrometers. is there. The remaining thickness is the thickness of the layer 30 of FIG. 3 including the photosensitive region 12 of FIG.
The thinning operation can be performed by machining (wrapping) and chemically processing the finish, or by mechanical / chemical processing, or by chemical processing alone, or even on a plane that will delimit the thinned silicon layer. This can be done by a specific separation method that requires pre-implantation of phosphide impurities.
In the case of separation by impurity implantation, the implantation must be performed before the silicon wafer is transferred to the support wafer. In practice, the implantation is performed on the front side of the silicon wafer, at a depth that defines the cutting plane across the entire surface of the wafer. The pre-injection is preferably hydrogen injection. This can be done at various stages of wafer fabrication, but the separation of the wafer thickness along the implanted cut surface can only be done after the silicon wafer is attached to the support wafer.
[0015]
The upper surface of the thinned silicon layer 30 can be treated (fine wrapping, chemical cleaning, mechanical / chemical polishing, etc.) to eliminate surface defects, then color filters are deposited and etched, A multi-sensor wafer having a unique structure as shown in FIG. 2 can be produced.
Subsequently, a mosaic color filter 18 is deposited on the surface of the layer 30 (FIG. 4). If desired, one or more before deposition of the color filter, in particular protective layers, antireflection layers and other layers, for example the layers necessary for the electrical activation of the doped silicon layer (electrical polarization layer) Additional layers of can be deposited.
If necessary, a planarization layer 24 is deposited on the mosaic filter. The layer must be permeable when covering the filter. Next, the front surface of the temporary substrate 20 that supports the color filter is transferred to the final transparent substrate 40 (made of glass or plastic). The substrate is in the form of a wafer having a diameter similar to that of the temporary substrate and the initial silicon wafer. The final substrate thickness is at least several hundred micrometers to ensure the rigidity of the structure being processed (FIG. 5).
The temporary substrate is transferred to the final substrate by adhesion (with a permeable adhesive) or adhesion at the molecular level.
[0016]
Most or even the entire temporary substrate 20 is removed by mechanical and / or chemical means or by embrittlement, for example by hydrogen injection as described above. In this case, in order to partially remove the substrate 20, hydrogen injection into the support wafer 20 must be performed before the silicon wafer is first transferred to the wafer 20. This means that during the transfer to the wafer 20 and the transfer to the substrate 40, no work is performed at a temperature that could cause damage on the hydrogen-injected plane.
In the case of FIG. 6, the substrate 20 has been completely removed until the connection pads 22 are flush with the surface of the structure.
In the case of FIG. 7, the substrate 20 is only partially removed. A slight thickness is left (up to a few micrometers if possible) which may be perforated using chemical corrosion or other means to open the access area to the connection pad 22. Will be formed.
[0017]
The connection pads in the case of FIG. 7 can be used for connection to a “wire bonding” type printed circuit board. Since light must be inserted from the transmissive final substrate 40 side, the printed circuit board must face to face the photosensitive active area.
In the case of FIG. 6, the connection pad 22 overlaps with the level of the upper surface of the image sensor in the same plane. They can be used for “wire bonding” or “flip chip” type connections (where the chip is placed upside down with respect to the corresponding pads on the printed circuit board). In this case, the sensor is irradiated from the top of the printed circuit board.
If the sensor of FIG. 7 with the connection pad 22 pushed into the hole 70 also wants to use a flip chip type assembly, the following procedure will be performed: deposit and etch additional metal, where The metal rests not only on the bottom of the hole 70 but also on the outer surface of the structure (ie, the upper surface of the remaining portion of the substrate 20 in which the hole 70 is formed). The external connection pad of the structure is thus formed outside the hole 70.
[0018]
In these different embodiments, the structure formed on the substrate 40 can be inspected on the wafer using connection pads. The inspection can be performed under light, under multiple image patterns, or under other conditions.
The structure is carved into each sensor for packaging at the end of the fabrication process.
The final substrate, applied closely to the thinned silicon layer that supports the color filter, protects both the filter and the silicon.
[Brief description of the drawings]
[0019]
FIG. 1 shows a structure of an image sensor formed on a silicon wafer before arrangement of color filters.
FIG. 2 shows an operation of transferring the front surface of a silicon wafer onto a temporary substrate.
FIG. 3 shows a temporary substrate having a silicon wafer after thinning.
FIG. 4 shows a temporary substrate supporting a thinned silicon layer on which a mosaic color filter is deposited.
FIG. 5 shows the final substrate on which the front surface supporting the color filter of the temporary substrate is transferred.
FIG. 6 shows the final substrate after removing the entire thickness of the temporary substrate.
FIG. 7 shows an alternative embodiment in which most but not all of the temporary substrate is removed and access holes to the contacts are formed.
