JP2005354754A - Dc power supply facility of power generation plant - Google Patents

Dc power supply facility of power generation plant Download PDF

Info

Publication number
JP2005354754A
JP2005354754A JP2004169290A JP2004169290A JP2005354754A JP 2005354754 A JP2005354754 A JP 2005354754A JP 2004169290 A JP2004169290 A JP 2004169290A JP 2004169290 A JP2004169290 A JP 2004169290A JP 2005354754 A JP2005354754 A JP 2005354754A
Authority
JP
Japan
Prior art keywords
voltage
power
bus
power supply
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004169290A
Other languages
Japanese (ja)
Inventor
Yukihiro Katayama
幸弘 片山
Masashi Sugiyama
政司 杉山
Toshiya Morita
俊也 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004169290A priority Critical patent/JP2005354754A/en
Publication of JP2005354754A publication Critical patent/JP2005354754A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC power supply facility of a power generation plant for always supplying a constant voltage to a DC controlled load. <P>SOLUTION: The DC power supply facility of the power generation plant comprises a charger for supplying power to a DC station auxiliary machine in a power station of the power generation plant, a storage means and DC buses. The first DC bus is used for a load with a large transient capacitance. The second DC bus is used for a load with a transient capacitance smaller than the load. A voltage decrease due to a discharge from the storage means to the second DC bus through a DC voltage adjusting apparatus having a voltage boosting apparatus and a diode, is compensated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電プラントの直流電源設備に関する。   The present invention relates to a DC power supply facility for a power plant.

従来の原子力発電所の直流電源設備の概要を図6に示す。直流電源設備は、非常用低圧母線1と直流電源設備用受電遮断器2と、これに接続された充電器3と、充電器3出力側に直流電源を要求する直流負荷に電力を供給する直流母線6と、充電器3出力側に蓄電池用遮断器5を介して接続され、充電器3入力側電源停止時に瞬時に電源を供給する蓄電池4とから成る。蓄電池4は通常時は浮動充電され、前記の様にプラント全交流電源喪失時には直流電力の供給源となる。   FIG. 6 shows an outline of a conventional DC power supply facility for a nuclear power plant. The DC power supply equipment is a direct current that supplies power to an emergency low-voltage bus 1, a DC power supply power receiving breaker 2, a charger 3 connected thereto, and a DC load that requires a DC power supply on the output side of the charger 3. It consists of a bus 6 and a storage battery 4 that is connected to the output side of the charger 3 via a storage battery circuit breaker 5 and that instantaneously supplies power when the input side of the charger 3 is stopped. The storage battery 4 is normally float-charged and becomes a DC power supply source when the entire plant AC power supply is lost as described above.

直流電源設備はプラントの非常時を含めた運転制御のための直流制御負荷への電源供給、及び交流電源喪失時の非常用動力源として設置している。実際には、プラント通常運用時は直流電源設備から、遮断器の操作、及び計装制御機器用等への電源供給が行われ、プラント全交流電源喪失時には、前記負荷に加えて、直流電源設備から財産保護系の直流負荷、及び、原子力発電所においては、原子炉隔離時冷却設備等に電源を供給する。財産保護系の負荷には、非常用油ポンプ等があり、これらの負荷は、交流電源喪失時に発電機,タービン等の軸受等に油を供給することにより、前記機器の財産保護を目的に設置されている。また、原子炉隔離時冷却設備は、原子炉が隔離されても、炉心冷却が達成できる十分な原子炉水位が維持できるように、原子炉圧力容器に冷却水を供給し、燃料の過熱を防止することを目的に設置している。原子炉の崩壊熱により発生する蒸気を駆動源とし、その蒸気の制御を行う弁の駆動を直流電源により行うことで、交流電源喪失時にも原子炉への冷却水の注入が可能となっている。   The DC power supply equipment is installed as a power supply to a DC control load for operation control including emergency of the plant, and as an emergency power source when the AC power supply is lost. Actually, during normal plant operation, power is supplied from the DC power supply equipment to the operation of the circuit breaker and instrumentation control equipment, etc. When all plant AC power supply is lost, in addition to the load, the DC power supply equipment In the case of direct current loads for property protection systems and nuclear power plants, power is supplied to cooling equipment for reactor isolation. The load of property protection system includes emergency oil pumps, etc. These loads are installed for the purpose of property protection of the above equipment by supplying oil to bearings such as generators and turbines when AC power is lost Has been. In addition, the reactor isolation cooling system supplies coolant water to the reactor pressure vessel to prevent overheating of the fuel so that sufficient reactor water level can be achieved even if the reactor is isolated. It is installed for the purpose of doing. The steam generated by the decay heat of the reactor is used as the drive source, and the valve that controls the steam is driven by the DC power supply, so that cooling water can be injected into the reactor even when the AC power supply is lost. .

