JP2005352021A - Objective lens for microscope - Google Patents

Objective lens for microscope Download PDF

Info

Publication number
JP2005352021A
JP2005352021A JP2004170955A JP2004170955A JP2005352021A JP 2005352021 A JP2005352021 A JP 2005352021A JP 2004170955 A JP2004170955 A JP 2004170955A JP 2004170955 A JP2004170955 A JP 2004170955A JP 2005352021 A JP2005352021 A JP 2005352021A
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
objective lens
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004170955A
Other languages
Japanese (ja)
Other versions
JP4646551B2 (en
Inventor
Yasuhiro Yamawaki
康弘 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004170955A priority Critical patent/JP4646551B2/en
Publication of JP2005352021A publication Critical patent/JP2005352021A/en
Application granted granted Critical
Publication of JP4646551B2 publication Critical patent/JP4646551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an objective lens for microscope which exhibits an excellent imaging performance and has satisfactory operability of a correction ring. <P>SOLUTION: The objective lens is provided with a first lens group G1 which comprises a positive meniscus lens component of directing a concave face to the object side and has a positive refractive power of converting luminous flux from an object to weak divergent luminous flux, a second lens group G2 which has a positive refractive power and is movable along a light axis and a third lens group G3 having a negative refractive power in order from the object side. The objective lens satisfies the following conditional relations; 1<f<SB>1</SB>/f<3, 3<f<SB>2</SB>/f<12, -0.9<f<SB>2</SB>/f<SB>3</SB><-0.6, wherein f<SB>1</SB>is a focal distance of the first lens group, f<SB>2</SB>is a focal distance of the second lens group, f<SB>3</SB>is a focal distance of the third lens group and f is a focal distance of a whole system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、顕微鏡用対物レンズに関し、特に、物体側に配置されるカバーガラスのような平行平面板の厚さが変化した場合にも、良好な結像性能を維持できるようにした補正環付顕微鏡用対物レンズに関する。   The present invention relates to an objective lens for a microscope, and in particular, with a correction ring that can maintain good imaging performance even when the thickness of a plane parallel plate such as a cover glass arranged on the object side changes. The present invention relates to a microscope objective lens.

一般に、顕微鏡用対物レンズは、カバーガラス等の平行平面板の厚さが設計値より大きく変化する場合、その結像性能は劣化し、その傾向は対物レンズの開口数(N.A.)が大きくなるほど顕著になる。そこで、従来より、カバーガラスの厚さの変化に応じて対物レンズ内のレンズ間隔を変化させて収差変動を補正する、いわゆる補正環付対物レンズが知られている(例えば、特許文献1及び2参照)。
特開平10−133118号 特開平8−114747号
In general, when the thickness of a plane parallel plate such as a cover glass changes more than a design value, the objective lens for a microscope deteriorates its imaging performance, and this tendency is caused by the numerical aperture (NA) of the objective lens. The larger it becomes, the more noticeable it becomes. In view of this, a so-called objective lens with a correction ring is known that corrects aberration fluctuations by changing the lens interval in the objective lens in accordance with the change in the thickness of the cover glass (for example, Patent Documents 1 and 2). reference).
JP-A-10-133118 JP-A-8-114747

特許文献1に記載の補正環付対物レンズは、物体側から順に、物体からの光束を収斂させる正の屈折力を有する第1レンズ群と、物体側から順に並んだ正、負、正の3枚接合レンズから構成されると共に小さな屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とより構成され、第2レンズ群を光軸に沿って移動させることにより、カバーガラスの厚さ変化による収差補正を行なっている。
また、特許文献2に記載の補正環付対物レンズは、物体側から順に、物体側に凹面を向けた正メニスカスレンズ成分を有し、物体からの光束をほぼ平行光束に変換する正屈折力の第1レンズ群と、発散性の接合面を含み合成で正屈折力を有する第2レンズ群と、強い発散作用を持つ負屈折面を有する第3レンズ群と、負屈折力の第4レンズ群とより構成され、第2レンズ群を光軸に沿って移動させることにより、カバーガラスの厚さ変化による収差補正を行なっている。
The objective lens with a correction ring described in Patent Document 1 includes, in order from the object side, a first lens group having a positive refractive power for converging a light beam from the object, and positive, negative, and positive 3 arranged in order from the object side. A second lens group that is composed of a cemented lens and has a small refractive power, and a third lens group that has a negative refractive power, and the second lens group is moved along the optical axis. Aberration correction is performed by changing the glass thickness.
Moreover, the objective lens with a correction ring described in Patent Document 2 has a positive meniscus lens component having a concave surface directed toward the object side in order from the object side, and has a positive refractive power for converting the light beam from the object into a substantially parallel light beam. A first lens group, a second lens group including a divergent cementing surface and having a positive refractive power in combination, a third lens group having a negative refractive surface having a strong diverging action, and a fourth lens group having a negative refractive power By moving the second lens group along the optical axis, aberration correction is performed by changing the thickness of the cover glass.

近年、生物学の分野では、従来の細胞の形態観察から細胞間の情報伝達機構を調べることに主眼が移りつつある。それに伴い、顕微鏡及び対物レンズの高性能化に対するニーズも拡大してきており、例えば、倒立型顕微鏡で培養細胞を観察する場合においても、細胞の入っているプラスチックシャーレやガラスシャーレには厚さのバラツキが大きいため、それらの厚さに対応した高解像、高コントラスト、かつ、補正環を回して調整するときピント位置のずれの少ない補正環機構を設けた操作性の良い顕微鏡対物レンズに対する要求が高まってきている。   In recent years, in the field of biology, the main focus is shifting from the conventional observation of cell morphology to examining the information transmission mechanism between cells. Along with this, the need for higher performance of microscopes and objective lenses has also been expanded. Therefore, there is a need for a microscope objective lens with good operability that has a high resolution, high contrast corresponding to these thicknesses, and a correction ring mechanism with a small focus position shift when adjusting the correction ring. It is increasing.

しかしながら、特許文献1に記載の対物レンズは、移動するレンズ群の屈折力を弱くすることで、全体の焦点距離の変動を抑え、近軸位置の像のずれを小さくしているが、屈折力が小さいため、カバーガラスの厚さの変化による球面収差の発生を補正するレンズ群の移動量を確保しなければならず、また、レンズ群の移動によるベスト像面の変動によりピント位置がずれてしまい、補正環の操作に時間が掛かってしまう。また、特許文献2に記載の対物レンズは、NAが大きく、接合レンズにより色収差が補正されて、高解像高コントラストではあるが、移動群を動かすとピント位置がずれてしまい、補正環の操作に時間が掛かってしまう。   However, the objective lens described in Patent Document 1 suppresses fluctuations in the overall focal length by reducing the refractive power of the moving lens group, thereby reducing the deviation of the image at the paraxial position. Therefore, the amount of movement of the lens group that corrects the occurrence of spherical aberration due to the change in the cover glass thickness must be secured, and the focus position is shifted due to the change in the best image plane due to the movement of the lens group. As a result, it takes time to operate the correction ring. The objective lens described in Patent Document 2 has a large NA and chromatic aberration is corrected by a cemented lens, resulting in high resolution and high contrast. However, when the moving group is moved, the focus position is shifted, and the correction ring is operated. Takes time.

本発明は、上記の如き従来技術の問題点に鑑みてなされたものであり、その目的とするところは、良好な結像性能を発揮し、且つ補正環の操作性の良い顕微鏡用対物レンズを提供することにある。   The present invention has been made in view of the problems of the prior art as described above, and an object of the present invention is to provide a microscope objective lens that exhibits good imaging performance and good operability of the correction ring. It is to provide.

上記の目的を達成するため、本発明による顕微鏡用対物レンズは、物体側から順に、物体側に凹面を向けた正メニスカスレンズ成分を含み物体からの光束を弱い発散光束に変換する正屈折力の第1レンズ群と、正の屈折力を有し光軸に沿って移動可能な第2レンズ群と、負屈折力の第3レンズ群とを配置し、下記の条件式を満足する。
1 < f1/f < 3 (1)
3 < f2/f < 12 (2)
−0.9 < f2/f3 < −0.6 (3)
但し、f1は第1レンズ群の焦点距離、f2は第2レンズ群の焦点距離、f3は第3レンズ群の焦点距離、fは全系の焦点距離である。
In order to achieve the above object, an objective lens for a microscope according to the present invention includes a positive meniscus lens component having a concave surface facing the object side in order from the object side, and has a positive refractive power for converting a light beam from the object into a weak divergent light beam. The first lens group, the second lens group having positive refractive power and movable along the optical axis, and the third lens group having negative refractive power are arranged, and the following conditional expression is satisfied.
1 <f 1 / f <3 (1)
3 <f 2 / f <12 (2)
-0.9 <f 2 / f 3 < -0.6 (3)
Here, f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group, and f is the focal length of the entire system.

また、本発明の顕微鏡用対物レンズは、前記第3レンズ群中の少なくとも1つの曲率半径をR3、前記曲率半径R3を有する面の前後の媒質の屈折率差をΔn、前記第2レンズ群の最も物体側の面の曲率半径R21、前記第2レンズ群の最も像側の面の曲率半径R22としたとき、下記の条件式を満足する請求項1に記載の顕微鏡用対物レンズ。
1 < |R3/Δn|/f < 12 (4)
−1.3 < R21/R22 < −0.5 (5)
In the microscope objective lens according to the present invention, at least one curvature radius in the third lens group is R 3 , a refractive index difference between media before and after the surface having the curvature radius R 3 is Δn, and the second lens. 2. The microscope objective lens according to claim 1, wherein the following conditional expression is satisfied, where the curvature radius R 21 of the surface closest to the object side of the group and the curvature radius R 22 of the surface closest to the image side of the second lens group are satisfied. .
1 <| R 3 / Δn | / f <12 (4)
−1.3 <R 21 / R 22 <−0.5 (5)

また、本発明の顕微鏡用対物レンズは、前記第2レンズ群に含まれる凸レンズのアッベ数をν2としたとき、下記の条件式を満足する。
ν2 < 70 (6)
The microscope objective lens of the present invention satisfies the following conditional expression when the Abbe number of the convex lens included in the second lens group is ν 2 .
ν 2 <70 (6)

また、本発明の顕微鏡用対物レンズは、前記第2レンズ群の倍率をβ2としたとき、下記の条件式を満足する。
−1.8 < β2 < −1.1 (7)
The microscope objective lens of the present invention satisfies the following conditional expression when the magnification of the second lens group is β 2 .
−1.8 <β 2 <−1.1 (7)

本発明によれば、良好な結像性能を発揮し、且つ補正環の操作性の良い顕微鏡用対物レンズを提供することができる。   According to the present invention, it is possible to provide an objective lens for a microscope that exhibits good imaging performance and that has good operability of the correction ring.

実施例の説明に先立ち、本発明のように構成した理由、及びそれに基づく作用効果について説明する。
まず、本発明のよれば、物体側に凹面を向けた正レンズを含む正屈折力の第1レンズ群によって、物体から出る高NAの光線の開き角を小さくしている。ここで、条件式(1)は、第1レンズ群の屈折力を規定しており、球面収差、コマ収差、色収差の補正に関して設けられた条件である。この条件の下限を下回ると、第1レンズ群の屈折力が強くなり過ぎ、球面収差、コマ収差、色収差が大きく補正不足となる。また、短波長域で発生する高次の球面収差も大きく補正不足となり、後続のレンズ群では補正しきれなくなる。逆に、この条件の上限を上回ると、第1レンズ群の屈折力が弱くなり過ぎて、第1レンズ群を射出する光線の光線高が高くなり、高次の球面収差が発生してしまう。また、対物レンズの全長が同焦点距離に保つのが困難になる。
Prior to the description of the embodiments, the reason for the configuration according to the present invention and the operational effects based on the reason will be described.
First, according to the present invention, the first NA lens group having a positive refractive power including a positive lens having a concave surface facing the object side reduces the opening angle of a high NA light beam emitted from the object. Here, the conditional expression (1) defines the refractive power of the first lens group, and is a condition provided for correcting spherical aberration, coma aberration, and chromatic aberration. If the lower limit of this condition is not reached, the refractive power of the first lens group becomes too strong, and spherical aberration, coma aberration, and chromatic aberration are greatly corrected and insufficiently corrected. In addition, high-order spherical aberration that occurs in the short wavelength region is greatly under-corrected and cannot be corrected by the subsequent lens group. On the contrary, if the upper limit of this condition is exceeded, the refractive power of the first lens group becomes too weak, the height of the light beam emitted from the first lens group becomes high, and high-order spherical aberration occurs. In addition, it is difficult to keep the entire length of the objective lens at the same focal length.

そして、第2レンズ群によって、光束径を絞って収斂光束に変換している。第2レンズ群では、球面収差や色収差を効果的に補正している。さらに、このレンズ群を光軸によって移動させることにより、球面収差の調整を行っている。
ここで、条件式(2)は、第2レンズ群の屈折力を規定している。この条件の下限を下回ると、収斂作用が強くなり過ぎ、負の球面収差が生じて、第1レンズ群で発生した球面収差の補正が困難となる。逆に、この条件の上限を上回ると、レンズ群を移動させるときの移動量に対する球面収差の発生量が小さくなるため、球面収差を補正するには、移動量即ち第1〜第3レンズ群の互いの空気間隔を広く確保しなければならない。さらに、屈折力が弱いため、ペッツバール和のバランスをとるには、他のレンズ群のレンズ枚数を増やさなければならなくなり、さらにスペースが必要となり、結果的にレンズ系の全長を長くしなければならない。
The second lens group converts the light beam diameter into a converged light beam by narrowing the light beam diameter. In the second lens group, spherical aberration and chromatic aberration are effectively corrected. Further, the spherical aberration is adjusted by moving this lens group along the optical axis.
Here, the conditional expression (2) defines the refractive power of the second lens group. If the lower limit of this condition is not reached, the converging action becomes too strong and negative spherical aberration occurs, making it difficult to correct the spherical aberration generated in the first lens group. On the contrary, if the upper limit of this condition is exceeded, the amount of spherical aberration generated with respect to the amount of movement when the lens group is moved becomes small. Therefore, to correct spherical aberration, the amount of movement, that is, the first to third lens groups A wide space between each other must be ensured. Furthermore, since the refractive power is weak, in order to balance the Petzval sum, it is necessary to increase the number of lenses in other lens groups, and more space is required, resulting in a longer total length of the lens system. .

第2レンズ群により収斂された光束は、第3レンズ群により像側に射出される。本発明の対物レンズでは、第1レンズ群、第2レンズ群により大きな正の屈折力が発生している。よって、像面湾曲を良好に補正するには、ペッツバール和を適正な値にコントロールする必要があるため、第3レンズ群で負の屈折力が必要となっている。   The light beam converged by the second lens group is emitted to the image side by the third lens group. In the objective lens of the present invention, a large positive refractive power is generated by the first lens group and the second lens group. Therefore, in order to correct the curvature of field satisfactorily, it is necessary to control the Petzval sum to an appropriate value, and thus a negative refractive power is required in the third lens group.

本発明の対物レンズは、第2レンズ群を移動させるときに、像のピント位置のずれが小さいことを特徴としている。ピント位置のずれを小さくするには、レンズ群を移動させたときの近軸像位置の変動を小さくするだけでは不充分である。なぜなら、レンズ群の移動による球面収差の発生により、ピント位置即ちベスト像面が近軸位置からずれてしまう。よって、ピント位置のずれを小さくするには、ベスト面の変動する方向と逆の方向にキャンセルするように、近軸像位置を変動させなければならない。そこで、第2レンズ群に入射する近軸光線の光軸に対する角度が、第2レンズ群から出射する近軸光線の光軸に対する角度より大きいと、移動群を移動させたときに球面収差の発生する方向と逆方向に、近軸像位置は変動する。このような光線の関係となるように、第2レンズ群の屈折力と第3レンズ群の屈折力の比について、条件式(3)を満足させなければならない。   The objective lens of the present invention is characterized in that the shift of the focus position of the image is small when the second lens group is moved. In order to reduce the shift of the focus position, it is not sufficient to reduce the fluctuation of the paraxial image position when the lens group is moved. This is because the focus position, that is, the best image plane is shifted from the paraxial position due to generation of spherical aberration due to the movement of the lens group. Therefore, in order to reduce the shift of the focus position, the paraxial image position must be changed so as to cancel in the direction opposite to the direction in which the best surface changes. Therefore, if the angle of the paraxial ray incident on the second lens group is larger than the angle of the paraxial ray emitted from the second lens group with respect to the optical axis, spherical aberration occurs when the moving group is moved. The paraxial image position fluctuates in the direction opposite to the direction in which it is performed. Conditional expression (3) must be satisfied with respect to the ratio of the refractive power of the second lens group and the refractive power of the third lens group so as to satisfy such a light ray relationship.

条件式(3)は、第2レンズ群の収斂させる屈折力と第3レンズ群の発散させる屈折力との比を定めることにより、光線角度が出射側より入射側の方が少しきつくなるように定めている。この条件の下限を下回ると、第3レンズ群の発散させる屈折力よりも第2レンズ群の収斂させる屈折力の方が小さ過ぎて、入射側の光線角度が小さくなり、レンズ群を動かしたときに、近軸像位置が球面収差が発生する方向と同じ方向に大きく変動することとなり、ピント位置のずれが大きくなる。逆に、この条件の上限を上回ると、第3レンズ群の発散させる屈折力よりも第2レンズ群の収斂させる屈折力の方が大きくなり過ぎて、入射側の光線角度が大きくなり、レンズ群を動かしたときに、近軸像位置は球面収差が発生する方向と逆方向に大きく変動することとなり、ピント位置のずれが大きくなる。   Conditional expression (3) determines the ratio of the refractive power converged by the second lens group and the divergent refractive power of the third lens group so that the ray angle is slightly tighter on the incident side than on the outgoing side. It has established. If the lower limit of this condition is not reached, the refractive power that the second lens group converges is smaller than the refractive power that the third lens group diverges, and the light angle on the incident side becomes smaller and the lens group is moved. In addition, the paraxial image position greatly fluctuates in the same direction as the spherical aberration occurs, and the focus position shift increases. On the contrary, if the upper limit of this condition is exceeded, the refractive power that the second lens group converges is larger than the refractive power that the third lens group diverges, and the light ray angle on the incident side increases, and the lens group When the is moved, the paraxial image position largely fluctuates in the direction opposite to the direction in which spherical aberration occurs, and the focus position shift increases.

以上に述べた本発明の顕微鏡用対物レンズは、さらに条件式(4)を満足するのが望ましい。条件式(4)は、第3レンズ群の負屈折力面の発散力を規定したもので、この負屈折力面で正の球面収差を発生させ、第1レンズ群及び第2レンズ群で発生する負の球面収差の発生量を効果的に打ち消すために設けられた条件である。この条件の下限を下回ると、上記負屈折力面がきつくなり、発生する正の球面収差が多くなり過ぎ、また、高次の球面収差も発生して、カバーガラスの厚さの変化を打ち消すために第2レンズ群を移動させても、正の球面収差や高次の球面収差が残存してしまう。他方、この条件の上限を上回ると、上記負屈折力面で発生する正の球面収差が少なくなり、また、軸上色収差が補正不足になってしまい、球面収差の変化を打ち消すために第2レンズ群を移動させても、負の球面収差や軸上色収差が補正しきれずに残ってしまう。   It is desirable that the microscope objective lens of the present invention described above further satisfies the conditional expression (4). Conditional expression (4) defines the divergent power of the negative refracting power surface of the third lens group. This negative refracting power surface generates a positive spherical aberration and is generated in the first lens group and the second lens group. This is a condition provided for effectively canceling the amount of negative spherical aberration generated. If the lower limit of this condition is not reached, the negative refracting power surface becomes tight, and the amount of positive spherical aberration that occurs increases too much, and high-order spherical aberration also occurs, thereby canceling the change in the cover glass thickness. Even when the second lens group is moved to the positive, positive spherical aberration and higher-order spherical aberration remain. On the other hand, if the upper limit of this condition is exceeded, the positive spherical aberration generated on the negative refractive power surface is reduced, and the axial chromatic aberration is insufficiently corrected. Even if the group is moved, negative spherical aberration and axial chromatic aberration cannot be corrected and remain.

また、本発明の顕微鏡用対物レンズにおいて、条件式(5)を満足すれば、さらに望ましい。条件式(5)は、近軸光線の光軸に対する光線角度が出射側より入射側の方が少し大きくなるように定めている。この条件の下限を下回ると、出射側の面の曲率半径が入射側の面の曲率半径よりも小さくなり過ぎて、出射側の光線角度が大きくなり、レンズ群を動かしたときに、近軸像位置が球面収差の発生する方向と逆方向に大きく変動することとなり、ピント位置のずれが大きくなる。逆に、この条件の上限を上回ると、出射側の面の曲率半径が入射側の面の曲率半径よりも大きくなり過ぎて、出射側の光線角度が小さくなり、レンズ群を動かしたときに、近軸像位置が球面収差の発生する方向と同じ方向に大きく変動することとなり、ピント位置のずれが大きくなる。   In the microscope objective lens of the present invention, it is further desirable if conditional expression (5) is satisfied. Conditional expression (5) determines that the ray angle of the paraxial ray with respect to the optical axis is slightly larger on the incident side than on the emission side. Below the lower limit of this condition, the radius of curvature of the exit-side surface becomes too smaller than the radius of curvature of the entrance-side surface, and the ray angle on the exit side becomes large. The position greatly fluctuates in the direction opposite to the direction in which spherical aberration occurs, and the focus position shift increases. Conversely, if the upper limit of this condition is exceeded, the radius of curvature of the exit-side surface becomes too larger than the radius of curvature of the entrance-side surface, the ray angle on the exit side becomes smaller, and when the lens group is moved, The paraxial image position greatly fluctuates in the same direction as the spherical aberration occurs, and the focus position shift increases.

さらに、本発明の顕微鏡用対物レンズにおいて、条件式(6)を満足すれば、さらに望ましい。条件式(6)は、第2レンズ群に含まれる凸レンズのアッベ数を定めたもので、色収差の補正について設けられた条件である。この条件式の範囲を外れると、色収差が補正不足となる。   Furthermore, in the microscope objective lens of the present invention, it is further desirable if conditional expression (6) is satisfied. Conditional expression (6) defines the Abbe number of the convex lens included in the second lens group, and is a condition provided for correcting chromatic aberration. If the range of the conditional expression is not satisfied, the chromatic aberration is insufficiently corrected.

さらに、本発明の顕微鏡用対物レンズにおいて、条件式(7)を満足すれば、さらに望ましい。条件式(7)は、第2レンズ群の倍率を定めたもので、近軸光線の光軸に対する光線角度が出射側より入射側の方が少し大きくなるように定めている。この条件の下限を下回ると、入射側の光線角度が大きくなり、レンズ群を動かしたときに、近軸像位置が球面収差の発生する方向と逆方向に大きく変動することとなり、ピント位置のずれが大きくなる。逆に、この条件の上限を上回ると、入射側の光線角度が小さくなり、レンズ群を動かしたときの、近軸像位置が球面収差の発生する方向と同じ方向に大きく変動することとなり、ピント位置のずれが大きくなる。   Furthermore, in the microscope objective lens of the present invention, it is further desirable if conditional expression (7) is satisfied. Conditional expression (7) defines the magnification of the second lens group, and the light beam angle with respect to the optical axis of the paraxial light beam is determined to be slightly larger on the incident side than on the output side. If the lower limit of this condition is not reached, the ray angle on the incident side will increase, and when the lens group is moved, the paraxial image position will fluctuate greatly in the direction opposite to the direction in which spherical aberration occurs, resulting in a shift in focus position. Becomes larger. On the other hand, if the upper limit of this condition is exceeded, the ray angle on the incident side decreases, and the paraxial image position when the lens group is moved fluctuates greatly in the same direction as the spherical aberration occurs. Misalignment increases.

以下、図面を参照して、本発明の顕微鏡用対物レンズの実施例を説明する。
実施例1
図1は実施例1の光学構成を示す光軸に沿う断面図、図2は実施例1のカバーガラス厚が0mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差を、図3は実施例1のカバーガラス厚が1mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差を、図4は実施例1のカバーガラス厚が2mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。
Embodiments of the objective lens for a microscope according to the present invention will be described below with reference to the drawings.
Example 1
1 is a cross-sectional view along the optical axis showing the optical configuration of Example 1, FIG. 2 is an aberration diagram when the cover glass thickness of Example 1 is 0 mm, (a) is spherical aberration, and (b) is distortion aberration. , (C) is astigmatism, (d) is coma, FIG. 3 is an aberration diagram when the cover glass thickness of Example 1 is 1 mm, (a) spherical aberration, (b) distortion, (C) is astigmatism, (d) is coma, FIG. 4 is an aberration diagram when the cover glass thickness of Example 1 is 2 mm, (a) is spherical aberration, (b) is distortion, ( c) shows astigmatism, and (d) shows coma.

図1に示すように、第1レンズ群G1は、物体側に凹面を向けた正メニスカスレンズと、像側に凹面を向けた負メニスカスレンズと両凸レンズの接合レンズからなっている。第2レンズ群G2は、1枚の両凸レンズからなっている。第3レンズ群G3は、像側に凹面を向けた負メニスカスレンズと両凸レンズと物体側に凹面を向けた負メニスカスレンズの3枚接合レンズと、両凸レンズと両凹レンズの接合メニスカスレンズと、物体側に凹面を向けた負メニスカスレンズと物体側に凹面を向けた正メニスカスレンズの接合メニスカスレンズからなっている。
実施例1は、倍率40×、NA0.6であり、高解像かつカバーガラス厚0〜2の範囲で補正可能な対物レンズである。
As shown in FIG. 1, the first lens group G1 includes a positive meniscus lens having a concave surface facing the object side, and a cemented lens of a negative meniscus lens having a concave surface facing the image side and a biconvex lens. The second lens group G2 is composed of one biconvex lens. The third lens group G3 includes a cemented meniscus lens including a negative meniscus lens having a concave surface facing the image side, a biconvex lens, a negative meniscus lens having a concave surface facing the object side, a cemented meniscus lens having a biconvex lens and a biconcave lens, It consists of a cemented meniscus lens having a negative meniscus lens with a concave surface facing the side and a positive meniscus lens with a concave surface facing the object side.
Example 1 is an objective lens that has a magnification of 40 × and NA of 0.6, and can be corrected within a range of high resolution and a cover glass thickness of 0 to 2.

以下に実施例1のレンズデータを示す。
このレンズデータにおいて、NAは開口数、W.D.は作動距離、βは倍率、r1、r2、…は物体側から順に示した各レンズ面の曲率半径、d1、d2、…は物体側から順に示した各レンズ面間の間隔、n1、n2、…は物体側から順に示した各レンズの屈折率、ν1、ν2、…は物体側より順に示した各レンズのアッベ数である。なお、これらの符号は、実施例2のレンズデータにおいても共通に用いられている。
さらに、カバーガラスの材質は、ガラスシャーレでそのd線の屈折率、アッベ数は、それぞれ、nd=1.52287、νd=59.89として設計されている。
The lens data of Example 1 is shown below.
In this lens data, NA is the numerical aperture, and W.I. D. Is a working distance, β is a magnification, r1, r2,... Are curvature radii of the lens surfaces shown in order from the object side, d1, d2,... Are intervals between the lens surfaces shown in order from the object side, n1, n2, ... Is the refractive index of each lens shown in order from the object side, and .nu.1, .nu.2,... Are Abbe numbers of the lenses shown in order from the object side. These codes are also used in common in the lens data of the second embodiment.
Further, the material of the cover glass is a glass petri dish, and the refractive index of the d line and the Abbe number are designed as nd = 1.52287 and νd = 59.89, respectively.

NA=0.6、WD=3.92、β=−40、f=4.5
rl=−12.9703 dl=2.4988 nl=1.77250 νl=49.60
r2=−6.0227 d2=0.3057
r3= 21.1823 d3=1.17 n3=1.51823 ν3=58.90
r4= 6.7708 d4=3.8916 n4=1.49700 ν4=81.54
r5=−41.9148 d5=1.3295
r6= 15.3948 d6=2.6371 n6=1.43875 ν6=94.93
r7=−18.0885 d7=2.6663
r8= 34.638 d8=1.1 n8=1.74100 ν8=52.64
r9= 6.1365 d9=5.4929 n9=1.43875 ν9=94.93
rl0=−6.1365 dl0=1.1 nl0=1.61340 ν10=44.27
rll=−17.9516 dll=0.3
r12= 6.165 d12=4.6295 n12=1.43875 ν12=94.93
r13=−11.9356 d13=5.4028 n13=1.61340 ν13=44.27
r14= 7.2511 d14=6.3314
r15=−2.8819 d15=1.0602 n15=1.67790 ν15=55.34
r16=−37.0589 d16=3.5724 n16=1.67300 ν16=38.15
r17=−5.4988
NA = 0.6, WD = 3.92, β = −40, f = 4.5
rl = −12.9703 dl = 2.4988 nl = 1.77250 νl = 49.60
r2 = −6.0227 d2 = 0.3057
r3 = 21.1823 d3 = 1.17 n3 = 1.51823 ν3 = 58.90
r4 = 6.7708 d4 = 3.8916 n4 = 1.49700 ν4 = 81.54
r5 = −41.9148 d5 = 1.3295
r6 = 15.3948 d6 = 2.6371 n6 = 1.43875 ν6 = 94.93
r7 = -18.0885 d7 = 2.6663
r8 = 34.638 d8 = 1.1 n8 = 1.74100 ν8 = 52.64
r9 = 6.1365 d9 = 5.4929 n9 = 1.43875 ν9 = 94.93
rl0 = −6.1365 dl0 = 1.1 nl0 = 1.61340 ν10 = 44.27
rll = -17.9516 dll = 0.3
r12 = 6.165 d12 = 4.6295 n12 = 1.43875 ν12 = 94.93
r13 = −11.9356 d13 = 5.4028 n13 = 1.61340 ν13 = 44.27
r14 = 7.2511 d14 = 6.3314
r15 = -2.8819 d15 = 1.0602 n15 = 1.667790 ν15 = 55.34
r16 = −37.0589 d16 = 3.5724 n16 = 1.67300 ν16 = 38.15
r17 = −5.4988

(1)fl/f=2.01
(2)f2/f=4.33
(3)f2/f3=−0.81
(4)|R3/△n|/f=4.52
(5)R21/R22=−0.85
(6)ν2=94.93
(7)β2=−1.21
(1) fl / f = 2.01
(2) f2 / f = 4.33
(3) f2 / f3 = −0.81
(4) | R3 / △ n | /f=4.52
(5) R21 / R22 = −0.85
(6) ν2 = 94.93
(7) β2 = -1.21

実施例2
図5は実施例2の光学構成を示す光軸に沿う断面図、図6は実施例2のカバーガラス厚が0.11mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差を、図7は実施例2のカバーガラス厚が0.17mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差を、図8は実施例2のカバーガラス厚が0.23mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。
Example 2
FIG. 5 is a sectional view along the optical axis showing the optical configuration of Example 2, FIG. 6 is an aberration diagram when the cover glass thickness of Example 2 is 0.11 mm, (a) is spherical aberration, and (b) is Distortion aberration, (c) astigmatism, (d) coma aberration, FIG. 7 is an aberration diagram when the cover glass thickness of Example 2 is 0.17 mm, (a) spherical aberration, (b) Is a distortion aberration, (c) is an astigmatism, (d) is a coma aberration, FIG. 8 is an aberration diagram when the cover glass thickness of Example 2 is 0.23 mm, (a) is a spherical aberration, (b ) Shows distortion, (c) shows astigmatism, and (d) shows coma.

図5に示すように、第1レンズ群G1は、像側に凹面を向けた正メニスカスレンズ2枚からなっている。第2レンズ群G2は、両凸レンズと両凹レンズと両凸レンズの3枚接合レンズからなっている。第3レンズ群G3は、両凸レンズと物体側に凹面を向けた負メニスカスレンズの接合レンズと、両凸レンズと両凹レンズの接合メニスカスレンズと、両凹レンズと両凸レンズの接合メニスカスレンズからなっている。
実施例2は、倍率60×、NA0.9であり、高解像かつカバーガラス厚0.11〜0.23の範囲で補正可能な対物レンズである。
As shown in FIG. 5, the first lens group G1 is composed of two positive meniscus lenses having a concave surface facing the image side. The second lens group G2 is composed of a three-piece cemented lens including a biconvex lens, a biconcave lens, and a biconvex lens. The third lens group G3 includes a biconvex lens, a cemented lens of a negative meniscus lens having a concave surface directed toward the object side, a cemented meniscus lens of a biconvex lens and a biconcave lens, and a cemented meniscus lens of a biconcave lens and a biconvex lens.
Example 2 is an objective lens that has a magnification of 60 × and NA of 0.9, can be corrected within the range of high resolution and cover glass thickness of 0.11 to 0.23.

以下に実施例2のレンズデータを示す。
実施例2では、通常のカバーガラスが用いられ、そのd線の屈折率、アッベ数は、それぞれ、nd=1.52100、νd=56.02として設計されている。
NA=0.9、WD=0.33、β=−60、f=3
rl=−3.8 dl=4.682 nl=1.77250 νl=49.60
r2=−4.106 d2=0.15
r3=−35.9576 d3=2.7 n3=1.56907 ν3=71.30
r4=−6.3898 d4=0.7
r5= 7.849 d5=4.4379 n5=1.43875 ν5=94.93
r6=−6.5489 d6=1.3 n6=1.77250 ν6=49.60
r7= 11.8473 d7=4.8129 n7=1.43875 ν7=94.93
r8=−7.1839 d8=1.451
r9= 23.0308 d9=4.9104 n9=1.43875 ν9=94.93
rl0=−5.3583 dl0=1.35 nl0=1.77250 νl0=49.60
rll=−18.757 dll=7.3064
r12= 5.2936 d12=3.4324 n12=1.49700 ν12=81.54
r13=−12.1962 d13=3 n13=1.77250 ν13=49.60
r14= 4.0802 d14=1.8814
r15=−4.0492 d15=3.3341 n15=1.51633 ν15=64.14
r16=20.2444 d16=2.5 n16=1.67300 ν16=38.15
r17=−8.0051
The lens data of Example 2 is shown below.
In Example 2, a normal cover glass is used, and the refractive index and Abbe number of the d line are designed as nd = 1.52100 and νd = 56.02, respectively.
NA = 0.9, WD = 0.33, β = −60, f = 3
rl = -3.8 dl = 4.682 nl = 1.77250 νl = 49.60
r2 = -4.106 d2 = 0.15
r3 = −35.9576 d3 = 2.7 n3 = 1.56907 ν3 = 71.30
r4 = −6.3898 d4 = 0.7
r5 = 7.849 d5 = 4.4379 n5 = 1.43875 ν5 = 94.93
r6 = −6.5489 d6 = 1.3 n6 = 1.77250 ν6 = 49.60
r7 = 11.8473 d7 = 4.8129 n7 = 1.43875 ν7 = 94.93
r8 = −7.1839 d8 = 1.451
r9 = 23.0308 d9 = 4.9104 n9 = 1.43875 ν9 = 94.93
rl0 = −5.3583 dl0 = 1.35 nl0 = 1.77250 νl0 = 49.60
rll = -18.757 dll = 7.3064
r12 = 5.2936 d12 = 3.4324 n12 = 1.49700 ν12 = 81.54
r13 = −12.1962 d13 = 3 n13 = 1.77250 ν13 = 49.60
r14 = 4.0802 d14 = 1.8814
r15 = -4.0492 d15 = 3.3341 n15 = 1.51633 ν15 = 64.14
r16 = 20.2444 d16 = 2.5 n16 = 1.67300 ν16 = 38.15
r17 = -8.0051

(1)fl/f=1.78
(2)f2/f=7.52
(3)f2/f3=−0.65
(4)|R3/△n|/f=5.36
(5)R21/R22=−1.09
(6)ν2=94.99
(7)β2=−1.7
(1) fl / f = 1.78
(2) f2 / f = 7.52
(3) f2 / f3 = −0.65
(4) | R3 / △ n | / f = 5.36
(5) R21 / R22 = -1.09
(6) ν2 = 94.99
(7) β2 = -1.7

上記実施例1、2は、何れも対物レンズからの射出光は平行光束となる無限遠補正型の対物レンズであり、それ自身では結像しない。そこで、例えば、以下に示す数値データを有し、図9にレンズ断面を示す結像レンズと組み合わせて使用される。
rl= 68.754 dl=7.732 nl=1.487 ν1=70.2
r2=−37.567 d2=3.474 n2=1.806 ν2=40.9
r3=−102.847 d3=0.697
r4= 84.309 d4=6.023 n4=1.834 ν4=37.1
r5=−50.710 d5=3.029 n5=1.644 ν5=40.8
r6= 40.661
Examples 1 and 2 are infinity correction type objective lenses in which light emitted from the objective lens becomes a parallel light beam, and do not form an image by itself. Therefore, for example, it has the following numerical data and is used in combination with an imaging lens whose lens cross section is shown in FIG.
rl = 68.754 dl = 7.732 nl = 1.487 ν1 = 70.2
r2 = -37.567 d2 = 3.474 n2 = 1.806 ν2 = 40.9
r3 = -102.847 d3 = 0.697
r4 = 84.309 d4 = 6.023 n4 = 1.834 ν4 = 37.1
r5 = −50.710 d5 = 3.029 n5 = 1.644 ν5 = 40.8
r6 = 40.661

この場合、実施例1、2の対物レンズと図9に示す結像レンズの間の間隔は、50mm〜170mmの間の何れの位置でも良い。この間隔を119mmとした場合の収差図が、図2〜図4、図6〜図8にそれぞれ示されている。これらの収差図中、IM.Hは像高を示す。なお、上記間隔が50mm〜170mmの間で119mm以外の位置においても、ほぼ同様の収差状況を示す。   In this case, the distance between the objective lens of Examples 1 and 2 and the imaging lens shown in FIG. 9 may be any position between 50 mm and 170 mm. FIGS. 2 to 4 and FIGS. 6 to 8 show aberration diagrams when the distance is 119 mm. In these aberration diagrams, IM. H represents the image height. It should be noted that substantially the same aberration situation is shown at positions other than 119 mm between the above-mentioned intervals of 50 mm to 170 mm.

実施例1の光学構成を示す光軸に沿う断面図である。1 is a cross-sectional view along an optical axis showing an optical configuration of Example 1. FIG. 実施例1のカバーガラス厚が0mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。FIG. 6 is an aberration diagram when the cover glass thickness of Example 1 is 0 mm, where (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. 実施例1のカバーガラス厚が1mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。FIG. 6 is an aberration diagram when the cover glass thickness of Example 1 is 1 mm, where (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. 実施例1のカバーガラス厚が2mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。FIG. 4 is an aberration diagram when the cover glass thickness of Example 1 is 2 mm, where (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. 実施例2の光学構成を示す光軸に沿う断面図である。6 is a cross-sectional view along an optical axis showing an optical configuration of Example 2. FIG. 実施例2のカバーガラス厚が0mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。FIG. 6 is an aberration diagram when the cover glass thickness of Example 2 is 0 mm, where (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. 実施例2のカバーガラス厚が1mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。FIG. 6 is an aberration diagram when the cover glass thickness of Example 2 is 1 mm, where (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. 実施例2のカバーガラス厚が2mmの場合の収差図で、(a)は球面収差、(b)は歪曲収差、(c)は非点収差、(d)はコマ収差をそれぞれ示す。FIG. 6 is an aberration diagram when the cover glass thickness of Example 2 is 2 mm, where (a) shows spherical aberration, (b) shows distortion, (c) shows astigmatism, and (d) shows coma. 実施例1、2の対物レンズと組み合わせて用いられる結像レンズの光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure of the imaging lens used in combination with the objective lens of Example 1,2.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群



G1 First lens group G2 Second lens group G3 Third lens group



Claims (4)

物体側から順に、物体側に凹面を向けた正メニスカスレンズ成分を含み物体からの光束を弱い発散光束に変換する正屈折力の第1レンズ群と、正の屈折力を有し光軸に沿って移動可能な第2レンズ群と、負屈折力の第3レンズ群とを配置し、下記の条件式を満足する顕微鏡用対物レンズ。
1 < f1/f < 3
3 < f2/f < 12
−0.9 < f2/f3 < −0.6
但し、f1は第1レンズ群の焦点距離、f2は第2レンズ群の焦点距離、f3は第3レンズ群の焦点距離、fは全系の焦点距離である。
In order from the object side, a first lens unit having a positive refracting power including a positive meniscus lens component having a concave surface facing the object side and converting a light beam from the object into a weak divergent light beam and having a positive refractive power along the optical axis An objective lens for a microscope that includes a movable second lens group and a third lens group having a negative refractive power and satisfies the following conditional expression.
1 <f 1 / f <3
3 <f 2 / f <12
−0.9 <f 2 / f 3 <−0.6
Here, f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group, and f is the focal length of the entire system.
前記第3レンズ群中の少なくとも1つの曲率半径をR3、前記曲率半径R3を有する面の前後の媒質の屈折率差をΔn、前記第2レンズ群の最も物体側の面の曲率半径R21、前記第2レンズ群の最も像側の面の曲率半径R22としたとき、下記の条件式を満足する請求項1に記載の顕微鏡用対物レンズ。
1 < |R3/Δn|/f < 12
−1.3 < R21/R22 < −0.5
R 3 is the radius of curvature of at least one of the third lens group, Δn is the refractive index difference of the medium before and after the surface having the radius of curvature R 3, and the radius of curvature R of the surface closest to the object of the second lens group is 21. The microscope objective lens according to claim 1, wherein the following conditional expression is satisfied, where 21 is the radius of curvature R 22 of the surface closest to the image side of the second lens group.
1 <| R 3 / Δn | / f <12
−1.3 <R 21 / R 22 <−0.5
前記第2レンズ群に含まれる凸レンズのアッベ数をν2としたとき、下記の条件式を満足する請求項1または2に記載の顕微鏡用対物レンズ。
ν2 < 70
3. The microscope objective lens according to claim 1, wherein the following conditional expression is satisfied when an Abbe number of a convex lens included in the second lens group is ν 2 .
ν 2 <70
前記第2レンズ群の倍率をβ2としたとき、下記の条件式を満足する請求項1乃至3の何れか1項に記載の顕微鏡用対物レンズ。
−1.8 < β2 < −1.1


4. The microscope objective lens according to claim 1, wherein the following conditional expression is satisfied, where β 2 is a magnification of the second lens group. 5.
-1.8 <β 2 <-1.1


JP2004170955A 2004-06-09 2004-06-09 Microscope objective lens Expired - Lifetime JP4646551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170955A JP4646551B2 (en) 2004-06-09 2004-06-09 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170955A JP4646551B2 (en) 2004-06-09 2004-06-09 Microscope objective lens

Publications (2)

Publication Number Publication Date
JP2005352021A true JP2005352021A (en) 2005-12-22
JP4646551B2 JP4646551B2 (en) 2011-03-09

Family

ID=35586583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170955A Expired - Lifetime JP4646551B2 (en) 2004-06-09 2004-06-09 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP4646551B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017663A2 (en) 2007-07-17 2009-01-21 Olympus Corporation Immersion microscope objective and laser scanning microscope system using the same
JP2013178309A (en) * 2012-02-28 2013-09-09 Olympus Corp Microscope objective lens
JP2017116845A (en) * 2015-12-25 2017-06-29 オリンパス株式会社 Microscope objective lens
JP2018205373A (en) * 2017-05-31 2018-12-27 オリンパス株式会社 microscope
EP3557301A1 (en) * 2018-04-19 2019-10-23 Olympus Corporation Dry objective
CN111751970A (en) * 2019-03-27 2020-10-09 卡尔蔡司显微镜有限责任公司 Objective lens for microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307716A (en) * 1988-06-06 1989-12-12 Olympus Optical Co Ltd Objective lens for microscope
JPH0350517A (en) * 1989-07-19 1991-03-05 Olympus Optical Co Ltd Microscope objective
JPH08114747A (en) * 1994-10-17 1996-05-07 Olympus Optical Co Ltd Microscope objective lens
JPH10133119A (en) * 1996-10-30 1998-05-22 Nikon Corp Microscope objective lens
JP2003161887A (en) * 2001-11-27 2003-06-06 Olympus Optical Co Ltd Microscope objective lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307716A (en) * 1988-06-06 1989-12-12 Olympus Optical Co Ltd Objective lens for microscope
JPH0350517A (en) * 1989-07-19 1991-03-05 Olympus Optical Co Ltd Microscope objective
JPH08114747A (en) * 1994-10-17 1996-05-07 Olympus Optical Co Ltd Microscope objective lens
JPH10133119A (en) * 1996-10-30 1998-05-22 Nikon Corp Microscope objective lens
JP2003161887A (en) * 2001-11-27 2003-06-06 Olympus Optical Co Ltd Microscope objective lens

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017663A2 (en) 2007-07-17 2009-01-21 Olympus Corporation Immersion microscope objective and laser scanning microscope system using the same
US7869132B2 (en) 2007-07-17 2011-01-11 Olympus Corporation Immersion microscope objective and laser scanning microscope system using same
EP2573608A2 (en) 2007-07-17 2013-03-27 Olympus Corporation Immersion microscope objective and laser scanning microscope system using the same
EP2573609A2 (en) 2007-07-17 2013-03-27 Olympus Corporation Immersion microscope objective and laser scanning microscope system using the same
US8508856B2 (en) 2007-07-17 2013-08-13 Olympus Corporation Immersion microscope objective and laser scanning microscope system using same
US8576482B2 (en) 2007-07-17 2013-11-05 Olympus Corporation Laser scanning microscope system
JP2013178309A (en) * 2012-02-28 2013-09-09 Olympus Corp Microscope objective lens
US10162160B2 (en) 2015-12-25 2018-12-25 Olympus Corporation Microscope objective
JP2017116845A (en) * 2015-12-25 2017-06-29 オリンパス株式会社 Microscope objective lens
JP2018205373A (en) * 2017-05-31 2018-12-27 オリンパス株式会社 microscope
EP3557301A1 (en) * 2018-04-19 2019-10-23 Olympus Corporation Dry objective
JP2019191266A (en) * 2018-04-19 2019-10-31 オリンパス株式会社 Dry system objective lens
JP7134684B2 (en) 2018-04-19 2022-09-12 株式会社エビデント dry objective lens
CN111751970A (en) * 2019-03-27 2020-10-09 卡尔蔡司显微镜有限责任公司 Objective lens for microscope
CN111751970B (en) * 2019-03-27 2022-07-05 卡尔蔡司显微镜有限责任公司 Objective lens for microscope
US11520131B2 (en) 2019-03-27 2022-12-06 Carl Zeiss Microscopy Gmbh Objective for a microscope

Also Published As

Publication number Publication date
JP4646551B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5277324B2 (en) Microscope objective lens
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
US5076677A (en) Zoom lens
WO2010090281A1 (en) Macro lens
JP5345008B2 (en) Projection variable focus lens and projection display device
JP4880498B2 (en) Telephoto zoom lens
JP2007093976A (en) Zoom lens
JPH07151970A (en) Zoom lens
JPH05188289A (en) Rear converter lens
US6111703A (en) Image pickup optical system
JPH04235514A (en) Super-wide angle zoom lens
JP5320224B2 (en) Projection variable focus lens and projection display device
JPH08313804A (en) Wide angle lens
JP4959230B2 (en) Microscope objective lens
WO2018008460A1 (en) Endoscope optical system
JP2526923B2 (en) Zoom lenses
JP3454935B2 (en) Microscope objective lens
US5627677A (en) Rear conversion lens with vibration-reduction function
JP4646551B2 (en) Microscope objective lens
JPH05107477A (en) Telescoping zoom lens constructed with five groups of lenses
JP2001337265A (en) Photographing lens utilizing floating
JP4839763B2 (en) Wide angle lens
JP3134448B2 (en) Telephoto zoom lens
US4468097A (en) Four-group great aperture ratio zoom lens
JPH09146001A (en) Variable power optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4646551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250