JP2005350282A - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
JP2005350282A
JP2005350282A JP2004170236A JP2004170236A JP2005350282A JP 2005350282 A JP2005350282 A JP 2005350282A JP 2004170236 A JP2004170236 A JP 2004170236A JP 2004170236 A JP2004170236 A JP 2004170236A JP 2005350282 A JP2005350282 A JP 2005350282A
Authority
JP
Japan
Prior art keywords
oxygen
oxygen concentration
power
oxygen sensor
concentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004170236A
Other languages
Japanese (ja)
Other versions
JP4206970B2 (en
Inventor
Koichi Tanaka
浩一 田中
Makoto Iwakame
誠 岩亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004170236A priority Critical patent/JP4206970B2/en
Publication of JP2005350282A publication Critical patent/JP2005350282A/en
Application granted granted Critical
Publication of JP4206970B2 publication Critical patent/JP4206970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen concentrator which can immediately detect the oxygen concentration even in a stop state without shortening the durable period of an oxygen sensor. <P>SOLUTION: The oxygen concentrator is equipped with a compressor 1 for sucking air in the atmosphere and compressing it, first and second adsorption cylinders 2, 3 connected in parallel to each other, an accumulator tank 4 for accumulating a gas containing oxygen in high concentration, a pressure reducing valve 5, and a flow rate regulator 6. The oxygen sensor 11 for detecting the oxygen concentration is connected between the pressure reducing valve 5 and the flow rate regulator 6. An electric power supply means 12 for supplying an electric power to the oxygen sensor outputs pulse-like standby power when the oxygen sensor 11 is not operated, and on the other hand, outputs continuous waveform driving power when the oxygen sensor 11 is operated to detect. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば呼吸器系疾患の治療等に用いられる酸素濃縮器に関する。   The present invention relates to an oxygen concentrator used, for example, for treatment of respiratory diseases.

従来、酸素濃縮器としては、大気中の空気を吸入し、この吸入した空気に含まれる酸素を濃縮して酸素濃度の高い気体を生成するものが知られている。この種の酸素濃縮器では、生成した気体の酸素濃度を検出するために、ジルコニア式の酸素センサが用いられている(例えば特許文献1:特開2002−174617号公報参照)。上記酸素センサは、耐用期間が、検出する酸素濃度の大きさと検出動作の累積時間とに反比例する特性を有する。したがって、上記酸素センサで検出する酸素濃度が比較的大きい上記酸素濃縮器は、上記酸素センサに電力供給を間欠的に行って酸素濃度検出を間欠的に行うことにより、検出動作の累積時間が増加する速さを小さくして、上記酸素センサの耐用期間を長くすることが考えられる。   Conventionally, oxygen concentrators are known which inhale air in the atmosphere and concentrate oxygen contained in the inhaled air to generate a gas having a high oxygen concentration. In this type of oxygen concentrator, a zirconia-type oxygen sensor is used to detect the oxygen concentration of the generated gas (see, for example, Japanese Patent Application Laid-Open No. 2002-174617). The oxygen sensor has a characteristic that the service life is inversely proportional to the magnitude of the detected oxygen concentration and the accumulated time of the detection operation. Therefore, the oxygen concentrator detected by the oxygen sensor has a relatively large oxygen concentration, and by intermittently supplying power to the oxygen sensor and detecting the oxygen concentration intermittently, the accumulated time of the detection operation increases. It is conceivable to reduce the speed of the oxygen sensor and extend the service life of the oxygen sensor.

しかしながら、上記ジルコニア式の酸素センサは、検出動作の数分前に予め電力を供給して活性化を行う必要があるので、停止した状態から直ぐに酸素検出動作を開始できない。したがって、上記従来の酸素濃縮器は、間欠的に検出動作を行う上記酸素センサの停止中に、異常等が発生しても、直ぐに酸素濃度を検知することができなくて、異常等への対応が不十分になるという問題がある。
特開2002−174617号公報
However, since the zirconia oxygen sensor needs to be activated by supplying power in advance several minutes before the detection operation, the oxygen detection operation cannot be started immediately after it is stopped. Therefore, the conventional oxygen concentrator cannot immediately detect the oxygen concentration even if an abnormality occurs while the oxygen sensor that performs the detection operation intermittently is stopped. There is a problem that becomes insufficient.
JP 2002-174617 A

そこで、本発明の課題は、酸素センサの耐用期間を短縮することなく、停止状態でも酸素濃度を直ぐに検知できる酸素濃縮器を提供することにある。   Therefore, an object of the present invention is to provide an oxygen concentrator that can immediately detect the oxygen concentration even in a stopped state without shortening the service life of the oxygen sensor.