直流電源設備の運用について以下説明を行う。プラント通常運用時、非常用低圧母線1に接続される充電器3は、交流電源を直流電源に変換し、蓄電手段である蓄電池4を常時充電するとともに、直流母線6を介して、プラント通常運用時に直流電源を必要とする制御機器等の直流負荷に電源を供給する。   The operation of the DC power supply equipment will be described below. During normal plant operation, the charger 3 connected to the emergency low-voltage bus 1 converts an AC power source into a DC power source, constantly charges the storage battery 4 serving as a power storage means, and normally operates the plant via the DC bus 6. Supplies power to DC loads such as control equipment that sometimes require DC power.

交流電源喪失時には、充電器3の入力電源が無くなるため、充電器3出力も喪失する。この結果、瞬時の停電もなく蓄電池4より電力が供給され、交流電源喪失時に直流電源を必要とする直流制御負荷,非常用油ポンプ、及び原子力発電所においては原子炉隔離時冷却設備等に直流電源を供給する。   When the AC power is lost, the input power of the charger 3 is lost, so the output of the charger 3 is also lost. As a result, electric power is supplied from the storage battery 4 without an instantaneous power failure, and direct current is supplied to a DC control load, an emergency oil pump that requires a DC power supply when the AC power supply is lost, and a reactor isolation cooling facility in a nuclear power plant. Supply power.

図7に原子力発電プラントにおける蓄電池4の放電パターンのグラフを示す。原子力発電プラントでは、蓄電池4放電開始から短時間に大容量を放出し、その後、長時間にわたって小容量を放出する放電パターンとなる。これは放電開始初期は、遮断器,電動機等への給電が行われることによるものであり、直流制御負荷には長時間の小容量の給電が行われる。蓄電池が上記の放電パターンで放電された時の蓄電池4の電圧変動のグラフを図8に示す。蓄電池4の電圧は、大容量を放電する際、長時間放電の際に電圧が少しづつ低下する。   FIG. 7 shows a graph of the discharge pattern of the storage battery 4 in the nuclear power plant. In the nuclear power plant, a large discharge capacity is released in a short time from the start of the discharge of the storage battery 4, and then a small discharge capacity is released over a long time. This is because power is supplied to the circuit breaker, the electric motor, etc. at the beginning of discharge, and the DC control load is supplied with a small capacity for a long time. FIG. 8 shows a graph of voltage fluctuation of the storage battery 4 when the storage battery is discharged with the above discharge pattern. The voltage of the storage battery 4 gradually decreases when discharging a large capacity and when discharging for a long time.

制御用負荷はコンピューターが多く使用されており、これらの負荷は、本来、電圧変動に対して脆弱であるが、本直流電源設備には上記に記載した様な電圧変動があるため、直流母線6に接続されている直流制御負荷は、上記の様な蓄電池4の放電による電圧低下にも対応できる仕様が求められ、設計されている。   Computers are often used as control loads, and these loads are inherently vulnerable to voltage fluctuations. However, since the DC power supply equipment has voltage fluctuations as described above, the DC bus 6 The DC control load connected to is required to be designed and designed to cope with the voltage drop due to the discharge of the storage battery 4 as described above.

発電プラントの直流電源設備に関する特許としては、特開平6−289189号公報
[特許文献1]があげられる。特開平6−289189号公報においては、非常用低圧母線1から、直流制御負荷用の直流電源設備,直流電動機用の直流電源設備と、負荷別に直流電源設備を設けることによって、直流制御負荷の容量増加による蓄電池4の増加に柔軟に対応可能とする直流電源設備が提供されている。
Japanese Patent Application Laid-Open No. Hei 6-289189 [Patent Document 1] is cited as a patent relating to a DC power supply facility of a power plant. In JP-A-6-289189, the capacity of a DC control load is provided by providing a DC power supply equipment for a DC control load, a DC power supply equipment for a DC motor, and a DC power supply equipment for each load from the emergency low-voltage bus 1. There is provided a DC power supply facility that can flexibly cope with an increase in the number of storage batteries 4 due to the increase.

しかし、前記公知例の技術は、直流制御負荷の容量増加の対応の改善を目的とした特許であり、現在課題としてあげている、直流母線の電圧変動に対しては対策となっていない。   However, the technique of the known example is a patent for the purpose of improving the response to the increase in capacity of the DC control load, and is not a countermeasure against the voltage fluctuation of the DC bus, which is currently raised as a problem.

特開平6−289189号公報JP-A-6-289189

上記従来構成では、蓄電池の放電による電圧低下により、直流母線の電圧を一定に保つことは不可能であった。その為、直流母線に接続されている負荷は蓄電池の放電による電圧低下を考慮した負荷とする必要があった。   In the conventional configuration described above, it has been impossible to keep the voltage of the DC bus bar constant due to the voltage drop due to the discharge of the storage battery. Therefore, the load connected to the DC bus has to be a load that takes into account the voltage drop due to the discharge of the storage battery.

蓄電池出力側に、直流電圧調整装置を設け、直流母線の電圧を一定に保ち、標準規格の負荷を用いる構成も考えられるが、原子力発電プラントの放電パターンにおいて放電開始後短時間の大容量放電にも直流電圧調整装置を対応させる必要がある為、直流電圧調整装置の容量が大きくなる。   A DC voltage regulator is installed on the output side of the storage battery to keep the DC bus voltage constant and use a standard load, but in a discharge pattern of a nuclear power plant, a large capacity discharge in a short time after the start of discharge can be considered. However, since it is necessary to correspond to the DC voltage regulator, the capacity of the DC voltage regulator is increased.

そこで本発明の目的とするところは、発電プラントの直流電源設備において、蓄電池の放電による電圧低下を補償し、直流制御負荷に定電圧を終始給電することを可能とすることにより、直流制御負荷に標準規格の負荷を使用することを可能とし、また、直流電圧調整装置は直流制御負荷に対してのみ設置することにより、小容量で対応でき、負荷の要求にあった直流電源設備を提供することにある。   Accordingly, an object of the present invention is to compensate for a voltage drop due to discharge of a storage battery in a DC power supply facility of a power plant, and to supply a constant voltage to the DC control load all the time. It is possible to use a standard load, and the DC voltage regulator can be installed with only a DC control load so that it can be handled with a small capacity and provide a DC power supply facility that meets the load requirements. It is in.

上記課題を解決するために、本発明は発電プラントにおける発電所内の直流所内補機へ給電する充電器、蓄電手段及び直流母線からなる発電プラントの直流電源設備において、過渡容量の大きい負荷用の第一の直流母線と、該負荷より過渡容量の小さい負荷用の第二の直流母線と、該第二の直流母線へは前記蓄電手段から電圧昇圧装置とダイオードを有する直流電圧調整装置を介して、前記蓄電手段の放電による電圧低下を補償することを特徴とするものである。   In order to solve the above-mentioned problems, the present invention provides a DC power supply facility for a power plant comprising a charger, a power storage means and a DC bus for supplying power to a DC auxiliary equipment in a power plant in a power plant. One DC bus, a second DC bus for a load having a smaller transient capacity than the load, and the second DC bus to the second DC bus via the DC voltage regulator having a voltage booster and a diode from the power storage means, The voltage drop due to the discharge of the power storage means is compensated.

また、本発明は発電プラントの直流電源設備において、前記第二の直流母線の電圧を監視し、前記直流電圧調整装置を制御することにより前記第二の直流母線の電圧を保つことを特徴とするものである。   Further, the present invention is characterized in that, in the DC power supply facility of the power plant, the voltage of the second DC bus is maintained by monitoring the voltage of the second DC bus and controlling the DC voltage regulator. Is.

また、本発明は発電プラントの直流電源設備において、前記第二の直流母線に接続されている直流制御負荷の電圧を監視し、前記直流電圧調整装置を制御することにより前記直流制御負荷での電圧を補償することを特徴とするものである。   The present invention also relates to a DC power supply facility of a power plant that monitors the voltage of a DC control load connected to the second DC bus and controls the DC voltage regulator to control the voltage at the DC control load. Is compensated for.

また、本発明は発電プラントの直流電源設備において、前記直流電圧調整装置を直流制御負荷毎に設置し、該直流制御負荷への電圧を補償することを特徴とするものである。   Further, the present invention is characterized in that, in a DC power supply facility of a power plant, the DC voltage regulator is installed for each DC control load, and the voltage to the DC control load is compensated.

また、本発明は発電プラントの直流電源設備において、前記第二の直流母線に接続されている直流制御負荷の電圧を監視し、前記直流電圧調整装置を制御することにより前記直流制御負荷での電圧を補償することを特徴とするものである。   The present invention also relates to a DC power supply facility of a power plant that monitors the voltage of a DC control load connected to the second DC bus and controls the DC voltage regulator to control the voltage at the DC control load. Is compensated for.

本発明は、発電プラントの直流電源設備において、直流母線を、直流電動機/遮断器操作負荷用母線と直流制御負荷用母線とに分離し、直流制御負荷用母線は蓄電池から直流電圧調整装置を介して受電する構成を有することにある。   The present invention separates a DC bus into a DC motor / breaker operation load bus and a DC control load bus in a DC power supply facility of a power plant, and the DC control load bus is connected to the storage battery via a DC voltage regulator. And having a configuration for receiving power.

このような本発明の採用により、直流制御負荷に定電圧を終始給電することが可能となることにより、直流制御負荷に標準規格品の適用が可能となる。また、直流電圧調整装置は直流制御負荷専用に設置することにより、直流電圧調整装置は小容量とすることができる。   By adopting the present invention as described above, it is possible to supply a constant voltage to the DC control load from beginning to end, so that a standard product can be applied to the DC control load. Further, the DC voltage regulator can be reduced in capacity by installing the DC voltage regulator exclusively for the DC control load.

そして、本発明によれば、発電プラントの直流電源設備において、直流母線を、直流電動機負荷用母線と直流制御負荷用母線とに分離し、直流制御負荷用母線は蓄電池から直流電圧調整装置を介して受電することにより、直流制御負荷用母線の電圧を一定に保持することが可能となることによって、直流制御負荷に標準規格の負荷を使用することが可能となる。また、直流電圧調整装置は直流制御負荷は小容量であることから、小容量の機器にて対応可能となる。   According to the present invention, in the DC power supply facility of the power plant, the DC bus is separated into a DC motor load bus and a DC control load bus, and the DC control load bus is connected to the storage battery via the DC voltage regulator. By receiving power in this manner, the voltage of the DC control load bus can be kept constant, so that a standard load can be used as the DC control load. In addition, since the direct-current control load has a small capacity, the direct-current voltage regulator can be used with a small-capacity device.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を採用した一実施例である原子力発電プラントの直流電源設備を示す。また図2に直流電圧調整装置9の詳細を示す。   FIG. 1 shows a DC power supply facility of a nuclear power plant that is an embodiment employing the present invention. FIG. 2 shows details of the DC voltage adjusting device 9.

図1,図2を用いて、本発明品である直流電源設備の構成について説明する。   The configuration of the DC power supply equipment according to the present invention will be described with reference to FIGS.

本発明品である直流電源設備の構成は、非常用低圧母線1と直流電源設備用受電遮断器2と、これに接続された充電器3と、充電器3出力側に直流電源を要求する直流負荷に電力を供給する直流母線6と、直流母線6より受電する、第一の母線として直流電動機/遮断器操作負荷用母線7,直流母線6から、直流電圧調整装置9経由で受電する第二の母線として直流制御負荷用母線8と、直流制御負荷用母線8の電圧を監視し、直流電圧調整装置9を制御する電圧監視装置10から成る。また直流電圧調整装置9は図2に示す様にダイオード11と直流電圧昇圧装置12から構成されている。蓄電手段としての蓄電池4は通常時は浮動充電され、プラント全交流電源喪失時には直流電力の供給源となる。   The configuration of the DC power supply equipment according to the present invention comprises an emergency low-voltage bus 1, a DC power supply power receiving breaker 2, a charger 3 connected thereto, and a DC power supply requiring a DC power supply on the output side of the charger 3. A DC bus 6 for supplying power to the load, and a second power received via the DC voltage regulator 9 from the DC motor / breaker operation load bus 7 and the DC bus 6 as the first bus that receives power from the DC bus 6. Are connected to a DC control load bus 8 and a voltage monitoring device 10 for monitoring the voltage of the DC control load bus 8 and controlling the DC voltage regulator 9. The DC voltage adjusting device 9 includes a diode 11 and a DC voltage boosting device 12 as shown in FIG. The storage battery 4 as the power storage means is normally float-charged, and becomes a DC power supply source when the entire plant AC power supply is lost.

直流電源設備はプラントの非常時を含めた運転制御のための直流制御負荷への電源供給、及び交流電源喪失時の非常用動力源として設置している。   The DC power supply equipment is installed as a power supply to a DC control load for operation control including emergency of the plant, and as an emergency power source when the AC power supply is lost.

プラント通常運転時、非常用低圧母線1に接続される充電器3は、交流電源を直流電源に変換し、蓄電池4を常時充電するとともに、直流母線6,直流電動機/遮断器操作負荷用母線7を介してプラント通常運用時に直流電源を必要とする直流電動機負荷に電源を供給する。一方、直流制御負荷には、直流母線6から直流電圧調整装置9,直流制御負荷用母線8を介して給電される。プラント通常運転時は、直流電源は充電器3より給電されるため、定格付近の電圧にて制御されていることから、直流電圧調整装置9においては、直流電圧昇圧装置12は動作しない。これはB点からA点方向に順電圧がかかっている状態であるので、ダイオード11の整流作用より、ダイオード11を介して給電されるためである。   During normal plant operation, the charger 3 connected to the emergency low-voltage bus 1 converts an AC power source into a DC power source and constantly charges the storage battery 4, and also includes a DC bus 6, a DC motor / breaker operation load bus 7 To supply power to a DC motor load that requires DC power during normal plant operation. On the other hand, the DC control load is supplied with power from the DC bus 6 via the DC voltage regulator 9 and the DC control load bus 8. During normal plant operation, the DC power supply is fed from the charger 3 and is therefore controlled at a voltage near the rated value. Therefore, the DC voltage booster 12 does not operate in the DC voltage regulator 9. This is because forward voltage is applied in the direction from point B to point A, and power is fed through the diode 11 due to the rectifying action of the diode 11.

交流電源喪失時には、充電器3の入力電源が無くなるため、充電器3出力も喪失する。この結果、蓄電池4より電力が供給され、交流電源喪失時に直流電源を必要とする負荷に電力を供給する。   When the AC power is lost, the input power of the charger 3 is lost, so the output of the charger 3 is also lost. As a result, electric power is supplied from the storage battery 4 to supply power to a load that requires a DC power supply when the AC power supply is lost.

図3に本発明を採用した直流電源設備の構成と共に、蓄電池4における放電時間と放電電流,放電電圧の関係を示すグラフ,直流電動機/遮断器操作負荷用母線7,直流制御負荷用母線8における放電時間と負荷電流の関係を示すグラフ、並びに直流制御負荷用母線8の放電時間と母線電圧の関係を示すグラフを示す。   FIG. 3 is a graph showing the relationship between the discharge time, discharge current, and discharge voltage in the storage battery 4 together with the configuration of the DC power supply equipment adopting the present invention, the DC motor / breaker operation load bus 7 and the DC control load bus 8. The graph which shows the relationship between discharge time and load current, and the graph which shows the relationship between the discharge time of bus-bar 8 for DC control load, and bus-line voltage are shown.

直流電動機/遮断器操作負荷には、蓄電池4から直流母線6,直流電動機/遮断器操作負荷用母線7を介して給電される。図3に示されるように直流電動機/遮断器負荷は蓄電池4放電開始後短時間に大容量を使用することがわかる。つまり放電率が高い(放電電流が大きい)状態にあるので、蓄電池4の電圧は大きく低下する。   The DC motor / breaker operating load is supplied with power from the storage battery 4 via the DC bus 6 and the DC motor / breaker operating load bus 7. As shown in FIG. 3, it can be seen that the DC motor / breaker load uses a large capacity in a short time after the start of discharging the storage battery 4. That is, since the discharge rate is high (the discharge current is large), the voltage of the storage battery 4 is greatly reduced.

直流制御負荷には、蓄電池4から直流母線6,直流電圧調整装置9,直流制御負荷用母線8を介して給電される。直流制御負荷用母線8の電圧が直流制御負荷の定格電圧以上である場合は、プラント通常運転時と同様に、直流電圧調整装置9において、直流電圧昇圧装置12は動作せず、ダイオード11を介して給電される。   The DC control load is supplied with power from the storage battery 4 through the DC bus 6, the DC voltage regulator 9, and the DC control load bus 8. When the voltage of the DC control load bus 8 is equal to or higher than the rated voltage of the DC control load, the DC voltage booster 12 does not operate in the DC voltage regulator 9 as in the normal operation of the plant. Power is supplied.

図3に示されるように、蓄電池4の電圧が放電により低下した場合は、直流制御負荷用母線8の電圧を監視する電圧監視装置10により制御される直流電圧昇圧装置12の働きにより、ダイオード11において、A点からB点方向に逆電圧がかかる状態となるので、ダイオード11には電流が流れず、直流電圧昇圧装置12より直流制御負荷用母線8に給電され、前記直流制御負荷用母線8の電圧が一定に保持される。   As shown in FIG. 3, when the voltage of the storage battery 4 decreases due to discharge, the diode 11 is activated by the action of the DC voltage booster 12 controlled by the voltage monitoring device 10 that monitors the voltage of the DC control load bus 8. , A reverse voltage is applied in the direction from the point A to the point B, so that no current flows through the diode 11 and is fed from the DC voltage booster 12 to the DC control load bus 8, and the DC control load bus 8 Is maintained constant.

以上の構成により、直流制御負荷用母線8の電圧を一定に保持することが可能となり、直流制御負荷に標準規格品の使用が可能となる。   With the above configuration, the voltage of the DC control load bus 8 can be kept constant, and a standard product can be used for the DC control load.

また直流制御負荷は図3に示されるように、使用時間は直流電動機負荷に比べて長いが、放電電流は小さい。ここで直流電圧調整装置9は半導体素子で構成され、その容量を決定する要因は、通電電流となる。従って通電電流を小さくすることができれば、直流電圧調整装置9の小型化を図ることが可能である。   As shown in FIG. 3, the DC control load has a longer use time than the DC motor load, but the discharge current is small. Here, the DC voltage adjusting device 9 is composed of a semiconductor element, and a factor for determining the capacity is an energization current. Therefore, if the energization current can be reduced, the DC voltage regulator 9 can be reduced in size.

次に第二の実施例を図4に示す。本実施例は図1の構成に対して、直流制御負荷に供給される電圧の監視を直流制御負荷用母線8に接続されている負荷接続ケーブルの端末にて行う構成であり、負荷接続ケーブルでの電圧降下を補償することが可能となる。本実施例での電圧監視装置10は複数ある直流制御負荷からの電圧信号の中で最も電圧の低い信号を選択する、若しくは、中間値を選択し、直流電圧調整装置9を制御し、直流制御負荷に定電圧を供給する。   Next, a second embodiment is shown in FIG. In this embodiment, the voltage supplied to the DC control load is monitored at the terminal of the load connection cable connected to the DC control load bus 8 with respect to the configuration of FIG. It is possible to compensate for the voltage drop. The voltage monitoring device 10 in this embodiment selects a signal having the lowest voltage from among a plurality of voltage signals from the DC control load, or selects an intermediate value, controls the DC voltage adjusting device 9, and controls DC control. Supply a constant voltage to the load.

次に第三の実施例を図5に示す。本実施例は図1に構成に対して、直流電圧調整装置9を直流制御負荷毎に設置し、また、直流制御負荷に供給される電圧の監視を直流制御負荷接続ケーブル端末にて行う構成である。本構成によれば直流制御負荷各々に対応した制御を行うことが可能となる。また、直流電圧調整装置9は非常に容量の小さい機器で対応することが可能である。   Next, a third embodiment is shown in FIG. In this embodiment, in contrast to the configuration shown in FIG. 1, a DC voltage adjusting device 9 is installed for each DC control load, and the voltage supplied to the DC control load is monitored at the DC control load connection cable terminal. is there. According to this configuration, it is possible to perform control corresponding to each DC control load. Further, the DC voltage adjusting device 9 can be handled by a device having a very small capacity.

尚、本実施例の直流電源設備として、原子力プラントに用いた例を示したが、発電プラントとして火力発電プラントの直流電源設備にも適用可能である。   In addition, although the example used for the nuclear power plant was shown as DC power supply equipment of a present Example, it is applicable also to DC power supply equipment of a thermal power plant as a power plant.

本発明に係る第一の実施の形態の発電プラントの直流電源設備の系統回路図。The system circuit diagram of the DC power supply equipment of the power plant of 1st embodiment which concerns on this invention. 図1の直流電圧調整装置の詳細系統回路図。FIG. 2 is a detailed system circuit diagram of the DC voltage regulator of FIG. 1. 図1の直流電源設備の系統回路図における蓄電池の放電パターン,放電電圧の変化,各母線の放電パターンを示す図。The figure which shows the discharge pattern of a storage battery in the system | strain circuit diagram of the DC power supply equipment of FIG. 1, the change of discharge voltage, and the discharge pattern of each bus-line. 本発明に係る第二の実施の形態の発電プラントの直流電源設備の系統回路図。The system circuit diagram of the DC power supply equipment of the power plant of 2nd embodiment which concerns on this invention. 本発明に係る第三の実施の形態の発電プラントの直流電源設備の系統回路図。The system circuit diagram of the DC power supply equipment of the power plant of 3rd embodiment which concerns on this invention. 従来の発電プラントの直流電源設備の系統回路図。The system circuit diagram of the DC power supply equipment of the conventional power plant. 直流電源設備の蓄電池の放電電流パターンの図。The figure of the discharge current pattern of the storage battery of DC power supply equipment. 直流電源設備の蓄電池の放電電圧の変化を示す図。The figure which shows the change of the discharge voltage of the storage battery of DC power supply equipment.

符号の説明Explanation of symbols

1…非常用低圧母線、2…直流電源設備用受電遮断器、3…充電器、4…蓄電池、5…蓄電池用遮断器、6…直流母線、7…直流電動機負荷用母線、8…直流制御負荷用母線、9…直流電圧調整装置、10…電圧監視装置、11…ダイオード、12…直流電圧昇圧装置。

DESCRIPTION OF SYMBOLS 1 ... Emergency low voltage bus line, 2 ... Receiving circuit breaker for DC power supply equipment, 3 ... Charger, 4 ... Storage battery, 5 ... Storage battery circuit breaker, 6 ... DC bus line, 7 ... DC motor load bus line, 8 ... DC control Load bus, 9 ... DC voltage adjusting device, 10 ... voltage monitoring device, 11 ... diode, 12 ... DC voltage boosting device.

Claims (5)

発電プラントにおける発電所内の直流所内補機へ給電する充電器,蓄電手段及び直流母線からなる発電プラントの直流電源設備において、
過渡容量の大きい負荷用の第一の直流母線と、
該負荷より過渡容量の小さい負荷用の第二の直流母線と、
該第二の直流母線へは前記蓄電手段から電圧昇圧装置とダイオードを有する直流電圧調整装置を介して、前記蓄電手段の放電による電圧低下を補償することを特徴とする発電プラントの直流電源設備。
In a DC power supply facility of a power plant comprising a charger, a power storage means and a DC bus for supplying power to a DC auxiliary device in a power plant in a power plant,
A first DC bus for a load with a large transient capacity;
A second DC bus for a load having a smaller transient capacity than the load;
A DC power supply facility for a power plant that compensates for a voltage drop due to discharge of the power storage means from the power storage means to the second DC bus via a DC voltage regulator having a voltage booster and a diode.
請求項1の発電プラントの直流電源設備において、
前記第二の直流母線の電圧を監視し、前記直流電圧調整装置を制御することにより前記第二の直流母線の電圧を保つことを特徴とする発電プラントの直流電源設備。
In the DC power plant of the power plant according to claim 1,
A DC power supply facility for a power plant that monitors the voltage of the second DC bus and maintains the voltage of the second DC bus by controlling the DC voltage regulator.
請求項1の発電プラントの直流電源設備において、
前記第二の直流母線に接続されている直流制御負荷の電圧を監視し、前記直流電圧調整装置を制御することにより前記直流制御負荷での電圧を補償することを特徴とする発電プラントの直流電源設備。
In the DC power plant of the power plant according to claim 1,
A DC power supply for a power plant that monitors the voltage of a DC control load connected to the second DC bus and compensates the voltage at the DC control load by controlling the DC voltage regulator. Facility.
請求項1の発電プラントの直流電源設備において、
前記直流電圧調整装置を直流制御負荷毎に設置し、該直流制御負荷への電圧を補償することを特徴とする発電プラントの直流電源設備。
In the DC power plant of the power plant according to claim 1,
A DC power supply facility for a power plant, wherein the DC voltage regulator is installed for each DC control load, and the voltage to the DC control load is compensated.
請求項4の発電プラントの直流電源設備において、
前記第二の直流母線に接続されている直流制御負荷の電圧を監視し、前記直流電圧調整装置を制御することにより前記直流制御負荷での電圧を補償することを特徴とする発電プラントの直流電源設備。
In the DC power plant of the power plant according to claim 4,
A DC power supply for a power plant that monitors the voltage of a DC control load connected to the second DC bus and compensates the voltage at the DC control load by controlling the DC voltage regulator. Facility.
JP2004169290A 2004-06-08 2004-06-08 Dc power supply facility of power generation plant Pending JP2005354754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169290A JP2005354754A (en) 2004-06-08 2004-06-08 Dc power supply facility of power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169290A JP2005354754A (en) 2004-06-08 2004-06-08 Dc power supply facility of power generation plant

Publications (1)

Publication Number Publication Date
JP2005354754A true JP2005354754A (en) 2005-12-22

Family

ID=35588740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169290A Pending JP2005354754A (en) 2004-06-08 2004-06-08 Dc power supply facility of power generation plant

Country Status (1)

Country Link
JP (1) JP2005354754A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337565B1 (en) * 2011-05-20 2013-12-06 다야베이 뉴클리어 파워 오퍼레이션즈 앤드 매니지먼트 컴퍼니 리미티드 Method and system for supplying emergency power to nuclear power plant
JP2014055902A (en) * 2012-09-13 2014-03-27 Hitachi-Ge Nuclear Energy Ltd Dc power supply facility for nuclear power plant
CN104916339A (en) * 2015-04-22 2015-09-16 中国核动力研究设计院 Nuclear power plant emergency state diagnosis system and diagnosis method
JP7419451B1 (en) 2022-07-26 2024-01-22 東芝プラントシステム株式会社 power supply

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337565B1 (en) * 2011-05-20 2013-12-06 다야베이 뉴클리어 파워 오퍼레이션즈 앤드 매니지먼트 컴퍼니 리미티드 Method and system for supplying emergency power to nuclear power plant
JP2014055902A (en) * 2012-09-13 2014-03-27 Hitachi-Ge Nuclear Energy Ltd Dc power supply facility for nuclear power plant
CN104916339A (en) * 2015-04-22 2015-09-16 中国核动力研究设计院 Nuclear power plant emergency state diagnosis system and diagnosis method
JP7419451B1 (en) 2022-07-26 2024-01-22 東芝プラントシステム株式会社 power supply

Similar Documents

Publication Publication Date Title
EP3347967B1 (en) Fuel cell system ride-through of electric grid disturbances
CN101087122B (en) Redundant electrical brake and protection system for electric generators
CA2018055C (en) Superconductive voltage stabilizer
US9325272B2 (en) Hot standby power supply for a variable frequency drive
US20090021963A1 (en) Uninterruptible power supply, connected to a grid
JP2011078215A (en) Power distribution system
JP6635671B2 (en) Power converter
KR102032157B1 (en) Grid connected inverter system
EP2276143A2 (en) Power supply apparatus and power supply control method
US20060046107A1 (en) System for fuel cell power plant load following and power regulation
JP2007135364A (en) Power conditioner device
KR102182798B1 (en) Direct current (DC) load leveler
EP3282584A1 (en) Power distribution system and method
JP2005354754A (en) Dc power supply facility of power generation plant
JP2005227017A (en) Dc power supply system for nuclear power plant
JP2005045859A (en) Abnormality detector of current transformer in distributed power source system
US8467491B2 (en) Feedwater controller, nuclear power plant and method for controlling feedwater
US20050029952A1 (en) Drive system
JP4404264B2 (en) Power supply system
CN109247034B (en) Power conversion system for system interconnection
EP3416885B1 (en) System for energy regeneration and distribution
JP5138575B2 (en) Method and apparatus for controlling operation of generator driven by steam turbine, gas turbine or internal combustion engine
JP2011097665A (en) Power distribution system
EP4262050A2 (en) Dual-power switching system and method for operating the same
KR20160103464A (en) Electricityproviding system including battery energy storage system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424