JP2005349591A - Polystyrenic biaxially stretched laminated sheet, molded product and container - Google Patents

Polystyrenic biaxially stretched laminated sheet, molded product and container Download PDF

Info

Publication number
JP2005349591A
JP2005349591A JP2004169917A JP2004169917A JP2005349591A JP 2005349591 A JP2005349591 A JP 2005349591A JP 2004169917 A JP2004169917 A JP 2004169917A JP 2004169917 A JP2004169917 A JP 2004169917A JP 2005349591 A JP2005349591 A JP 2005349591A
Authority
JP
Japan
Prior art keywords
copolymer
monomer unit
laminated sheet
biaxially stretched
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004169917A
Other languages
Japanese (ja)
Other versions
JP4053022B2 (en
Inventor
Masafumi Hiura
雅文 日浦
Hideaki Nishimura
英明 西村
Masami Asanuma
正実 浅沼
Fumi Ogata
文 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004169917A priority Critical patent/JP4053022B2/en
Publication of JP2005349591A publication Critical patent/JP2005349591A/en
Application granted granted Critical
Publication of JP4053022B2 publication Critical patent/JP4053022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polystyrenic biaxially stretched laminated sheet excellent in film forming properties, transparency, oil resistance, heat resistance and appearance and well-balanced with strength, and a molded product. <P>SOLUTION: The polystyrenic biaxially stretched laminated sheet has a base material layer and the surface layer provided thereon. The resin composition of the surface layer is composed of a copolymer (A1), which comprises a styrenic monomer unit and a (meth)acrylic acid ester type monomer unit, and a copolymer (A2), which comprises the styrenic monomer unit and a carboxylic acid monomer unit and the base material layer comprises a copolymer which is composed of the styrenic monomer unit and the carboxylic acid monomer unit. The mass composition ratio other than the styrenic monomer unit in A1 and the mass composition ratio other than the styrenic monomer unit in A2 satisfy a specific condition and, in the Vicat softening point VA of the resin composition of the surface layer and the Vicat softening point VB of the copolymer of the base material layer, VB-VA is below 20°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐油性、耐熱性、外観に優れ、かつ強度とバランスの取れたポリスチレン系二軸延伸積層シートおよび成形体に関するものであり、特に食品包装用途として有用なシート、成形品および容器に関するものである。 TECHNICAL FIELD The present invention relates to a polystyrene-based biaxially stretched laminated sheet and a molded article that are excellent in oil resistance, heat resistance, appearance, and balance in strength, and particularly relates to a sheet, molded article, and container useful for food packaging applications. Is.

ポリスチレンの二軸延伸シートは、透明性、剛性があり、比較的安価であるため、特に食品包装用の軽量容器として幅広く使用されている。しかしながら、これらの容器は耐熱性と耐油性に劣ることから、近年急速に普及した電子レンジ加熱用途としては使用されていない。これを解決する手段として、スチレン系単量体単位とアクリル酸、メタクリル酸、及び無水マレイン酸のうちの少なくとも一種の単量体からなる共重合体を用いた二軸延伸スチレン系耐熱シートが提案されているが(例えば、特許文献1参照)、コンビニエンスストア等で成形容器中のカレーや焼肉弁当などの食品に接触した状態で電子レンジで加熱した時に、接触部分が白化、変形する問題が生じ、耐熱性と耐油性において市場での要求を満足するレベルには達していない。 Polystyrene biaxially stretched sheets are transparent, rigid and relatively inexpensive, and are therefore widely used as lightweight containers for food packaging. However, since these containers are inferior in heat resistance and oil resistance, they have not been used as a microwave heating application that has rapidly spread in recent years. As a means to solve this, a biaxially stretched styrene heat-resistant sheet using a copolymer comprising a styrene monomer unit and at least one monomer of acrylic acid, methacrylic acid, and maleic anhydride is proposed. However, when heated in a microwave oven in contact with food such as curry or yakiniku lunch in a molded container at a convenience store etc., there is a problem that the contact portion is whitened and deformed. However, it does not reach the level that satisfies the demands of the market in heat resistance and oil resistance.

特公平3−67608号公報Japanese Examined Patent Publication No. 3-67608

本発明はこのような事情に鑑みてなされたものであり、製膜性、透明性、耐油性、耐熱性、外観に優れ、かつ強度とバランスの取れたポリスチレン系二軸延伸積層シートおよび成形体を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and has a film-forming property, transparency, oil resistance, heat resistance, excellent appearance, and a polystyrene-based biaxially stretched laminated sheet and molded body that are well balanced in strength. Is intended to provide.

本発明者らは、ポリスチレン系二軸延伸シートにおいて、前記課題を解決すべく鋭意検討した結果、積層構成が特定の成分からなることを特徴とする二軸延伸積層シート、及びその成形品を見出し、本発明を完成するに至った。即ち、本発明は、以下のとおりである。
1)基材層とその少なくとも片面に表層を有し、表層の樹脂組成物(A)がスチレン系単量体単位及び(メタ)アクリル酸エステル系単量体単位からなる共重合体(A1)と、スチレン系単量体単位及びアクリル酸、メタクリル酸、無水マレイン酸のうちの少なくとも一種の単量体単位とからなる共重合体(A2)からなり、基材層がスチレン系単量体単位とアクリル酸、メタクリル酸、無水マレイン酸のうちの少なくとも一種の単量体単位からなる共重合体(B)からなり、かつA1中のスチレン系単量体単位以外の質量組成比(RA1)とA2中のスチレン系単量体単位以外の質量組成比(RA2)が下記の数4式の条件を満足し、更に表層の樹脂組成物(A)のビカット軟化点をVA[℃]、基材層の共重合体(B)のビカット軟化点をVB[℃]とした場合、VB−VAが20℃未満であることを特徴とするポリスチレン系二軸延伸積層シート。

Figure 2005349591
2)下記の数5式の条件を満足することを特徴とする1)記載のポリスチレン系二軸延伸積層シート。
Figure 2005349591
3)上記1)または2)記載のポリスチレン系二軸延伸積層シートにおいて、基材層を構成する共重合体(B)中のスチレン系単量体単位以外の成分が占める割合が3.5〜20質量%であることを特徴とするポリスチレン系二軸延伸積層シート。
4)上記1)〜3)記載のポリスチレン系二軸延伸積層シートにおいて、その縦方向の配向緩和応力をσM、横方向の配向緩和応力をσTとした場合、下記の数6式の条件を満足することを特徴とするポリスチレン系二軸延伸積層シート。
Figure 2005349591
5)上記1)〜4)記載のポリスチレン系二軸延伸積層シートにおいて、総シート厚さに占める表層厚さの5%以上25%以下であることを特徴とするポリスチレン系二軸延伸積層シート。
6)上記1)〜5)に記載のポリスチレン系二軸延伸積層シートを熱成形してなる成形品およびその食品包装容器。 As a result of intensive studies to solve the above-mentioned problems in the polystyrene-based biaxially stretched sheet, the present inventors have found a biaxially stretched laminated sheet characterized in that the laminated structure is composed of specific components, and a molded product thereof. The present invention has been completed. That is, the present invention is as follows.
1) Copolymer (A1) having a base material layer and a surface layer on at least one surface thereof, and the resin composition (A) of the surface layer comprising a styrene monomer unit and a (meth) acrylate monomer unit And a copolymer (A2) consisting of a styrene monomer unit and at least one monomer unit of acrylic acid, methacrylic acid, and maleic anhydride, and the base material layer is a styrene monomer unit And a copolymer (B) comprising at least one monomer unit of acrylic acid, methacrylic acid, and maleic anhydride, and a mass composition ratio (RA1) other than the styrenic monomer unit in A1 The mass composition ratio (RA2) other than the styrene monomer unit in A2 satisfies the condition of the following equation (4), and the Vicat softening point of the surface resin composition (A) is VA [° C.], the base material Vicat softening point of layer copolymer (B) If the B [° C.], polystyrene biaxially oriented laminated sheet characterized by VB-VA is less than 20 ° C..

Figure 2005349591
2) The polystyrene-based biaxially stretched laminated sheet according to 1), which satisfies the following formula (5).
Figure 2005349591
3) In the polystyrene-based biaxially stretched laminated sheet described in 1) or 2) above, the proportion of components other than the styrene-based monomer units in the copolymer (B) constituting the substrate layer is 3.5 to A polystyrene-based biaxially stretched laminated sheet characterized by being 20% by mass.
4) In the polystyrene-based biaxially stretched laminated sheet described in 1) to 3) above, when the longitudinal orientation relaxation stress is σM and the lateral orientation relaxation stress is σT, the following equation (6) is satisfied. A polystyrene-based biaxially stretched laminated sheet characterized by:
Figure 2005349591
5) The polystyrene-based biaxially stretched laminated sheet described in 1) to 4) above, wherein the polystyrene-based biaxially stretched laminated sheet is 5% or more and 25% or less of the surface layer thickness in the total sheet thickness.
6) A molded product obtained by thermoforming the polystyrene-based biaxially stretched laminated sheet described in 1) to 5) above and a food packaging container thereof.

本発明は特定の樹脂の組み合わせにより、耐油性、耐熱性と優れた外観を有し、かつ強度とのバランスの取れたスチレン系積層体シート、その製造方法及び容器を提供するものであり、得られた容器は特に食品包装用の軽量容器などの用途に好適に用いられるものである。 The present invention provides a styrene-based laminate sheet having a good balance between oil resistance, heat resistance, and excellent strength by combining a specific resin, a method for producing the same, and a container. The obtained container is particularly suitable for use as a lightweight container for food packaging.

以下に本発明を詳細に説明する。
本発明の樹脂組成物(A)はスチレン系単量体単位及び(メタ)アクリル酸エステル系単量体単位からなる共重合体(A1)とスチレン系単量体単位及びアクリル酸、メタクリル酸、無水マレイン酸のうちの少なくとも一種の単量体単位からなる共重合体(A2)とからなる。(A1)成分を構成するスチレン系単量体とは、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、エチルスチレン、p-t-ブチルスチレン、クロロスチレン、ブロモスチレン等をあげることができるが、好ましくはスチレン、α-メチルスチレン、特に好ましくはスチレンである。これらスチレン系単量体は、単独でもよいが二種類以上を併用してもよい。
The present invention is described in detail below.
The resin composition (A) of the present invention comprises a copolymer (A1) comprising a styrene monomer unit and a (meth) acrylate monomer unit, a styrene monomer unit, acrylic acid, methacrylic acid, And a copolymer (A2) comprising at least one monomer unit of maleic anhydride. Examples of the styrene monomer constituting the component (A1) include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, p-t-butylstyrene, chlorostyrene, bromostyrene, and the like. However, styrene, α-methylstyrene, and particularly preferably styrene are preferable. These styrenic monomers may be used alone or in combination of two or more.

本発明で使用する(メタ)アクリル酸エステル系単量体単位は、メチルメタクリレート、エチルメタクリレート、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、オクチルアクリレート等があげられるが、好ましくは、メチルメタクリレートである。これら(メタ)アクリル酸エステル系単量体は、単独で用いてもよく2種類以上を併用してもよい。 Examples of the (meth) acrylic acid ester monomer unit used in the present invention include methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, and the like. Among them, methyl methacrylate is preferable. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.

樹脂組成物(A)を構成する共重合体(A1)中のスチレン系単量体単位以外の質量組成比(RA1)と共重合体(A2)中のスチレン系単量体単位以外の質量組成比(RA2)が下記の数1式の条件を満足することが必須である。ここでいう質量組成比とは、共重合体中に含まれるスチレン系単量体単位以外の質量を質量%で表示したものである。下記数1式の範囲を外れると、共重合体(A1)と共重合体(A2)の相溶性が劣り、透明性が低下し、外観を損ねてしまう。本発明においては、下記数7式を満たせば、質量組成比RA1とRA2は特に限定されない。 Mass composition ratio (RA1) other than styrene monomer units in the copolymer (A1) constituting the resin composition (A) and mass composition other than styrene monomer units in the copolymer (A2) It is essential that the ratio (RA2) satisfies the condition of the following equation (1). The mass composition ratio referred to here is the mass expressed in mass% other than the styrene monomer units contained in the copolymer. If it is out of the range of the following formula 1, the compatibility of the copolymer (A1) and the copolymer (A2) is poor, the transparency is lowered, and the appearance is impaired. In the present invention, the mass composition ratios RA1 and RA2 are not particularly limited as long as the following Expression 7 is satisfied.

Figure 2005349591
Figure 2005349591

表層の樹脂組成物(A)のビカット軟化点をVA[℃]、基材層の共重合体(B)のビカット軟化点をVB[℃]とした場合、VB−VAが20℃未満であることが必要であるが、好ましくは3≦VB−VA≦15、更に好ましい範囲は、6≦VB−VA≦9である。樹脂組成物(A)を構成する(A1)/(A2)の質量比は、特に限定されないが、10/90〜90/10が好ましい。ここでビカット軟化点とはJIS−K7206に準拠して測定した樹脂の軟化温度をいう。本発明の積層シートの耐油性発現メカニズムは、ビカット軟化点の高い基材層の樹脂に適した延伸温度で積層シートを延伸することにより、表層に歪を生じさせないところに起因する。すなわち基材層は配向させることによりシートとしての強度を発現し、表層は歪が生じないため耐油性に寄与する。従って、0≦VB−VA<3であるとVBとVAの差が小さすぎ、表層にも歪が生じてしまう場合があり十分な耐油性が得られないことがある。一方、VB−VAが20以上であれば、耐油性は発現するが、基材層に対して表層の粘度が低くなるため、特に製造工程の縦延伸工程でトラブルを生じることがある。具体的には、基材層の適正温度で製膜すると、表層がロールに粘着することで製膜に困難が生じたり、シートに縞模様が形成され外観が柔らかすぎてロールへ密着してしまいシートの外観が劣る。一方、表層の適正温度で製膜すると、基材層が固すぎてシートが破断してしまう。またシートがえられたとしても、それを熱盤成形で成形する際、熱盤に融着したり、レインドロップと呼ばれる水滴上の凸凹不良が発生しやすくなる。なお、本発明では、表層樹脂組成と基材層に共重合組成を調整することで、VB−VAが20未満であり、好ましい範囲の3≦VB−VA≦15を満たすことができる。 When the Vicat softening point of the resin composition (A) of the surface layer is VA [° C.] and the Vicat softening point of the copolymer (B) of the base material layer is VB [° C.], VB-VA is less than 20 ° C. However, preferably 3 ≦ VB−VA ≦ 15, more preferably 6 ≦ VB−VA ≦ 9. The mass ratio of (A1) / (A2) constituting the resin composition (A) is not particularly limited, but is preferably 10/90 to 90/10. Here, the Vicat softening point refers to the softening temperature of the resin measured according to JIS-K7206. The mechanism for expressing the oil resistance of the laminated sheet of the present invention is due to the fact that the laminated sheet is stretched at a stretching temperature suitable for the resin of the base material layer having a high Vicat softening point, so that the surface layer is not distorted. That is, the base material layer is oriented to express the strength as a sheet, and the surface layer contributes to oil resistance because no distortion occurs. Therefore, if 0 ≦ VB−VA <3, the difference between VB and VA is too small, and the surface layer may be distorted, and sufficient oil resistance may not be obtained. On the other hand, if VB-VA is 20 or more, oil resistance is exhibited, but the viscosity of the surface layer becomes lower than that of the base material layer, so that trouble may be caused particularly in the longitudinal stretching step of the production process. Specifically, when the film is formed at an appropriate temperature of the base material layer, the surface layer adheres to the roll, resulting in difficulty in film formation, or a striped pattern is formed on the sheet so that the appearance is too soft and adheres to the roll. The appearance of the sheet is inferior. On the other hand, if the film is formed at an appropriate temperature of the surface layer, the base material layer is too hard and the sheet breaks. Even if a sheet is obtained, when it is formed by hot platen molding, it is likely to be fused to the hot platen, or unevenness on the water droplets called rain drop is likely to occur. In addition, in this invention, VB-VA is less than 20 by adjusting a copolymer composition to a surface layer resin composition and a base material layer, and can satisfy 3 <= VB-VA <= 15 of a preferable range.

基材層を構成する共重合体(B)中のスチレン系単量体単位以外の成分が占める割合は3.5〜20質量%であり、好ましい範囲は6.0〜15質量%、より好ましい範囲は、8.0〜12質量%である。この値が低いと、市場で要求される耐熱レベルを満足することができず、また高くなると、押出加工性が著しく低下するとともに、アクリル酸、メタクリル酸は、押出機内で脱水反応を起こし、ゲルが多量に発生し、得られたシートの外観を悪化させてしまう。 The proportion of components other than the styrene monomer units in the copolymer (B) constituting the base material layer is 3.5 to 20% by mass, and a preferable range is 6.0 to 15% by mass, and more preferable. A range is 8.0-12 mass%. If this value is low, the heat resistance level required in the market cannot be satisfied, and if it is high, the extrusion processability is significantly reduced, and acrylic acid and methacrylic acid cause a dehydration reaction in the extruder, causing gelation. Is generated in a large amount, deteriorating the appearance of the obtained sheet.

ポリスチレン系二軸延伸積層シートにおいて、その縦方向の配向緩和応力をσM、横方向の配向緩和応力をσTとした場合、|σM−σT|≦0.2[MPa]を満たさなければならず、好ましい範囲は、0≦|σM−σT|≦0.1[MPa]、より好ましい範囲は、0≦|σM−σT|≦0.02[MPa]である。ここでいう配向緩和応力とは、シート押出方向(縦方向)あるいはそれに垂直な方向(横方向)にそってシートより切り出した試験片を用いて測定するものであり、ASTMD1504に準じて測定できる。縦方向と横方向の配向緩和応力の差が大きいと、シートの方向性が強く存在するため一方向の裂けに対する強度が弱くなる傾向が見られる。これはクラックが強度が低いつまり配向の低い方向の集中してして成長しやすいため、破断しやすくなるからと考える。 In the polystyrene-based biaxially stretched laminated sheet, when the orientation relaxation stress in the longitudinal direction is σM and the orientation relaxation stress in the transverse direction is σT, | σM−σT | ≦ 0.2 [MPa] must be satisfied, A preferable range is 0 ≦ | σM−σT | ≦ 0.1 [MPa], and a more preferable range is 0 ≦ | σM−σT | ≦ 0.02 [MPa]. The orientation relaxation stress here is measured using a test piece cut out from the sheet along the sheet extrusion direction (longitudinal direction) or the direction perpendicular to it (lateral direction), and can be measured according to ASTM D1504. When the difference between the orientation relaxation stresses in the vertical direction and the horizontal direction is large, there is a tendency that the strength against tearing in one direction tends to be weak because the directionality of the sheet exists strongly. This is thought to be because cracks tend to break up because they are low in strength, that is, concentrated in the direction of low orientation and grow easily.

総シート厚さに占める表層厚さは、5%以上25%以下が望ましく、好ましくは8%以上20%以下、より好ましくは10%以上15%以下である。表層厚さが5%より少ないと、樹脂界面に流れの乱れが発生しシート外観が損なわれる場合がある。これは金型内の表層樹脂の流路が狭すぎると樹脂の流れがスムースでなくなる為に、基材層樹脂との合流時に界面に乱れが生じてしまう為と考えられる。表層厚さの割合が25%を超えると、耐油性を発現する表層はその目的から低歪で配向がかかっていない為に強度面では弱く、さらに表層厚さの割合が25%を超えると透明性が低下することがある。以上より鋭意検討した結果、総シート厚さに占める表層厚さの割合は5%以上25%以下が望ましい。層比の確認方法としては、例えば表層のみを着色し、製膜後の積層シートをミクロトーム等の鋭利な刃物で切削後、その断面を光学式顕微鏡で観察し測定する方法がある。簡易的には基材層用押出機と表層用押出機の吐出量の比をもって層比に置き換えても良い。 The surface layer thickness in the total sheet thickness is desirably 5% or more and 25% or less, preferably 8% or more and 20% or less, and more preferably 10% or more and 15% or less. If the surface layer thickness is less than 5%, flow disturbance may occur at the resin interface, and the sheet appearance may be impaired. This is presumably because if the flow path of the surface layer resin in the mold is too narrow, the flow of the resin is not smooth, so that the interface is disturbed at the time of joining with the base layer resin. If the ratio of the surface layer thickness exceeds 25%, the surface layer that develops oil resistance is weak in terms of strength because of its low strain and no orientation, and transparent if the ratio of the surface layer thickness exceeds 25%. May decrease. As a result of intensive studies as described above, the ratio of the surface layer thickness to the total sheet thickness is preferably 5% or more and 25% or less. As a method for checking the layer ratio, for example, there is a method in which only the surface layer is colored, the laminated sheet after film formation is cut with a sharp blade such as a microtome, and the cross section is observed and measured with an optical microscope. For simplicity, the ratio of the discharge amounts of the base layer extruder and the surface layer extruder may be replaced with the layer ratio.

ポリスチレン系二軸延伸積層シートの製造方法については特に制限はなく、従来の二軸延伸積層シートの製造において慣用されている方法を用いる。例えば押出機により樹脂を溶融混練して、マルチマニホールドダイやフィードブロックを用いた多層押出法により一括して積層シートを作製し、続いて、テンター方式等の延伸法により得られたシートを縦方向及び横方向に延伸(二軸延伸)し、冷却する。この際、温度調節の方法としては、縦延伸時では、ロールの内部に水や油の冷媒を循環させ熱交換により冷却する方法がある。温度センサーが実温度を感知することにより、設定温度との差によって電磁弁等でバルブが自動的に開閉するものを使用すると良い。また横延伸時では、テンター内にヒーターで熱せられた熱風を吹き付けることによってその雰囲気温度を上昇させ、熱電対等の温度センサーの実温度を感知することにより、設定温度との差によってそのヒーターをオンオフさせるものが一般的である。縦延伸及び横延伸時における設定温度は基材層樹脂が配向により強度を発現できる温度、具体的には基材層樹脂のビカット軟化点VBより5〜10℃高い温度に設定することが好ましい。同時にこの温度は表層樹脂にとっては歪のかかりにくい温度となり、耐油性も発現する。また配向緩和応力を制御する方法としては、延伸設定温度やラインスピードを変化させる方法等がある。 There is no restriction | limiting in particular about the manufacturing method of a polystyrene type biaxially stretched laminated sheet, The method currently used in manufacture of the conventional biaxially stretched laminated sheet is used. For example, a resin is melt-kneaded by an extruder, and a laminated sheet is produced by a multi-layer extrusion method using a multi-manifold die or a feed block, and then a sheet obtained by a stretching method such as a tenter method is longitudinally oriented. Then, the film is stretched in the transverse direction (biaxial stretching) and cooled. At this time, as a method for adjusting the temperature, there is a method in which water or oil refrigerant is circulated inside the roll and cooled by heat exchange during longitudinal stretching. It is preferable to use a sensor that automatically opens and closes a solenoid valve or the like depending on the difference from the set temperature when the temperature sensor senses the actual temperature. During transverse stretching, hot air heated by a heater is blown into the tenter to raise the ambient temperature, and by sensing the actual temperature of a temperature sensor such as a thermocouple, the heater is turned on / off depending on the difference from the set temperature. It is common to let them. The set temperature at the time of longitudinal stretching and transverse stretching is preferably set to a temperature at which the base layer resin can develop strength by orientation, specifically, a temperature 5-10 ° C. higher than the Vicat softening point VB of the base layer resin. At the same time, this temperature is a temperature at which it is difficult for the surface layer resin to be distorted, and oil resistance is also exhibited. Moreover, as a method for controlling the orientation relaxation stress, there is a method of changing the stretching set temperature or the line speed.

ポリスチレン系二軸延伸積層シートは、シート化の為に溶融混練時あるいは原料製造時に、本発明の目的を損なわない範囲で必要に応じて、酸化防止剤、滑剤、離型剤、可塑剤、顔料、染料、発泡剤、発泡核剤、無機フィラー、帯電防止剤等公知の添加剤を含有することができる。 Polystyrene-based biaxially stretched laminated sheets can be used for antioxidants, lubricants, mold release agents, plasticizers, and pigments as necessary, so long as they do not impair the purpose of the present invention during melt kneading or raw material production. , Dyes, foaming agents, foam nucleating agents, inorganic fillers, antistatic agents, and other known additives can be contained.

ポリスチレン系二軸延伸積層シートから成形品を得る方法としては、市販の一般的な熱盤圧空成形機を使用して得ることができる。使用する成形機は、熱盤にシートが圧接している時間や圧空による成形する時間、シート圧接から圧空成形に切り替わるタイムラグ、成形サイクル等が設定できるタイプのものが望ましい、これらの方法は例えば非特許文献1に記載されている。 As a method for obtaining a molded product from a polystyrene-based biaxially stretched laminated sheet, it can be obtained by using a commercially available general hot platen pressure forming machine. The molding machine to be used is preferably of a type that can set the time during which the sheet is pressed against the hot platen, the time for forming with pressure air, the time lag for switching from sheet pressure welding to pressure forming, the molding cycle, etc. It is described in Patent Document 1.

高分子学会編「プラスチック加工技術ハンドブック」日刊工業新聞社(1995)The Society of Polymer Science “Plastic Processing Technology Handbook”, Nikkan Kogyo Shimbun (1995)

以下に実施例と比較例を用いて、本発明の実施の形態をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

まず、実施例及び比較例において使用した樹脂組成物1〜16の製造方法を示す。
樹脂組成物1〜16
下記の方法から得られた共重合体(A1)−1〜5と共重合体(A2)−1〜6から樹脂組成物(A)−1〜5を表1に示した配合割合にてヘンシェルミキサーで混合した後、二軸押出機(東芝機械社製TEM35B、シリンダー温度230℃)を用いて溶融混練してペレットを作製し樹脂組成物1〜16を得た。樹脂組成物1〜16のビカット軟化点を表1に記載した。
First, the manufacturing method of the resin compositions 1-16 used in the Example and the comparative example is shown.
Resin compositions 1-16
Henschel in the blending ratio shown in Table 1 from resin (A) -1 to copolymer composition (A1) -1-5 and copolymer (A2) -1-6 obtained from the following method After mixing with a mixer, pellets were obtained by melt-kneading using a twin-screw extruder (TEM 35B manufactured by Toshiba Machine Co., Ltd., cylinder temperature 230 ° C.) to obtain resin compositions 1-16. The Vicat softening points of the resin compositions 1 to 16 are shown in Table 1.

(1)共重合体A1の製造
共重合体(A1−1)
内容積200リットルの重合缶に、純水70.4kg、第三リン酸カルシウム300gを加え、攪拌した後、スチレン76.0kg、メチルメタクリレート4.0kg、ベンゾイルパーオキサイド267.2gを加え、密封して100℃で6時間反応させた。これを冷却した後、中和、脱水、乾燥した。これを熱分解ガスクロマトグラフィーを用いて分析した結果、メチルメタクリレート質量組成比(RA1)は5%であった。
(1) Production of copolymer A1 Copolymer (A1-1)
After adding 70.4 kg of pure water and 300 g of tricalcium phosphate to a polymerization vessel having an internal volume of 200 liters and stirring, 76.0 kg of styrene, 4.0 kg of methyl methacrylate, and 267.2 g of benzoyl peroxide are added and sealed. The reaction was carried out for 6 hours at ° C. After cooling, it was neutralized, dehydrated and dried. As a result of analysis using pyrolysis gas chromatography, the methyl methacrylate mass composition ratio (RA1) was 5%.

共重合体(A1−2)Copolymer (A1-2)
スチレン64.0kg、メチレメタクリレート16.0kgとした以外は、上記共重合体(A1)−1と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メチルメタクリレート質量組成比(RA1)は20%であった。  A copolymer was obtained in the same manner as in the copolymer (A1) -1, except that 64.0 kg of styrene and 16.0 kg of methyl methacrylate were used. As a result of carrying out the same analysis as above, the methyl methacrylate mass composition ratio (RA1) was 20%.

共重合体(A1−3)Copolymer (A1-3)
スチレン44.0kg、メチレメタクリレート36.0kgとした以外は、上記共重合体(A1)−1と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メチルメタクリレート質量組成比(RA1)は45%であった。  A copolymer was obtained in the same manner as in the above copolymer (A1) -1, except that 44.0 kg of styrene and 36.0 kg of methyl methacrylate were used. As a result of conducting the same analysis as described above, the methyl methacrylate mass composition ratio (RA1) was 45%.

共重合体(A1−4)Copolymer (A1-4)
スチレン24.0kg、メチレメタクリレート56.0kgとした以外は、上記共重合体(A1)−1と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メチルメタクリレート質量組成比(RA1)は70%であった。  A copolymer was obtained in the same manner as in the copolymer (A1) -1, except that styrene was 24.0 kg and methyl methacrylate was 56.0 kg. As a result of carrying out the same analysis as above, the methyl methacrylate mass composition ratio (RA1) was 70%.

共重合体(A1−5)
スチレン8.0kg、メチレメタクリレート72.0kgとした以外は、上記共重合体(A1)−1と同様の操作をして共重合体を得た。これをを上記同様の分析を実施した結果、メチルメタクリレート質量組成比(RA1)は90%であった。
(2)共重合体(A2)の製造
Copolymer (A1-5)
A copolymer was obtained in the same manner as for the copolymer (A1) -1, except that 8.0 kg of styrene and 72.0 kg of methyl methacrylate were used. As a result of conducting the same analysis as described above, the methyl methacrylate mass composition ratio (RA1) was 90%.
(2) Production of copolymer (A2)

共重合体(A2−1)
内容積210リットルの重合缶に、純水90.0kg、ポリビニルアルコール100gを加え、攪拌した後、スチレン49.0kg、メタクリル酸1.0kg、重合開始材としてt−ブチルパーオキシ−2−エチルヘキサノエート55g、エチル−3、3−ジ(t−ブチルパーオキシ)ブチレート10g、連鎖移動剤としてα−メチルスチレンダイマー45gを仕込み、温度112℃の昇温して6時間、その後温度132℃で4.5時間保持し重合を行なった。得られたビーズを洗浄、脱水、乾燥した後、押出してペレット形状の樹脂を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、メタクリル酸質量組成比(RA2)は2%であった。
Copolymer (A2-1)
After adding 90.0 kg of pure water and 100 g of polyvinyl alcohol to a polymerization can having an internal volume of 210 liters and stirring, 49.0 kg of styrene, 1.0 kg of methacrylic acid, and t-butylperoxy-2-ethylhexa as a polymerization initiator. 55 g of noate, 10 g of ethyl-3,3-di (t-butylperoxy) butyrate and 45 g of α-methylstyrene dimer as a chain transfer agent were heated to 112 ° C. for 6 hours and then at 132 ° C. The polymerization was carried out while maintaining for 4.5 hours. The obtained beads were washed, dehydrated and dried, and then extruded to obtain a pellet-shaped resin. As a result of analyzing this using pyrolysis gas chromatography, the methacrylic acid mass composition ratio (RA2) was 2%.

共重合体(A2−2)
スチレンの仕込み量を47kg、メタクリル酸の仕込み量を3kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は6%であった。
Copolymer (A2-2)
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 47 kg and the amount of methacrylic acid charged was 3 kg. As a result of conducting the same analysis as above, the methacrylic acid mass composition ratio (RA2) was 6%.

共重合体(A2−3)
スチレンの仕込み量を45kg、メタクリル酸の仕込み量を5kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は10%であった。
Copolymer (A2-3)
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 45 kg and the amount of methacrylic acid was 5 kg. As a result of conducting the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 10%.

共重合体(A2−4)
スチレンの仕込み量を42.5kg、メタクリル酸の仕込み量を7.5kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は15%であった。
Copolymer (A2-4)
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 42.5 kg and the amount of methacrylic acid charged was 7.5 kg. As a result of conducting the same analysis as above, the methacrylic acid mass composition ratio (RA2) was 15%.

共重合体(A2−5)
スチレンの仕込み量を40.0kg、メタクリル酸の仕込み量を10.0kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は20%であった。
Copolymer (A2-5)
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 40.0 kg and the amount of methacrylic acid charged was 10.0 kg. As a result of carrying out the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 20%.

共重合体(A2−6)
スチレンの仕込み量を37.5kg、メタクリル酸の仕込み量を12.5kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は25%であった。
Copolymer (A2-6)
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 37.5 kg and the amount of methacrylic acid was 12.5 kg. As a result of conducting the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 25%.

Figure 2005349591
Figure 2005349591

次に実施例及び比較例において使用した共重合体(B)−1〜5の製造方法を示す。   Next, the manufacturing method of copolymer (B) -1-5 used in the Example and the comparative example is shown.

共重合体(B)−1
スチレンの仕込み量を48.5kg、メタクリル酸の仕込み量を1.5kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は3%であった。
Copolymer (B) -1
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 48.5 kg and the amount of methacrylic acid was 1.5 kg. As a result of conducting the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 3%.

共重合体(B)−2
スチレンの仕込み量を48.25kg、メタクリル酸の仕込み量を1.75kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は3.5%であった。
Copolymer (B) -2
A copolymer was obtained in the same manner as for the copolymer (A2-1) except that the amount of styrene charged was 48.25 kg and that of methacrylic acid was 1.75 kg. As a result of carrying out the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 3.5%.

共重合体(B)−3
スチレンの仕込み量を46.0kg、メタクリル酸の仕込み量を4.0kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は8%であった。
Copolymer (B) -3
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 46.0 kg and the amount of methacrylic acid charged was 4.0 kg. As a result of carrying out the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 8%.

共重合体(B)−4
スチレンの仕込み量を44.0kg、メタクリル酸の仕込み量を6.0kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は12%であった。
Copolymer (B) -4
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 44.0 kg and the amount of methacrylic acid charged was 6.0 kg. As a result of carrying out the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 12%.

共重合体(B)−5
スチレンの仕込み量を37.5kg、メタクリル酸の仕込み量を12.5kgとした以外は、共重合体(A2−1)と同様の操作をして共重合体を得た。これを上記同様の分析を実施した結果、メタクリル酸質量組成比(RA2)は25%であった。
Copolymer (B) -5
A copolymer was obtained in the same manner as the copolymer (A2-1) except that the amount of styrene charged was 37.5 kg and the amount of methacrylic acid was 12.5 kg. As a result of conducting the same analysis as described above, the methacrylic acid mass composition ratio (RA2) was 25%.

次に、本発明における測定法、評価法を以下に説明する。 Next, the measurement method and evaluation method in the present invention will be described below.

(1)ビカット軟化点(Vicat軟化点)
JIS−K7206に準拠して、樹脂組成物1〜16及び共重合体(B)−1〜5を各々用いて、試験片として厚み3.2mmの射出成型品を成形後、23℃×50%の恒温恒温室にて24時間放置し、状態調整を行い、5kgのウェイトを使用し、50℃/hr.の昇温速度で温度上昇させ、試験片に圧子が1mm進入したときの温度を記録した。これを3回繰り返しその平均値を採用した。
(1) Vicat softening point (Vicat softening point)
In accordance with JIS-K7206, each resin composition 1-16 and copolymer (B) -1-5 was used to mold an injection molded product having a thickness of 3.2 mm as a test piece, and then 23 ° C. × 50%. Left in a constant temperature and constant temperature room for 24 hours to adjust the condition, using a 5 kg weight, 50 ° C./hr. The temperature when the indenter entered 1 mm into the test piece was recorded. This was repeated three times and the average value was adopted.

(2)製膜性
多層押出機のTダイからシート化する際に、ロール粘着が著しくシートが不可能だったものを×、順調に製膜ができて、得られたシートの厚み精度を幅方向で10cm間隔で5点測定した。厚みの精度(厚みの最大値と最小値の差と、各測定点での厚みの平均値との比)が10%を超え30%以下のものを○、10%以下のものを◎とした。
(2) When forming a sheet from a T-die of a film-forming multi-layer extruder, it was possible to smoothly form a film where roll adhesion was extremely impossible, and the thickness accuracy of the obtained sheet was widened. Five points were measured at 10 cm intervals in the direction. Thickness accuracy (ratio between the difference between the maximum and minimum thickness values and the average thickness at each measurement point) exceeds 10% and is 30% or less. .

(3)シート外観
多層押出機のTダイから得られた多層シートの界面における波打ち現象が著しく外観不良のものを×、やや劣るものを△、良好なものを○とした。
(3) Sheet Appearance The case where the corrugation phenomenon at the interface of the multilayer sheet obtained from the T-die of the multilayer extruder was remarkably poor was rated as x, the slightly inferior one as Δ, and the good one as ◯.

(4)透明性の評価
後記する実施例で得られたシートのHazeを測定し、Hazeの値が1.5未満のものを○、1.5以上3.0未満のものを△、3.0以上のものを×とした。
(4) Evaluation of transparency The haze of the sheet obtained in the examples described later is measured, the haze value is less than 1.5, and the haze value is 1.5 or more and less than 3.0. Zero or more was made x.

(5)最大配向緩和応力
後記する実施例の共重合体の二軸延伸シートを用いASTM D1504に準じてシート押出方向(縦方向)とそれに垂直な方向(横方向)での配向緩和応力の最大値を測定した。
(5) Maximum orientation relaxation stress The maximum orientation relaxation stress in the sheet extrusion direction (longitudinal direction) and the direction perpendicular to it (transverse direction) according to ASTM D1504 using a biaxially stretched sheet of the copolymer of the examples described later. The value was measured.

(6)耐油性の評価
試験評価用の勘合容器の成型条件
後記する実施例の共重合体の二軸延伸シートを用い、下記の条件の金型及び成型条件等で勘合容器を得た。
(イ)金型:
天面 :90×170[mm]
高さ :50[mm]
勘合面:120×200[mm](ロ)成型条件:
成型機:関西自動成型機社製、圧空真空成型機
ヒーター温度:145[℃]
金型温度 :145[℃]
成型時間 :15[sec]
圧接圧空遅れ:0.8[sec]
圧接真空遅れ:1.0[sec]
圧接時間 :5.0[sec]
成型圧空時間:3.5[sec]
耐油性の評価として、得られた容器成形品の天面部中央部より50×30[mm]の試験片を採取し90℃の椰子油(月島食品工業株式会社製精製ヤシ油)に5分間漬けた後に取り出し、白濁の有無を目視で観察した。
◎:良好
○:やや白濁あり
△:白濁
×:大きく変形し、亀裂が入る
(6) Evaluation of oil resistance Molding condition of fitting container for test evaluation A fitting container was obtained using a biaxially stretched sheet of a copolymer of Examples described later under the following conditions, such as a mold and molding conditions.
(I) Mold:
Top surface: 90 x 170 [mm]
Height: 50 [mm]
Mating surface: 120 × 200 [mm] (b) Molding conditions:
Molding machine: Manufactured by Kansai Automatic Molding Machine Co., Ltd. Pressurized vacuum molding machine Heater temperature: 145 [° C]
Mold temperature: 145 [° C]
Molding time: 15 [sec]
Pressure contact pressure delay: 0.8 [sec]
Pressure welding vacuum delay: 1.0 [sec]
Pressure welding time: 5.0 [sec]
Molding pressure time: 3.5 [sec]
As an evaluation of oil resistance, a 50 × 30 [mm] test piece was collected from the center of the top surface of the obtained container molded product and soaked in coconut oil at 90 ° C. (refined palm oil manufactured by Tsukishima Food Industry Co., Ltd.) for 5 minutes. And then visually observed for the presence or absence of cloudiness.
◎: Good ○: Slightly cloudy △: Cloudy ×: Large deformation and cracking

(5)耐熱性の評価
上記成形条件で得られた容器成形品を110℃に設定した熱風乾燥機に10分間入れた後の容器の変形を目視で観察した。
○:変形がわからない。
△:変形があるが、外寸はあまり変わらない。
×:大きく変形し、寸法も変わっている
(5) Evaluation of heat resistance The container molded product obtained under the above molding conditions was visually observed for deformation of the container after being placed in a hot air dryer set at 110 ° C for 10 minutes.
○: Deformation is not known.
Δ: There is deformation, but the outer dimensions do not change much.
×: Deformated greatly and dimensions changed

(6)強度の評価
強度の評価として、上記成形条件で得られた容器成形品の天面中央に錐を落下させ、割れが発生するエネルギー([J]=錐高さ[m]×錐重さ[kg])を測定し、これを落錐強度とした。錐は成形品に接触する部分は同じで、質量を変化させることができ、接触する先端部は直径15[mm]の半球状である。割れが発生するまで高さを1cm刻みで高くしてシートが割れるまで予備テストを行う。シートに割れが発生すると落下高さを1cm低くし、また割れが発生しない場合は落下高さを1cm高くするというテストを繰返す。測定値には10回測定したその平均値を採用した。
◎:50[J]以上
○:30以上50未満[J]
×:30[J]未満
(6) Evaluation of strength As an evaluation of strength, energy that drops a cone on the center of the top surface of the container molded product obtained under the above molding conditions and generates cracks ([J] = cone height [m] × cone weight) [Kg]) was measured, and this was taken as the drop drop strength. The portion of the cone that is in contact with the molded product is the same, and the mass can be changed. The tip of the cone is a hemisphere with a diameter of 15 mm. The height is increased in 1 cm increments until cracks occur, and a preliminary test is performed until the sheet breaks. When cracks occur in the sheet, the drop height is lowered by 1 cm, and when no cracks occur, the test of increasing the drop height by 1 cm is repeated. The average value measured 10 times was adopted as the measurement value.
◎: 50 [J] or more ○: 30 or more and less than 50 [J]
×: Less than 30 [J]

実施例1
上述の樹脂組成物2を表層用に、共重合体(B)−3基材層用に用い、それぞれ240℃で多層押出機のTダイから共押出された樹脂を縦延伸機にて設定温度115℃で流れ方向に2.2倍、ついで横延伸機にて設定温度115℃で幅方向に2.2倍延伸して厚さ約0.3mmの2種3層の各構成の多層二軸延伸シートを得た。この時、所定の表層割合となるように、基材層用押出機と表層用押出機の吐出量を調整した。得られた多層シートの縦方向の配向緩和応力と、横方向の配向緩和応力の差 |σM−σT|、総シート厚さに占める表層厚さの割合、製膜性、シート外観、透明性、及び得られた多層シートを135℃にて熱板成形した容器の耐油性、耐熱性、落錐強度を表2に示す。各評価項目において結果が良好でバランスが取れていることがわかる。
Example 1
The above-mentioned resin composition 2 is used for the surface layer and for the copolymer (B) -3 base material layer, and the resin co-extruded from the T-die of the multilayer extruder at 240 ° C., respectively, is set at a set temperature with a longitudinal stretching machine Multi-layer biaxial of each configuration of 2 types and 3 layers having a thickness of about 0.3 mm by stretching 2.2 times in the flow direction at 115 ° C. and then 2.2 times in the width direction at a set temperature of 115 ° C. with a horizontal stretching machine A stretched sheet was obtained. At this time, the discharge amounts of the base layer extruder and the surface layer extruder were adjusted so as to obtain a predetermined surface layer ratio. The difference between the orientation relaxation stress in the longitudinal direction and the orientation relaxation stress in the transverse direction of the obtained multilayer sheet | σM−σT |, the ratio of the surface layer thickness to the total sheet thickness, film forming property, sheet appearance, transparency, Table 2 shows the oil resistance, heat resistance, and falling strength of the container obtained by hot plate molding the obtained multilayer sheet at 135 ° C. It can be seen that the results are good and balanced for each evaluation item.

実施例2〜15及び比較例1〜9
表層と基材層に用いる樹脂を変えた以外は、実施例1と同様に実施した。
Examples 2 to 15 and Comparative Examples 1 to 9
It implemented similarly to Example 1 except having changed resin used for a surface layer and a base material layer.

Figure 2005349591
Figure 2005349591

Claims (7)

基材層とその少なくとも片面に表層を有し、表層の樹脂組成物(A)がスチレン系単量体単位及び(メタ)アクリル酸エステル系単量体単位からなる共重合体(A1)と、スチレン系単量体単位及びアクリル酸、メタクリル酸、無水マレイン酸のうちの少なくとも一種の単量体単位とからなる共重合体(A2)からなり、基材層がスチレン系単量体単位とアクリル酸、メタクリル酸、無水マレイン酸のうちの少なくとも一種の単量体単位からなる共重合体(B)からなり、かつA1中のスチレン系単量体単位以外の質量組成比(RA1)とA2中のスチレン系単量体単位以外の質量組成比(RA2)が下記の数1式の条件を満足し、更に表層の樹脂組成物(A)のビカット軟化点をVA[℃]、基材層の共重合体(B)のビカット軟化点をVB[℃]とした場合、VB−VAが20℃未満であることを特徴とするポリスチレン系二軸延伸積層シート。
Figure 2005349591
A substrate (A1) having a surface layer on at least one surface thereof and a resin composition (A) of the surface layer comprising a styrene monomer unit and a (meth) acrylate monomer unit; Consists of a copolymer (A2) comprising a styrene monomer unit and at least one monomer unit of acrylic acid, methacrylic acid, and maleic anhydride, and the base material layer is composed of a styrene monomer unit and acrylic. It consists of a copolymer (B) comprising at least one monomer unit of acid, methacrylic acid, and maleic anhydride, and in the mass composition ratio (RA1) other than the styrene monomer unit in A1 and in A2 The mass composition ratio (RA2) other than the styrene-based monomer unit satisfies the condition of the following formula 1, and the Vicat softening point of the resin composition (A) of the surface layer is VA [° C.] The Vicat softening point of the copolymer (B) is expressed as VB [ If a, polystyrene biaxially oriented laminated sheet characterized by VB-VA is less than 20 ° C..
Figure 2005349591
下記の数2式の条件を満足することを特徴とする請求項1記載のポリスチレン系二軸延伸積層シート。
Figure 2005349591
The polystyrene-based biaxially stretched laminated sheet according to claim 1, wherein the following formula 2 is satisfied.
Figure 2005349591
基材層を構成する共重合体(B)中のスチレン系単量体単位以外の成分が占める割合が3.5〜20質量%であることを特徴とする請求項1または2記載のポリスチレン系二軸延伸積層シート 。 The ratio of the components other than the styrene monomer units in the copolymer (B) constituting the substrate layer is 3.5 to 20% by mass, according to claim 1 or 2, Biaxially stretched laminated sheet. 請求項1〜3のいずれか1項に記載のポリスチレン系二軸延伸積層シートにおいて、その縦方向の配向緩和応力をσM、横方向の配向緩和応力をσTとした場合、下記の数3式の条件を満足することを特徴とするポリスチレン系二軸延伸積層シート。
Figure 2005349591
In the polystyrene type biaxially stretched laminated sheet according to any one of claims 1 to 3, when the longitudinal relaxation stress is σM and the lateral relaxation stress is σT, A polystyrene-based biaxially stretched laminated sheet characterized by satisfying conditions.
Figure 2005349591
請求項1〜4のいずれか1項に記載のポリスチレン系二軸延伸積層シートにおいて、総シート厚さに占める表層厚さが5%以上25%以下であることを特徴とするポリスチレン系二軸延伸積層シート。 5. The polystyrene-based biaxially stretched laminate sheet according to claim 1, wherein the surface layer thickness in the total sheet thickness is 5% to 25%. Laminated sheet. 請求項1〜5のいずれか1項記載のポリスチレン系二軸延伸積層シートを熱成形してなる成形品。 A molded product obtained by thermoforming the polystyrene-based biaxially stretched laminated sheet according to any one of claims 1 to 5. 請求項6記載の食品包装容器。 The food packaging container according to claim 6.
JP2004169917A 2004-06-08 2004-06-08 Polystyrene-based biaxially stretched laminated sheet, molded body and container Expired - Fee Related JP4053022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169917A JP4053022B2 (en) 2004-06-08 2004-06-08 Polystyrene-based biaxially stretched laminated sheet, molded body and container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169917A JP4053022B2 (en) 2004-06-08 2004-06-08 Polystyrene-based biaxially stretched laminated sheet, molded body and container

Publications (2)

Publication Number Publication Date
JP2005349591A true JP2005349591A (en) 2005-12-22
JP4053022B2 JP4053022B2 (en) 2008-02-27

Family

ID=35584457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169917A Expired - Fee Related JP4053022B2 (en) 2004-06-08 2004-06-08 Polystyrene-based biaxially stretched laminated sheet, molded body and container

Country Status (1)

Country Link
JP (1) JP4053022B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060192A (en) * 2014-09-22 2016-04-25 デンカ株式会社 Biaxially oriented styrenic resin laminated sheet, molded article, and food packaging container
KR20170052528A (en) 2014-09-08 2017-05-12 덴카 주식회사 Biaxially stretched sheet and container for packaging
CN108473697A (en) * 2016-01-13 2018-08-31 电化株式会社 Biaxial stretch-formed and its formed products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052528A (en) 2014-09-08 2017-05-12 덴카 주식회사 Biaxially stretched sheet and container for packaging
KR20170053594A (en) 2014-09-08 2017-05-16 덴카 주식회사 Biaxially stretched sheet and container for packaging
JP2016060192A (en) * 2014-09-22 2016-04-25 デンカ株式会社 Biaxially oriented styrenic resin laminated sheet, molded article, and food packaging container
CN108473697A (en) * 2016-01-13 2018-08-31 电化株式会社 Biaxial stretch-formed and its formed products

Also Published As

Publication number Publication date
JP4053022B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US8372517B2 (en) Acrylic thermoplastic resin composition, acrylic resin film and acrylic resin composite
JP5345037B2 (en) Acrylic resin film and method for producing the same
JP7019353B2 (en) Stretched sheets and packaging containers, and their manufacturing methods
JP6148411B2 (en) Styrene biaxially stretched sheet, biaxially stretched sheet with anti-fogging agent layer, packaging container, and cooking method
TWI697507B (en) Biaxially stretched sheet and its formed product
JP2018203837A (en) Styrenic resin composition, stretched sheet and molding
JP6854819B2 (en) Biaxially stretched sheet and its molded products
JP6517791B2 (en) Copolymers for transparent scratch resistant plates, laminates for transparent scratch resistant plates
JP4053022B2 (en) Polystyrene-based biaxially stretched laminated sheet, molded body and container
JPH06279546A (en) Stretched styrene resin sheet
JP7322002B2 (en) (Meth)acrylic resin composition, film and method for producing the same
US6153308A (en) Multilayered biaxially-oriented styrene based resin sheet and method for production thereof
JP2005330299A (en) Styrenic resin biaxially stretched sheet and thermoformed product
JP6243807B2 (en) Method for producing heat-resistant styrene resin, heat-resistant styrene resin composition, extruded sheet and molded product
JP6941487B2 (en) Stretched sheet and its molded product
JP4582765B2 (en) Polystyrene-based biaxially stretched sheet and method for producing the same
JP2018012530A (en) Biaxially stretched sheet and package
JP5036122B2 (en) Heat-resistant styrene resin stretched sheet
JP4059823B2 (en) Method for producing styrenic biaxially stretched laminated sheet
JP4689793B2 (en) Rubber-modified styrenic resin composition
KR102585620B1 (en) Composite sheet having matt metallic surface properties and preparation method thereof
JP7200613B2 (en) Impact-resistant polystyrene resin sheet and its molded product
JP7008436B2 (en) Stretched sheet and its molded product
JP3929229B2 (en) Heat-resistant poly (meth) acryl styrene resin composition, sheet and packaging container
JP2019196415A (en) Biaxially oriented sheet and molded article thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees