JP2005348497A - Driving force controller at braking for electric motor vehicle - Google Patents

Driving force controller at braking for electric motor vehicle Download PDF

Info

Publication number
JP2005348497A
JP2005348497A JP2004164234A JP2004164234A JP2005348497A JP 2005348497 A JP2005348497 A JP 2005348497A JP 2004164234 A JP2004164234 A JP 2004164234A JP 2004164234 A JP2004164234 A JP 2004164234A JP 2005348497 A JP2005348497 A JP 2005348497A
Authority
JP
Japan
Prior art keywords
vehicle
braking
driving force
time
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004164234A
Other languages
Japanese (ja)
Inventor
Takeshi Fujita
武志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004164234A priority Critical patent/JP2005348497A/en
Publication of JP2005348497A publication Critical patent/JP2005348497A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress generation of pitch behavior in a car body caused by the swing-back of nose-dive, immediately after braking. <P>SOLUTION: In step S1, whether a vehicle is in a braking state or not is judged. In the next step S2, when the vehicle is in the braking state, whether the vehicle speed is in a state near stoppage immediate before stop or not is judged. In the next step S3, when the vehicle is in the state near stoppage, whether the vehicle is in an emergency braking operation or not is judged. In the next step S4, when the vehicle is not in the emergency braking operation, driving force control at the time of braking is started. In the driving force control at the time of braking, a motor controller 8 computes the additional drive force of a sine waveform to output the additional drive force Sin of the computed sine waveform to a motor control unit 6 as a command value. The generation start time t<SB>0</SB>and the stoppage time t<SB>2</SB>of the additional drive force Sin are computed from detected vehicle speed and deceleration speed G1. As a result, a vehicle 21 gradually approaches 0 immediate before stoppage, after maintaining a first deceleration speed G1 at the initial stage of the state near stoppage, making the deceleration speed G to 0 at the stoppage time t<SB>2</SB>to stop the vehicle. When the vehicle speed and the deceleration speed reach 0 at the stoppage time t<SB>2</SB>, step S4 is advanced to step S5, completing the driving force control at the time of braking of the step S4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電動モータの高い応答性を活かし、制動直後の揺り戻しにより、車体にピッチ挙動が生じることを抑制する技術に関するものである。   The present invention relates to a technique for making use of the high responsiveness of an electric motor to suppress the occurrence of pitch behavior in a vehicle body due to swinging back immediately after braking.

車両が制動により停止するとき、一般にブレーキ機構による減速度は停止時に至るまで一定継続するため、停止直後にはノーズダイブの揺り戻しが発生するという問題がある。
このノーズダイブの揺り戻しは、車両の前輪を懸架するサスペンション装置の固有振動と相俟って、バウンドおよびリバウンドを繰り返すピッチ挙動を生じさせ、乗り心地性能を悪化させる。制動時の減速度と、このピッチ挙動について図5(a)(b)にタイムチャートで示す。
When the vehicle stops due to braking, the deceleration by the brake mechanism generally continues until the stop, so that there is a problem that nose dive swings back immediately after stopping.
This nose dive rocking, combined with the natural vibration of the suspension device that suspends the front wheels of the vehicle, causes pitch behavior that repeats bouncing and rebounding, and deteriorates ride comfort performance. FIG. 5A and FIG. 5B are time charts showing the deceleration during braking and the pitch behavior.

一般には図5(a)に示すように、制動に因る減速度Gは、車両が停止する停止時刻tに至るまでG1で継続し、停止時刻tで断続的に変化して0となる。このため車両のピッチ挙動は、図5(b)に示すように、車両は停止時刻tまではピッチ角φがφ1の前下がりの姿勢+[deg]を維持しノーズダイブする。そして停止時刻t以降はピッチ角φが一旦、0を経て前上がりの姿勢-[deg]となり、ノーズダイブの揺り戻しが生じる。その後、ピッチ角φは増減を繰り返しながら減衰する。 As shown in FIG. 5 (a) in general, the deceleration G due to braking continues with G1 until the stop time t 1 at which the vehicle is stopped, and 0 to intermittently changed at the stop time t 1 Become. Pitch behavior Therefore vehicle, as shown in FIG. 5 (b), the vehicle is to stop time t 1 pitch angle φ is nose dive to maintain the posture + [deg] of the previous edge of .phi.1. After the stop time t 1, the pitch angle φ once passes through 0 and becomes a forward rising posture − [deg], and the nose dive swings back. Thereafter, the pitch angle φ is attenuated while repeatedly increasing and decreasing.

ノーズダイブの揺り戻しおよび停止後のピッチ挙動を抑制する発明しては従来、例えば特許文献1に記載のものが知られている。
特許文献1に記載の先行車追従制御装置は、先行車両に追従して停止する際にブレーキ機構に因る減速度を緩和することにより、ノーズダイブ量を少なくしてその揺り戻しの発生を防止する。
特開2001−30795号公報
Conventionally, for example, the one described in Patent Document 1 is known as an invention for suppressing the pitch behavior after nose dive swinging back and stopping.
The preceding vehicle follow-up control device described in Patent Document 1 reduces the nose dive amount and prevents the swing-back from occurring by relaxing the deceleration caused by the brake mechanism when stopping following the preceding vehicle. To do.
JP 2001-30795 A

しかし、上記従来のような先行車追従制御装置にあっては、以下に説明するような問題を生ずる。つまり上記従来のような先行車追従制御装置において制動力を発生させるブレーキ油圧機構は、制御非線形性が大きく、また応答時定数が大きいため、ピッチ挙動に正確に追従することが出来ず、揺り戻しを完全に防止することが困難である。   However, the preceding vehicle follow-up control device as described above causes problems as described below. In other words, the brake hydraulic mechanism that generates the braking force in the preceding vehicle follow-up control device as described above has a large control nonlinearity and a large response time constant, so it cannot accurately follow the pitch behavior and rebounds. Is difficult to completely prevent.

一方、産業用の電動モータのうち、SRモータ等の応答性は一般に、100Hz以上の応答性があることが知られており、電気自動車用のモータにおいても同程度の応答性で制御することができる。このため、数[msec]の間隔でトルクを制御することが可能である。
本発明は、電気自動車の駆動モータが有する高い応答性能に着目し、当該モータを介した高応答な駆動力制御により、停止直後に発生する上記のピッチ挙動を効果的に抑制することができる技術を提案するものである。
On the other hand, among industrial electric motors, it is known that the responsiveness of SR motors and the like is generally responsive to 100 Hz or more, and even motors for electric vehicles can be controlled with similar responsiveness. it can. For this reason, it is possible to control the torque at intervals of several [msec].
This invention pays attention to the high response performance which the drive motor of an electric vehicle has, and the technique which can suppress effectively said pitch behavior generate | occur | produced immediately after a stop by the high response drive force control via the said motor. This is a proposal.

この目的のため本発明による電動車両の制動時駆動力制御装置は、請求項1に記載のごとく、
車両を停止するために車輪に制動力を付与するブレーキ手段と、車輪を駆動するモータとを具えた電動車両において、
該ブレーキ手段による制動中の車速および減速度を検出する手段と、検出した車速および減速度に応じて、車両の停止直後に発生する車体のピッチ挙動を抑制するような車輪の付加駆動力を算出する付加駆動力算出手段と、
該付加駆動力が車輪に付与されるよう前記モータの駆動力を制御するモータ駆動力制御手段とを具備することを特徴としたものである。
For this purpose, the braking force driving force control apparatus for an electric vehicle according to the present invention is as described in claim 1.
In an electric vehicle comprising brake means for applying a braking force to a wheel to stop the vehicle, and a motor for driving the wheel,
Means for detecting the vehicle speed and deceleration during braking by the brake means, and calculating an additional driving force of the wheel that suppresses the pitch behavior of the vehicle body that occurs immediately after the vehicle stops according to the detected vehicle speed and deceleration. Additional driving force calculating means for
And a motor driving force control means for controlling the driving force of the motor so that the additional driving force is applied to the wheels.

かかる本発明の電動車両の制動時駆動力制御装置によれば、停止直前の減速度Gが断続的に0とならないようにすることが可能であるため、ノーズダイブの揺り戻しによるピッチ挙動の発生を防止することができる。   According to the braking force driving force control apparatus for an electric vehicle of the present invention, the deceleration G immediately before the stop can be prevented from intermittently becoming zero, and therefore, the generation of pitch behavior due to the nose dive swinging back. Can be prevented.

以下、本発明の実施の形態を図面に基づき詳細に説明する。
図1は本発明の一実施の形態になる制動時駆動力制御装置を具えた電動車両(電気自動車)の全体構成を模式的に示す平面図である。
電動車両21は前後左右に合計4個の車輪1,2,3,4を具える。このうち後輪3,4はモータ5により駆動される。モータ5はモータ制御器6を介して駆動用電源7と接続する。モータ制御器6はモータ5への供給電力を制御することによりモータ5の駆動力制御を行う。モータコントローラ8は通常の走行に必要な目標駆動力の指令値を算出して、算出した指令値tTをモータ制御器6へ出力する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view schematically showing an overall configuration of an electric vehicle (electric vehicle) including a braking driving force control device according to an embodiment of the present invention.
The electric vehicle 21 has a total of four wheels 1, 2, 3, 4 on the front, rear, left and right. Of these, the rear wheels 3 and 4 are driven by a motor 5. The motor 5 is connected to a driving power source 7 via a motor controller 6. The motor controller 6 controls the driving force of the motor 5 by controlling the power supplied to the motor 5. The motor controller 8 calculates a command value of the target driving force necessary for normal traveling and outputs the calculated command value tT to the motor controller 6.

車両21の制動は、車輪1,2,3,4にそれぞれ設けた油圧式のブレーキ装置11,12,13,14により行う。制動時にはブレーキ装置11,12,13,14が、運転者のブレーキ操作量に応じた減速度Gとなるよう、車輪1,2,3,4を制動し、車両21が停止するまで、車両21に後述する減速度G1を作用せしめる。   The vehicle 21 is braked by hydraulic brake devices 11, 12, 13, and 14 provided on the wheels 1, 2, 3, and 4, respectively. During braking, the vehicles 21, 12, 13, 14 brake the wheels 1, 2, 3, 4 so that the deceleration G according to the driver's braking operation amount is reached, and the vehicle 21 stops until the vehicle 21 stops. A deceleration G1, which will be described later, is applied.

またモータコントローラ8は、車両21の停止時において上述した本発明の目的である制動時の駆動力制御を実行する。
そのためモータコントローラ8には、車両21の車速を検出する車速センサ9からの信号vspと、図示しないブレーキペダルの踏み込みを検出するブレーキスイッチ10からの信号on/offと、前後方向の減速度を検出する減速度センサ15からの信号Gとをそれぞれ入力する。
The motor controller 8 executes the driving force control during braking, which is the object of the present invention described above, when the vehicle 21 is stopped.
Therefore, the motor controller 8 detects the signal vsp from the vehicle speed sensor 9 that detects the vehicle speed of the vehicle 21, the signal on / off from the brake switch 10 that detects depression of a brake pedal (not shown), and the longitudinal deceleration. The signal G from the deceleration sensor 15 to be input is input.

モータコントローラ8は定時割り込みにより、遅くとも10[msec]の制御周期毎にこれら入力情報を読み込み、これらの入力情報を基に、図2にフローチャートで示す制御プログラムを実行して、後述する駆動力制御を実行する。   The motor controller 8 reads these input information at every control cycle of 10 [msec] at the latest by the scheduled interruption, and executes the control program shown in the flowchart in FIG. Execute.

まずステップS1では、ブレーキペダルが踏み込まれているかどうかを判断する。ブレーキペダルが踏み込まれていない場合(No)、本制御を終了し、引き続きブレーキ操作を監視する。踏み込み中の場合(Yes)、車両21には後述の減速度G1およびピッチ角φが作用するため、ステップS2へ進む。
次のステップS2では、車速が停止直前の停止近傍状態かどうかを判断する。当該判断は車速が、例えば5[km/h]の所定値以下であるかどうかを判断することにより行う。車速が5[km/h]を越えており、停止近傍状態ではないと判断した場合(No)、本制御を終了し、ステップS1へ戻る。
First, in step S1, it is determined whether the brake pedal is depressed. If the brake pedal is not depressed (No), this control is terminated and the brake operation is continuously monitored. If the vehicle is being depressed (Yes), a deceleration G1 and a pitch angle φ, which will be described later, act on the vehicle 21, and the process proceeds to step S2.
In the next step S2, it is determined whether or not the vehicle speed is in the vicinity of the stop just before the stop. This determination is made by determining whether the vehicle speed is equal to or less than a predetermined value of, for example, 5 [km / h]. If the vehicle speed exceeds 5 [km / h] and it is determined that the vehicle is not in the vicinity of the stop (No), this control is terminated and the process returns to step S1.

停止近傍状態であると判断した場合(Yes)ステップS3へ進み、緊急ブレーキ操作中かどうかを判断する。当該判断は例えば、減速度センサ15の検出値が通常のブレーキ減速度の上限である0.3[G]を越えるかどうか判断することにより行う。減速度センサ15の検出値が0.3[G]を越える場合(Yes)、運転者は緊急ブレーキ操作中であるためフルブレーキ(全制動)状態を必要とし、後述する制動時駆動力制御を実行することは望ましくない。このため、本制御を終了し、ステップS1へ戻る。なお、[G]は重力加速度の単位である。   If it is determined that the vehicle is in the vicinity of a stop (Yes), the process proceeds to step S3, where it is determined whether an emergency brake operation is being performed. This determination is made, for example, by determining whether the detection value of the deceleration sensor 15 exceeds 0.3 [G], which is the upper limit of the normal brake deceleration. When the detected value of the deceleration sensor 15 exceeds 0.3 [G] (Yes), the driver is in an emergency brake operation and therefore needs a full brake (full braking) state, and executes a braking driving force control described later. That is not desirable. For this reason, this control is complete | finished and it returns to step S1. [G] is a unit of gravity acceleration.

減速度センサ15の検出値が0.3[G]以下の場合(No)、運転者は通常のブレーキ操作中であるから(No)、次のステップS4で制動時駆動力制御を開始する。
制動時駆動力制御について、タイムチャートに基づき説明する。
モータコントローラ8は、正弦波形の付加駆動力を算出して、算出した正弦波形の付加駆動力Sinを指令値tTとしてモータ制御器6へ出力する。付加駆動力Sinの発生開始時刻tは、本発明の制動時駆動力制御を実行しない場合の車両の停止時刻tよりも前とする。付加駆動力Sinの大きさ並びに本制御の開始時刻tおよび停止時刻tは、検出した車速および減速度G1から算出する。開始時刻tは停止時刻tよりも約0.05秒前とする。
When the detected value of the deceleration sensor 15 is 0.3 [G] or less (No), the driver is in a normal braking operation (No), so the driving force control during braking is started in the next step S4.
The braking driving force control will be described based on a time chart.
The motor controller 8 calculates an additional driving force having a sine waveform and outputs the calculated additional driving force Sin having a sine waveform to the motor controller 6 as a command value tT. Generation start time t 0 of the additional driving force Sin is the before stop time t 1 of the vehicle when not running braking driving force control of the present invention. Start time t 0 and stop time t 2 in size as well as the control of the additional driving force Sin is calculated from the detected vehicle speed and deceleration G1. Start time t 0 is about 0.05 seconds before the stop time t 2.

車両のピッチ挙動は車種毎の固有値であり、通常の乗用自動車では5〜20Hz、一般には約10Hzである。このため、ノーズダイブ状態からピッチ角φ=0に戻るようになす本実施例の駆動力制御では、ピッチ挙動の一般的な固有値である10Hzすなわち、0.1秒周期の半周期分である0.05秒に基づき、開始時刻tとする。
なお、ピッチ挙動の固有値が10Hzではない場合に0.05秒で駆動力制御を実行したとしても、車両停止時刻t直後に発生するピッチ挙動は微少であり、搭乗者の乗り心地性能を悪化させるまでには至らない。勿論、車種毎にピッチ挙動の固有振動数を求める実験を行い、実験結果に基づき開始時刻tを定めてもよい。
比較のため、図3(a)には従来の減速度であって、本制御を行わない場合の減速度G1を細線で示す。
The pitch behavior of the vehicle is an eigenvalue for each vehicle type, and is 5 to 20 Hz for a normal passenger car, and generally about 10 Hz. For this reason, in the driving force control of the present embodiment in which the pitch angle φ returns to 0 from the nose dive state, 10 Hz which is a general eigenvalue of the pitch behavior, that is, 0 which is a half cycle of a 0.1 second cycle. based on the .05 seconds, the start time t 0.
Incidentally, even if the eigenvalues of pitching behavior executes the driving force control in 0.05 seconds if not 10 Hz, the pitch activity that occurs immediately after the vehicle stop time t 2 is very small, deteriorating the ride comfort of the passenger It doesn't come to let me. Of course, conducted experiments to determine the natural frequency of pitching behavior for each vehicle model, it may be determined start time t 0 based on experimental results.
For comparison, FIG. 3A shows a conventional deceleration, and the deceleration G1 when this control is not performed is indicated by a thin line.

停止近傍状態で制動中の電動車両21に付加駆動力Sinを与えることにより、車両21の減速度Gは、図3(a)に示すように、停止近傍状態の初期で最初の減速度G1を維持した後、停止直前で滑らかに0に近づき、tに続く停止時刻tで0になるとともに車両を停止せしめる。 By applying the additional driving force Sin to the electric vehicle 21 being braked in the vicinity of the stop, the deceleration G of the vehicle 21 is set to the initial deceleration G1 in the initial state in the vicinity of the stop as shown in FIG. after maintaining smoothly approaches zero immediately before stop, allowed to stop the vehicle with becomes 0 at the stop time t 2 subsequent to t 1.

上記の制動時駆動力制御を実行した結果である車両21のピッチ挙動を、従来のピッチ挙動と比較して図3(b)のタイムチャートで示す。
従来においては、上記図3(a)および図5(a)に細線で示すように、減速度Gが停止時刻tに至るまでG1を持続し、車両の停止と同時に、断続的に0となる。このため、図3(b)および図5(b)の細線に示すように、制動中、車両の停止に至るまでは、ピッチ角がφ1[deg]のまま車両の前部が沈み込んだノーズダイブを維持し、車両の停止直後からは、ピッチ角が正負側に振動しながら減衰し、車両の前部がバウンドおよびリバウンドする。
本実施例においては、停止直前の減速度GをG1から滑らかに0となすとともに、減速度が0になった時点tで車両を停止せしめる。このため、図3(b)の太線に示すように、制動中、停止近傍状態で、ピッチ角φも初期値φ1から滑らかに0に至り、車両が停止する。したがって制動中の初期にノーズダイブしていた車両の前部は停止近傍状態の時刻tから復元を開始し、車両の停止(停止時刻t)後もピッチ角を0に保ったままバウンドおよびリバウンドすることがない。
The pitch behavior of the vehicle 21 as a result of executing the above-described braking driving force control is shown in the time chart of FIG. 3B in comparison with the conventional pitch behavior.
In the prior art, as shown by the thin line in FIG. 3 (a) and FIG. 5 (a), the deceleration G is sustained G1 until the stop time t 1, the vehicle stops at the same time, the intermittent 0 Become. Therefore, as shown by the thin lines in FIGS. 3 (b) and 5 (b), the nose in which the front portion of the vehicle sinks while the pitch angle is φ1 [deg] until the vehicle is stopped during braking. The dive is maintained, and immediately after the vehicle stops, the pitch angle attenuates while vibrating in the positive and negative directions, and the front part of the vehicle bounces and rebounds.
In the present embodiment, together with the smooth form 0 deceleration G immediately before stopping the G1, allowed to stop the vehicle at the time point t 2 when the deceleration is zero. For this reason, as indicated by the thick line in FIG. 3B, the pitch angle φ smoothly reaches 0 from the initial value φ1 in the vicinity of the stop during braking, and the vehicle stops. Accordingly, the front part of the vehicle that has been nose dive in the early stage of braking starts to be restored from time t 0 in the vicinity of the stop, and after the vehicle stops (stop time t 2 ) Never rebound.

停止時刻tにて車速および減速度が0となると、ステップS5へ進み、上記ステップS4の制動時駆動力制御を終了し、図2に示した本制御を終了する。 When the vehicle speed and the deceleration becomes 0 at stop time t 2, the process proceeds to step S5, and ends the braking driving force control in step S4, the control is terminated as shown in FIG.

ところで本実施例においては、上述のように制動中の車速および減速度を検出するセンサ車速センサ9および減速度センサ15と、
これら検出した車速および減速度G1に応じて、停止直後に発生する車体のピッチ挙動を抑制するような正弦波形の付加駆動力Sinを算出するモータコントローラ8と、
付加駆動力Sinが車輪3,4に付与されるようモータ5の駆動力を制御するモータ制御器6とを具備するため、
従来のように油圧式ブレーキ機構のみにより減速度Gを制御することなく、駆動モータ5を用いて高応答の制御を実現することができる。したがって、停止直後に発生する車両21のピッチ挙動を効果的に抑制することができる。
By the way, in the present embodiment, as described above, the vehicle speed sensor 9 and the deceleration sensor 15 that detect the vehicle speed and deceleration during braking,
A motor controller 8 that calculates an additional driving force Sin having a sine waveform that suppresses the pitch behavior of the vehicle body that occurs immediately after the stop according to the detected vehicle speed and deceleration G1;
A motor controller 6 for controlling the driving force of the motor 5 so that the additional driving force Sin is applied to the wheels 3 and 4;
High-response control can be realized by using the drive motor 5 without controlling the deceleration G only by a hydraulic brake mechanism as in the prior art. Therefore, the pitch behavior of the vehicle 21 that occurs immediately after stopping can be effectively suppressed.

また、本実施例では、上記ステップS2で停止近傍状態であると判断したときに、モータ制御器6が正弦波形の付加駆動力Sinを車輪3,4に付与して、停止時の減速度Gを滑らかに0となすことから、
車両21が停止する直前の時刻tで本制御を開始し、車両のピッチ挙動における一般的な個有値に基づく制御を行うことが可能になる。したがって、減速度Gを連続的に低減させて停止時刻t2で0にすることが可能となり、制御の精度を高めて、効果的に車両のピッチ挙動を抑制することができるとともに、ピッチ角φをφ1から0へスムーズに変化させることができる。
Further, in this embodiment, when it is determined in step S2 that the vehicle is in the vicinity of the stop, the motor controller 6 applies the additional driving force Sin having a sinusoidal waveform to the wheels 3 and 4 to reduce the deceleration G during the stop. From 0 to smooth,
Start this control at time t 0 immediately before the vehicle 21 is stopped, it is possible to perform a control based on a standard number chromatic values in the pitch movement of the vehicle. Accordingly, the deceleration G can be continuously reduced to 0 at the stop time t2, the control accuracy can be improved, the vehicle pitch behavior can be effectively suppressed, and the pitch angle φ can be reduced. It can be changed smoothly from φ1 to 0.

なお、本実施例においては、請求項1のブレーキ手段を、油圧式ブレーキ装置11,12,13,14のみにより構成するが、本実施例のほか、モータ5が回生側で制動力を車輪3,4に付与するようになし、油圧式ブレーキ装置11,12,13,14およびモータ5が請求項1のブレーキ手段を構成するものであってもよい。
具体的には、車両21の停止時には、モータコントローラ8がモータ5を回生制御して、油圧式ブレーキ装置11,12,13,14による制動力Goおよびモータ5の回生制動力Gmを併用して、停止近傍状態の減速度G1(=Go+Gm)を発生させる。そして、停止直前の時刻tで、モータコントローラ8は、モータ5の回生制動力Gmと正弦波形の付加駆動力Sinを合算した値を指令値としてモータ制御器6へ出力する。その後、付加駆動力Sinが回生制動力Gmを上回ると、付加駆動力Sinがブレーキ装置11,12,13,14による制動力Goを正弦波形となるよう滑らかに0に近づけ、停止時刻tで減速度Gを0になして、車両21を停止せしめる。これにより、上記図3(a)(b)に示したものと同様の効果を得ることができる。
In this embodiment, the brake means of claim 1 is constituted only by the hydraulic brake devices 11, 12, 13, and 14. However, in addition to this embodiment, the motor 5 provides the braking force on the regeneration side on the wheel 3 side. , 4, the hydraulic brake devices 11, 12, 13, 14 and the motor 5 may constitute the brake means of claim 1.
Specifically, when the vehicle 21 is stopped, the motor controller 8 regeneratively controls the motor 5 and uses the braking force Go by the hydraulic brake devices 11, 12, 13, and 14 and the regenerative braking force Gm of the motor 5 in combination. Then, the deceleration G1 (= Go + Gm) near the stop is generated. Then, at time t 0 immediately before the stop, the motor controller 8 outputs a value obtained by adding the regenerative braking force Gm of the motor 5 and the additional driving force Sin having a sine waveform to the motor controller 6 as a command value. Thereafter, the additional driving force Sin exceeds the regenerative braking force Gm, smoothly close to zero so that additional driving force Sin is a sinusoidal waveform braking force Go by the brake device 11, 12, 13, 14, at stop time t 2 Deceleration G is set to 0 and the vehicle 21 is stopped. Thereby, the same effects as those shown in FIGS. 3A and 3B can be obtained.

図3(a)に示した上記の実施例について付言すると、減速度GをG1から滑らかに0となすため、車両21の停止時刻tが、本制御を行わない場合の停止時刻tに対して僅かではあるが遅延する。
そこで、この遅延を解消することができる本発明の他の実施例になる制動時駆動力制御について説明する。
他の実施例になる制動時駆動力制御についても、上記図1に示した電動車両21と同様の電動車両において、上記図2に示した制御プログラムと同様の基本構成を有する制御プログラムを実行するため、上記実施例と共通する部分については説明を省略し、異なる制御部分について説明する。
すなわち本実施例では、上記ステップS4で、車輪3,4に付与する付加駆動力を一旦制動側にした後に駆動側とするものである。
When an additional note for the above embodiment shown in FIG. 3 (a), since the smooth forms and zero deceleration G from G1, stop time t 2 of the vehicle 21, the stop time t 1 of the case without the control On the other hand, there is a slight delay.
Therefore, the braking-time driving force control according to another embodiment of the present invention capable of eliminating this delay will be described.
As for the driving force control during braking according to another embodiment, a control program having the same basic configuration as the control program shown in FIG. 2 is executed in the same electric vehicle as the electric vehicle 21 shown in FIG. Therefore, description of parts common to the above embodiment will be omitted, and different control parts will be described.
That is, in this embodiment, in step S4, the additional driving force applied to the wheels 3 and 4 is once set on the braking side and then set on the driving side.

つまり、モータコントローラ8は、まず、図4(a)に太線で示すように正弦波形の付加制動力を算出して、時刻tから時刻tまで算出した正弦波形の付加制動力および減速度G1を合算した値を指令値としてモータ制御器6へ出力する。
次に、図4(a)に太線で示すように正弦波形の付加駆動力Sinを算出して、時刻t4
から停止時刻t1まで算出した正弦波形の付加駆動力Sinを指令値としてモータ制御器6へ出力する。
正弦波形の付加制動力Sinの発生開始時刻tは、車両の停止時刻tよりも前とする。これに続く正弦波形の付加駆動力Sinの発生開始時刻tも、車両の停止時刻tよりも前とする。本制御による付加制動力の開始時刻tおよび終了時刻tは、検出した車速および減速度G1から算出する。開始時刻tは停止時刻tよりも約0.05秒前とする。
That is, the motor controller 8 first calculates the additional braking force of a sine wave as indicated by a thick line in FIG. 4 (a), additional braking force and deceleration of the sinusoidal waveform calculated from time t 3 to time t 4 The sum of G1 is output to the motor controller 6 as a command value.
Next, as shown by a thick line in FIG. 4A, a sinusoidal additional driving force Sin is calculated and time t 4 is calculated.
From outputs an additional driving force Sin sinusoidal calculated to stop time t 1 to the motor controller 6 as a command value.
Generation start time t 3 of the additional braking force Sin sine waveform, and before the stop time t 1 of the vehicle. Generation start time t 4 of the additional driving force Sin sinusoidal followed also, and before the stop time t 1 of the vehicle. Start time t 3 and the end time t 4 of the additional braking force according to the control is calculated from the detected vehicle speed and deceleration G1. Start time t 3 is about 0.05 seconds before the stop time t 1.

制動中の電動車両21において正弦波形制動力および正弦波形駆動力Sinを与えることにより、停止近傍状態で減速度Gは、図4(a)に示すように最初の減速度G1を維持した後、一旦Gmaxまで増大し、その後減少して停止直前で滑らかに0に近づき、停止時刻tで0となって、車両を停止せしめる。 By applying a sinusoidal braking force and a sinusoidal driving force Sin in the electric vehicle 21 being braked, the deceleration G in the vicinity of the stop is maintained at the initial deceleration G1 as shown in FIG. It once increases to Gmax, then decreases and approaches 0 smoothly just before stopping, and becomes 0 at stop time t 1 to stop the vehicle.

上記別の実施例になる制動時駆動力制御を実行した結果である車両21のピッチ挙動を、従来のピッチ挙動と比較して図4(b)のタイムチャートで示す。
従来においては、上記図4(a)および図5(a)に細線で示すように減速度Gが、停止時刻tに至るまで減速度G1を持続し、車両の停止と同時に、断続的に0となる。このため、図4(b)および図5(b)の細線に示すように、制動中、車両の停止に至るまでは、ピッチ角φがφ1[deg]のまま車両の前部が沈み込んだノーズダイブを維持し、車両の停止直後からは、ピッチ角φが正負側に振動しながら減衰し、車両の前部がバウンドおよびリバウンドする。
The pitch behavior of the vehicle 21 as a result of executing the braking driving force control according to another embodiment is shown in the time chart of FIG. 4B in comparison with the conventional pitch behavior.
Conventionally, the deceleration G, as shown in FIG. 4 (a) and thin lines in Fig. 5 (a), sustained deceleration G1 until the stop time t 1, the vehicle stops at the same time, intermittently 0. For this reason, as shown by the thin lines in FIGS. 4B and 5B, the front portion of the vehicle sinks while the pitch angle φ remains φ1 [deg] until the vehicle stops during braking. The nose dive is maintained, and immediately after the vehicle stops, the pitch angle φ is attenuated while vibrating positively and negatively, and the front portion of the vehicle bounces and rebounds.

上記別の実施例においては、図4(a)で停止直前の減速度GをG1から一旦Gmaxまで増大させた後、滑らかに0となすとともに、減速度Gが0になった時点で車両を停止せしめる。このため、上述および図4(b)に示すとおり、ピッチ挙動φを抑制することができることに加え、車両21の停止時刻を、従来の停止時刻tと同じにすることができ、停止が遅延することがない。なお、図4(a)で、一旦減速度GをGmaxまで増大させたことから、ピッチ角もφ1から一旦増大するとも考えられるが、ピッチ挙動は減速度Gの変化に対して、応答性が低く、応答遅れとなるため、ピッチ角φが一旦増大することはない。 In another embodiment, the deceleration G immediately before stopping in FIG. 4 (a) is increased from G1 to Gmax, and then is smoothly set to 0. When the deceleration G becomes 0, the vehicle is Stop it. Therefore, as shown in above and 4 (b), in addition to being able to suppress the pitch activity phi, the stop time of the vehicle 21, can be the same as conventional stop time t 1, stop delay There is nothing to do. In FIG. 4 (a), since the deceleration G is once increased to Gmax, it is considered that the pitch angle also increases once from φ1, but the pitch behavior is responsive to the change in the deceleration G. Since it is low and the response is delayed, the pitch angle φ does not increase once.

このように上記他の実施例においては、停止近傍状態の時刻tから時刻tまで、モータ制御器6が正弦波形の付加制動力を車輪3,4に付与するため、
本発明の目的であるピッチ挙動の抑制を奏し得られ、かつ、停止の遅延が生じないことから、安全上益するところ大なるものである。
In the another embodiment in this manner, until the time t 4 from the time t 3 the stop near state, the motor controller 6 to provide additional braking force of the sine wave to the wheels 3 and 4,
Since the pitch behavior, which is the object of the present invention, can be suppressed, and there is no delay in stoppage, there is a great advantage in terms of safety.

本発明の一実施の形態になる制動時駆動力制御装置を具えた電動車両の全体構成を模式的に示す平面図である。1 is a plan view schematically showing an overall configuration of an electric vehicle including a braking-time driving force control device according to an embodiment of the present invention. 同実施例で実行する制動時駆動力制御の制御プログラムを示すフローチャートである。It is a flowchart which shows the control program of the driving force control at the time of braking performed in the Example. 同実施例で実行する制動時駆動力制御の動作タイムチャートであり、 (a)は車両の減速度Gを、 (b)は車両のピッチ角φを示す。It is an operation | movement time chart of the driving force control at the time of braking performed in the Example, (a) shows the deceleration G of the vehicle, (b) shows the pitch angle φ of the vehicle. 本発明の他の実施例で実行する制動時駆動力制御の動作タイムチャートであり、 (a)は車両の減速度Gを、 (b)は車両のピッチ角φを示す。It is an operation | movement time chart of the driving force control at the time of braking performed in the other Example of this invention, (a) shows the deceleration G of a vehicle, (b) shows the pitch angle (phi) of a vehicle. 本発明の制動時駆動力制御を実行しない従来の動作タイムチャートであり、 (a)は車両の減速度Gを、 (b)は車両のピッチ角φを示す。It is the conventional operation | movement time chart which does not perform the driving force control at the time of braking of this invention, (a) shows the deceleration G of a vehicle, (b) shows the pitch angle (phi) of a vehicle.

符号の説明Explanation of symbols

1,2,3,4 車輪
5 モータ(回生ブレーキ装置)
6 モータ制御器
7 電力源
8 コントロールユニット
9 車速センサ
10 ブレーキスイッチ
11,12,13,14 ブレーキ装置
15 減速度センサ
1, 2, 3, 4 Wheel 5 Motor (Regenerative brake device)
6 Motor controller 7 Power source 8 Control unit 9 Vehicle speed sensor 10 Brake switch 11, 12, 13, 14 Brake device 15 Deceleration sensor

Claims (3)

車両を停止するために車輪に制動力を付与するブレーキ手段と、車輪を駆動するモータとを具えた電動車両において、
該ブレーキ手段による制動中の車速および減速度を検出する手段と、検出した車速および減速度に応じて、車両の停止直後に発生する車体のピッチ挙動を抑制するような車輪の付加駆動力を算出する付加駆動力算出手段と、
該付加駆動力が車輪に付与されるよう前記モータの駆動力を制御するモータ駆動力制御手段とを具備することを特徴とする電動車両の制動時駆動力制御装置。
In an electric vehicle comprising brake means for applying a braking force to a wheel to stop the vehicle, and a motor for driving the wheel,
Means for detecting the vehicle speed and deceleration during braking by the brake means, and calculating an additional driving force of the wheel that suppresses the pitch behavior of the vehicle body that occurs immediately after the vehicle stops according to the detected vehicle speed and deceleration. Additional driving force calculating means for
A braking force driving force control device for an electric vehicle, comprising: motor driving force control means for controlling the driving force of the motor so that the additional driving force is applied to the wheels.
請求項1に記載の制動時駆動力制御装置において、
前記制動中であって車両が停止する直前の走行状態である停止近傍状態で、前記モータ駆動力制御手段が、前記付加駆動力を車輪に付与して停止時の減速度を滑らかに0となすよう前記モータの駆動力を制御することを特徴とする電動車両の制動時駆動力制御装置。
The braking-time driving force control device according to claim 1,
The motor driving force control means applies the additional driving force to the wheels to smoothly reduce the deceleration at the time of stopping in the vicinity of the stop, which is the running state immediately before the vehicle stops during the braking. A braking force driving force control apparatus for an electric vehicle characterized by controlling the driving force of the motor.
請求項2に記載の制動時駆動力制御装置において、
前記停止近傍状態で、前記モータが付加制動力を車輪に付与することを特徴とする電動車両の制動時駆動力制御装置。
The braking-time driving force control device according to claim 2,
A braking force driving force control apparatus for an electric vehicle, wherein the motor applies an additional braking force to the wheels in the vicinity of the stop.
JP2004164234A 2004-06-02 2004-06-02 Driving force controller at braking for electric motor vehicle Withdrawn JP2005348497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164234A JP2005348497A (en) 2004-06-02 2004-06-02 Driving force controller at braking for electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164234A JP2005348497A (en) 2004-06-02 2004-06-02 Driving force controller at braking for electric motor vehicle

Publications (1)

Publication Number Publication Date
JP2005348497A true JP2005348497A (en) 2005-12-15

Family

ID=35500365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164234A Withdrawn JP2005348497A (en) 2004-06-02 2004-06-02 Driving force controller at braking for electric motor vehicle

Country Status (1)

Country Link
JP (1) JP2005348497A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080013379A (en) * 2006-08-08 2008-02-13 현대자동차주식회사 Scull of automobile nose-down prevention system
WO2008111436A1 (en) * 2007-03-05 2008-09-18 Yokohama National University Device and method for controlling pitching of automobile
JP2013107635A (en) * 2011-11-22 2013-06-06 Messier-Bugatti-Dowty Braking management process of aircraft for limiting pitch
KR101449213B1 (en) * 2012-12-31 2014-10-08 현대자동차주식회사 Anti-nose down torque control method for fuel cell vehicle
KR101485757B1 (en) 2006-05-23 2015-01-26 지멘스 악티엔게젤샤프트 Method for braking electrically driven vehicles
JP2015074369A (en) * 2013-10-10 2015-04-20 日産自動車株式会社 Longitudinal acceleration control device
JPWO2013111743A1 (en) * 2012-01-25 2015-05-11 日産自動車株式会社 Vehicle control apparatus and vehicle control method
WO2021145390A1 (en) * 2020-01-17 2021-07-22 株式会社アドヴィックス Braking control device
CN114643962A (en) * 2022-03-31 2022-06-21 上汽通用五菱汽车股份有限公司 Vehicle brake control method and device and computer equipment
WO2024065227A1 (en) * 2022-09-27 2024-04-04 华为技术有限公司 Brake control method and related device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485757B1 (en) 2006-05-23 2015-01-26 지멘스 악티엔게젤샤프트 Method for braking electrically driven vehicles
KR20080013379A (en) * 2006-08-08 2008-02-13 현대자동차주식회사 Scull of automobile nose-down prevention system
WO2008111436A1 (en) * 2007-03-05 2008-09-18 Yokohama National University Device and method for controlling pitching of automobile
JP2013107635A (en) * 2011-11-22 2013-06-06 Messier-Bugatti-Dowty Braking management process of aircraft for limiting pitch
JPWO2013111743A1 (en) * 2012-01-25 2015-05-11 日産自動車株式会社 Vehicle control apparatus and vehicle control method
KR101449213B1 (en) * 2012-12-31 2014-10-08 현대자동차주식회사 Anti-nose down torque control method for fuel cell vehicle
US9043063B2 (en) 2012-12-31 2015-05-26 Hyundai Motor Company Anti-nose down torque control system and method for vehicle
JP2015074369A (en) * 2013-10-10 2015-04-20 日産自動車株式会社 Longitudinal acceleration control device
WO2021145390A1 (en) * 2020-01-17 2021-07-22 株式会社アドヴィックス Braking control device
DE112021000579T5 (en) 2020-01-17 2022-12-01 Advics Co., Ltd. BRAKE CONTROL DEVICE
JP7318541B2 (en) 2020-01-17 2023-08-01 株式会社アドヴィックス Braking control device
CN114643962A (en) * 2022-03-31 2022-06-21 上汽通用五菱汽车股份有限公司 Vehicle brake control method and device and computer equipment
CN114643962B (en) * 2022-03-31 2023-03-14 上汽通用五菱汽车股份有限公司 Vehicle brake control method and device and computer equipment
WO2024065227A1 (en) * 2022-09-27 2024-04-04 华为技术有限公司 Brake control method and related device

Similar Documents

Publication Publication Date Title
JP6990115B2 (en) Motor vehicle control device, motor vehicle control system, and motor vehicle control method
JP4876534B2 (en) Vehicle braking / driving force control device
JP5540894B2 (en) Vehicle vibration suppression control device
JP6104460B2 (en) Vehicle control apparatus and vehicle control method
JP5533405B2 (en) Vehicle braking / driving force control device
WO2011148739A1 (en) Vibration-damping control device for vehicle
US8725379B2 (en) Vehicle body vibration damping control device
JPWO2009142079A1 (en) Vehicle turning behavior control apparatus / method
WO2019160010A1 (en) Vehicle control method, and control device for vehicle system and vehicle
WO2019151207A1 (en) Vehicular control method, vehicular system, and vehicular control device
JP2005348497A (en) Driving force controller at braking for electric motor vehicle
JP2008265722A (en) Driving support device and driving support method
JP4443547B2 (en) Understeer suppression device
JP2005343397A (en) