JP2005354830A - Control method for actuator - Google Patents

Control method for actuator Download PDF

Info

Publication number
JP2005354830A
JP2005354830A JP2004174184A JP2004174184A JP2005354830A JP 2005354830 A JP2005354830 A JP 2005354830A JP 2004174184 A JP2004174184 A JP 2004174184A JP 2004174184 A JP2004174184 A JP 2004174184A JP 2005354830 A JP2005354830 A JP 2005354830A
Authority
JP
Japan
Prior art keywords
piezoelectric elements
actuator
time
driving
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004174184A
Other languages
Japanese (ja)
Inventor
Tomonari Masuzawa
智成 増沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2004174184A priority Critical patent/JP2005354830A/en
Priority to US11/148,384 priority patent/US7646137B2/en
Priority to EP05012579A priority patent/EP1605290A3/en
Publication of JP2005354830A publication Critical patent/JP2005354830A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for an actuator which can shift a driven member accurately by applying the voltage of roughly saw-toothed drive pulses in specified timing to a plurality of piezoelectric elements. <P>SOLUTION: The piezoelectric elements 32A and 32B of the actuator 30 are arranged on both sides across the driven member 26. The end faces on one side in the displacement directions of the piezoelectric elements 32A and 32B are pressed by press plates 38A and 38B, and driving members 34A and 34B are attached to the other end faces. The driving members 34A and 34B are energized by a press spring 36 and are engaged frictionally. Voltage is applied to the piezoelectric elements 32A and 32B so that deformation velocity may be different between the time of elongation and the time of shrinkage of the piezoelectric elements 32A and 32B and that the timing may be qual between the piezoelectric elements 32A and 32B at low deformation velocity and the timing may be different between the piezoelectric elements 32A and 32B at high deformation velocity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はアクチュエータの制御方法に係り、特にデジタルカメラや携帯電話機等の小型精密機器に搭載され、ズームレンズやフォーカスレンズを駆動するアクチュエータの制御方法に関する。   The present invention relates to an actuator control method, and more particularly to an actuator control method that is mounted on a small precision device such as a digital camera or a mobile phone and drives a zoom lens and a focus lens.

デジタルカメラ等のレンズ部の駆動装置として圧電素子を用いたアクチュエータがある。例えば特許文献1のアクチュエータは、圧電素子の端面に駆動棒が固着され、その駆動棒に鏡筒がスライド自在に支持される。鏡筒には板ばねが取り付けられ、この板ばねの弾性力によって駆動棒との間に摩擦力が働くようになっている。そして、圧電素子には、略鋸歯状の波形をした駆動パルスが印加され、圧電素子は伸び方向と縮み方向で異なる速度で変形する。例えば圧電素子が緩やかに変形すると、駆動棒とともに鏡筒が移動する。逆に、圧電素子が速く変形すると、鏡筒がその質量の慣性によって同じ位置に停まる。したがって、圧電素子に略鋸歯状の波形をした駆動パルスを繰り返し印加することによって、鏡筒を細かなピッチで間欠的に移動させることができる。   There is an actuator using a piezoelectric element as a driving device for a lens unit of a digital camera or the like. For example, in the actuator of Patent Document 1, a driving rod is fixed to the end face of a piezoelectric element, and a lens barrel is slidably supported by the driving rod. A leaf spring is attached to the lens barrel, and a frictional force acts between the plate spring and the drive rod by the elastic force of the leaf spring. A drive pulse having a substantially sawtooth waveform is applied to the piezoelectric element, and the piezoelectric element is deformed at different speeds in the extending direction and the contracting direction. For example, when the piezoelectric element is gently deformed, the lens barrel moves together with the drive rod. Conversely, when the piezoelectric element deforms quickly, the lens barrel stops at the same position due to the inertia of its mass. Therefore, the lens barrel can be moved intermittently at a fine pitch by repeatedly applying a drive pulse having a substantially sawtooth waveform to the piezoelectric element.

しかし、特許文献1に記載のアクチュエータは、長尺状の駆動棒を介して駆動力を伝達するため、圧電素子の振動が駆動棒に吸収されて減衰してしまい、鏡筒を正確に移動させることができないという問題があった。特に高周波の振動は、駆動棒による減衰率が大きいため、鏡筒の応答性が悪くなる。したがって、特許文献1のアクチュエータは、低周波の駆動パルスでしか制御することができず、単位時間あたりの鏡筒の移動回数が少なくなるという問題があった。このため、特許文献1のアクチュエータにおいて鏡筒の移動速度を増加させるには、印加電圧を大きくして圧電素子の変位量を大きくし、鏡筒の一回の移動量を大きくする必要があった。   However, since the actuator described in Patent Document 1 transmits the driving force through the long drive rod, the vibration of the piezoelectric element is absorbed and attenuated by the drive rod, and the lens barrel is moved accurately. There was a problem that I could not. In particular, high-frequency vibration has a large attenuation factor due to the drive rod, and therefore the response of the lens barrel is deteriorated. Therefore, the actuator of Patent Document 1 can be controlled only with a low-frequency drive pulse, and there is a problem that the number of movements of the lens barrel per unit time is reduced. For this reason, in order to increase the moving speed of the lens barrel in the actuator of Patent Document 1, it is necessary to increase the applied voltage to increase the amount of displacement of the piezoelectric element and to increase the amount of movement of the lens barrel once. .

特許文献2では、5Vの電源電圧を30Vに昇圧することによって、一回の移動量を増加させ、鏡筒の移動速度を増加させている。このため、特許文献2では、昇圧装置が必要になり、装置が大型化するとともに、複雑な制御が必要になるという問題があった。   In Patent Document 2, by increasing the power supply voltage of 5 V to 30 V, the amount of movement at one time is increased, and the moving speed of the lens barrel is increased. For this reason, in patent document 2, there existed a problem that a pressure | voltage rise apparatus was needed, the apparatus enlarged, and complicated control was needed.