Claims (8)
−ウェハ(10)の前面を仮の支持基板(20)の前面に対して移載することと、
−画像検出回路を備える薄い半導体層(30)を基板に残して、半導体ウェハの厚さの大部分を除去すること
からなる画像センサの製造方法であって、
−第一に、このようにして薄化された半導体層上に、カラーフィルタ層(18)を堆積させ、次いでエッチングすることと、
−第二に、該カラーフィルタのエッチング後、仮基板の、カラーフィルタを支える側を、透過性の最終基板(40)に移載することと、
−次いで、仮基板(20)の少なくとも大部分を除去し、入力/出力パッド(22)へのアクセスを容易にすることと、
−最後に、基板を個々のセンサに切り分けることと
を特徴とする方法。Forming on the front surface of the semiconductor wafer (10) a series of active areas (ZA) each comprising an image detection circuit and corresponding to each image sensor, wherein each active area is an input / output pad (22); -Transferring the front surface of the wafer (10) to the front surface of the temporary support substrate (20);
A method of manufacturing an image sensor, comprising leaving a thin semiconductor layer (30) with an image detection circuit on the substrate and removing most of the thickness of the semiconductor wafer,
Firstly depositing and then etching a color filter layer (18) on the semiconductor layer thus thinned;
-Secondly, after etching the color filter, transferring the side of the temporary substrate that supports the color filter to the transmissive final substrate (40);
-Then removing at least most of the temporary substrate (20) to facilitate access to the input / output pads (22);
-Finally, the method characterized in that the substrate is cut into individual sensors.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0111335A FR2829290B1 (en) | 2001-08-31 | 2001-08-31 | COLOR IMAGE SENSOR ON TRANSPARENT SUBSTRATE AND MANUFACTURING METHOD |
PCT/FR2002/002977 WO2003019667A1 (en) | 2001-08-31 | 2002-08-30 | Colour image sensor on transparent substrate and method for making same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005501420A true JP2005501420A (en) | 2005-01-13 |
JP2005501420A5 JP2005501420A5 (en) | 2007-12-06 |
JP4147187B2 JP4147187B2 (en) | 2008-09-10 |
Family
ID=8866878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003523013A Expired - Fee Related JP4147187B2 (en) | 2001-08-31 | 2002-08-30 | Manufacturing method of color image sensor on transparent substrate |
Country Status (10)
Country | Link |
---|---|
US (1) | US6933585B2 (en) |
EP (1) | EP1421622B1 (en) |
JP (1) | JP4147187B2 (en) |
KR (1) | KR100919964B1 (en) |
CN (1) | CN100487899C (en) |
CA (1) | CA2457899C (en) |
DE (1) | DE60223263T2 (en) |
FR (1) | FR2829290B1 (en) |
IL (2) | IL160113A0 (en) |
WO (1) | WO2003019667A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2863773B1 (en) * | 2003-12-12 | 2006-05-19 | Atmel Grenoble Sa | PROCESS FOR THE PRODUCTION OF AMINCI SILICON ELECTRONIC CHIPS |
KR100741920B1 (en) * | 2004-12-30 | 2007-07-24 | 동부일렉트로닉스 주식회사 | method for fabricating CMOS image sensor |
JP4486043B2 (en) * | 2004-12-30 | 2010-06-23 | 東部エレクトロニクス株式会社 | CMOS image sensor and manufacturing method thereof |
US8409970B2 (en) * | 2005-10-29 | 2013-04-02 | Stats Chippac, Ltd. | Semiconductor device and method of making integrated passive devices |
US8158510B2 (en) | 2009-11-19 | 2012-04-17 | Stats Chippac, Ltd. | Semiconductor device and method of forming IPD on molded substrate |
US8791006B2 (en) * | 2005-10-29 | 2014-07-29 | Stats Chippac, Ltd. | Semiconductor device and method of forming an inductor on polymer matrix composite substrate |
DE102006014247B4 (en) * | 2006-03-28 | 2019-10-24 | Robert Bosch Gmbh | Image recording system and method for its production |
US20090174018A1 (en) * | 2008-01-09 | 2009-07-09 | Micron Technology, Inc. | Construction methods for backside illuminated image sensors |
JP5347520B2 (en) | 2009-01-20 | 2013-11-20 | ソニー株式会社 | Method for manufacturing solid-state imaging device |
US8310021B2 (en) * | 2010-07-13 | 2012-11-13 | Honeywell International Inc. | Neutron detector with wafer-to-wafer bonding |
JP2019511834A (en) * | 2016-02-16 | 2019-04-25 | ジーレイ スイッツァーランド エスアー | Structures, systems and methods for charge transport across junction interfaces |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4758734A (en) * | 1984-03-13 | 1988-07-19 | Nec Corporation | High resolution image sensor array using amorphous photo-diodes |
US4976802A (en) * | 1989-10-16 | 1990-12-11 | Xerox Corporation | Process for assembling smaller scanning or printing arrays together to form a longer array |
JPH05183141A (en) * | 1991-07-12 | 1993-07-23 | Fuji Xerox Co Ltd | Color image sensor |
US5244817A (en) * | 1992-08-03 | 1993-09-14 | Eastman Kodak Company | Method of making backside illuminated image sensors |
US6059188A (en) * | 1993-10-25 | 2000-05-09 | Symbol Technologies | Packaged mirror including mirror travel stops |
JPH0945886A (en) * | 1995-08-01 | 1997-02-14 | Sharp Corp | Amplifying semiconductor image pickup device |
US6204087B1 (en) * | 1997-02-07 | 2001-03-20 | University Of Hawai'i | Fabrication of three-dimensional architecture for solid state radiation detectors |
-
2001
- 2001-08-31 FR FR0111335A patent/FR2829290B1/en not_active Expired - Fee Related
-
2002
- 2002-08-30 US US10/485,694 patent/US6933585B2/en not_active Expired - Fee Related
- 2002-08-30 KR KR1020047001560A patent/KR100919964B1/en not_active IP Right Cessation
- 2002-08-30 CN CNB028170423A patent/CN100487899C/en not_active Expired - Fee Related
- 2002-08-30 WO PCT/FR2002/002977 patent/WO2003019667A1/en active IP Right Grant
- 2002-08-30 DE DE60223263T patent/DE60223263T2/en not_active Expired - Lifetime
- 2002-08-30 CA CA2457899A patent/CA2457899C/en not_active Expired - Fee Related
- 2002-08-30 EP EP02796331A patent/EP1421622B1/en not_active Expired - Lifetime
- 2002-08-30 JP JP2003523013A patent/JP4147187B2/en not_active Expired - Fee Related
- 2002-08-30 IL IL16011302A patent/IL160113A0/en unknown
-
2004
- 2004-01-29 IL IL160113A patent/IL160113A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FR2829290B1 (en) | 2004-09-17 |
KR100919964B1 (en) | 2009-10-01 |
CN1550041A (en) | 2004-11-24 |
US6933585B2 (en) | 2005-08-23 |
EP1421622A1 (en) | 2004-05-26 |
DE60223263T2 (en) | 2008-08-14 |
CA2457899A1 (en) | 2003-03-06 |
CA2457899C (en) | 2012-07-03 |
IL160113A0 (en) | 2004-06-20 |
WO2003019667A1 (en) | 2003-03-06 |
FR2829290A1 (en) | 2003-03-07 |
JP4147187B2 (en) | 2008-09-10 |
KR20040047783A (en) | 2004-06-05 |
US20040188792A1 (en) | 2004-09-30 |
CN100487899C (en) | 2009-05-13 |
EP1421622B1 (en) | 2007-10-31 |
IL160113A (en) | 2009-07-20 |
DE60223263D1 (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4064347B2 (en) | Color image sensor with improved colorimetry and manufacturing method thereof | |
US8501579B2 (en) | Process of fabricating chip | |
KR100433781B1 (en) | Method for manufacturing semiconductor devices | |
US8383460B1 (en) | Method for fabricating through substrate vias in semiconductor substrate | |
KR100589570B1 (en) | Method for manufacturing semiconductor device | |
US20030151124A1 (en) | Integrated circuit device | |
US20020192867A1 (en) | Chip-like electronic components, a method of manufacturing the same, a pseudo wafer therefor and a method of manufacturing thereof | |
US20070054470A1 (en) | Method for thinning substrate and method for manufacturing circuit device | |
JP2000003889A (en) | Semiconductor wafer and manufacture of semiconductor | |
JP4147187B2 (en) | Manufacturing method of color image sensor on transparent substrate | |
JP4180512B2 (en) | Method for manufacturing color image sensor in which contact hole is opened before thinning | |
JP4733347B2 (en) | Method of manufacturing color image sensor having pad and support substrate to which pad is soldered | |
JP4863214B2 (en) | Manufacturing method of electronic chip made of thinned silicon | |
KR101287308B1 (en) | Thinned image sensor having trench-isolated contact pads | |
JPS6354740A (en) | Manufacture of integrated circuit substrate | |
TWI520312B (en) | Package process of backside illumination image sensor | |
US20050224952A1 (en) | Three dimensional six surface conformal die coating | |
JP2674411B2 (en) | Method for manufacturing semiconductor device | |
JP2004165540A (en) | Semiconductor device and its manufacturing method | |
JPS6324681A (en) | Manufacture of thin film of semiconductor element | |
JPH1050824A (en) | Manufacture of soi board | |
JPH07335919A (en) | Fabrication of infrared detection element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050816 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070817 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070824 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070919 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20071003 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20071024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080311 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080623 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |