JP2005349396A - Injection molding method for semi-solidified metal slurry - Google Patents

Injection molding method for semi-solidified metal slurry Download PDF

Info

Publication number
JP2005349396A
JP2005349396A JP2004169326A JP2004169326A JP2005349396A JP 2005349396 A JP2005349396 A JP 2005349396A JP 2004169326 A JP2004169326 A JP 2004169326A JP 2004169326 A JP2004169326 A JP 2004169326A JP 2005349396 A JP2005349396 A JP 2005349396A
Authority
JP
Japan
Prior art keywords
molten metal
temperature
semi
container
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004169326A
Other languages
Japanese (ja)
Inventor
Koichi Kuroki
孝一 黒木
Takeshi Masaki
健 正木
Shinji Kazama
慎二 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004169326A priority Critical patent/JP2005349396A/en
Priority to CA002530871A priority patent/CA2530871A1/en
Priority to EP04746976A priority patent/EP1649951B1/en
Priority to EP10192807A priority patent/EP2292353A1/en
Priority to EP10192806A priority patent/EP2289650A1/en
Priority to PCT/JP2004/009507 priority patent/WO2005002760A1/en
Priority to US10/562,457 priority patent/US7264037B2/en
Publication of JP2005349396A publication Critical patent/JP2005349396A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique, with which the unevenness of stirring time performed for fixing the solidified ratio of molten metal can be restrained, in the injection molding of semi-solidified metal slurry. <P>SOLUTION: This technique is performed by passing through the following processes, that is, ST19: a crucible is cleaned, ST20: this cleaning is performed at any number of times till completing the cleaning, ST21: coating is applied to the crucible, ST22: the temperature T1 of the crucible is read, ST23: the temperature T2 of a molten metal holding furnace is read, ST24: cooling time t is decided from the temperature T1 of the crucible, the temperature T2 of the molten metal holding furnace and a correlation diagram, ST25: the cooling of the crucible is started, and ST26: when the time reaches t, the cooling is completed. In this way, the unevenness of the stirring time can be restrained and the productivity in this injection molding of the semi-solidified metal slurry can remarkably be improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半凝固金属スラリーの射出成形技術の改良に関する。   The present invention relates to an improvement in injection molding technology of semi-solid metal slurry.

従来、半凝固金属スラリーの射出成形技術が知られている(例えば、特許文献1参照。)。
特開2002−336946公報(図12)
Conventionally, the injection molding technique of a semi-solid metal slurry is known (for example, refer patent document 1).
JP 2002-336946 A (FIG. 12)

特許文献1を次図に基づいて説明する。
図14は従来の技術の基本フロー図である。
S1(ステップ1):溶湯保持炉からラドルに1回分の溶湯の給湯を受ける。
S2(ステップ2):ラドルを撹拌ステーションに搬送し、そこで第1容器へ移す。
S3(ステップ3):撹拌ステーションで第1容器中の溶湯を撹拌して、固液共存状態として所望の固相率にする。このとき温度は均一になっている。
Patent document 1 is demonstrated based on the following figure.
FIG. 14 is a basic flowchart of the prior art.
S1 (step 1): Receive a single hot water supply to the ladle from the molten metal holding furnace.
S2 (Step 2): The ladle is transported to the stirring station where it is transferred to the first container.
S3 (step 3): The molten metal in the first container is stirred at the stirring station to obtain a desired solid phase ratio as a solid-liquid coexistence state. At this time, the temperature is uniform.

S4(ステップ4):第1容器を射出成形機構へ搬送する。
S5(ステップ5):一方、射出成形機構では金型の型締めを並行して実施する。
S6(ステップ6):射出スリーブへ第1容器から注湯する。
S4 (Step 4): Transport the first container to the injection molding mechanism.
S5 (Step 5): On the other hand, the injection molding mechanism performs mold clamping in parallel.
S6 (Step 6): Hot water is poured from the first container into the injection sleeve.

S7(ステップ7):金型へ射出を行う。
S8(ステップ8):空になった第1容器にエアブローを行う。
S9(ステップ9):第1容器内をブラッシング処理して綺麗にする。
S7 (Step 7): Injection into the mold.
S8 (Step 8): Air blow is performed on the empty first container.
S9 (step 9): The first container is cleaned by brushing.

S10(ステップ10):第1容器内にコーティングを施す。
S11(ステップ11):成形品の製造数が所定数に達していれば、製造を終了する。達していなければ、S1に戻って生産を継続する。
S10 (Step 10): Coating is applied to the first container.
S11 (Step 11): If the number of manufactured molded articles has reached a predetermined number, the manufacturing ends. If not, return to S1 and continue production.

ところで、半凝固金属スラリーは、固相と液相の混合体であるため固相率(=固相/(液相+固相)%)の管理が重要となる。固相率が異なると得られる成形品の品質が変化するからである。   By the way, since a semi-solid metal slurry is a mixture of a solid phase and a liquid phase, management of the solid phase ratio (= solid phase / (liquid phase + solid phase)%) is important. This is because the quality of the obtained molded product changes when the solid phase ratio is different.

近年、固相率の管理の一手法として、粘度で管理する方法が開発された。すなわち、固相率が大きくなるほど粘性が高まるという固相率−粘度相関則に基づく。そして、前図のS3(ステップ3)で、第1容器内の溶湯を冷し金で撹拌するが、この撹拌に伴う奪熱作用により冷却が進行し、溶湯の粘性が高まり、固相率が高まる。
したがって、目標固相率から目標粘度を定め、この目標粘度に到達するまで撹拌を行うという、撹拌による固相率管理法が採用されつつある。
In recent years, as a technique for managing the solid phase ratio, a method of managing by the viscosity has been developed. That is, it is based on a solid phase ratio-viscosity correlation rule that the viscosity increases as the solid phase ratio increases. Then, in S3 (step 3) of the previous figure, the molten metal in the first container is cooled and stirred with gold, but the cooling proceeds due to the heat removal effect accompanying this stirring, the viscosity of the molten metal is increased, and the solid phase ratio is increased. Rise.
Accordingly, a solid phase ratio management method using stirring, in which the target viscosity is determined from the target solid phase ratio and stirring is performed until the target viscosity is reached, is being adopted.

しかし、上記の従来技術で、一定の粘度になるようにして複数個の成形品を得るべく製造を実施したところ、必要な撹拌時間は、大きくばらついた。
撹拌時間が極端に長いと、射出成形機構を待たさなければならないので、生産性が低下する。また、撹拌時間が極端に短いと射出成形機構が間に合わなくなるため、循環させる容器の数を制限する必要があり、生産性が低下する。
However, when the above-described conventional technique was used to obtain a plurality of molded articles so as to obtain a constant viscosity, the required stirring time varied greatly.
If the agitation time is extremely long, the injection molding mechanism must be waited, resulting in reduced productivity. In addition, if the stirring time is extremely short, the injection molding mechanism will not be in time, so it is necessary to limit the number of containers to be circulated, resulting in a decrease in productivity.

すなわち、複数個の容器を適正に循環させ、且つ射出成形機構を良好に作動させるためには、撹拌時間のばらつきを少なくする必要がある。   That is, in order to properly circulate a plurality of containers and operate the injection molding mechanism satisfactorily, it is necessary to reduce the variation in the stirring time.

本発明は、半凝固金属スラリーの射出成形において、溶湯の固相率を一定にするために実施する撹拌時間のばらつきを抑えることができる技術を提供することを課題とする。   This invention makes it a subject to provide the technique which can suppress the dispersion | variation in the stirring time implemented in order to make the solid-phase rate of a molten metal constant in the injection molding of a semi-solid metal slurry.

本発明者らは、撹拌時間のばらつきの要因を調査する中で、図14のS9(ステップ9)でのブラッシング処理に時間差が発生し、そのために大気中へ放出される熱量が時間経過と共に増大し、容器の温度が不安定になることに注目した。すなわち、空の容器に付着している残滓の形態は様々であり、一回で簡単にクリーニングできるものと、複数回のクリーニングを要するものとが出現する。
そこで、クリーニングやコーティングを実施した後に、冷却を行い、冷却後の温度を一定にすることで溶湯容器の温度を一定にすることが有益であると考えるに至った。
While investigating the cause of the variation in the stirring time, the present inventors generate a time difference in the brushing process in S9 (step 9) in FIG. 14, and the amount of heat released into the atmosphere increases with time. Attention was paid to the unstable temperature of the container. That is, there are various forms of the residue attached to the empty container, and one that can be easily cleaned at a time and one that requires a plurality of times of cleaning appear.
Then, after carrying out cleaning and coating, it came to be considered that it is beneficial to make the temperature of the molten metal container constant by cooling and making the temperature after cooling constant.

さらに発明者らは、図14のS1(ステップ1)で、溶湯保持炉から供給される溶湯の温度が変化することにも注目した。
アルミ溶解炉から供給される溶湯の温度にばらつきがあり、この温度のばらつきが溶湯保持炉に影響し、溶湯保持炉から供給される溶湯の温度もばらつく。
溶湯容器の温度が一定であって溶湯の温度にばらつきがあれば、撹拌時間のばらつきとなって現れる。
Furthermore, the inventors also noted that the temperature of the molten metal supplied from the molten metal holding furnace changes in S1 (step 1) of FIG.
There is a variation in the temperature of the molten metal supplied from the aluminum melting furnace, and this variation in temperature affects the molten metal holding furnace, and the temperature of the molten metal supplied from the molten metal holding furnace also varies.
If the temperature of the molten metal container is constant and there is a variation in the temperature of the molten metal, it will appear as a variation in the stirring time.

溶湯保持炉から供給する溶湯の温度を一定にするには、溶湯保持炉に高性能の温度制御機構を設けることが考えられるが、技術的及びコスト的に実現は難しい。
すなわち、溶湯保持炉から供給される溶湯の変動を吸収することができる技術が求められる。
In order to make the temperature of the molten metal supplied from the molten metal holding furnace constant, it is conceivable to provide a high-performance temperature control mechanism in the molten metal holding furnace, but it is difficult to realize technically and costly.
That is, a technique capable of absorbing fluctuations in the molten metal supplied from the molten metal holding furnace is required.

そこで、本発明者らは溶湯保持炉の温度が高ければ、溶湯容器の冷却時間を延長し、同温度が低ければ、溶湯容器の冷却時間を短縮するごとくに、溶湯保持炉の温度の影響を溶湯容器の温度に転嫁することを思いついた。
そして、空の溶湯容器の温度と溶湯保持炉の温度との両方を考慮して、溶湯温度の冷却時間を決定するようにしたところ、撹拌時間のばらつき幅を大幅に減少させることに成功した。以上の知見から発明をまとめると次のとおりになる。
Therefore, the inventors have increased the cooling time of the molten metal container if the temperature of the molten metal holding furnace is high, and shortened the cooling time of the molten metal container if the temperature is low. I came up with the idea of passing on the temperature of the molten metal container.
Then, when the cooling time of the molten metal temperature was determined in consideration of both the temperature of the empty molten metal container and the temperature of the molten metal holding furnace, the variation width of the stirring time was successfully reduced. From the above knowledge, the invention is summarized as follows.

請求項1に係る発明は、射出成形機構へ半凝固金属スラリーを注湯して空になった溶湯容器を、次の注湯に備えて所定時間冷却し、この冷却した溶湯容器へ溶湯保持炉から半凝固金属スラリーを供給することを繰り返す半凝固金属スラリーの射出成形方法において、空の溶湯容器を次の注湯に備えて冷却するときの所定時間は、溶湯保持炉の温度と空の溶湯容器の温度とに基づいて決定することを特徴とする。   According to the first aspect of the present invention, a molten metal container that has been emptied by pouring a semi-solid metal slurry into an injection molding mechanism is cooled for a predetermined time in preparation for the next molten metal, and the molten metal holding furnace is supplied to the cooled molten metal container. In the semi-solid metal slurry injection molding method in which the supply of the semi-solid metal slurry is repeated, the predetermined time when the empty molten metal container is cooled for the next pouring is determined by the temperature of the molten metal holding furnace and the empty molten metal. It is determined based on the temperature of the container.

溶湯保持炉の温度が高い場合には所要時間を延ばし、同温度が低い場合には所要時間を短縮する。併せて、空の容器の温度が高い場合には所要時間を延ばし、同温度が低い場合には所要時間を短縮する。   When the temperature of the molten metal holding furnace is high, the required time is extended, and when the temperature is low, the required time is shortened. In addition, the required time is extended when the temperature of the empty container is high, and the required time is shortened when the temperature is low.

請求項1に係る発明では、空の溶湯容器を、溶湯保持炉の温度と空の溶湯容器の温度とに基づいて決定した所要時間で冷却するようにしたので、撹拌時間のばらつきを抑えることができ、半凝固金属スラリーの射出成形における生産性を大いに高めることができる。   In the invention according to claim 1, since the empty molten metal container is cooled in the required time determined based on the temperature of the molten metal holding furnace and the temperature of the empty molten metal container, it is possible to suppress variation in the stirring time. The productivity in injection molding of semi-solid metal slurry can be greatly increased.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明の係る半凝固金属スラリーの射出成形設備のレイアウト図であり、半凝固金属スラリーの射出成形設備10は、金属を融点以上の温度に保つ溶湯保持炉11と、この溶湯保持炉11から1回分の溶湯を供給されるラドル12と、このラドル12を中央台13まで運搬する第1ロボット14と、中央台13に載せた溶湯容器15と、この溶湯容器15内の溶湯を撹拌する撹拌手段30(詳細は後述する。)と、この撹拌手段30に付着した溶湯などを除去して復元する撹拌子復元台17と、この撹拌子復元台17と中央台13との間に撹拌手段30を往復させる第2ロボット18と、射出スリーブ19を備えた射出成形機構20と、溶湯容器15を射出スリーブ19まで運搬する第3ロボット21と、空になった溶湯容器15を清掃し、コーティングする整備台22と、清掃しコーティングした溶湯容器15を冷却するエアブローノズル23を備えた冷却台24と、運転開始時に溶湯容器15を加熱する加熱台25とからなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a layout diagram of a semi-solid metal slurry injection molding facility according to the present invention. A semi-solid metal slurry injection molding facility 10 includes a molten metal holding furnace 11 for maintaining a metal at a temperature higher than the melting point, and the molten metal holding furnace. The ladle 12 to which the molten metal for one time is supplied from 11, the first robot 14 for transporting the ladle 12 to the central base 13, the molten metal container 15 placed on the central base 13, and the molten metal in the molten metal container 15 are stirred. Agitating means 30 (details will be described later), a stirrer restoring base 17 for removing the molten metal adhering to the agitating means 30 and restoring, and stirring between the stirrer restoring base 17 and the central stage 13 The second robot 18 for reciprocating the means 30, the injection molding mechanism 20 having the injection sleeve 19, the third robot 21 for transporting the molten metal container 15 to the injection sleeve 19, and the empty molten metal container 15 are cleaned. And, a maintenance platform 22 to be coated, the cooling stage 24 having an air blow nozzle 23 for cooling the molten metal container 15 was cleaned and coated, consisting heating table 25 for heating the molten metal container 15 at the start of operation.

溶湯容器15は、耐熱鋼鋳鋼品が望ましい。例えばSCH12は、8〜12%のNiと18〜23%のCrを含むステンレス鋳鋼であって耐熱性に富む。詳細なデータは省略するが通常の炭素鋼(SS400−JIS)製容器に対して6倍程度の寿命(ショット)が得られた。   The molten metal container 15 is preferably a heat-resistant steel cast steel product. For example, SCH12 is a cast stainless steel containing 8 to 12% Ni and 18 to 23% Cr, and has high heat resistance. Although detailed data is omitted, a life (shot) of about 6 times that of a normal carbon steel (SS400-JIS) container was obtained.

また、炭素鋼の熱伝導率は60.7W/m・Kであるのに対して、SCH12の熱伝導率は14.7W/m・Kである。
容器の熱伝導率が大きいと、溶湯の中心に対して溶湯の端(容器に接している部位)がかなり低温になり、溶湯に温度差が発生する。
この点、SCH12製容器であれば、熱伝導率が小さく溶湯の中心と端との温度差が小さい。すなわち、溶湯の温度が容易に均一になり、温度管理が簡単になるという利点を有する。
Moreover, the thermal conductivity of carbon steel is 60.7 W / m · K, whereas the thermal conductivity of SCH12 is 14.7 W / m · K.
When the thermal conductivity of the container is large, the end of the melt (the part in contact with the container) becomes considerably low with respect to the center of the melt, and a temperature difference occurs in the melt.
In this regard, the SCH12 container has a small thermal conductivity and a small temperature difference between the center and the end of the molten metal. That is, there is an advantage that the temperature of the molten metal is easily uniform and temperature management is simplified.

以上の構成からなる射出成形設備10の作用を説明する。
図2はラドルの作用図であり、ラドル12で溶湯保持炉11から溶湯を汲み出し、中央台13に載せた溶湯容器15へ注湯する。溶湯保持炉11の温度T2は、温度センサ26で計測する。
The operation of the injection molding equipment 10 having the above configuration will be described.
FIG. 2 is an operation diagram of the ladle. The ladle 12 pumps the molten metal from the molten metal holding furnace 11 and pours it into the molten metal container 15 placed on the central table 13. The temperature T2 of the molten metal holding furnace 11 is measured by the temperature sensor 26.

図3は撹拌手段の作用図であり、撹拌子復元台17に待機させた撹拌手段30を、中央台13へ移し、そこで溶湯容器15内の溶湯を撹拌し、終わったら撹拌子復元台17へ戻す。   FIG. 3 is an operation diagram of the agitation means. The agitation means 30 placed on the agitator restoring table 17 is moved to the central stage 13 where the molten metal in the molten metal container 15 is agitated. return.

図4は撹拌手段の原理図であり、撹拌手段30は、冷し金式撹拌子31、32と、片持ち梁状の計測子33と、この計測子33を水平方向に移動させる計測子移動手段34と、この計測子33が受ける力を計測するロードセル35と、このロードセル35を固定する固定部品36と、ロードセル35からの物理量を粘度変換するための力換算手段37、粘度換算手段38を備えた力ー粘度換算手段39とからなることを特徴とする構成体である。   FIG. 4 is a principle diagram of the agitating means. The agitating means 30 includes cooling metal type agitators 31 and 32, a cantilever-shaped measuring element 33, and a measuring element movement for moving the measuring element 33 in the horizontal direction. Means 34, a load cell 35 for measuring the force received by the measuring element 33, a fixed part 36 for fixing the load cell 35, a force conversion means 37 for converting the physical quantity from the load cell 35, and a viscosity conversion means 38. It is a structure comprising the force-viscosity conversion means 39 provided.

溶湯容器15に満たされた半凝固金属スラリー40中において、撹拌手段30は、冷し金式撹拌子31、32が移動することと、計測子33が計測子移動手段34により水平方向に移動することにより、冷し金式撹拌子31、32や、計測子33が半凝固金属スラリー40から受ける力をロードセル35で例えば歪電圧V1として認知し、その後、力ー粘度換算手段39により粘度Bを求める装置である。   In the semi-solid metal slurry 40 filled in the molten metal container 15, the stirring means 30 is moved by the cooling metal stirrers 31 and 32 and the measuring element 33 is moved in the horizontal direction by the measuring element moving means 34. Thus, the force received by the cooling metal stirrers 31 and 32 and the measuring bar 33 from the semi-solid metal slurry 40 is recognized by the load cell 35 as, for example, the strain voltage V1, and then the viscosity B is determined by the force-viscosity conversion means 39. It is a device to seek.

図5は図4の5−5矢視図であり、冷し金式撹拌子31、32はその間に計測子33を備え、溶湯容器15に満たした半凝固金属スラリー40中を、矢印のごとく矩形に動いて半凝固金属スラリー40を撹拌し、奪熱、冷却する。   FIG. 5 is a view taken in the direction of arrow 5-5 in FIG. 4. The cooling metal stirrers 31 and 32 are provided with a measuring bar 33 therebetween, and the inside of the semi-solid metal slurry 40 filled in the molten metal container 15 is indicated by an arrow. It moves to a rectangle, stirs the semi-solid metal slurry 40, deprives heat and cools.

図6は固相率と粘度との相関を表すグラフであり、横軸は固相率で縦軸は粘度を表し、そこへ右上がりの曲線Rを描くことができる。この曲線Rを合金の種類毎に作成しておけば、次の要領で目標粘度Aを求めることができる。   FIG. 6 is a graph showing the correlation between the solid phase rate and the viscosity. The horizontal axis represents the solid phase rate and the vertical axis represents the viscosity, and a curve R rising to the right can be drawn there. If this curve R is prepared for each type of alloy, the target viscosity A can be obtained in the following manner.

例えば横軸に示したアルミニウム合金ダイカスト原料であるアルミニウム合金溶湯の目標固相率を決め、その目標固相率から垂直上向きに延ばした線(1)とグラフ上の交点を求め、その交点から粘度軸に垂直に交わる線(2)を延ばして粘度軸と交わった点を目標粘度Aとして決める。   For example, the target solid phase rate of the aluminum alloy molten metal, which is the aluminum alloy die casting raw material shown on the horizontal axis, is determined, the intersection (1) extending vertically upward from the target solid phase rate is obtained on the graph, and the viscosity is calculated from the intersection point. The point (2) extending perpendicularly to the axis is extended to determine the point at which the line intersects the viscosity axis as the target viscosity A.

金属成分別に半凝固金属スラリーの固相率と粘度との相関を表す相関グラフを準備することは、予め目標固相率に対応する目標粘度を決定でき、その後の工程を円滑に進めることができる。   Preparing a correlation graph showing the correlation between the solid phase ratio and the viscosity of the semi-solid metal slurry for each metal component can determine the target viscosity corresponding to the target solid phase ratio in advance, and can smoothly proceed with the subsequent steps. .

図7は歪電圧と粘度との相関を表すグラフであり、図4、5で説明した手段を用いて、既知の粘度の流体に対する歪電圧を計測し、この計測値(×印)をプロットして曲線Sを求めた。この曲線Sがあれば、次の要領で計測値(歪電圧)からそのときの粘度Bを求めることができる。   FIG. 7 is a graph showing the correlation between the strain voltage and the viscosity. Using the means described in FIGS. 4 and 5, the strain voltage for a fluid having a known viscosity is measured, and the measured value (x mark) is plotted. The curve S was obtained. If this curve S is present, the viscosity B at that time can be obtained from the measured value (strain voltage) in the following manner.

ロードセルにより測定した歪電圧を横軸にとり、測定した歪電圧から垂直上向きに延ばした線(3)とグラフ上の交点を求め、その交点から粘度軸に垂直に交わる線(4)を延ばして粘度軸と交わった点を粘度Bとして決める。   The strain voltage measured by the load cell is taken on the horizontal axis, and the intersection point on the graph and the line (3) extending vertically upward from the measured strain voltage is obtained, and the line (4) perpendicular to the viscosity axis is extended from the intersection point to increase the viscosity. The point that intersects the axis is determined as the viscosity B.

予め、図6,図7に相当するデータベースを構築しておく。そして、目標固相率から目標粘度を求め、この目標粘度から歪電圧を求める。そして、この歪電圧になるまで、溶湯容器内の溶湯を撹拌する。これで、目標固相率の溶湯を提供することができる。   A database corresponding to FIGS. 6 and 7 is constructed in advance. Then, the target viscosity is obtained from the target solid phase ratio, and the strain voltage is obtained from the target viscosity. Then, the molten metal in the molten metal container is stirred until this strain voltage is reached. Thus, a molten metal having a target solid phase ratio can be provided.

図8は溶湯容器の作用図であり、目標固相率を調整した溶湯容器15を射出スリーブ19まで移動し、射出スリーブ19へ注湯する。
図9は空の注湯容器の作用図であり、空になった溶湯容器15は整備台22に移し、そこで残滓を除去し、次にコーティングを施す。その段階で溶湯容器15の温度T1を温度センサ27で計測する。
溶湯容器15を冷却台24へ移し、そこで、エアブローノズル23からエアを噴出させて所定時間エア冷却を行う。冷却が完了したら溶湯容器15は中央台13へ戻す。
FIG. 8 is an operation diagram of the molten metal container. The molten metal container 15 with the target solid phase ratio adjusted is moved to the injection sleeve 19 and poured into the injection sleeve 19.
FIG. 9 is an operation diagram of an empty pouring container. The emptied molten metal container 15 is transferred to the maintenance table 22 where the residue is removed and then the coating is applied. At that stage, the temperature sensor 27 measures the temperature T1 of the molten metal container 15.
The molten metal container 15 is moved to the cooling table 24, where air is ejected from the air blow nozzle 23 and air cooling is performed for a predetermined time. When cooling is completed, the molten metal container 15 is returned to the central stage 13.

次に、溶湯容器の温度と溶湯保持炉の温度とエアブロー時間との関係を示す相関図を作成する。作成した相関図の例を次図に示す。   Next, a correlation diagram showing the relationship between the temperature of the molten metal container, the temperature of the molten metal holding furnace, and the air blowing time is created. The following figure shows an example of the created correlation diagram.

図10は本発明に係る溶湯容器の温度−溶湯保持炉の温度−エアブロー時間の相関グラフである。
この相関グラフの使い方を説明すると、製造途中で計測した溶湯容器の温度がRt2、溶湯保持炉の温度がFt2であれば、設定すべきエアブロー時間はTab2となる。
FIG. 10 is a correlation graph of the temperature of the molten metal container-temperature of the molten metal holding furnace-air blow time according to the present invention.
Explaining how to use this correlation graph, if the temperature of the molten metal container measured during the production is Rt2 and the temperature of the molten metal holding furnace is Ft2, the air blow time to be set is Tab2.

Tab2時間だけエアブローし、中央台に溶湯容器を戻し、この溶湯容器に溶湯を供給し、撹拌手段で撹拌すれば、一定の粘度になるまでの撹拌時間はほぼ一定時間になる。   If the air is blown for Tab 2 hours, the molten metal container is returned to the central stage, the molten metal is supplied to the molten metal container, and stirred by the stirring means, the stirring time until the viscosity becomes constant is almost constant.

以上の相関グラフを用いた製造フローを次に説明する。
図11は射出までの製造フロー図であり、ST××はステップ番号を示す。
なお、溶湯容器は「ルツボ」の名称で説明する。
A manufacturing flow using the above correlation graph will be described next.
FIG. 11 is a manufacturing flow chart until injection, and STxx indicates a step number.
The molten metal container is described with the name “crucible”.

ST11:初回はルツボは室温であるため、所定の初期温度まで加熱する必要がある。ルツボが初回であるか否かを調べるために、ルツボ温度が100℃以下であるか否かを調べる。100℃を超えていれば加熱は必要がないと見なしてST13へ進む。
ST12:ST11で100℃以下であるときには、ルツボを初期温度まで加熱する。
ST13:ルツボを中央台に載せる。
ST11: Since the crucible is at room temperature for the first time, it is necessary to heat to a predetermined initial temperature. In order to check whether or not the crucible is the first time, it is checked whether or not the crucible temperature is 100 ° C. or less. If it exceeds 100 ° C., it is considered that heating is not necessary, and the process proceeds to ST13.
ST12: When the temperature is 100 ° C. or lower in ST11, the crucible is heated to the initial temperature.
ST13: Place the crucible on the center base.

ST14:ラドルで溶湯保持炉から溶湯を汲み出す。
ST15:溶湯をルツボへ供給する。
ST16:直ちに溶湯の固相率の調製を行う。
ST17:調製済みの溶湯を射出スリーブへ注湯する。
ST18:射出を行い、成形品を得る。
ST14: The molten metal is pumped out from the molten metal holding furnace with a ladle.
ST15: Supply molten metal to the crucible.
ST16: The solid phase ratio of the molten metal is immediately prepared.
ST17: The prepared molten metal is poured into the injection sleeve.
ST18: Injection is performed to obtain a molded product.

図12はルツボ冷却まで製造フロー図である。
ST19:ルツボをクリーニングする。
ST20:クリーニングが完了するまで何度でも行う。
ST21:ルツボにコーティングを施す。
FIG. 12 is a manufacturing flowchart until the crucible cooling.
ST19: Clean the crucible.
ST20: Repeatedly until cleaning is completed.
ST21: The crucible is coated.

ST22:ルツボの温度T1(図10のRt2相当)を読み込む。
ST23:溶湯保持炉の温度T2(図10のFt2相当)を読み込む。
ST24:ルツボの温度T1、溶湯保持炉の温度T2及び相関図(図10参照)から冷却時間t(図10のTab2相当)を決定する。
ST25:ルツボの冷却を開始する。
ST21:時間がtに到達したら冷却は完了する。
ST22: The crucible temperature T1 (corresponding to Rt2 in FIG. 10) is read.
ST23: The temperature T2 (corresponding to Ft2 in FIG. 10) of the molten metal holding furnace is read.
ST24: The cooling time t (corresponding to Tab2 in FIG. 10) is determined from the crucible temperature T1, the molten metal holding furnace temperature T2 and the correlation diagram (see FIG. 10).
ST25: Start cooling of the crucible.
ST21: Cooling is completed when time reaches t.

図13は本発明の効果を説明するためのグラフであり、横軸は撹拌時間、縦軸は頻度を示す。
詳細な説明は省略するが、従来の技術では、撹拌時間のばらつきは、Dであった。これに対して、本発明によれば、撹拌時間のばらついは、0.4×D、すなわち、従来の40%に収まった。
したがって、本発明によれば撹拌時間のばらつきを大いに改善できたと言える。
FIG. 13 is a graph for explaining the effect of the present invention, in which the horizontal axis represents the stirring time and the vertical axis represents the frequency.
Although detailed explanation is omitted, in the conventional technique, the variation in the stirring time was D. On the other hand, according to the present invention, the variation in the stirring time was 0.4 × D, that is, 40% of the conventional value.
Therefore, according to the present invention, it can be said that the variation in the stirring time can be greatly improved.

尚、実施例で説明した相関グラフ(溶湯容器の温度−溶湯保持炉の温度−エアブロー時間の相関グラフ)は、数式した相関式、テーブル化した相関相関図であってもよく、形式は自由であるため、相関図と呼ぶ。
また、相関図の作り方は実施例に限るものではない。
The correlation graph described in the embodiment (the temperature of the molten metal container—the temperature of the molten metal holding furnace—the correlation graph of the air blowing time) may be a mathematical correlation formula or a tabulated correlation correlation diagram, and the format is arbitrary. Therefore, it is called a correlation diagram.
Further, the method of creating the correlation diagram is not limited to the embodiment.

本発明は、半凝固金属スラリーの射出成形技術に好適である。   The present invention is suitable for the semi-solid metal slurry injection molding technique.

本発明の係る半凝固金属スラリーの射出成形設備のレイアウト図である。It is a layout figure of the injection molding equipment of the semi-solid metal slurry which concerns on this invention. ラドルの作用図である。It is an action figure of a ladle. 撹拌手段の作用図である。It is an effect | action figure of a stirring means. 撹拌手段の原理図である。It is a principle diagram of a stirring means. 図4の5−5矢視図である。It is a 5-5 arrow line view of FIG. 固相率と粘度との相関を表すグラフである。It is a graph showing the correlation with a solid-phase rate and a viscosity. 歪電圧と粘度との相関を表すグラフである。It is a graph showing the correlation between a strain voltage and a viscosity. 溶湯容器の作用図である。It is an effect | action figure of a molten metal container. 空の注湯容器の作用図である。It is an effect | action figure of an empty pouring container. 本発明に係る溶湯容器の温度−溶湯保持炉の温度−エアブロー時間の相関グラフである。It is a correlation graph of the temperature of the molten metal container which concerns on this invention-the temperature of a molten metal holding furnace-air blow time. 射出までの製造フロー図である。It is a manufacturing flowchart until injection. ルツボ冷却まで製造フロー図である。It is a manufacturing flowchart until crucible cooling. 本発明の効果を説明するためのグラフである。It is a graph for demonstrating the effect of this invention. 従来の技術の基本フロー図である。It is a basic flowchart of a prior art.

符号の説明Explanation of symbols

10…半凝固金属スラリーの射出成形設備、11…溶湯保持炉、15…溶湯容器(ルツボ)、20…射出成形機構、23…エアブローノズル、24…冷却台、26、27…温度センサ、40…半凝固金属スラリー。   DESCRIPTION OF SYMBOLS 10 ... Injection molding equipment of semi-solid metal slurry, 11 ... Molten metal holding furnace, 15 ... Molten metal container (crucible), 20 ... Injection molding mechanism, 23 ... Air blow nozzle, 24 ... Cooling stand, 26, 27 ... Temperature sensor, 40 ... Semi-solid metal slurry.

Claims (1)

射出成形機構へ半凝固金属スラリーを注湯して空になった溶湯容器を、次の注湯に備えて所定時間冷却し、この冷却した溶湯容器へ溶湯保持炉から半凝固金属スラリーを供給することを繰り返す半凝固金属スラリーの射出成形方法において、
空の溶湯容器を次の注湯に備えて冷却するときの前記所定時間は、溶湯保持炉の温度と空の溶湯容器の温度とに基づいて決定することを特徴とする半凝固金属スラリーの射出成形方法。
The molten metal container that has been emptied by pouring the semi-solid metal slurry into the injection molding mechanism is cooled for a predetermined time in preparation for the next pouring, and the semi-solid metal slurry is supplied to the cooled molten metal container from the molten metal holding furnace. In the semi-solid metal slurry injection molding method that repeats,
The predetermined time when the empty molten vessel is cooled for the next pouring is determined based on the temperature of the molten metal holding furnace and the temperature of the empty molten vessel. Molding method.
JP2004169326A 2003-07-02 2004-06-08 Injection molding method for semi-solidified metal slurry Pending JP2005349396A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004169326A JP2005349396A (en) 2004-06-08 2004-06-08 Injection molding method for semi-solidified metal slurry
CA002530871A CA2530871A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
EP04746976A EP1649951B1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
EP10192807A EP2292353A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solid metal
EP10192806A EP2289650A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solid metal
PCT/JP2004/009507 WO2005002760A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
US10/562,457 US7264037B2 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169326A JP2005349396A (en) 2004-06-08 2004-06-08 Injection molding method for semi-solidified metal slurry

Publications (1)

Publication Number Publication Date
JP2005349396A true JP2005349396A (en) 2005-12-22

Family

ID=35584283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169326A Pending JP2005349396A (en) 2003-07-02 2004-06-08 Injection molding method for semi-solidified metal slurry

Country Status (1)

Country Link
JP (1) JP2005349396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000776A (en) * 2006-06-21 2008-01-10 Ube Machinery Corporation Ltd Slurry manufacturing method and slurry manufacturing apparatus
US11352221B2 (en) 2018-07-20 2022-06-07 Fanuc Corporation Post-processing method for workpiece, machining system, and management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000776A (en) * 2006-06-21 2008-01-10 Ube Machinery Corporation Ltd Slurry manufacturing method and slurry manufacturing apparatus
US11352221B2 (en) 2018-07-20 2022-06-07 Fanuc Corporation Post-processing method for workpiece, machining system, and management system

Similar Documents

Publication Publication Date Title
JP3211754B2 (en) Equipment for manufacturing metal for semi-solid molding
JP2009537132A (en) Use of mixtures of solid carbonic acid and liquid nitrogen in quick freezing applications
JP2006519704A5 (en)
JP2001347346A (en) Method and apparatus for producing alloy block
WO1999036209A1 (en) Method and apparatus for manufacturing semi-solidified metal
JP2005349396A (en) Injection molding method for semi-solidified metal slurry
CN108067600A (en) A kind of reho-forming method of high efficiency, low cost manufacture semisolid Al-Si line aluminium alloy casting
US20110193273A1 (en) Process and apparatus for producing semi-solidified slurry of iron alloy
JPH1133693A (en) Method and device for injection molding of semi-solidified metal
CN105121065A (en) Method, controller and tundish control system for a continuous casting process
CN109663899A (en) Method for casting mould
WO2005110644A1 (en) Method for preparing semi-solid metal slurry, molding method, and molded product
JP2015188936A (en) Press forming method and press forming system of semi-solidified metal material
JP2010155262A (en) Apparatus of manufacturing aluminum alloy casting material
JPS58103941A (en) Production of metallic material having specular surface
JPH06608A (en) Method for continuously casting steel
JP2005205478A (en) Method and apparatus for producing metal slurry, and method and apparatus for producing cast block
CN100364697C (en) Molding of slurry-form semi-solidified metal
JP3926018B2 (en) Method and apparatus for producing semi-solid metal
KR101555408B1 (en) Apparatus for producing semi-solid metal, method for producing semi-solid metal, and semi-solid metal
JP2013255930A (en) Apparatus and method for manufacturing semi-solidified metal
JP3536491B2 (en) Temperature control method and temperature control device for semi-molten metal slurry
JP2008068321A (en) Sod (slurry on demand) casting method and filling material
US20220017993A1 (en) Method and apparatus for processing a liquid alloy
JP4617756B2 (en) Method of charging molten powder