特許文献3に記載されるアクチュエータは、圧電素子の変位方向の端面に係合部材が取り付けられており、この係合部材が移動板に摩擦係合され、移動板に鏡筒が取り付けられている。そして、圧電素子に駆動パルスを印加することによって、係合部材を介して振動が伝達し、移動板と鏡筒が移動される。
特許第2633066号 特開2000−50660号公報 特開平10−232337号公報
In the actuator described in Patent Document 3, an engagement member is attached to the end face of the piezoelectric element in the displacement direction, the engagement member is frictionally engaged with the moving plate, and the lens barrel is attached to the moving plate. . Then, by applying a driving pulse to the piezoelectric element, vibration is transmitted through the engaging member, and the moving plate and the lens barrel are moved.
Japanese Patent No. 2633066 Japanese Patent Laid-Open No. 2000-50660 Japanese Patent Laid-Open No. 10-232337

ところで、特許文献1〜3に記載のアクチュエータは、駆動部材(上記の駆動部材や係合部材等)と被駆動部材(上記の鏡筒や移動板等)の摩擦力と、被駆動部材の慣性力との大小関係が、圧電素子の伸び時と縮み時で逆転するように、伸び時と縮み時との速度差を設定しなければならない。したがって、被駆動部材と駆動部材とを適切な摩擦力で摩擦係合させるようなバネ力の選定が非常に難しいという問題があった。特に特許文献3は、駆動部材(係合部材)の形状によってバネ力を発生させているため、適切なバネ力に設定することが非常に困難であった。このため、特許文献3は、摩擦力が大きくなって被駆動部材が滑らなくなったり、摩擦力が小さくなって被駆動部材が動かなくなったりし、被駆動部材を正確に移動させることができなくなるおそれがあった。   By the way, the actuators described in Patent Documents 1 to 3 include the frictional force between the drive member (the drive member and the engagement member described above) and the driven member (the lens barrel and the movable plate described above) and the inertia of the driven member. The speed difference between when stretched and when shrunk must be set so that the magnitude relationship with the force is reversed between when the piezoelectric element is stretched and when it is shrunk. Therefore, there is a problem that it is very difficult to select a spring force that frictionally engages the driven member and the driving member with an appropriate friction force. In particular, in Patent Document 3, since the spring force is generated by the shape of the drive member (engagement member), it is very difficult to set an appropriate spring force. For this reason, in Patent Document 3, there is a risk that the driven member may not move accurately because the frictional force increases and the driven member does not slip, or the frictional force decreases and the driven member stops moving. was there.

本発明はこのような事情に鑑みてなされたもので、被駆動部材を正確に移動させることができるアクチュエータの制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an actuator control method capable of accurately moving a driven member.

請求項1に記載の発明は前記目的を達成するために、複数の圧電素子と、該複数の圧電素子に一体的に取り付けられた複数の駆動部材と、該複数の駆動部材に摩擦係合されるとともに駆動方向に延設された被駆動部材と、前記複数の圧電素子にパルス波形の電圧を所定のタイミングで印加する制御部とを備えたアクチュエータの制御方法において、前記制御部は、前記圧電素子の伸び時と縮み時での変形速度が異なるように、且つ、遅い変形速度の際は前記複数の圧電素子でタイミングが等しく、速い変形速度の際は前記複数の圧電素子でタイミングが異なるように電圧を印加することを特徴とする。   In order to achieve the above object, the invention described in claim 1 is frictionally engaged with the plurality of piezoelectric elements, the plurality of driving members integrally attached to the plurality of piezoelectric elements, and the plurality of driving members. And a driven member extending in the driving direction and a control unit that applies a voltage of a pulse waveform to the plurality of piezoelectric elements at a predetermined timing. The deformation speed is different between the expansion and contraction of the element, the timing is the same for the plurality of piezoelectric elements when the deformation speed is slow, and the timing is different for the plurality of piezoelectric elements when the deformation speed is high. A voltage is applied to the capacitor.

請求項1に記載の発明によれば、伸び時と縮み時で圧電素子の変形速度が異なるようにしたので、遅い変形速度の際に被駆動部材が駆動部材とともに移動し、速い変形速度の際に被駆動部材が駆動部材に対して滑って停止する。したがって、被駆動部材を一方向に移動させることができる。   According to the first aspect of the present invention, since the deformation speed of the piezoelectric element is different between when stretched and when contracted, the driven member moves together with the driving member when the deformation speed is low, and when the deformation speed is high Then, the driven member slides against the driving member and stops. Therefore, the driven member can be moved in one direction.

また、請求項1に記載の発明によれば、遅い変形速度の際は複数の圧電素子でタイミングが等しくなるようにしたので、被駆動部材を複数の駆動部材で駆動させることになり、被駆動部材を大きな駆動力で確実に移動させることができる。そして、速い変形速度の際は複数の圧電素子でタイミングが異なるようにしたので、駆動部材は個々に移動するようになり、被駆動部材が駆動部材につれて動くことを抑制でき、被駆動部材を確実に停止させることができる。よって、請求項1に記載の発明によれば、被駆動部材を正確に移動させることができる。また、圧電素子の伸び時と縮み時での駆動力の差が大きくなるので、被駆動部材と駆動部材との摩擦力の設定が容易になる。   According to the first aspect of the present invention, since the timing is made equal by a plurality of piezoelectric elements at a slow deformation speed, the driven member is driven by the plurality of driving members. The member can be reliably moved with a large driving force. Since the timing is different among the plurality of piezoelectric elements at a high deformation speed, the driving member can move individually, and the driven member can be prevented from moving with the driving member, and the driven member can be reliably Can be stopped. Therefore, according to the first aspect of the present invention, the driven member can be accurately moved. In addition, since the difference in driving force between the expansion and contraction of the piezoelectric element is increased, it is easy to set the frictional force between the driven member and the driving member.

さらに、請求項1に記載の発明によれば、被駆動部材が駆動方向に延設されているので、被駆動部材と駆動部材との摩擦係合面は、圧電素子に対して常に一定の位置に保たれる。したがって、摩擦係合面を常に圧電素子の近傍に配置することができる。これにより、圧電素子の振動は、駆動部材で減衰することなく被駆動部材に伝達されるので、圧電素子に高周波の駆動パルスを印加した場合にも被駆動部材を確実に移動させることができる。よって、低い電圧であっても、被駆動部材を高速で移動させることができる。   According to the first aspect of the present invention, since the driven member extends in the driving direction, the friction engagement surface between the driven member and the driving member is always at a constant position with respect to the piezoelectric element. To be kept. Therefore, the friction engagement surface can always be arranged in the vicinity of the piezoelectric element. Thereby, the vibration of the piezoelectric element is transmitted to the driven member without being attenuated by the driving member, so that the driven member can be reliably moved even when a high-frequency driving pulse is applied to the piezoelectric element. Therefore, the driven member can be moved at high speed even with a low voltage.

請求項2に記載の発明は請求項1の発明において、前記アクチュエータは、前記被駆動部材に一体的に取り付けられたレンズ枠を光軸に沿って移動させるレンズ移動用のアクチュエータであることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the actuator is a lens moving actuator that moves a lens frame integrally attached to the driven member along an optical axis. And

本発明に係るアクチュエータの制御方法によれば、圧電素子の伸び時と縮み時とで変形速度が異なるように、且つ、遅い変形速度の際は複数の圧電素子でタイミングが等しく、速い変形速度の際は複数の圧電素子でタイミングが異なるように電圧を印加するようにしたので、被駆動部材を正確に移動させることができる。   According to the actuator control method of the present invention, the deformation speed is different between when the piezoelectric element is stretched and when the piezoelectric element is contracted, and when the deformation speed is slow, the timing is equal among the plurality of piezoelectric elements, and the deformation speed is high. At this time, since the voltages are applied so that the timings are different among the plurality of piezoelectric elements, the driven member can be moved accurately.

以下、添付図面に従って本発明に係るアクチュエータの制御方法の好ましい実施形態について説明する。図1は、本発明のアクチュエータの制御方法が適用されるレンズ装置の構成を示す斜視図である。同図に示すレンズ装置はケース本体12と蓋14とから成る箱型のケースを有し、ケース本体12の側面には固定レンズ16が取り付けられている。   Hereinafter, preferred embodiments of a method for controlling an actuator according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing the configuration of a lens apparatus to which the actuator control method of the present invention is applied. The lens device shown in FIG. 1 has a box-shaped case composed of a case body 12 and a lid 14, and a fixed lens 16 is attached to the side surface of the case body 12.

ケース本体12の内部には二つのレンズ枠18、20が設けられ、この二つのレンズ枠18、20にズームレンズやフォーカスレンズ等の移動レンズが保持される。また、二つのレンズ枠18、20は、固定レンズ16の光軸と平行に配設された二本のガイド棒22、24によって、光軸方向にスライド自在に支持される。すなわち、レンズ枠18の外周面には、ガイド部23が突出形成されており、このガイド部23の貫通孔にガイド棒24が挿通されてガイドされるとともに、ガイド部23の反対側に突出形成された係合部(不図示)のU状溝にガイド棒22が係合されることによって、レンズ枠18が光軸方向にスライド自在に支持される。同様に、レンズ枠20の外周面には、ガイド部25が突出形成されており、このガイド部25の貫通孔にガイド棒22が挿通されてガイドされるとともに、ガイド部25の反対側に突出形成された係合部27のU状溝にガイド棒24が係合されることによって、レンズ枠20が光軸方向にスライド自在に支持される。   Two lens frames 18 and 20 are provided inside the case body 12, and movable lenses such as a zoom lens and a focus lens are held in the two lens frames 18 and 20. The two lens frames 18 and 20 are supported by two guide rods 22 and 24 arranged in parallel with the optical axis of the fixed lens 16 so as to be slidable in the optical axis direction. That is, a guide portion 23 is formed to project from the outer peripheral surface of the lens frame 18, and the guide rod 24 is inserted and guided through the through hole of the guide portion 23, and is projected to the opposite side of the guide portion 23. When the guide rod 22 is engaged with the U-shaped groove of the engaging portion (not shown), the lens frame 18 is supported slidably in the optical axis direction. Similarly, a guide portion 25 is formed on the outer peripheral surface of the lens frame 20 so as to be guided by being inserted through the through hole of the guide portion 25, and protrudes on the opposite side of the guide portion 25. When the guide rod 24 is engaged with the U-shaped groove of the formed engaging portion 27, the lens frame 20 is supported slidably in the optical axis direction.

レンズ枠18、20にはそれぞれ被駆動板(被駆動部材に相当)26、26が一体的に形成される。被駆動板26は、細長い矩形状に形成されており、その長手方向が光軸と平行になるように配置される。被駆動板26の材質等は特に限定されるものではないが、軽量で、且つ剛性の強い材質、例えばセラミック等が選択される。   The lens frames 18 and 20 are integrally formed with driven plates (corresponding to driven members) 26 and 26, respectively. The driven plate 26 is formed in an elongated rectangular shape, and is arranged so that its longitudinal direction is parallel to the optical axis. The material of the driven plate 26 is not particularly limited, but a light and strong material such as ceramic is selected.

各被駆動板26、26には、アクチュエータ30、30が配設される。各アクチュエータ30、30は蓋14の開口部に嵌め込まれることによって固定される。   Actuators 30 and 30 are disposed on each driven plate 26 and 26. Each actuator 30, 30 is fixed by being fitted into the opening of the lid 14.

図2はアクチュエータ30の基本構造を説明する斜視図である。以下は、レンズ枠18を駆動するアクチュエータ30の例で説明するが、レンズ枠20を駆動するアクチュエータ30も同様に構成される。   FIG. 2 is a perspective view for explaining the basic structure of the actuator 30. Hereinafter, an example of the actuator 30 that drives the lens frame 18 will be described, but the actuator 30 that drives the lens frame 20 is configured similarly.

図2に示すようにアクチュエータ30は主として、圧電素子32A、32B、駆動部材34A、34B、押えばね36、及び押え板38A、38Bによって構成される。圧電素子32A、32Bは、被駆動板26を挟んで両側に配置される。また、圧電素子32A、32Bは、その変位方向が被駆動板26の長手方向(すなわち駆動方向)になるように配置される。各圧電素子32A、32Bの変位方向の一方の端面には、ケースの蓋14(図1参照)に固定された押え板38A、38Bが取り付けられ、もう一方の端面は駆動部材34A、34Bが一体的に取り付けられる。駆動部材34A、34Bは、略矩形のブロック状に形成されており、上述した被駆動板26と同様に、軽量で剛性の大きい材質、例えばセラミックで構成される。駆動部材34A、34Bには、被駆動板26に対面する側の反対側の側面に窪み35A、35Bが形成され、この窪み35A、35Bに押えばね36が係合される。押えばね36は、二つの駆動部材34A、34Bを挟み込む板ばねであり、この押えばね36の付勢力によって駆動部材34A、34Bが被駆動板26に押し付けられる。これにより、駆動部材34A、34Bが被駆動板26に摩擦係合される。   As shown in FIG. 2, the actuator 30 is mainly composed of piezoelectric elements 32A and 32B, driving members 34A and 34B, a pressing spring 36, and pressing plates 38A and 38B. The piezoelectric elements 32A and 32B are arranged on both sides of the driven plate 26. The piezoelectric elements 32A and 32B are arranged such that the displacement direction thereof is the longitudinal direction of the driven plate 26 (that is, the driving direction). The pressing plates 38A and 38B fixed to the case lid 14 (see FIG. 1) are attached to one end face in the displacement direction of each piezoelectric element 32A and 32B, and the driving members 34A and 34B are integrally formed on the other end face. Attached. The drive members 34A and 34B are formed in a substantially rectangular block shape, and are made of a light and rigid material such as ceramic, like the driven plate 26 described above. The driving members 34A and 34B are formed with recesses 35A and 35B on the side surface opposite to the side facing the driven plate 26, and the presser spring 36 is engaged with the recesses 35A and 35B. The presser spring 36 is a plate spring that sandwiches the two drive members 34 </ b> A and 34 </ b> B, and the drive members 34 </ b> A and 34 </ b> B are pressed against the driven plate 26 by the biasing force of the presser spring 36. As a result, the drive members 34 </ b> A and 34 </ b> B are frictionally engaged with the driven plate 26.

なお、図2には、駆動部材34A、34Bを被駆動板26に付勢する付勢手段として押えばね36を用いた例を示したが、他の付勢手段、例えば圧縮ばねやゴム等の弾性体によって駆動部材34A、34Bを個別に付勢するようにしてもよい。   2 shows an example in which the presser spring 36 is used as a biasing means for biasing the driving members 34A and 34B to the driven plate 26, but other biasing means such as a compression spring or rubber is used. The driving members 34A and 34B may be individually urged by an elastic body.

図3は圧電素子32A、32Bに所定のタイミングで電圧を印加する制御部の構成を示すブロック図である。同図に示すように、各圧電素子32A、32Bには、アンプ31A、31Bが接続され、さらにD/Aコンバータ33A、33Bを介してCPU29に接続される。CPU29は、所定のタイミングでコントロール信号を出力し、この信号がD/Aコンバータ33A、33BでD/A変換された後、アンプ31A、31Bで増幅され、矩形波の駆動パルス信号が生成される。圧電素子32Aの駆動パルス信号と、圧電素子32Bの駆動パルス信号は、立ち上がりエッジ又は立ち下がりエッジの一方のタイミングが等しく、且つ、立ち上がりエッジ又は立ち下がりエッジの他方のタイミングが異なる矩形波として生成される。   FIG. 3 is a block diagram illustrating a configuration of a control unit that applies a voltage to the piezoelectric elements 32A and 32B at a predetermined timing. As shown in the figure, amplifiers 31A and 31B are connected to the piezoelectric elements 32A and 32B, and are further connected to the CPU 29 via D / A converters 33A and 33B. The CPU 29 outputs a control signal at a predetermined timing. This signal is D / A converted by the D / A converters 33A and 33B, and then amplified by the amplifiers 31A and 31B to generate a rectangular-wave drive pulse signal. . The drive pulse signal of the piezoelectric element 32A and the drive pulse signal of the piezoelectric element 32B are generated as rectangular waves having the same timing of one of the rising edge or the falling edge and the other timing of the rising edge or the falling edge. The

図4(A)、図4(B)は圧電素子32A、32Bに印加する駆動パルス信号の例を示している。図4(A)は、図2のレンズ枠18を左方向に移動させる際の駆動パルス信号であり、図4(B)は図2のレンズ枠18を右方向に移動させる際の駆動パルス信号である。   4A and 4B show examples of drive pulse signals applied to the piezoelectric elements 32A and 32B. 4A is a drive pulse signal for moving the lens frame 18 of FIG. 2 in the left direction, and FIG. 4B is a drive pulse signal for moving the lens frame 18 of FIG. 2 in the right direction. It is.

図4(A)の場合、圧電素子32Aには、時刻α1から時刻α2にかけて緩やかに立ち上がり、時刻α3で急激に立ち下がる略鋸歯状の駆動パルスを印加している。そして、圧電素子32Bには、時刻α1から時刻α2にかけて緩やかに立ち上がり、時刻α4で急激に立ち下がる略鋸歯状の駆動パルスを印加している。したがって、時刻α1から時刻α2にかけては、圧電素子32A、32Bが同時に緩やかに伸長するので、図2の駆動部材34A、34Bが左方向に緩やかに移動する。その際、駆動部材34A、34Bが緩やかに移動することから、被駆動板26は、駆動部材34A、34Bとの摩擦力によって保持され、駆動部材34A、34Bとともに左方向に移動する。一方、時刻α3では圧電素子32Aだけが急激に縮み、時刻α4では圧電素子32Bだけが急激に縮む。したがって、時刻α3、時刻α4ではそれぞれ、図2の駆動部材34A、34Bがそれぞれ単独で、右方向に急激に移動する。このように駆動部材34A、34Bが急激に移動すると、被駆動板26との間にスベリが生じ、被駆動板26が停止したまま駆動部材34A、34Bだけが移動する。よって、時刻α3、時刻α4では、被駆動板26を停止させたまま、圧電素子32A、32Bを縮めて元の状態に戻すことができる。以上のことから、図4(A)の駆動パルスを繰り返し印加すると、図2の被駆動板26は左方向への移動と停止を繰り返すので、レンズ枠18を左方向に移動させることができる。   In the case of FIG. 4A, a substantially sawtooth drive pulse that gently rises from time α1 to time α2 and falls sharply at time α3 is applied to the piezoelectric element 32A. The piezoelectric element 32B is applied with a substantially sawtooth drive pulse that rises gently from time α1 to time α2 and falls sharply at time α4. Accordingly, from time α1 to time α2, the piezoelectric elements 32A and 32B are gently extended at the same time, so that the drive members 34A and 34B in FIG. 2 move slowly to the left. At this time, since the driving members 34A and 34B move gently, the driven plate 26 is held by the frictional force with the driving members 34A and 34B, and moves to the left together with the driving members 34A and 34B. On the other hand, only the piezoelectric element 32A contracts rapidly at time α3, and only the piezoelectric element 32B contracts rapidly at time α4. Accordingly, at time α3 and time α4, the drive members 34A and 34B in FIG. 2 each move independently and suddenly move to the right. When the driving members 34A and 34B move suddenly in this way, slip occurs between the driven plate 26 and only the driving members 34A and 34B move while the driven plate 26 is stopped. Therefore, at the time α3 and the time α4, the piezoelectric elements 32A and 32B can be contracted and returned to the original state while the driven plate 26 is stopped. From the above, when the driving pulse of FIG. 4A is repeatedly applied, the driven plate 26 of FIG. 2 repeats the movement and the stop in the left direction, so that the lens frame 18 can be moved in the left direction.

図4(B)の場合、圧電素子32Aには、時刻α5から時刻α6にかけて緩やかに立ち下がり、時刻α7で急激に立ち上がる略鋸歯状の駆動パルスを印加している。そして、圧電素子32Bには、時刻α5から時刻α6にかけて緩やかに立ち下がり、時刻α8で急激に立ち上がる略鋸歯状の駆動パルスを印加している。したがって、時刻α5から時刻α6にかけては、圧電素子32A、32Bが同時に緩やかに縮むので、図2の駆動部材34A、34Bが右方向に緩やかに移動する。その際、駆動部材34A、34Bが緩やかに移動することから、被駆動板26は、駆動部材34A、34Bとの摩擦力によって保持され、駆動部材34A、34Bとともに右方向に移動する。一方、時刻α7では圧電素子32Aだけが急激に伸長し、時刻α8では圧電素子32Bだけが急激に伸長する。したがって、時刻α7、時刻α8ではそれぞれ、図2の駆動部材34A、34Bが単独で、左方向に急激に移動する。このように駆動部材34A、34Bが急激に移動すると、被駆動板26との間にスベリが生じ、被駆動板26が停止したまま駆動部材34A、34Bだけが移動する。よって、時刻α7、時刻α8では、被駆動板26を停止させたまま、圧電素子32A、32Bを伸長させて元の状態に戻すことができる。以上のことから、図4(B)の駆動パルスを繰り返し印加すると、図2の被駆動板26は右方向への移動と停止を繰り返すので、レンズ枠18を右方向に移動させることができる。   In the case of FIG. 4B, a substantially sawtooth drive pulse that gently falls from time α5 to time α6 and suddenly rises at time α7 is applied to the piezoelectric element 32A. Then, a substantially sawtooth drive pulse that gently falls from time α5 to time α6 and suddenly rises at time α8 is applied to the piezoelectric element 32B. Therefore, from time α5 to time α6, the piezoelectric elements 32A and 32B are gradually contracted simultaneously, so that the driving members 34A and 34B in FIG. 2 move gently in the right direction. At this time, since the driving members 34A and 34B move gently, the driven plate 26 is held by the frictional force with the driving members 34A and 34B and moves to the right together with the driving members 34A and 34B. On the other hand, only the piezoelectric element 32A rapidly expands at the time α7, and only the piezoelectric element 32B rapidly expands at the time α8. Therefore, at time α7 and time α8, the drive members 34A and 34B in FIG. When the driving members 34A and 34B move suddenly in this way, slip occurs between the driven plate 26 and only the driving members 34A and 34B move while the driven plate 26 is stopped. Therefore, at time α7 and time α8, the piezoelectric elements 32A and 32B can be extended and returned to the original state while the driven plate 26 is stopped. From the above, when the driving pulse in FIG. 4B is repeatedly applied, the driven plate 26 in FIG. 2 repeats the movement and the stop in the right direction, so that the lens frame 18 can be moved in the right direction.

次に本発明に係るアクチュエータの作用について説明する。   Next, the operation of the actuator according to the present invention will be described.

以下、図1及び図2に示したアクチュエータ30の圧電素子32A、32Bに、図5(A)、図5(B)に示す略鋸歯状に電圧を印加した比較例について説明する。   Hereinafter, a comparative example in which voltages are applied to the piezoelectric elements 32A and 32B of the actuator 30 shown in FIGS. 1 and 2 in a substantially sawtooth shape as shown in FIGS. 5A and 5B will be described.

図5(A)の場合、圧電素子32A、32Bには、同じ形状の駆動パルス、すなわち時刻β1から時刻β2にかけて緩やかに立ち上がり、時刻β3で急激に立ち下がる略鋸歯状の駆動パルスを印加している。したがって、時刻β3において、圧電素子32A、32Bは、同じタイミングで急激に縮んでいる。   In the case of FIG. 5A, a drive pulse having the same shape, that is, a substantially sawtooth drive pulse that rises gently from time β1 to time β2 and falls sharply at time β3 is applied to the piezoelectric elements 32A and 32B. Yes. Therefore, at time β3, the piezoelectric elements 32A and 32B are rapidly contracted at the same timing.

同様に、図5(B)の場合、圧電素子32A、32Bには、同じ形状の駆動パルス、すなわち時刻β4から時刻β5にかけて緩やかに立ち下がり、時刻β6で急激に立ち上がる略鋸歯状の駆動パルスを印加している。したがって、時刻β6において、圧電素子32A、32Bは同じタイミングで急激に伸長している。   Similarly, in the case of FIG. 5B, the piezoelectric elements 32A and 32B have the same shaped drive pulse, that is, a substantially sawtooth drive pulse that gently falls from time β4 to time β5 and rises rapidly at time β6. Applied. Therefore, at time β6, the piezoelectric elements 32A and 32B are rapidly expanded at the same timing.

このように圧電素子32A、32Bが同じタイミングで急激に変形した場合、駆動部材34A、34Bが被駆動板26を挟持したまま同時に移動することになるので、被駆動板26は駆動部材34A、34Bとともに移動しやすくなる。したがって、被移動板26が確実に停止するように、圧電素子32A、32Bの伸び時と縮み時の変形速度を厳密に設定したり、或いは被駆動板26と駆動部材34A、34Bとの摩擦力を厳密に設定したりしなければならない。したがって、パルス形状の選定や押えばね36のばね定数の選定が非常に困難になる。また、パルス形状の選定や押えばね36のばね定数の選定が正確に行われない場合には、圧電素子32A、32Bの伸び時と縮み時の両方で被駆動板26が移動することになり、被駆動板26を正確に移動させることができなくなる。   When the piezoelectric elements 32A and 32B are suddenly deformed at the same timing as described above, the driving members 34A and 34B move simultaneously while holding the driven plate 26, so that the driven plate 26 is driven by the driving members 34A and 34B. It becomes easy to move with. Therefore, the deformation speed when the piezoelectric elements 32A and 32B are extended and contracted is set strictly or the frictional force between the driven plate 26 and the drive members 34A and 34B is set so that the moved plate 26 is surely stopped. Must be set strictly. Therefore, it becomes very difficult to select the pulse shape and the spring constant of the presser spring 36. Further, when the selection of the pulse shape and the selection of the spring constant of the presser spring 36 are not performed accurately, the driven plate 26 moves both when the piezoelectric elements 32A and 32B are expanded and contracted. It becomes impossible to move the driven plate 26 accurately.

これに対して本願発明は、図4(A)の時刻α3、時刻α4、或いは図4(B)の時刻α7、時刻α8に示したように、二つの圧電素子32A、32Bにおいて、急激に変形させるタイミングをずらしている。したがって、駆動部材34Aが移動する際には駆動部材34Bが停止しており、駆動部材34Bが移動する際には駆動部材34Aが停止している。このため、被駆動板26は駆動部材34A、34Bにつられて移動しにくくなり、被駆動板26を確実に停止させておくことができる。よって、図4(A)、図4(B)のパルス形状の電圧を圧電素子32A、32Bに印加することによって、被駆動板26の移動と停止を確実に制御することができ、被駆動板26の駆動制御を正確に行うことができる。   On the other hand, in the present invention, as shown at time α3 and time α4 in FIG. 4A or at time α7 and time α8 in FIG. 4B, the two piezoelectric elements 32A and 32B are suddenly deformed. The timing to make is shifted. Accordingly, the drive member 34B is stopped when the drive member 34A moves, and the drive member 34A is stopped when the drive member 34B moves. For this reason, the driven plate 26 is not easily moved by being driven by the driving members 34A and 34B, and the driven plate 26 can be surely stopped. Therefore, by applying the pulse-shaped voltage shown in FIGS. 4A and 4B to the piezoelectric elements 32A and 32B, the movement and stop of the driven plate 26 can be reliably controlled. 26 drive control can be performed accurately.

また、上記の如く制御を行った場合、被駆動板26の移動時と停止時とにおける駆動力の差が大きくなるので、駆動制御における不安定要因が少なくなり、被駆動板26と駆動部材34A、34Bとの摩擦力の設定を容易に行うことができる。よって、被駆動板26の制御を安定して確実に行うことができる。   Further, when the control is performed as described above, the difference in driving force between when the driven plate 26 is moved and when the driven plate 26 is stopped increases, so that an unstable factor in driving control is reduced, and the driven plate 26 and the driving member 34A are reduced. , 34B can be easily set. Therefore, the driven plate 26 can be controlled stably and reliably.

さらに、本実施の形態によれば、被駆動板26が駆動方向に延設され、駆動部材34A、34Bと被駆動板26との摩擦係合面は圧電素子32A、32Bに対して常に一定の位置関係に保たれる構造なので、前記摩擦係合面を常に圧電素子32A、32Bの近傍に配置することができる。これにより、圧電素子32A、32Bの振動を被駆動板26に確実に伝達することができ、高周波の駆動パルスによる制御が可能になる。よって、低い電圧であっても被駆動板26を高速で移動させることができる。   Further, according to the present embodiment, the driven plate 26 extends in the driving direction, and the friction engagement surfaces between the driving members 34A and 34B and the driven plate 26 are always constant with respect to the piezoelectric elements 32A and 32B. Since the structure is maintained in a positional relationship, the friction engagement surface can always be disposed in the vicinity of the piezoelectric elements 32A and 32B. Thereby, the vibrations of the piezoelectric elements 32A and 32B can be reliably transmitted to the driven plate 26, and control by high-frequency driving pulses becomes possible. Therefore, the driven plate 26 can be moved at a high speed even with a low voltage.

なお、上述した実施の形態は、被駆動部材を光軸方向に駆動させる例で説明したが、被駆動部材の駆動方向はこれに限定するものではない。例えば図6に示すレンズ装置は、光軸と直交する方向に駆動させる例である。このレンズ装置は、移動レンズ50を含むレンズ群を保持するレンズ枠52と、移動レンズ54を含むレンズ群を保持するレンズ枠56を備える。各レンズ枠52、56は、光軸方向に配置された二本のガイド棒58、60によってスライド自在に支持される。また、各レンズ枠52、56には、カムピン62、64が設けられており、このカムピン62、64が、移動板66に形成されたカム溝68、70に係合される。移動板66は図6の上下方向(すなわち光軸と直交方向)にスライド自在に支持されており、この移動板66にアクチュエータ30が取り付けられる。アクチュエータ30の圧電素子32A、32Bは、移動板66を挟んで両側に設けられ、上下方向に伸縮するように配置される。各圧電素子32A、32Bの下側には駆動部材34A、34Bが取り付けられる。駆動部材34A、34Bには押えばね36が取り付けられ、この押えばね36の付勢力によって駆動部材34A、34Bが移動板66に摩擦係合されている。したがって、圧電素子34A、34Bに上述した駆動パルスの電圧を印加すると、移動板66が上下方向に駆動され、レンズ枠52、56が光軸方向に前後移動される。上記の如く構成されたレンズ装置においても、図4(A)、図4(B)に示すパルス形状の電圧を印加することによって、移動板66を安定して正確に移動させることができる。   In the above-described embodiment, the driven member is driven in the optical axis direction. However, the driving direction of the driven member is not limited to this. For example, the lens device shown in FIG. 6 is an example of driving in a direction orthogonal to the optical axis. This lens device includes a lens frame 52 that holds a lens group including a moving lens 50 and a lens frame 56 that holds a lens group including a moving lens 54. Each lens frame 52, 56 is slidably supported by two guide rods 58, 60 arranged in the optical axis direction. The lens frames 52 and 56 are provided with cam pins 62 and 64, respectively. The cam pins 62 and 64 are engaged with cam grooves 68 and 70 formed in the moving plate 66. The moving plate 66 is supported so as to be slidable in the vertical direction in FIG. 6 (that is, the direction orthogonal to the optical axis), and the actuator 30 is attached to the moving plate 66. The piezoelectric elements 32A and 32B of the actuator 30 are provided on both sides of the moving plate 66, and are arranged to expand and contract in the vertical direction. Drive members 34A and 34B are attached below the piezoelectric elements 32A and 32B. A pressing spring 36 is attached to the driving members 34 </ b> A and 34 </ b> B, and the driving members 34 </ b> A and 34 </ b> B are frictionally engaged with the moving plate 66 by the urging force of the pressing spring 36. Therefore, when the voltage of the driving pulse described above is applied to the piezoelectric elements 34A and 34B, the moving plate 66 is driven in the vertical direction, and the lens frames 52 and 56 are moved back and forth in the optical axis direction. Also in the lens apparatus configured as described above, the moving plate 66 can be stably and accurately moved by applying the pulse-shaped voltage shown in FIGS. 4 (A) and 4 (B).

図7に示すレンズ装置は、レンズ枠52、56に形成されたカムピン62、64が、揺動板72に形成されたカム溝74、76に係合される。揺動板72には孔78が形成されており、この孔78に挿通された軸部材(不図示)を介して揺動板72が揺動自在に支持される。アクチュエータ30は、駆動部材34A、34Bが揺動板72を挟んで両側に配置され、押えばね36によって揺動板72に両側から摩擦係合される。この場合にも、図4(A)、図4(B)に示すパルス形状の電圧を印加することによって、揺動板72を揺動方向に安定して正確に移動させることができる。   In the lens device shown in FIG. 7, cam pins 62 and 64 formed on the lens frames 52 and 56 are engaged with cam grooves 74 and 76 formed on the swing plate 72. A hole 78 is formed in the swing plate 72, and the swing plate 72 is swingably supported through a shaft member (not shown) inserted through the hole 78. In the actuator 30, drive members 34 </ b> A and 34 </ b> B are arranged on both sides of the swing plate 72, and are frictionally engaged with the swing plate 72 from both sides by a presser spring 36. Also in this case, the oscillating plate 72 can be moved stably and accurately in the oscillating direction by applying the pulse-shaped voltage shown in FIGS. 4 (A) and 4 (B).

図8に示すレンズ装置は、固定筒80を有し、この固定筒80の内部に、移動レンズ82のレンズ枠84が光軸方向にスライド自在に支持されている。固定筒80の外部には、駆動筒86が回動自在に支持されており、この駆動筒86を回動操作することによって、レンズ枠84が光軸方向に前後移動するように構成されている。駆動筒86にはフランジ88が形成されており、このフランジ88にアクチュエータ30が取り付けられる。アクチュエータ30は、駆動部材34A、34Bがフランジ88を挟んで両側に配置されるとともに、押えばね36によってフランジ88に両側から摩擦係合される。この場合にも、図4(A)、図4(B)に示すパルス形状の電圧を印加することによって、駆動筒86を回転方向に安定して正確に移動させることができる。   The lens apparatus shown in FIG. 8 has a fixed cylinder 80, and a lens frame 84 of a moving lens 82 is supported inside the fixed cylinder 80 so as to be slidable in the optical axis direction. A driving cylinder 86 is rotatably supported outside the fixed cylinder 80, and the lens frame 84 is configured to move back and forth in the optical axis direction by rotating the driving cylinder 86. . A flange 88 is formed on the drive cylinder 86, and the actuator 30 is attached to the flange 88. In the actuator 30, the drive members 34 </ b> A and 34 </ b> B are disposed on both sides of the flange 88, and are frictionally engaged with the flange 88 from both sides by the presser spring 36. Also in this case, the drive cylinder 86 can be stably and accurately moved in the rotation direction by applying the pulse-shaped voltage shown in FIGS. 4 (A) and 4 (B).

さらに上述した実施の形態では、二つの圧電素子32A、32Bを設けた例を示したが、三つ以上の圧電素子を設けてもよい。例えば図9には、四つの圧電素子32A〜32Dを設けた例が示されている。圧電素子32A、32Cはそれぞれ、被駆動板26に対して圧電素子32B、32Dの反対側に配置されている。四つの圧電素子32A〜32Dにはそれぞれ、駆動部材34A〜34Dが一体的に取り付けられており、この駆動部材34A〜34Dが押えばね26、26で付勢され、被駆動板26に摩擦係合されている。四つの圧電素子32A〜32Dには、図10(A)、図10(B)に示すような駆動パルスが印加される。すなわち、図10(A)の場合、圧電素子32A〜32Dには、時刻γ1から時刻γ2にかけて同時に緩やかに立ち上がり、時刻γ3〜時刻γ6においてタイミングをずらして急激に立ち下がる略鋸歯状の駆動パルスを印加している。同様に図10(B)の場合、圧電素子32A〜32Dには、時刻γ7から時刻γ8にかけて同時に緩やかに立ち下がり、時刻γ9〜時刻γ12においてタイミングをずらして急激に立ち上がる略鋸歯状の駆動パルスを印加している。このように圧電素子32A〜32Dを急激に変形させるタイミングをずらすことによって、四つの圧電素子32A〜32Dを用いた場合にも正確な駆動制御を行うことができる。   Further, in the above-described embodiment, the example in which the two piezoelectric elements 32A and 32B are provided has been described. However, three or more piezoelectric elements may be provided. For example, FIG. 9 shows an example in which four piezoelectric elements 32A to 32D are provided. The piezoelectric elements 32A and 32C are arranged on the opposite side of the piezoelectric elements 32B and 32D with respect to the driven plate 26, respectively. Drive members 34A to 34D are integrally attached to the four piezoelectric elements 32A to 32D, respectively. The drive members 34A to 34D are urged by the presser springs 26 and 26, and are frictionally engaged with the driven plate 26. Has been. Driving pulses as shown in FIGS. 10A and 10B are applied to the four piezoelectric elements 32A to 32D. That is, in the case of FIG. 10A, the piezoelectric elements 32A to 32D are given substantially sawtooth drive pulses that rise gently simultaneously from time γ1 to time γ2 and fall sharply at different times from time γ3 to time γ6. Applied. Similarly, in the case of FIG. 10 (B), the piezoelectric elements 32A to 32D have substantially saw-tooth drive pulses that simultaneously gradually fall from time γ7 to time γ8 and rise sharply at different times from time γ9 to time γ12. Applied. By shifting the timing of suddenly deforming the piezoelectric elements 32A to 32D in this way, accurate drive control can be performed even when the four piezoelectric elements 32A to 32D are used.

上述したアクチュエータの用途としては、例えばデジタルカメラや携帯電話等の小型精密機器に適用することができる。特に携帯電話は、3V以下の低い電圧で駆動する必要があるが、本発明のアクチュエータを用いることによって、20kHz程度の高周波であっても駆動することができ、レンズ枠20を2mm/s以上の高速度で移動させることができる。よって、10mm程度の移動が必要となるズームレンズであっても、迅速に移動させることができる。   The application of the actuator described above can be applied to small precision devices such as digital cameras and mobile phones. In particular, the cellular phone needs to be driven at a low voltage of 3 V or less, but by using the actuator of the present invention, it can be driven even at a high frequency of about 20 kHz, and the lens frame 20 can be driven at 2 mm / s or more. It can be moved at high speed. Therefore, even a zoom lens that needs to move about 10 mm can be moved quickly.

本発明のアクチュエータが適用されるレンズ装置の構成を示す分解斜視図1 is an exploded perspective view showing a configuration of a lens apparatus to which an actuator of the present invention is applied. アクチュエータの基本原理を説明する斜視図Perspective view explaining the basic principle of the actuator 制御部の構成を示すブロック図Block diagram showing the configuration of the controller 図1の圧電素子に印加される駆動パルスの波形図Waveform diagram of drive pulse applied to piezoelectric element of FIG. 図2と異なる駆動パルスの波形図Waveform diagram of drive pulse different from FIG. 図1と異なるレンズ装置の主要構成を示す斜視図The perspective view which shows the main structures of the lens apparatus different from FIG. 図1と異なるレンズ装置の主要構成を示す斜視図The perspective view which shows the main structures of the lens apparatus different from FIG. 図1と異なるレンズ装置の主要構成を示す斜視図The perspective view which shows the main structures of the lens apparatus different from FIG. 四つの圧電素子を設けたアクチュエータの基本原理を説明する斜視図A perspective view explaining the basic principle of an actuator provided with four piezoelectric elements 図9の圧電素子に印加される駆動パルスの波形図Waveform diagram of drive pulse applied to piezoelectric element of FIG.

符号の説明Explanation of symbols

18、20…レンズ枠、26…被駆動板、32A、32B…圧電素子、34A、34B…駆動部材、36…押えばね   18, 20 ... Lens frame, 26 ... Driven plate, 32A, 32B ... Piezoelectric element, 34A, 34B ... Drive member, 36 ... Presser spring

Claims (2)

複数の圧電素子と、該複数の圧電素子に一体的に取り付けられた複数の駆動部材と、該複数の駆動部材に摩擦係合されるとともに駆動方向に延設された被駆動部材と、前記複数の圧電素子にパルス波形の電圧を所定のタイミングで印加する制御部とを備えたアクチュエータの制御方法において、
前記制御部は、前記圧電素子の伸び時と縮み時での変形速度が異なるように、且つ、遅い変形速度の際は前記複数の圧電素子でタイミングが等しく、速い変形速度の際は前記複数の圧電素子でタイミングが異なるように電圧を印加することを特徴とするアクチュエータの制御方法。
A plurality of piezoelectric elements; a plurality of driving members integrally attached to the plurality of piezoelectric elements; a driven member frictionally engaged with the plurality of driving members and extending in a driving direction; In a method for controlling an actuator comprising a control unit that applies a voltage of a pulse waveform to the piezoelectric element at a predetermined timing,
The control unit is configured so that the deformation speeds of the piezoelectric elements are different at the time of expansion and contraction, and the timing is the same for the plurality of piezoelectric elements when the deformation speed is low, and when the deformation speed is high, the control elements A method of controlling an actuator, wherein a voltage is applied so that timing is different between piezoelectric elements.
前記アクチュエータは、前記被駆動部材に一体的に取り付けられたレンズ枠を光軸に沿って移動させるレンズ移動用のアクチュエータであることを特徴とする請求項1に記載のアクチュエータの制御方法。   2. The actuator control method according to claim 1, wherein the actuator is a lens moving actuator that moves a lens frame integrally attached to the driven member along an optical axis.
JP2004174184A 2004-06-11 2004-06-11 Control method for actuator Pending JP2005354830A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004174184A JP2005354830A (en) 2004-06-11 2004-06-11 Control method for actuator
US11/148,384 US7646137B2 (en) 2004-06-11 2005-06-09 Actuator and its control method and lens device
EP05012579A EP1605290A3 (en) 2004-06-11 2005-06-10 Piezoelectric actuator, its control method and a lens device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174184A JP2005354830A (en) 2004-06-11 2004-06-11 Control method for actuator

Publications (1)

Publication Number Publication Date
JP2005354830A true JP2005354830A (en) 2005-12-22

Family

ID=35588809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174184A Pending JP2005354830A (en) 2004-06-11 2004-06-11 Control method for actuator

Country Status (1)

Country Link
JP (1) JP2005354830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007682A (en) * 2013-06-25 2015-01-15 キヤノン株式会社 Optical member driving device and lens device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007682A (en) * 2013-06-25 2015-01-15 キヤノン株式会社 Optical member driving device and lens device including the same
US9231497B2 (en) 2013-06-25 2016-01-05 Canon Kabushiki Kaisha Optical member driving apparatus and lens apparatus having the same

Similar Documents

Publication Publication Date Title
EP1605290A2 (en) Piezoelectric actuator, its control method and a lens device
US7199506B2 (en) Piezoelectric actuator for driving lens
US7567012B2 (en) Drive unit
JPH11155292A (en) Driving mechanism employing electro-mechanical transducer
JP2007049879A (en) Actuator
JP2007049878A (en) Actuator
JP2007049874A (en) Actuator
JP2007049875A (en) Actuator
JPH1144899A (en) Driving device using elecromechanical conversion element
JP2007114707A (en) Lens device
JP2005354829A (en) Actuator and its control method
JP7336740B2 (en) Actuator for optical equipment and lens barrel provided with the same
JP2006054979A (en) Actuator
JP2007049873A (en) Actuator
KR20040078265A (en) driving device
JP2005354866A (en) Actuator
JP6746314B2 (en) Control device, device having the same, and program
JPH07274545A (en) Driving method of driving gear using electromechanical transducer
JP4899634B2 (en) Linear drive device, lens drive device, and camera shake prevention device
JP2007049880A (en) Actuator
JP2005352394A (en) Lens apparatus
JP2005354830A (en) Control method for actuator
JP2005354832A (en) Actuator
JP4809016B2 (en) Actuator
US7456546B2 (en) Drive unit