上記課題を解決するため、本発明の酸素濃縮器は、
大気中の空気に含まれる酸素を濃縮して、上記空気の酸素濃度よりも高い酸素濃度を有する高酸素濃度気体を生成する酸素濃縮手段と、
上記酸素濃縮手段が生成した高酸素濃度気体の酸素濃度を検出する酸素濃度検出手段と、
上記酸素濃度検出手段に、この酸素濃度検出手段が酸素濃度の検出動作をする作動時に駆動電力を供給する一方、上記酸素濃度検出手段が酸素濃度の検出動作をしない非作動時に上記駆動電力よりも小さい待機電力を供給する電力供給手段と
を備えることを特徴としている。
In order to solve the above problems, the oxygen concentrator of the present invention is:
Oxygen concentration means for concentrating oxygen contained in air in the atmosphere to generate a high oxygen concentration gas having an oxygen concentration higher than the oxygen concentration of the air;
Oxygen concentration detection means for detecting the oxygen concentration of the high oxygen concentration gas generated by the oxygen concentration means;
Driving power is supplied to the oxygen concentration detecting means when the oxygen concentration detecting means is in operation for detecting oxygen concentration, while the oxygen concentration detecting means is more than the driving power when not operating when the oxygen concentration detecting means is not operating for detecting oxygen concentration. And a power supply means for supplying a small standby power.

上記構成の酸素濃縮器は、大気中の空気を吸入し、上記酸素濃縮手段によって、上記吸入した空気に含まれる酸素を濃縮して、上記空気の酸素濃度よりも高い酸素濃度を有する高酸素濃度気体を生成する。上記酸素濃縮手段が生成した高酸素濃度気体の酸素濃度を、上記酸素濃度検出手段によって検出する。この酸素濃度検出手段は、上記電力供給手段によって電力が供給される。   The oxygen concentrator having the above structure sucks air in the atmosphere, concentrates oxygen contained in the sucked air by the oxygen concentrating means, and has a high oxygen concentration having an oxygen concentration higher than the oxygen concentration of the air. Generate gas. The oxygen concentration of the high oxygen concentration gas generated by the oxygen concentrating means is detected by the oxygen concentration detecting means. The oxygen concentration detection means is supplied with power by the power supply means.

上記電力供給手段は、上記酸素濃度検出手段が酸素濃度の検出動作をする作動時に、所定の駆動電力を供給する。一方、上記酸素濃度検出手段が酸素濃度検出動作をしない非作動時には、上記電力供給手段は、上記駆動電力よりも小さい待機電力を供給する。これにより、上記酸素濃度検出手段は、非作動時においても電力供給が行われて待機状態になる。   The power supply means supplies a predetermined driving power when the oxygen concentration detection means operates to detect the oxygen concentration. On the other hand, when the oxygen concentration detection means is not in operation without performing the oxygen concentration detection operation, the power supply means supplies standby power smaller than the drive power. As a result, the oxygen concentration detecting means is in a standby state with power supplied even when it is not in operation.

上記酸素濃度検出手段の非作動時において、この酸素濃縮器に例えば異常等が生じた場合、酸素濃度を検出する必要が生じる場合がある。ここで、上記酸素濃度検出手段は、非作動時においても上記待機電力が供給されているので、上記電力供給手段による供給電力が待機電力から駆動電力に切り替わった場合、従来よりも短時間で酸素濃度の検出が可能になる。したがって、上記酸素濃縮器に例えば異常が生じた場合でも、上記酸素濃縮手段で生成される気体の酸素濃度を迅速に検知できて、上記異常に対応して、上記酸素濃縮手段の動作の制御等を迅速に行うことができる。   When the oxygen concentration detector is not in operation, for example, if an abnormality occurs in the oxygen concentrator, it may be necessary to detect the oxygen concentration. Here, since the standby power is supplied to the oxygen concentration detection means even when it is not in operation, when the power supplied by the power supply means is switched from standby power to drive power, the oxygen concentration can be detected in a shorter time than before. The concentration can be detected. Therefore, even when an abnormality occurs in the oxygen concentrator, for example, the oxygen concentration of the gas generated by the oxygen concentrating means can be detected quickly, and the operation of the oxygen concentrating means is controlled in response to the abnormality. Can be done quickly.

また、上記酸素濃度検出手段は、非動作時に上記駆動電力よりも小さい待機電力が供給されるので、耐用期間の大幅な短縮を防止できる。   The oxygen concentration detection means is supplied with standby power smaller than the drive power when not operating, and thus can prevent a significant shortening of the service life.

一実施形態の酸素濃縮器は、上記待機電力は、上記駆動電力が有する電圧よりも低い電圧を有する電力である。   In the oxygen concentrator of one embodiment, the standby power is power having a voltage lower than that of the driving power.

上記実施形態によれば、上記酸素濃縮器の非作動時に上記酸素濃度検出手段に供給される待機電力は、上記駆動電力が有する電圧よりも低い電圧を有する電力である。したがって、上記待機電力を調節することにより、上記酸素濃度検出手段を容易に待機状態にできる。   According to the embodiment, the standby power supplied to the oxygen concentration detection means when the oxygen concentrator is not operated is power having a voltage lower than the voltage of the driving power. Therefore, by adjusting the standby power, the oxygen concentration detection means can be easily put into a standby state.

一実施形態の酸素濃縮器は、上記待機電力は、上記駆動電力の電圧と略同じオン時の最大電圧を有するパルス状の電力である。   In the oxygen concentrator according to an embodiment, the standby power is a pulsed power having a maximum voltage at the time of ON that is substantially the same as the voltage of the driving power.

上記実施形態によれば、上記酸素濃縮器の非作動時に上記酸素濃度検出手段に供給される待機電力は、パルス状の電力であり、このパルス状電力のオン時の最大電圧は、上記駆動電力の電圧と略同じであるので、上記駆動電力と待機電力とを簡易かつ迅速に切り替えることができる。   According to the embodiment, the standby power supplied to the oxygen concentration detection means when the oxygen concentrator is not operating is pulsed power, and the maximum voltage when the pulsed power is on is the driving power. Therefore, the driving power and the standby power can be switched easily and quickly.

以上のように、本発明の酸素濃縮器は、大気中の空気に含まれる酸素を酸素濃縮手段で濃縮して高酸素濃度気体を生成し、この高酸素濃度気体の酸素濃度を、酸素濃度検出手段で検出する。この酸素濃度検出手段に、電力供給手段が、上記酸素濃度検出手段が酸素濃度の検出動作をする作動時に駆動電力を供給する一方、上記酸素濃度検出手段が酸素濃度の検出動作をしない非作動時に、上記駆動電力よりも小さい待機電力を供給する。したがって、上記酸素濃度検出手段は、非作動時においても電力供給が行われて動作の待機状態になる。したがって、上記酸素濃度検出手段は、供給電力が待機電力から駆動電力に切り替えられてから短時間の後に、酸素濃度の検出動作を行うことができる。その結果、この酸素濃縮器に異常が生じた場合でも、酸素濃度を迅速に検知できて、上記異常に適切に対応することができる。また、上記酸素濃度検出手段は、非動作時に駆動電力よりも小さい待機電力が供給されるので、耐用期間の大幅な短縮を防止できる。   As described above, the oxygen concentrator of the present invention generates a high oxygen concentration gas by concentrating oxygen contained in air in the atmosphere with an oxygen concentrating means, and detects the oxygen concentration of this high oxygen concentration gas. Detect by means. The power supply means supplies driving power to the oxygen concentration detection means when the oxygen concentration detection means operates to detect the oxygen concentration, while the oxygen concentration detection means does not operate when the oxygen concentration detection means does not detect the oxygen concentration. The standby power smaller than the driving power is supplied. Therefore, the oxygen concentration detection means is in a standby state of operation by supplying power even when not operating. Therefore, the oxygen concentration detection means can perform an oxygen concentration detection operation a short time after the supplied power is switched from standby power to drive power. As a result, even when an abnormality occurs in the oxygen concentrator, the oxygen concentration can be detected quickly and the abnormality can be appropriately dealt with. Moreover, since the oxygen concentration detection means is supplied with standby power smaller than the drive power when not operating, it can prevent a significant shortening of the service life.

以下、本発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1は、本発明の実施形態の酸素濃縮器の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of an oxygen concentrator according to an embodiment of the present invention.

この酸素濃縮器は、大気中の空気を吸入して圧縮するコンプレッサ1と、このコンプレッサ1に接続された酸素濃縮手段としての第1および第2吸着筒2,3を備える。   The oxygen concentrator includes a compressor 1 that sucks and compresses air in the atmosphere, and first and second adsorption cylinders 2 and 3 as oxygen concentrating means connected to the compressor 1.

上記第1および第2吸着筒2,3は互いに並列に接続されており、上記コンプレッサ1の吐出ポートと、上記第1および第2吸着筒2,3の入り口との間に、入り口弁21,31を各々設けている。   The first and second adsorption cylinders 2, 3 are connected in parallel to each other, and an inlet valve 21, between the discharge port of the compressor 1 and the inlets of the first and second adsorption cylinders 2, 3. 31 is provided.

上記第1および第2吸着筒2,3の各々は、高酸素濃度気体を排出する酸素排出管に接続され、この第1および第2吸着筒2,3に接続された2つの酸素排出管は、合流してチェック弁10を介してアキュムレータタンク4に接続している。また、上記2つの酸素排出管は、加圧弁9が介設された接続管で互いに連通している。   Each of the first and second adsorption cylinders 2 and 3 is connected to an oxygen discharge pipe for discharging a high oxygen concentration gas, and the two oxygen discharge pipes connected to the first and second adsorption cylinders 2 and 3 are , And connected to the accumulator tank 4 via the check valve 10. The two oxygen discharge pipes communicate with each other through a connection pipe having a pressurizing valve 9 interposed therebetween.

上記第1および第2吸着筒2,3の各々は、上記空気から回収した窒素を酸素濃縮器の外部に排気する排気管に接続されており、この排気管に排気弁22,32を介設している。   Each of the first and second adsorption cylinders 2 and 3 is connected to an exhaust pipe for exhausting nitrogen recovered from the air to the outside of the oxygen concentrator, and exhaust valves 22 and 32 are interposed in the exhaust pipe. doing.

上記アキュムレータタンク4から酸素を導く酸素配管に、減圧弁5と流量調節器6とを順次介設しており、この酸素配管を酸素の供給先に接続するようになっている。   A pressure reducing valve 5 and a flow rate regulator 6 are sequentially provided in an oxygen pipe for introducing oxygen from the accumulator tank 4, and this oxygen pipe is connected to an oxygen supply destination.

上記酸素配管の減圧弁5と流量調節器6との間には、酸素濃度検出手段としての酸素センサ11が設けられている。この酸素センサ11は、この酸素センサ11に電力を供給する電力供給手段12と、この酸素センサ11からの信号を受けて酸素濃度の値を算出する濃度値算出手段13とに接続されている。   Between the pressure reducing valve 5 and the flow controller 6 of the oxygen pipe, an oxygen sensor 11 is provided as an oxygen concentration detecting means. The oxygen sensor 11 is connected to a power supply unit 12 that supplies power to the oxygen sensor 11 and a concentration value calculation unit 13 that receives a signal from the oxygen sensor 11 and calculates a value of the oxygen concentration.

上記構成の酸素濃縮器は、以下のように動作する。   The oxygen concentrator having the above-described configuration operates as follows.

上記コンプレッサ1によって、大気中の空気が吸入されて圧縮空気が生成され、この圧縮空気が上記第1および第2吸着筒2,3に供給される。この第1および第2吸着筒2,3内にはゼオライトが収容されており、このゼオライトが上記圧縮空気の窒素成分を吸着する。これにより、上記圧縮空気の酸素濃度が増大して、高酸素濃度の気体が生成される。   The compressor 1 sucks air in the atmosphere to generate compressed air, and the compressed air is supplied to the first and second adsorption cylinders 2 and 3. Zeolite is accommodated in the first and second adsorption cylinders 2 and 3, and this zeolite adsorbs the nitrogen component of the compressed air. Thereby, the oxygen concentration of the compressed air is increased, and a gas having a high oxygen concentration is generated.

上記第1および第2吸着筒2,3からの高酸素濃度の気体は、アキュムレータタンク4に蓄積され、このアキュムレータタンク4に蓄積された気体が、上記減圧弁で減圧され、上記流量調節器で所定の流量となって、上記酸素配管から供給先に供給される。   The high oxygen concentration gas from the first and second adsorption cylinders 2 and 3 is accumulated in the accumulator tank 4, and the gas accumulated in the accumulator tank 4 is depressurized by the pressure reducing valve, and the flow rate regulator It becomes a predetermined flow rate and is supplied from the oxygen pipe to the supply destination.

上記第1および第2吸着筒2,3内のゼオライトによる窒素の吸着が飽和すると、上記入り口弁21,31を閉鎖して圧縮空気の供給を停止し、上記排気弁22,32を開く。これにより、上記第1および第2吸着筒2,3内が減圧され、上記ゼオライトに吸着された窒素が脱着されて、この窒素が上記排気管を経て大気中に排気される。   When the adsorption of nitrogen by the zeolite in the first and second adsorption cylinders 2 and 3 is saturated, the inlet valves 21 and 31 are closed, the supply of compressed air is stopped, and the exhaust valves 22 and 32 are opened. Thereby, the inside of the first and second adsorption cylinders 2 and 3 is depressurized, nitrogen adsorbed on the zeolite is desorbed, and the nitrogen is exhausted into the atmosphere through the exhaust pipe.

上記酸素配管から供給先に供給される気体の酸素濃度を検出する上記酸素センサ11は、酸素イオン伝導体であるジルコニア固体電解質を用いて形成されたジルコニア式酸素センサである。このジルコニア式酸素センサの供給電力は、上記電力供給手段12によって制御される。   The oxygen sensor 11 that detects the oxygen concentration of the gas supplied from the oxygen pipe to the supply destination is a zirconia oxygen sensor formed using a zirconia solid electrolyte that is an oxygen ion conductor. The power supplied to the zirconia oxygen sensor is controlled by the power supply means 12.

図2は、上記電力供給手段12の構成を示すブロック図である。   FIG. 2 is a block diagram showing the configuration of the power supply means 12.

この電力供給手段12は、例えば一般電源からの交流電力を、所定の電圧値および電流値の直流電力に変換して出力する電源回路51と、この電源回路51から+5Vの電力を受ける酸素センサ電源用のコンデンサ52と、このコンデンサ52から+5Vの電力を受けて、所定の電圧波形の電力を生成する波形生成回路53を備える。   The power supply means 12 includes, for example, a power circuit 51 that converts AC power from a general power source into DC power having a predetermined voltage value and current value and outputs the power, and an oxygen sensor power source that receives + 5V power from the power circuit 51 Capacitor 52 and a waveform generation circuit 53 that receives + 5V power from the capacitor 52 and generates power of a predetermined voltage waveform.

上記波形生成回路53は、CPU(マイクロコンピュータ)55からのオン/オフ信号を受けて、このオン/オフ信号に応じた電圧波形を有する電力を出力する。上記CPU55は、上記電源回路51から電力が供給され、ROM(読み出し専用メモリ)56に格納された実行プログラムを読み出し、実行することにより、上記波形生成回路53への信号出力動作を行う。   The waveform generation circuit 53 receives an on / off signal from a CPU (microcomputer) 55 and outputs power having a voltage waveform corresponding to the on / off signal. The CPU 55 is supplied with power from the power supply circuit 51, reads out and executes an execution program stored in a ROM (read only memory) 56, thereby performing a signal output operation to the waveform generation circuit 53.

また、上記CPU55は、上記酸素センサ11から酸素濃度値を示す信号を受けて、この信号に基づいた演算により酸素濃度値を算出する。すなわち、上記CPU55は、濃度値算出手段としても機能する。また、上記CPU55は、上記コンプレッサ1のモータへの供給電力の制御や、上記入り口弁21,31および排気弁22,32の開閉の制御を行う。   The CPU 55 receives a signal indicating the oxygen concentration value from the oxygen sensor 11 and calculates an oxygen concentration value by calculation based on the signal. That is, the CPU 55 also functions as a density value calculation unit. The CPU 55 controls the power supplied to the motor of the compressor 1 and controls the opening and closing of the inlet valves 21 and 31 and the exhaust valves 22 and 32.

上記電力供給手段12は、以下のようにして動作する。   The power supply means 12 operates as follows.

まず、上記酸素センサ11が酸素濃度の検出を行わない非作動時に、上記CPU55は、オン/オフ信号を所定のタイミングで波形生成回路53に出力する。このCPU55からの信号を受けた波形生成回路53は、図3に示すように、オン信号を受けた時間に最大電圧値Vに立ち上がる一方、オフ信号を受けた時間に最小電圧値Vに立ち下がるパルス状の電力(以下、待機電力という)を出力する。上記オン信号を受けた際に達する最大電圧値Vは、上記酸素センサ11が検出動作を行う際に供給すべき電圧の値である。 First, when the oxygen sensor 11 does not detect the oxygen concentration, the CPU 55 outputs an on / off signal to the waveform generation circuit 53 at a predetermined timing. Waveform generating circuit 53 which receives the signal from the CPU55, as shown in FIG. 3, while rises to a maximum voltage value V a to a time which has received the on-signal, the minimum voltage value V 0 to the time that has received the OFF signal The falling pulsed power (hereinafter referred to as standby power) is output. The maximum voltage value V a reaches when receiving the ON signal is a value of voltage to be supplied at the time of performing the detection operation the oxygen sensor 11.

上記待機電力の電圧のパルスは、図3に示すように、上記オン信号を受けてからオフ信号を受けるまでのオン期間Tonと、オフ信号を受けてから次のオン信号を受けるまでのオフ期間Toffとからなる周期Tを有し、この周期Tに対するオン期間Tonの割合を百分率で示したオンデューティ比を有する。上記周期Tは、10〜1kHzの範囲が好ましいが、他の周期であってもよい。 As shown in FIG. 3, the standby power voltage pulse includes an on period T on from when the on signal is received until the off signal is received, and an off period from when the off signal is received until the next on signal is received. has a period T 0 consisting of a period T off, with the on-duty ratio showing the ratio of on-period T on for the period T 0 in percentage. The period T 0 is preferably in the range of 10 to 1 kHz, but may be other periods.

上記波形生成回路53から出力されたパルス状の待機電力は、上記酸素センサ11に入力される。この待機電力を受けた酸素センサ11は、ジルコニア固体電解質で形成された酸素検出部の温度が、上記パルスのデューティ比に応じた温度になる。これにより、上記酸素センサ11が待機状態になる。   The pulsed standby power output from the waveform generation circuit 53 is input to the oxygen sensor 11. In the oxygen sensor 11 that has received this standby power, the temperature of the oxygen detector formed of the zirconia solid electrolyte becomes a temperature corresponding to the duty ratio of the pulse. Thereby, the oxygen sensor 11 enters a standby state.

上記酸素センサ11が酸素濃度の検出を行う作動時には、上記CPU55は、上記波形生成回路53にオン信号を連続して出力し、この連続するオン信号を受けた上記波形生成回路53は、電圧Vの連続波形の電力(以下、駆動電力という)を出力する。この駆動電力を受けた酸素センサ11は、上記酸素検出部の温度が約400℃に上昇し、酸素濃度の検出が可能になる。 When the oxygen sensor 11 operates to detect the oxygen concentration, the CPU 55 continuously outputs an ON signal to the waveform generation circuit 53, and the waveform generation circuit 53 receiving the continuous ON signal receives the voltage V The power having a continuous waveform of a (hereinafter referred to as drive power) is output. The oxygen sensor 11 that has received this driving power raises the temperature of the oxygen detector to about 400 ° C., and can detect the oxygen concentration.

このように、上記酸素センサ11は、酸素濃度の検出を行わない非作動時に待機電力が供給されるので、この待機電力から駆動電力に切り替わってから比較的短い時間の後、酸素濃度の検出が可能になる。したがって、上記酸素センサ11の非作動時に、酸素濃縮器に異常等が生じた場合であっても、迅速に酸素濃度の検出を行うことができるので、上記異常に迅速に対応して、例えば上記コンプレッサ1の制御等を適切に行うことができる。   As described above, since the standby power is supplied to the oxygen sensor 11 when the oxygen concentration is not detected, the oxygen concentration is detected after a relatively short time after the standby power is switched to the driving power. It becomes possible. Therefore, even when an abnormality or the like occurs in the oxygen concentrator when the oxygen sensor 11 is not operating, the oxygen concentration can be detected quickly. Control of the compressor 1 etc. can be performed appropriately.

また、上記待機電力は、上記駆動電力の電圧と略同じ最大電圧Vを有するパルス状であるので、上記待機電力から駆動電力への切換を迅速に行うことができ、また、上記波形生成回路53は少ない電力損失で待機電力を生成することができる。なお、上記待機電力の最大電圧は、駆動電力の電圧と同じでなくてもよい。 Also, the standby power, since the pulse-like having substantially the same maximum voltage V a voltage of the driving power, it is possible to quickly perform the switching to the drive power from the standby power, also, the waveform generating circuit 53 can generate standby power with little power loss. Note that the maximum voltage of the standby power may not be the same as the voltage of the driving power.

上記酸素センサ11への供給電力が待機電力から駆動電力に切り替わってから検出動作が可能になるまでにかかる応答時間は、上記待機電力のオンデューティ比によって定まる。したがって、必要な応答時間に基づいて上記オンデューティ比を設定すればよい。上記オンデューティ比および周波数Tは、予め定められてROMに格納してもよく、また、酸素濃縮器の使用者の入力に基づいて設定されて、EEPROM等に格納するようにしてもよい。 The response time required from when the power supplied to the oxygen sensor 11 is switched from standby power to drive power until detection is possible is determined by the on-duty ratio of the standby power. Therefore, the on-duty ratio may be set based on the required response time. The on-duty ratio and the frequency T 0 may be determined in advance and stored in the ROM, or may be set based on an input from the user of the oxygen concentrator and stored in the EEPROM or the like.

また、上記酸素センサ11による酸素濃度の検出動作は、所定時間おきに間欠的に行うのが好ましい。これにより、上記ジルコニア式酸素センサの検出動作の累積時間が増加する速さを小さくできて、上記酸素センサ11の耐用期間の短縮を防止できる。   Moreover, it is preferable that the oxygen concentration detection operation by the oxygen sensor 11 is performed intermittently at predetermined intervals. Thereby, the speed at which the accumulated time of the detection operation of the zirconia oxygen sensor increases can be reduced, and the shortening of the service life of the oxygen sensor 11 can be prevented.

なお、上記間欠的に上記酸素センサ11を検出動作させる時間間隔は、予め定められた間隔でもよく、また、酸素濃縮器の運転状態に応じて変更してもよい。   Note that the time interval for intermittently detecting the oxygen sensor 11 may be a predetermined interval or may be changed according to the operating state of the oxygen concentrator.

また、上記酸素センサ11の非作動時の待機電力は、パルス状、すなわち矩形波状の変動電圧を有したが、この電圧の変動は矩形波状に限られず、例えば正弦波状、のこぎり波状および三角波状等のように、周期性のある波形であればどのような波形でもよい。   Further, the standby power when the oxygen sensor 11 is not in operation has a pulse-like, that is, a rectangular wave-like fluctuation voltage. As long as the waveform has periodicity, any waveform may be used.

また、上記実施形態において、上記酸素センサ11の非作動時に供給する待機電力として、パルス状電圧を有する電力を供給したが、上記待機電力は、上記酸素センサ11の作動時に供給する駆動電力が有する電圧よりも低い電圧を有する電力であってもよい。すなわち、上記酸素センサ11に、作動時には電圧Vを有する駆動電力を供給する一方、非作動時には電圧Vよりも低い電圧を有する待機電力を供給することにより、所定温度の待機状態にしておいて、酸素濃度の検出に必要な約400℃に迅速に昇温できるようにしてもよい。 Moreover, in the said embodiment, although the electric power which has a pulse voltage was supplied as standby electric power supplied when the said oxygen sensor 11 is non-operation, the said standby electric power has the drive electric power supplied when the said oxygen sensor 11 operates. Electric power having a voltage lower than the voltage may be used. That is, the oxygen sensor 11, while supplying a driving power having a voltage V a at the time of operation, by the inoperative supplying standby power having a voltage lower than the voltage V a, you in the standby state at a predetermined temperature In addition, the temperature may be rapidly raised to about 400 ° C. necessary for detecting the oxygen concentration.

本実施形態の酸素濃縮器は、呼吸器系疾患の治療等のような医療分野に限られず、例えば、運動による疲労の回復用途や、美容・健康の改善用途や、動物の治療用途等のあらゆる用途に使用される。   The oxygen concentrator of the present embodiment is not limited to the medical field such as the treatment of respiratory diseases, for example, all kinds of applications such as recovery from fatigue due to exercise, beauty / health improvement, animal treatment, etc. Used for applications.

本発明の実施形態の酸素濃縮器を示すブロック図である。It is a block diagram which shows the oxygen concentrator of embodiment of this invention. 電力供給手段を示すブロック図である。It is a block diagram which shows an electric power supply means. 波形生成回路が生成する待機電力の電圧波形を示す図である。It is a figure which shows the voltage waveform of the standby electric power which a waveform generation circuit produces | generates.

符号の説明Explanation of symbols

1 コンプレッサ
2 第1吸着筒
3 第2吸着筒
4 アキュムレータタンク
5 減圧弁
6 流量調整器
9 加圧弁
11 酸素センサ
12 電力供給手段
13 濃度値算出手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 1st adsorption | suction cylinder 3 2nd adsorption | suction cylinder 4 Accumulator tank 5 Pressure reducing valve 6 Flow regulator 9 Pressurization valve 11 Oxygen sensor 12 Electric power supply means 13 Concentration value calculation means

Claims (3)

大気中の空気に含まれる酸素を濃縮して、上記空気の酸素濃度よりも高い酸素濃度を有する高酸素濃度気体を生成する酸素濃縮手段(2,3)と、
上記酸素濃縮手段(2,3)が生成した高酸素濃度気体の酸素濃度を検出する酸素濃度検出手段(11)と、
上記酸素濃度検出手段(11)に、この酸素濃度検出手段(11)が酸素濃度の検出動作をする作動時に駆動電力を供給する一方、上記酸素濃度検出手段(11)が酸素濃度の検出動作をしない非作動時に上記駆動電力よりも小さい待機電力を供給する電力供給手段(12)と
を備えることを特徴とする酸素濃縮器。
Oxygen concentration means (2, 3) for concentrating oxygen contained in air in the atmosphere to generate a high oxygen concentration gas having an oxygen concentration higher than the oxygen concentration of the air;
Oxygen concentration detection means (11) for detecting the oxygen concentration of the high oxygen concentration gas generated by the oxygen concentration means (2, 3);
The oxygen concentration detection means (11) supplies driving power when the oxygen concentration detection means (11) operates to detect oxygen concentration, while the oxygen concentration detection means (11) performs oxygen concentration detection operation. An oxygen concentrator comprising: power supply means (12) for supplying standby power smaller than the driving power when not operating.
請求項1に記載の酸素濃縮器において、
上記待機電力は、上記駆動電力が有する電圧よりも低い電圧を有する電力であることを特徴とする酸素濃縮器。
The oxygen concentrator according to claim 1, wherein
The oxygen concentrator, wherein the standby power is a power having a voltage lower than a voltage of the driving power.
請求項1に記載の酸素濃縮器において、
上記待機電力は、上記駆動電力の電圧と略同じオン時の最大電圧(V)を有するパルス状の電力であることを特徴とする酸素濃縮器。
The oxygen concentrator according to claim 1, wherein
2. The oxygen concentrator according to claim 1, wherein the standby power is pulsed power having a maximum voltage (V a ) at the time of ON substantially the same as the voltage of the driving power.
JP2004170236A 2004-06-08 2004-06-08 Oxygen concentrator Expired - Fee Related JP4206970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170236A JP4206970B2 (en) 2004-06-08 2004-06-08 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170236A JP4206970B2 (en) 2004-06-08 2004-06-08 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2005350282A true JP2005350282A (en) 2005-12-22
JP4206970B2 JP4206970B2 (en) 2009-01-14

Family

ID=35585066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170236A Expired - Fee Related JP4206970B2 (en) 2004-06-08 2004-06-08 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP4206970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104327A1 (en) 2010-02-25 2011-09-01 Arne Sieber Diving rebreather comprising a mouthpiece
CN109297536A (en) * 2018-10-22 2019-02-01 中车四方车辆有限公司 A kind of high original coach oxygen generation system detection device and detection method
CN110095297A (en) * 2018-01-30 2019-08-06 沈阳新松医疗科技股份有限公司 The fault diagnosis method and system of oxygen machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104327A1 (en) 2010-02-25 2011-09-01 Arne Sieber Diving rebreather comprising a mouthpiece
AT509551B1 (en) * 2010-02-25 2012-01-15 Arne Dipl Ing Dr Sieber CIRCULAR DIVING UNIT WITH A MOUTHPIECE
CN110095297A (en) * 2018-01-30 2019-08-06 沈阳新松医疗科技股份有限公司 The fault diagnosis method and system of oxygen machine
CN109297536A (en) * 2018-10-22 2019-02-01 中车四方车辆有限公司 A kind of high original coach oxygen generation system detection device and detection method

Also Published As

Publication number Publication date
JP4206970B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US5893944A (en) Portable PSA oxygen generator
US7459008B2 (en) Method and system of operating a trans-fill device
US7556670B2 (en) Method and system of coordinating an intensifier and sieve beds
JP4404583B2 (en) Oxygen concentrator
JP4206970B2 (en) Oxygen concentrator
KR102060980B1 (en) Oxygen providing apparatus
JP2007170216A (en) Air compressor
JP2007089684A (en) Oxygen concentrator
JP2005245825A (en) Respirable gas supply apparatus
JP4798016B2 (en) Oxygen concentrator
JP2000354630A (en) Oxygen concentration apparatus
JP2008295594A (en) Oxygen concentrator
JP2008277315A5 (en)
KR200190287Y1 (en) An oxygen concentrator for a single tower
JP4358724B2 (en) Oxygen concentrator
JP5468972B2 (en) Oxygen concentrator
JP2000060973A (en) Operation control equipment for oxygen concentrator
JP2019080800A (en) Oxygen concentrator
JP2018023802A (en) Backup power supply device and oxygen concentrator equipped therewith
JP2001090860A (en) Equalizing valve for oxygen generating device
JP4457029B2 (en) Oxygen concentrator
JP2006087684A (en) Gas supplier for respiration
JP2011010990A (en) Oxygen concentrator
JP4089652B2 (en) Medical equipment
JP6100621B2 (en) Oxygen concentrator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R151 Written notification of patent or utility model registration

Ref document number: 4206970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees