JP2005349276A - Cleaning method for fluorescent vessel - Google Patents

Cleaning method for fluorescent vessel Download PDF

Info

Publication number
JP2005349276A
JP2005349276A JP2004171195A JP2004171195A JP2005349276A JP 2005349276 A JP2005349276 A JP 2005349276A JP 2004171195 A JP2004171195 A JP 2004171195A JP 2004171195 A JP2004171195 A JP 2004171195A JP 2005349276 A JP2005349276 A JP 2005349276A
Authority
JP
Japan
Prior art keywords
glass
mercury
tube
glass tube
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004171195A
Other languages
Japanese (ja)
Other versions
JP4299191B2 (en
Inventor
Kazumi Ibuki
一省 伊吹
Michinori Hattori
道紀 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Kankyo Corp
Original Assignee
JFE Kankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Kankyo Corp filed Critical JFE Kankyo Corp
Priority to JP2004171195A priority Critical patent/JP4299191B2/en
Publication of JP2005349276A publication Critical patent/JP2005349276A/en
Application granted granted Critical
Publication of JP4299191B2 publication Critical patent/JP4299191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To apply appropriate and efficient mercury removal to crushed glass grain pieces when a fluorescent vessel is cleaned by discharging the fluorescent film and mercury from a glass pipe of the fluorescent vessel, thereafter, crushing the glass pipe and applying removal treatment of remaining mercury to the thus obtained crushed glass grain pieces. <P>SOLUTION: Compression gas is blown to an inner surface of the glass pipe of the fluorescent vessel 1 cut/removed with a base part from one end to the other end or a grinding material is blown with the compression gas and the fluorescent film coated on an inner surface of the glass pipe and the mercury filled in the glass pipe are discharged from the glass pipe. Then, the glass pipe 6 is cut to at least three parts of two end parts and one central part and the glass pipe is sorted to the end parts 8 and the central part 9 to recover them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、廃蛍光管をリサイクル使用するために行なう蛍光管の浄化処理方法に関するものである。   The present invention relates to a fluorescent tube purification method performed for recycling a used fluorescent tube.

現在、効率の良い照明灯として広く使用されている蛍光管(蛍光放電管)は、低圧水銀ランプに属するものである。この蛍光管は、円筒状ガラス管の内面に蛍光物質を塗布し、酸化バリウムなどの保護膜を表面に形成したタングステン2重フィラメント電極を円筒状ガラス管の両端部に取り付け、そのガラス管内を真空に減圧した後、少量の水銀とアルゴンガスとを封入したものである。そして、両端部の電極に通電して両電極間に電圧をかけ、ガラス管内で放電させることにより、管内の水銀ガスから遠紫外線を放射させ、この遠紫外線をガラス管内面に塗布した蛍光物質に照射して発光させている。   Currently, fluorescent tubes (fluorescent discharge tubes) that are widely used as efficient illumination lamps belong to low-pressure mercury lamps. In this fluorescent tube, a fluorescent substance is applied to the inner surface of a cylindrical glass tube, a tungsten double filament electrode having a protective film such as barium oxide formed on the surface is attached to both ends of the cylindrical glass tube, and the inside of the glass tube is evacuated. After depressurizing, a small amount of mercury and argon gas are sealed. Then, by energizing the electrodes at both ends and applying a voltage between the two electrodes and discharging in the glass tube, far ultraviolet rays are emitted from the mercury gas in the tube, and the far ultraviolet rays are applied to the fluorescent material applied to the inner surface of the glass tube. Irradiates and emits light.

蛍光管のガラス管に使用されているガラスは高品質であり、リサイクル処理すれば上質なガラスとして再利用可能であり、従って、大量に発生する使用済みの廃蛍光管からガラスを回収すれば、省資源や省エネルギーのみならず、廃棄物の減量化にも大いに貢献することになる。   The glass used in the glass tube of the fluorescent tube is of high quality and can be reused as a high-quality glass if it is recycled. Therefore, if the glass is recovered from the used waste fluorescent tube that is generated in large quantities, This will greatly contribute not only to resource and energy conservation but also to the reduction of waste.

しかし、前述したように、ガラス管の内面には蛍光物質が塗布されており、また、この蛍光物質には微量ではあるが、封入した水銀が付着している。これらが塗布・付着した状態のままでは、ガラス管をリサイクル使用することはできない。また、微量とはいえ蛍光管には水銀が封入されており、大量の廃蛍光管を破砕した場合には、大量の水銀が放出され、環境を害することになる。従って、廃蛍光管をリサイクル処理する場合には、蛍光物質のみならず水銀の除去・回収を行なう必要がある。   However, as described above, the fluorescent material is applied to the inner surface of the glass tube, and the fluorescent material is adhering to the enclosed mercury although it is a trace amount. The glass tube cannot be recycled if these are applied and adhered. In addition, although the amount is very small, mercury is sealed in the fluorescent tube. When a large amount of waste fluorescent tube is crushed, a large amount of mercury is released, which harms the environment. Therefore, when recycling the waste fluorescent tube, it is necessary to remove and collect not only the fluorescent material but also mercury.

そのため、従来から種々の方法でリサイクル処理が行なわれている。例えば、特許文献1には、廃蛍光管の両側の口金部分を除去する工程と、口金部分を除去した廃蛍光管のガラス管部の内部に気流を導入してガラス管内部の物質を除去する工程と、気流により前記物質を除去したガラス管部を破砕する工程と、破砕したガラス管部の破片を加熱して該破片から水銀を除去する工程と、を有する廃蛍光管の処理方法が提案されている。また、特許文献2には、廃蛍光管の両端を切断してガラス管部と電極部とに分離した後、ガラス管部の内部に圧縮気体を噴射させて蛍光膜及び水銀を排出させ、次いで、ガラス管部を破砕し、得られた破砕ガラス粒片を酸洗して破砕ガラス粒片に残留している水銀を除去する方法が提案されている。   Therefore, the recycling process has been conventionally performed by various methods. For example, in Patent Document 1, a step of removing the base portions on both sides of the waste fluorescent tube, and an air flow is introduced into the glass tube portion of the waste fluorescent tube from which the base portion has been removed to remove substances inside the glass tube. Proposing a method for treating a waste fluorescent tube comprising: a step, a step of crushing a glass tube part from which the substance has been removed by an air stream, and a step of heating mercury pieces from the broken glass tube part to remove mercury from the broken pieces Has been. In Patent Document 2, both ends of a waste fluorescent tube are cut and separated into a glass tube portion and an electrode portion, and then compressed gas is injected into the glass tube portion to discharge the fluorescent film and mercury, There has been proposed a method of crushing a glass tube part and pickling the obtained crushed glass particle pieces to remove mercury remaining in the crushed glass particle pieces.

特開平9−150138号公報JP-A-9-150138 特開2002−177935号公報JP 2002-177935 A

特許文献1及び特許文献2に示すように、従来、ガラス管内部の蛍光膜及び水銀を圧縮気体などの気流によって排出させた後に、更に、加熱処理或いは酸洗処理して残留する水銀を除去しており、しかも、破砕して得た破砕ガラス粒片を全て一括して加熱処理或いは酸洗処理しており、残留水銀の除去処理に費やすコストを増大させていた。   As shown in Patent Document 1 and Patent Document 2, conventionally, after the fluorescent film and mercury inside the glass tube are discharged by an air flow such as compressed gas, the remaining mercury is further removed by heat treatment or pickling treatment. In addition, all the pieces of crushed glass particles obtained by crushing are heat-treated or pickled, which increases the cost of residual mercury removal.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、蛍光管のガラス管の内部に圧縮気体を噴射する或いは圧縮気体と共に研掃材を噴射してガラス管から蛍光膜及び水銀を排出させ、その後、ガラス管を破砕し、得られた破砕ガラス粒片に対して残留する水銀の除去処理を施し、蛍光管を浄化するに際し、破砕ガラス粒片に対して適正で且つ効率的な水銀除去処理を施すことが可能となる蛍光管の浄化処理方法を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to inject a compressed gas into the glass tube of the fluorescent tube, or to inject a polishing material together with the compressed gas so as to fluoresce from the glass tube. The membrane and mercury are discharged, and then the glass tube is crushed. The obtained crushed glass particle pieces are subjected to the removal of residual mercury, and when purifying the fluorescent tube, the It is another object of the present invention to provide a fluorescent tube purification method that enables efficient mercury removal treatment.

本発明者等は、上記課題を解決すべく、圧縮気体を噴射させた後のガラス管内部に残留する水銀の分布を調査した。調査は、圧縮気体を噴射させた後のガラス管を長手方向に40mmの間隔で切断し、切断した各ガラス管を破砕した後に50%の硝酸で溶解し、硝酸中に溶解した水銀の含有量を測定した。   In order to solve the above problems, the present inventors investigated the distribution of mercury remaining inside the glass tube after the compressed gas was injected. The survey is to cut the glass tubes after jetting the compressed gas at intervals of 40 mm in the longitudinal direction, crush each cut glass tube, dissolve in 50% nitric acid, and the content of mercury dissolved in nitric acid Was measured.

その結果、図1に、40Wの直管型の廃蛍光管における残留水銀の分布状態の調査結果を示すように、ガラス管内部の水銀の残留量は、ガラス管の長手方向で均一ではなく、フィラメント電極が設置されていた口金部分の近傍で残留量が多く、口金部分から200mm程度離れた位置までに急激に減少し、蛍光管の中央部では少ないことが分かった。この傾向は、図1に示すように、圧縮空気の吹き込み側も、また圧縮空気の流出側も同様であり、圧縮空気の噴霧状態の差に起因するものではないことが確認できた。   As a result, as shown in FIG. 1, the residual mercury distribution in the glass tube is not uniform in the longitudinal direction of the glass tube, as shown in FIG. It was found that the residual amount was large in the vicinity of the base part where the filament electrode was installed, decreased rapidly to a position about 200 mm away from the base part, and small in the central part of the fluorescent tube. As shown in FIG. 1, this tendency was the same on the compressed air blowing side and the compressed air outlet side, and it was confirmed that this tendency was not caused by the difference in the spray state of the compressed air.

この調査結果から、ガラス管の部位に応じて破砕後のガラス粒片に残留する水銀の除去処理方法を変更することが可能であるとの知見を得た。換言すれば、水銀の残留量が少ないガラス管中央部の部位の破砕ガラス粒片は、口金部近傍の破砕ガラス粒片に比べて例えば酸洗時間を短縮するなどの軽度の水銀除去処理を施すこと、更には、水銀除去処理自体を省略することが可能であることが分かった。前述した特許文献1及び特許文献2では、圧縮気体によって蛍光膜及び水銀を排出させた後のガラス管部を一括して破砕し、破砕して得られた破砕ガラス粒片を一括して加熱処理或いは酸洗処理しており、中央部部分の破砕ガラス粒片に対しては過剰な浄化処理を施していること即ち無駄な浄化処理を施していることが伺える。   From this investigation result, the knowledge that it was possible to change the removal processing method of the mercury which remains in the glass particle piece after crushing according to the site | part of a glass tube was acquired. In other words, the crushed glass particle piece in the central portion of the glass tube where the residual amount of mercury is small is subjected to a mild mercury removal treatment such as shortening the pickling time compared to the crushed glass particle piece near the mouthpiece. In addition, it has been found that the mercury removal process itself can be omitted. In patent document 1 and patent document 2 mentioned above, the glass tube part after discharging | emitting fluorescent film and mercury with compressed gas is crushed collectively, and the crushed glass particle piece obtained by crushing is heat-processed collectively. Alternatively, it is pickled, and it can be seen that the crushed glass particle pieces in the central portion are subjected to excessive purification treatment, that is, wasteful purification treatment.

本発明は上記知見に基づいてなされたものであり、第1の発明に係る蛍光管の浄化処理方法は、口金部分が切断除去された蛍光管のガラス管内面に、一方の端部から他方の端部に向けて圧縮気体を吹き付ける或いは圧縮気体と共に研掃材を吹き付けて、ガラス管内面に塗布された蛍光膜及びガラス管内部に封入された水銀をガラス管から排出させ、次いで、当該ガラス管を2つの端部部分と1つの中央部部分との少なくとも3つの部分に切断し、ガラス管を端部部分と中央部部分とに分別して回収することを特徴とするものである。   The present invention has been made on the basis of the above knowledge, and the fluorescent tube purification method according to the first aspect of the present invention provides an inner surface of a fluorescent tube from which the base portion has been cut and removed, from one end to the other. A compressed gas is blown toward the end portion or a polishing material is blown together with the compressed gas, and the fluorescent film applied to the inner surface of the glass tube and mercury enclosed in the glass tube are discharged from the glass tube, and then the glass tube Is cut into at least three parts of two end parts and one central part, and the glass tube is separated into an end part and a central part and collected.

第2の発明に係る蛍光管の浄化処理方法は、口金部分が切断除去された蛍光管のガラス管内面に、一方の端部から他方の端部に向けて圧縮気体を吹き付ける或いは圧縮気体と共に研掃材を吹き付けて、ガラス管内面に塗布された蛍光膜及びガラス管内部に封入された水銀をガラス管から排出させ、次いで、当該ガラス管を2つの端部部分と1つの中央部部分との少なくとも3つの部分に切断し、ガラス管を端部部分と中央部部分とに分別して回収し、分別して回収したガラス管をそれぞれ別々に破砕すると共に、得られた破砕ガラス粒片に対して個別の水銀除去処理を施すことを特徴とするものである。   According to a second aspect of the present invention, there is provided a method for purifying a fluorescent tube, in which a compressed gas is blown from one end to the other end of a fluorescent tube from which a cap portion has been cut and removed, or polished together with the compressed gas. The scavenging material is sprayed to discharge the fluorescent film applied to the inner surface of the glass tube and the mercury enclosed in the glass tube from the glass tube, and then the glass tube is divided into two end portions and one central portion. Cut into at least three parts, and separate and collect the glass tube into the end part and the central part, crush each separately collected glass tube separately, and individually with respect to the obtained crushed glass particle pieces The mercury removal treatment is performed.

第3の発明に係る蛍光管の浄化処理方法は、口金部分が切断除去された蛍光管のガラス管内面に、一方の端部から他方の端部に向けて圧縮気体を吹き付ける或いは圧縮気体と共に研掃材を吹き付けて、ガラス管内面に塗布された蛍光膜及びガラス管内部に封入された水銀をガラス管から排出させ、次いで、当該ガラス管を2つの端部部分と1つの中央部部分との少なくとも3つの部分に切断し、ガラス管を端部部分と中央部部分とに分別して回収し、分別して回収したガラス管をそれぞれ別々に破砕し、ガラス管の端部部分から得られた破砕ガラス粒片は水銀除去処理を施した後にガラスカレットとしてリサイクルし、ガラス管の中央部部分から得られた破砕ガラス粒片は破砕した状態のままでガラスカレットとしてリサイクルすることを特徴とするものである。   According to a third aspect of the present invention, there is provided a method for purifying a fluorescent tube, wherein a compressed gas is blown from one end portion to the other end portion of the fluorescent tube from which the cap portion has been cut and removed, or polished together with the compressed gas. The scavenging material is sprayed to discharge the fluorescent film applied to the inner surface of the glass tube and the mercury enclosed in the glass tube from the glass tube, and then the glass tube is divided into two end portions and one central portion. Cut into at least three parts, separate and collect the glass tube into an end part and a central part, crush each separately collected glass tube, and obtain a crushed glass obtained from the end part of the glass tube Grain fragments are recycled as glass cullet after mercury removal treatment, and the crushed glass particles obtained from the central part of the glass tube are recycled as glass cullet in a crushed state. It is an.

第4の発明に係る蛍光管の浄化処理方法は、第1ないし第3の発明の何れかにおいて、前記蛍光管の長さが500mm以上であって、前記端部部分と中央部部分との境界位置を、口金から少なくとも200mm以上離れた位置とすることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided the fluorescent tube purification method according to any one of the first to third aspects, wherein the fluorescent tube has a length of 500 mm or more and a boundary between the end portion and the central portion. The position is at least 200 mm away from the base.

本発明によれば、圧縮気体或いは圧縮気体と研掃材とを噴射して内部の蛍光膜及び水銀を排出させたガラス管を、残留する水銀の多い、口金部分近傍の端部部分と、残留する水銀の少ない、ガラス管中央部部分との2つの部位に分別して回収するので、ガラス管に残留する水銀の量に応じた適正な水銀除去処理を施すことが可能となり、残留水銀の除去処理に要するコストの大幅な削減が達成されるなど工業上有益な効果がもたらされる。   According to the present invention, the compressed gas or the glass tube in which the compressed gas and the polishing material are jetted to discharge the internal fluorescent film and mercury, the residual mercury-rich end portion near the base portion, and the residual Because it collects and collects in two parts, the central part of the glass tube with less mercury, it is possible to perform an appropriate mercury removal process according to the amount of mercury remaining in the glass tube, and the residual mercury removal process Industrially beneficial effects such as a significant reduction in the cost required for the production are achieved.

以下、添付図面を参照して本発明を具体的に説明する。図2は、本発明に係る蛍光管の浄化処理方法の工程図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a process diagram of the fluorescent tube purification method according to the present invention.

図2に示すように、先ず、廃蛍光管などの蛍光管1を、ベルトコンベアなどの適宜の搬送装置(図示せず)を用いて密閉容器2の内部に装入する。密閉容器2の内部には、開口バーナー3、口金切断機4、及び、圧縮気体噴射装置5が設けられている。また、密閉容器2は、サイクロン或いはバグフィルターなどを備えた集塵設備17と連結しており、密閉容器2の内部の雰囲気ガス及び圧縮気体噴射装置5から噴射された気体は、集塵設備17に吸い込まれ、ガス中のダストは集塵物18として回収されるようになっている。即ち、密閉容器2は、蛍光管1に封入された水銀を外部の環境に放散させることなく、蛍光管1の内面の蛍光膜を剥離する装置であり、一方、集塵設備17は、蛍光管1の内部の水銀及び蛍光物質を集塵物18として回収する装置である。蛍光管1は、直管型蛍光管であってもまた環状型蛍光管であっても、どちらでも処理することができる。   As shown in FIG. 2, first, the fluorescent tube 1 such as a waste fluorescent tube is inserted into the sealed container 2 using an appropriate transport device (not shown) such as a belt conveyor. An open burner 3, a base cutting machine 4, and a compressed gas injection device 5 are provided inside the sealed container 2. Further, the sealed container 2 is connected to a dust collection equipment 17 equipped with a cyclone or a bag filter, and the atmospheric gas inside the sealed container 2 and the gas injected from the compressed gas injection device 5 are collected in the dust collection equipment 17. The dust in the gas is collected as a dust collection 18. That is, the sealed container 2 is a device that peels off the fluorescent film on the inner surface of the fluorescent tube 1 without diffusing mercury enclosed in the fluorescent tube 1 to the outside environment. 1 is an apparatus that collects mercury and a fluorescent substance in the inside of 1 as a dust collection object 18. The fluorescent tube 1 can be processed by either a straight fluorescent tube or a circular fluorescent tube.

密閉容器2の内部に搬入された蛍光管1は、先ず、開口バーナー3によってその管壁を貫通する孔が開けられ、蛍光管1の内部気密性が破壊される。蛍光管1の内部圧力は通常10-5気圧程度と低く、水銀はガス状態で存在する。従って、この気密性破壊により、その内部に密封されていた水銀の一部はガス状水銀のまま密閉容器2内に放出され、残部は液状化する。次いで、口金切断機4を用いて蛍光管1の両端部の口金部分を切断除去する。除去された口金部分は回収し、回収された口金部分から、常法によってアルミニウム、黄銅などの口金部金属16を回収し、リサイクル使用する。 The fluorescent tube 1 carried into the inside of the hermetic container 2 is first opened through the tube wall by the opening burner 3, and the internal airtightness of the fluorescent tube 1 is destroyed. The internal pressure of the fluorescent tube 1 is lower and usually about 10 -5 atmospheres, mercury present in the gas state. Therefore, due to this hermetic breakdown, a part of the mercury sealed inside is released into the sealed container 2 as gaseous mercury, and the remaining part is liquefied. Next, the base part at both ends of the fluorescent tube 1 is cut and removed by using the base cutting machine 4. The removed base portion is recovered, and the base metal 16 such as aluminum or brass is recovered from the recovered base portion by a conventional method and recycled.

このようにして両端部断面が開放されたガラス管の一方端部の内面に向けて、圧縮気体噴射装置5から圧縮気体を吹き込み、ガラス管の他端部から圧縮気体を噴出させ、ガラス管の内面に塗布された蛍光膜を剥離させて吹き飛ばす。ガラス管内の蛍光膜には、上述した蛍光管1の孔開け時に液化した水銀が混入・付着して含まれており、液化した水銀も蛍光膜と共に吹き飛ばされる。圧縮気体としては、コンプレッサー(図示せず)によって得られる圧縮空気や、ボンベに封入された圧縮窒素などを用いることができる。図2では、圧縮気体噴射装置5が密閉容器2の内部に設置されているが、コンプレッサー或いはボンベなどは密閉容器2の内部に配置する必要はなく、この場合の圧縮気体噴射装置5としては、吹き込み用ノズル及び吹き込み用ノズルに接続するガス配管となる。   In this way, the compressed gas is blown from the compressed gas injection device 5 toward the inner surface of one end portion of the glass tube whose both end sections are open, and the compressed gas is ejected from the other end portion of the glass tube. The fluorescent film applied to the inner surface is peeled off and blown away. The fluorescent film in the glass tube contains mercury liquefied when the above-described fluorescent tube 1 is pierced and adhered, and the liquefied mercury is also blown off together with the fluorescent film. As the compressed gas, compressed air obtained by a compressor (not shown) or compressed nitrogen sealed in a cylinder can be used. In FIG. 2, the compressed gas injection device 5 is installed inside the sealed container 2. However, the compressor or the cylinder need not be arranged inside the sealed container 2, and the compressed gas injection device 5 in this case is as follows. It becomes the gas piping connected to the nozzle for blowing and the nozzle for blowing.

この場合、蛍光膜の除去を促進させるために、圧縮気体に研掃材を混合し、圧縮気体と共に研掃材を吹き込むことが好ましい。用いる研掃材としては、ガラス管を破損させることなく、蛍光膜をガラス管から効率的に剥離させる観点から、粒径が50μm以上500μm以下であるガラスビーズを用いることが好ましく、更に、その際のガラス管内での圧縮気体の流速を、直管型蛍光管においては200m/秒以下、環状型蛍光管においては100m/秒以下となるように調整することが好ましい。研掃材は、集塵設備17によって蛍光粉及び水銀と分離されて回収され、繰り返し使用するものとする。   In this case, in order to promote the removal of the fluorescent film, it is preferable to mix the abrasive with the compressed gas and blow the abrasive with the compressed gas. As the polishing material to be used, it is preferable to use glass beads having a particle size of 50 μm or more and 500 μm or less from the viewpoint of efficiently peeling the fluorescent film from the glass tube without damaging the glass tube. It is preferable to adjust the flow rate of the compressed gas in the glass tube so that it is 200 m / second or less in a straight tube fluorescent tube and 100 m / second or less in a circular fluorescent tube. The polishing material is separated and collected from the fluorescent powder and mercury by the dust collection equipment 17, and is used repeatedly.

ガラス管の内面の蛍光膜が除去されて生成した、水銀を含有する蛍光粉は、密閉容器2内の雰囲気ガスと共に集塵設備17へ吸引される。また、密閉容器2内に放出されたガス状水銀も密閉容器2内の雰囲気ガスと共に集塵設備17へ吸引される。一方、内部の蛍光膜が剥離・除去されたガラス管部6は、ガラス管切断機7へ搬送される。   The fluorescent powder containing mercury generated by removing the fluorescent film on the inner surface of the glass tube is sucked into the dust collecting equipment 17 together with the atmospheric gas in the sealed container 2. In addition, gaseous mercury released into the sealed container 2 is also sucked into the dust collection facility 17 together with the atmospheric gas in the sealed container 2. On the other hand, the glass tube part 6 from which the internal fluorescent film has been peeled and removed is conveyed to the glass tube cutting machine 7.

集塵設備17により回収された蛍光粉及び水銀からなる集塵物18は、真空加熱装置19に装入されて加熱され、水銀は水銀蒸気となって凝縮器20に入り、ここで冷却されて金属水銀となり、水銀22が回収される。一方、真空加熱装置19からは、集塵物18から水銀が分離除去されて生成した蛍光粉21が回収される。回収される蛍光粉21としては、実質的に水銀が含まれない、品質上安全なものが安定して得られる。蛍光粉21及び水銀22は、それぞれリサイクル使用される。   The dust collection 18 made of the fluorescent powder and mercury collected by the dust collection equipment 17 is inserted into the vacuum heating device 19 and heated, and the mercury becomes mercury vapor and enters the condenser 20 where it is cooled. Mercury becomes mercury and mercury 22 is recovered. On the other hand, from the vacuum heating device 19, the fluorescent powder 21 generated by separating and removing mercury from the collected dust 18 is collected. As the recovered fluorescent powder 21, a quality-safe product that is substantially free of mercury can be stably obtained. Each of the fluorescent powder 21 and the mercury 22 is recycled.

集塵設備17から排出される排気ガス及び凝縮器20から排出される排気ガスは、例えば活性炭吸着塔(図示せず)などを経由して排気ガス中に含まれる微量の水銀が捕集された後、大気に放散される。   As for the exhaust gas discharged from the dust collection equipment 17 and the exhaust gas discharged from the condenser 20, a very small amount of mercury contained in the exhaust gas is collected via, for example, an activated carbon adsorption tower (not shown). Later, it is released into the atmosphere.

尚、密閉容器2は、その内部の雰囲気ガスが密閉容器2の外部に漏れて水銀汚染が発生しないこと、及び、密閉容器2からの雰囲気ガスの集塵設備17における吸引効率が低下しないことを満たしていればよく、従って、実質的に密閉される容器であればよい。また、開口バーナー3を装備することにより、蛍光管1の処理能力は向上するものの、開口バーナー3の機能を口金切断機4に持たせることも可能であり、開口バーナー3の設置を省略することもできる。開口バーナー3としては、例えば、水素バーナーが望ましい。   Note that the airtight container 2 does not cause mercury contamination due to the atmospheric gas leaking out of the airtight container 2, and that the suction efficiency of the atmospheric gas from the airtight container 2 in the dust collection facility 17 does not decrease. It is sufficient that the container is satisfied, and therefore, any container that is substantially sealed can be used. In addition, although the processing capability of the fluorescent tube 1 is improved by installing the opening burner 3, the function of the opening burner 3 can be provided to the base cutting machine 4, and the installation of the opening burner 3 is omitted. You can also. As the opening burner 3, for example, a hydrogen burner is desirable.

ガラス管切断器7では、ガラス管部6を、2つの端部部分と1つの中央部分との少なくとも3つの部分に切断し、切断したガラス管を端部部分8と中央部部分9とに分別して回収する。この場合に、端部部分8と中央部部分9との境界位置が口金から200mm以上離れた位置となるように、ガラス管部6の切断位置に留意する。尚、図2では、ガラス管切断機7が密閉容器2とは独立して配置されているが、ガラス管切断機7を密閉容器2の内部に配置しても構わない。   In the glass tube cutter 7, the glass tube part 6 is cut into at least three parts, two end parts and one central part, and the cut glass tube is divided into an end part 8 and a central part 9. Collect separately. In this case, attention is paid to the cutting position of the glass tube portion 6 so that the boundary position between the end portion 8 and the central portion 9 is at a position 200 mm or more away from the base. In FIG. 2, the glass tube cutting machine 7 is arranged independently of the sealed container 2, but the glass tube cutting machine 7 may be arranged inside the sealed container 2.

その後、得られた端部部分8及び中央部部分9を、それぞれ別々に破砕機10及び破砕機11を用いて破砕し、破砕ガラス粒片とする。端部部分8と中央部部分9とをそれぞれ別々に破砕するならば、破砕機10と破砕機11とは同一設備であってもよい。但し、端部部分8の破砕タイミングと中央部部分9の破砕タイミングとの間には、破砕機を清掃するなどして、端部部分8の破砕ガラス粒片と中央部部分9の破砕ガラス粒片とが極力混じり合わないようにすることが好ましい。このような混入防止対策を省略する観点からは、端部部分8及び中央部部分9の専用の破砕機を用いることが望ましい。   Thereafter, the obtained end portion 8 and central portion 9 are crushed separately using a crusher 10 and a crusher 11 to obtain pieces of crushed glass particles. If the end portion 8 and the central portion 9 are crushed separately, the crusher 10 and the crusher 11 may be the same equipment. However, between the crushing timing of the end portion 8 and the crushing timing of the central portion 9, the crushing glass particles of the end portion 8 and the crushing glass particles of the central portion 9 are cleaned by cleaning the crusher. It is preferable that the pieces are not mixed as much as possible. From the viewpoint of omitting such measures for preventing mixing, it is desirable to use dedicated crushers for the end portion 8 and the central portion 9.

この破砕工程においては、得られた破砕ガラス粒片の後処理工程に応じて破砕サイズを設定する。即ち、端部部分8は、圧縮気体の噴霧或いは圧縮気体と研掃材との噴霧のみでは水銀の残留量が多く、ガラスのリサイクル処理時に満たすべき環境基準を安定してクリアーすることが不可能であるので、微量に残留する水銀の除去工程を行なうことを前提として、環境基準のクリアーを必要十分条件とし、且つ、粉砕ガラスのリサイクルをできるだけ効率的に行なえる破砕サイズとする。中央部部分9は、圧縮気体と共に研掃材を噴霧した場合のように、圧縮気体噴射装置5による浄化処理のみで、ガラスのリサイクル処理時に満たすべき環境基準をクリアーすることが可能である場合には、破砕処理した後に直ちにリサイクル使用することが可能であり、従って、粉砕ガラス粒片のリサイクルをできるだけ効率的に行なえる破砕サイズとする。換言すれば、リサイクル使用の要望に沿ったサイズに破砕し、破砕された破砕ガラス粒片を、再生ガラス、軽量骨材、タイル或いは家具材用などに再利用することができるガラスカレット14Aとして回収する。但し、中央部部分9であっても、残留する水銀の除去工程を付加する必要がある場合には、端部部分8と同様に、環境基準のクリアーを必要十分条件とし、且つ、粉砕ガラスのリサイクルをできるだけ効率的に行なえる破砕サイズとする。   In this crushing process, a crushing size is set according to the post-processing process of the obtained crushing glass particle piece. That is, the end portion 8 has a large residual amount of mercury only by spraying a compressed gas or spraying a compressed gas and a polishing material, and it is impossible to stably clear the environmental standards to be satisfied during the glass recycling process. Therefore, on the premise that a process of removing a trace amount of mercury is performed, the environmental standard must be cleared as a necessary and sufficient condition, and the crushed glass can be recycled as efficiently as possible. The central portion 9 can be used when the environmental standard to be satisfied during the glass recycling process can be cleared only by the purification process by the compressed gas injection device 5 as in the case where the abrasive is sprayed together with the compressed gas. Can be recycled immediately after the crushing treatment, and therefore the crushing size is such that the crushed glass particles can be recycled as efficiently as possible. In other words, it is crushed to a size that meets the demand for recycling, and the crushed broken glass particles are recovered as glass cullet 14A that can be reused for recycled glass, lightweight aggregate, tile, furniture, etc. To do. However, even in the case of the central portion 9, if it is necessary to add a process for removing the remaining mercury, the environmental standard must be cleared as necessary and sufficient as in the end portion 8, and the ground glass Use a crushing size that can be recycled as efficiently as possible.

本実施の形態では、残留水銀の除去処理方法として、希釈酸による酸洗工程を行なうこととしており、この場合には、破砕機10による端部部分8の破砕ガラス粒片のサイズは、15mm以下のガラス粒片が95mass%以上を占めるように処理することが望ましい。中央部部分9の破砕ガラス粒片も、酸洗工程を実施するものに関しては、15mm以下のガラス粒片が95mass%以上を占めるように破砕することが望ましい。   In the present embodiment, as a method for removing residual mercury, a pickling process using diluted acid is performed. In this case, the size of the crushed glass particles at the end portion 8 by the crusher 10 is 15 mm or less. It is desirable to process so that a glass particle piece may occupy 95 mass% or more. It is desirable to crush the crushed glass particle pieces of the central portion 9 so that the glass particle pieces of 15 mm or less occupy 95 mass% or more when the pickling process is performed.

端部部分8の破砕ガラス粒片及び残留水銀の除去処理が必要な中央部部分9の破砕ガラス粒片を、酸洗装置12及び酸洗装置13に搬送し、それぞれ別々に酸洗処理を施す。酸洗装置12,13は、希釈酸によって破砕ガラス粒片に残留している微量の水銀及び蛍光粉を酸洗除去し、清浄化された破砕ガラス粒片を得て、再生ガラス、軽量骨材、タイル或いは家具材用などに再利用することができるガラスカレット14,14Aを回収することを目的とする装置である。仮に、破砕ガラス粒片に環境基準による水銀の溶出量上限値である0.005mg/lを上回る量の水銀が残留していても、酸洗装置12,13により、この残留水銀溶出量を安定して0.005mg/l以下に下げることができる。尚、端部部分8の破砕ガラス粒片と中央部部分9の破砕ガラス粒片とを別々に酸洗処理するならば、酸洗装置自体は同一設備であっても何ら構わない。   The crushed glass particle pieces at the end portion 8 and the crushed glass particle pieces at the central portion 9 that require residual mercury removal processing are transported to the pickling device 12 and the pickling device 13 and are separately pickled. . The pickling devices 12 and 13 pickle and remove a small amount of mercury and fluorescent powder remaining in the crushed glass particles by diluting acid to obtain a cleaned crushed glass particles, and use recycled glass and lightweight aggregate. This is an apparatus for collecting glass cullet 14, 14A that can be reused for tiles or furniture. Even if the amount of mercury that exceeds the upper limit of 0.005 mg / l, the mercury elution amount according to the environmental standards, remains in the crushed glass particles, the remaining mercury elution amount is stabilized by the pickling devices 12 and 13. And can be lowered to 0.005 mg / l or less. In addition, if the crushed glass particle piece of the edge part 8 and the crushed glass particle piece of the center part 9 are separately pickled, the pickling apparatus itself may be the same equipment.

酸洗処理は、残留水銀の溶出量が0.005mg/l以下となるように施す必要があり、従って、残留水銀量の多い端部部分8の破砕ガラス粒片に対して施す酸処理と、端部部分8に比べて残留水銀量の少ない中央部部分9の破砕ガラス粒片に対して施す酸洗処理とは、酸洗条件を変えて行なうことができる。即ち、中央部部分9の破砕ガラス粒片に対しては、端部部分8の破砕ガラス粒片に比較して軽度の酸洗処理を施すことができる。   The pickling treatment needs to be applied so that the residual mercury elution amount is 0.005 mg / l or less, and therefore, the acid treatment applied to the crushed glass particle pieces of the end portion 8 having a large residual mercury amount, The pickling treatment applied to the crushed glass particle pieces of the central portion 9 having a small amount of residual mercury as compared with the end portion 8 can be performed by changing pickling conditions. That is, the crushed glass particle piece in the central portion 9 can be subjected to a mild pickling treatment as compared with the crushed glass particle piece in the end portion 8.

ここで、酸洗処理の条件について説明する。酸洗条件のなかで、酸の種類、酸濃度、酸洗液の温度、及び酸洗処理時間が特に重要である。酸洗液の温度は高いほど酸洗速度が速くなるが、酸洗作業を安全なものにするために、酸洗液の温度は常温で行なうことが望ましい。酸の種類としては、扱い易さ及び廃酸処理の容易さの観点から、塩酸または硝酸或いは硫酸が望ましく、特に、水銀の除去効果に優れること、並びに、ハンドリング及び排水処理の容易さの観点から、塩酸を用いることが好ましい。また、酸濃度及び処理時間としては、水銀残留量が溶出量で0.03〜0.09mg/l程度の場合に、破砕ガラス粒片のサイズが15mm以下のものが95mass%以上を占める場合を基準として、常温且つ静止浴中での浸漬酸洗の場合に、塩酸を用いた場合には、1.0規定以上更に望ましくは1.5規定の希釈塩酸に2時間以上浸漬することが望ましい。これ以下の塩酸濃度では、残留水銀の溶出量を安定して0.005mg/l以下に下げることが困難となる。水銀残留量が、溶出量で上記の0.03〜0.09mg/lよりも増えた場合には、残留水銀の溶出量が安定して0.005mg/l以下になるように、酸洗処理時間を延長する必要があり、一方、水銀残留量が、溶出量で上記の0.03〜0.09mg/lよりも減少した場合には、2時間以上浸漬する必要はなく、酸洗処理時間を短縮することができる。また、硝酸或いは硫酸を用いた場合にも、塩酸を用いた場合とほぼ同じ条件で行なうことができる。   Here, the conditions of the pickling process will be described. Among the pickling conditions, the type of acid, the acid concentration, the temperature of the pickling solution, and the pickling time are particularly important. The higher the temperature of the pickling solution, the higher the pickling speed. However, in order to make the pickling operation safe, it is desirable that the temperature of the pickling solution is room temperature. As the type of acid, hydrochloric acid, nitric acid or sulfuric acid is desirable from the viewpoint of ease of handling and waste acid treatment, and in particular, from the viewpoint of excellent mercury removal effect and ease of handling and wastewater treatment. It is preferable to use hydrochloric acid. As the acid concentration and treatment time, when the residual amount of mercury is about 0.03 to 0.09 mg / l in terms of the elution amount, the size of the crushed glass particles occupies 95 mass% or more when the size is 15 mm or less. As a standard, when hydrochloric acid is used in immersion pickling in a normal temperature and still bath, it is desirable to immerse in diluted hydrochloric acid of 1.0 N or more, more preferably 1.5 N or more for 2 hours or more. If the hydrochloric acid concentration is less than this, it will be difficult to stably reduce the elution amount of residual mercury to 0.005 mg / l or less. When the amount of residual mercury increases from 0.03 to 0.09 mg / l in the amount of elution, pickling treatment is performed so that the amount of residual mercury eluted is stably 0.005 mg / l or less. It is necessary to extend the time. On the other hand, when the residual mercury amount is less than 0.03 to 0.09 mg / l in the amount of elution, it is not necessary to immerse for 2 hours or more, and the pickling time Can be shortened. Further, when nitric acid or sulfuric acid is used, the reaction can be performed under substantially the same conditions as when hydrochloric acid is used.

従って、端部部分8の破砕ガラス粒片及び中央部部分9の破砕ガラス粒片に残留する水銀の量を酸洗処理前に測定しておくことで、端部部分8の破砕ガラス粒片及び中央部部分9の破砕ガラス粒片に対して、それぞれ残留水銀量に応じた適切な酸洗処理を施すことが可能となる。また、蛍光管の種類毎に求めた残留水銀に関するデータなどを収集することで、残留水銀量を測定しなくても、収集したデータに基づき経験的に適切な酸洗処理を施すことも可能となる。   Therefore, by measuring the amount of mercury remaining in the crushed glass particle pieces of the end portion 8 and the crushed glass particle pieces of the central portion 9 before pickling, the crushed glass particle pieces of the end portion 8 and An appropriate pickling process according to the amount of residual mercury can be applied to the crushed glass particle pieces of the central portion 9. In addition, by collecting data on residual mercury determined for each type of fluorescent tube, it is possible to perform appropriate pickling treatment empirically based on the collected data without measuring the amount of residual mercury. Become.

酸洗後、使用した廃酸を中和すると共に、酸中に溶出した水銀を硫化水銀などの不溶化水銀15として回収し、回収した不溶化水銀15は廃棄処分とする。酸洗した破砕ガラス粒片は、水洗して酸を除去した後、自然乾燥や強制乾燥など適宜の乾燥処理が施され、ガラスカレット14,14Aとしてリサイクル使用に供せられる。このようにして蛍光管1のリサイクル処理が行なわれる。尚、上記説明では、残留水銀の除去処理方法として酸洗処理を実施しているが、加熱処理など他の水銀除去方法であってもよい。   After pickling, the spent acid used is neutralized, and mercury eluted in the acid is recovered as insolubilized mercury 15 such as mercury sulfide, and the recovered insolubilized mercury 15 is disposed of. The crushed glass particle pieces that have been pickled are washed with water to remove the acid, and then subjected to an appropriate drying treatment such as natural drying or forced drying, and are subjected to recycling as glass cullet 14, 14A. In this way, the fluorescent tube 1 is recycled. In the above description, the pickling treatment is performed as a residual mercury removal treatment method, but other mercury removal methods such as heat treatment may be used.

以上説明したように、本発明に係る蛍光管の浄化処理方法によれば、内部の蛍光膜及び水銀を排出させたガラス管部6を、残留する水銀の多い端部部分8と残留する水銀の少ない中央部部分9との2つに分別して回収するので、ガラス管に残留する水銀の量に応じた適正な水銀除去処理を施すことが可能となり、残留水銀の除去処理に要するコストを大幅に削減することができる。   As described above, according to the fluorescent tube purification method according to the present invention, the inner fluorescent film and the glass tube portion 6 from which mercury has been discharged are separated from the remaining mercury-rich end portion 8 and the remaining mercury. Since it is separated and collected into two parts with a small central part 9, it becomes possible to perform an appropriate mercury removal process according to the amount of mercury remaining in the glass tube, greatly increasing the cost required for the residual mercury removal process Can be reduced.

5種類の40Wの直管型廃蛍光管に対し、開口バーナーによってその管壁に孔を開け、次いで、口金切断機を用いて廃蛍光管の両端部の口金部分を切断除去した。そして、このガラス管の内部に、研掃材としてのガラスビードを圧縮空気と共に吹き付け、蛍光膜及び水銀を排出させた。このようにして準備したガラス管を口金部側から100mm毎の間隔で切断し、更に、切断したガラス管を15mm以下のものが95mass%以上を占めるように破砕し、得られた破砕ガラス粒片のうちで口金部から0〜100mmの範囲のもの、口金部から300〜400mmの範囲のもの、口金部から500〜600mmの範囲のものについて、水による残留水銀の溶出試験を行なった。溶出試験は、破砕ガラス粒片の質量に対して10倍の質量の水に破砕ガラス粒片を6時間浸漬させて実施した。その試験結果を表1に示す。尚、水銀の溶出量が環境基準の0.005mg/l以下であるならば、破砕ガラス粒片に対して更なる水銀除去の工程を実施する必要はない。   Holes were made in the wall of the five types of 40 W straight tube type waste fluorescent tubes with an open burner, and then the base portions at both ends of the waste fluorescent tube were cut and removed using a base cutter. Then, a glass bead as a polishing material was sprayed together with the compressed air inside the glass tube to discharge the fluorescent film and mercury. The glass tube thus prepared was cut at intervals of 100 mm from the base part side, and the cut glass tube was further crushed so that 15 mm or less accounted for 95 mass% or more, and the obtained crushed glass particle pieces Among them, the elution test of residual mercury with water was performed on the one in the range of 0 to 100 mm from the base part, the one in the range of 300 to 400 mm from the base part, and the one in the range of 500 to 600 mm from the base part. The dissolution test was carried out by immersing the crushed glass particles in water having a mass 10 times the mass of the crushed glass particles for 6 hours. The test results are shown in Table 1. In addition, if the elution amount of mercury is 0.005 mg / l or less of the environmental standard, it is not necessary to carry out a further mercury removing step on the crushed glass particle pieces.

Figure 2005349276
Figure 2005349276

表1に示すように、蛍光管の種類により残留水銀による水銀溶出量の絶対値は異なるものの、水銀溶出量は、口金部近傍で高く、蛍光管の中央部側で低くなることが分かった。表1には、これら5種類の蛍光管における水銀溶出量の単純平均値(数量を同一とした平均値)も示しており、口金部近傍の破砕ガラス粒片は残留水銀の除去処理工程が必要であることが確認できた。一方、口金部から300〜400mmの範囲では、水銀溶出量の単純平均値は0.0026mg/lであり、これら5種類の廃蛍光管を略均等に混合した場合には、破砕ガラス粒片に対して更なる水銀除去の工程を実施する必要がないことが確認できた。   As shown in Table 1, although the absolute value of the mercury elution amount due to residual mercury differs depending on the type of the fluorescent tube, it was found that the mercury elution amount is high near the base portion and low at the central portion side of the fluorescent tube. Table 1 also shows the simple average value (average value with the same quantity) of the mercury elution amount in these five types of fluorescent tubes, and the crushed glass particles near the base part require a removal process of residual mercury. It was confirmed that. On the other hand, in the range of 300 to 400 mm from the base part, the simple average value of the mercury elution amount is 0.0026 mg / l, and when these five kinds of waste fluorescent tubes are mixed almost uniformly, On the other hand, it was confirmed that it was not necessary to carry out a further mercury removal process.

これらの結果から、圧縮空気及び研掃材により清浄化されたガラス管部を口金部から略300mmの位置で切断し、回収した端部部分には酸洗処理して残留水銀を除去した後にガラスカレットとしてリサイクル使用し、一方、回収した中央部部分は破砕した後そのままガラスカレットとしてリサイクル使用した。   From these results, the glass tube part cleaned with compressed air and abrasive is cut at a position of about 300 mm from the base part, and the collected end part is pickled to remove residual mercury and then glass. On the other hand, the collected central part was recycled as glass cullet after being crushed.

尚、蛍光管No.5は、表1に示すように残留水銀の量が他の蛍光管に比べて若干多いので、処理する廃蛍光管のなかで蛍光管No.5の比率が高くなる場合や、蛍光管No.5のみを処理する場合には、残留水銀の処理方法を変更する必要があることも分かった。   As shown in Table 1, the fluorescent tube No. 5 has a slightly higher amount of residual mercury than other fluorescent tubes, so that the ratio of the fluorescent tube No. 5 among the waste fluorescent tubes to be processed becomes high. It has also been found that when only the fluorescent tube No. 5 is processed, it is necessary to change the residual mercury processing method.

40Wの直管型の廃蛍光管における残留水銀の分布状態の調査結果を示す図である。It is a figure which shows the investigation result of the distribution state of the residual mercury in a 40 W straight tube | pipe type waste fluorescent tube. 本発明に係る蛍光管の浄化処理方法の工程図である。It is process drawing of the purification processing method of the fluorescent tube which concerns on this invention.

符号の説明Explanation of symbols

1 蛍光管
2 密閉容器
3 開口バーナー
4 口金切断機
5 圧縮気体噴射装置
6 ガラス管部
7 ガラス管切断機
8 端部部分
9 中央部部分
10 破砕機
11 破砕機
12 酸洗装置
13 酸洗装置
14 ガラスカレット
15 不溶化水銀
16 口金部金属
17 集塵設備
18 集塵物
19 真空加熱装置
20 凝縮器
21 蛍光粉
22 水銀
DESCRIPTION OF SYMBOLS 1 Fluorescent tube 2 Airtight container 3 Opening burner 4 Cap cutting machine 5 Compressed gas injection apparatus 6 Glass tube part 7 Glass tube cutting machine 8 End part 9 Center part 10 Crusher 11 Crusher 12 Pickling apparatus 13 Pickling apparatus 14 Glass cullet 15 Insolubilized mercury 16 Base metal 17 Dust collector 18 Dust collector 19 Vacuum heating device 20 Condenser 21 Fluorescent powder 22 Mercury

Claims (4)

口金部分が切断除去された蛍光管のガラス管内面に、一方の端部から他方の端部に向けて圧縮気体を吹き付ける或いは圧縮気体と共に研掃材を吹き付けて、ガラス管内面に塗布された蛍光膜及びガラス管内部に封入された水銀をガラス管から排出させ、次いで、当該ガラス管を2つの端部部分と1つの中央部部分との少なくとも3つの部分に切断し、ガラス管を端部部分と中央部部分とに分別して回収することを特徴とする、蛍光管の浄化処理方法。   Fluorescence applied to the inner surface of the glass tube by blowing a compressed gas from one end to the other end of the fluorescent tube from which the base portion has been cut and removed, or by spraying a polishing material together with the compressed gas. The mercury enclosed in the membrane and the glass tube is discharged from the glass tube, and then the glass tube is cut into at least three parts, two end parts and one central part, The fluorescent tube purification method is characterized in that it is separated into a central portion and collected. 口金部分が切断除去された蛍光管のガラス管内面に、一方の端部から他方の端部に向けて圧縮気体を吹き付ける或いは圧縮気体と共に研掃材を吹き付けて、ガラス管内面に塗布された蛍光膜及びガラス管内部に封入された水銀をガラス管から排出させ、次いで、当該ガラス管を2つの端部部分と1つの中央部部分との少なくとも3つの部分に切断し、ガラス管を端部部分と中央部部分とに分別して回収し、分別して回収したガラス管をそれぞれ別々に破砕すると共に、得られた破砕ガラス粒片に対して個別の水銀除去処理を施すことを特徴とする、蛍光管の浄化処理方法。   Fluorescence applied to the inner surface of the glass tube by blowing a compressed gas from one end to the other end of the fluorescent tube from which the base portion has been cut and removed, or by spraying a polishing material together with the compressed gas. The mercury enclosed in the membrane and the glass tube is discharged from the glass tube, and then the glass tube is cut into at least three parts, two end parts and one central part, The fluorescent tube is characterized in that it is separated into a central portion and collected, and the glass tubes collected by separation are crushed separately and subjected to individual mercury removal treatment on the obtained crushed glass particle pieces. Purification treatment method. 口金部分が切断除去された蛍光管のガラス管内面に、一方の端部から他方の端部に向けて圧縮気体を吹き付ける或いは圧縮気体と共に研掃材を吹き付けて、ガラス管内面に塗布された蛍光膜及びガラス管内部に封入された水銀をガラス管から排出させ、次いで、当該ガラス管を2つの端部部分と1つの中央部部分との少なくとも3つの部分に切断し、ガラス管を端部部分と中央部部分とに分別して回収し、分別して回収したガラス管をそれぞれ別々に破砕し、ガラス管の端部部分から得られた破砕ガラス粒片は水銀除去処理を施した後にガラスカレットとしてリサイクルし、ガラス管の中央部部分から得られた破砕ガラス粒片は破砕した状態のままでガラスカレットとしてリサイクルすることを特徴とする、蛍光管の浄化処理方法。   Fluorescence applied to the inner surface of the glass tube by blowing a compressed gas from one end to the other end of the fluorescent tube from which the base portion has been cut and removed, or by spraying a polishing material together with the compressed gas. The mercury enclosed in the membrane and the glass tube is discharged from the glass tube, and then the glass tube is cut into at least three parts, two end parts and one central part, The glass tube collected separately is crushed separately, and the glass fragments obtained from the end of the glass tube are recycled as glass cullet after mercury removal treatment. And the crushed glass particle piece obtained from the center part of the glass tube is recycled as a glass cullet in a crushed state, and is a fluorescent tube purification method. 前記蛍光管の長さが500mm以上であって、前記端部部分と中央部部分との境界位置を、口金から少なくとも200mm以上離れた位置とすることを特徴とする、請求項1ないし請求項3の何れか1つに記載の蛍光管の浄化処理方法。   The length of the fluorescent tube is 500 mm or more, and the boundary position between the end portion and the central portion is at least 200 mm or more away from the die. The fluorescent tube purification method according to any one of the above.
JP2004171195A 2004-06-09 2004-06-09 Purification method of fluorescent tube Expired - Fee Related JP4299191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171195A JP4299191B2 (en) 2004-06-09 2004-06-09 Purification method of fluorescent tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171195A JP4299191B2 (en) 2004-06-09 2004-06-09 Purification method of fluorescent tube

Publications (2)

Publication Number Publication Date
JP2005349276A true JP2005349276A (en) 2005-12-22
JP4299191B2 JP4299191B2 (en) 2009-07-22

Family

ID=35584171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171195A Expired - Fee Related JP4299191B2 (en) 2004-06-09 2004-06-09 Purification method of fluorescent tube

Country Status (1)

Country Link
JP (1) JP4299191B2 (en)

Also Published As

Publication number Publication date
JP4299191B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP3332380B2 (en) Method for decomposing a sealed glass body containing harmful substances into renewable components
US4715838A (en) Apparatus for recovering fluorescent material from mercury vapor discharge lamps
EP2857352B1 (en) System and method for xenon recovery
RU2001112760A (en) The method of cleaning material (options) and a device for its implementation
TWI802721B (en) Method for crushing semiconductor raw material or method for producing cracks and method for manufacturing semiconductor raw material block
JP5100156B2 (en) Method for recovering glass substrates of waste liquid crystal panels
JP2544871B2 (en) How to clean coated CRT glass
WO1996029157A1 (en) Method and system for mechanical separation of various materials/substances from disposed fluorescent light tubes and similar lamps being crushed
CN103889138B (en) Plasma discharge device
JP4299191B2 (en) Purification method of fluorescent tube
JP4469291B2 (en) Fluorescent tube glass purification method and purification equipment, and waste fluorescent tube recycling method
JP2004057957A (en) Apparatus and method for removing phosphor film of fluorescent tube and method of recycling used fluorescent tube
JP4469267B2 (en) Fluorescent tube glass purification method
JP2000117201A (en) Washer and washing method
JP2002177935A (en) Treatment method and treatment equipment for waste fluorescent tube
US6637098B2 (en) Waste fluorescent lamp dismantling apparatus
JP3387424B2 (en) Waste fluorescent lamp processing method and processing apparatus
US6869327B2 (en) Method for recovering fluorescent material from faulty glass bodies of discharge lamps
JP4258144B2 (en) How to remove mercury from waste fluorescent tubes
JP2004188304A (en) Method for removing fluorescent film of fluorescent tube and method for recycling waste fluorescent tube
JP2009056438A (en) Recovery method and recovery apparatus of glass
JPH09150138A (en) Waste fluorescent tube treatment
JP4766494B2 (en) Glass collection method
JP2006075658A (en) Plasma treatment method of insulating nanoparticle and plasma treatment apparatus
CN209901007U (en) DDBD plasma peculiar smell treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Ref document number: 4299191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees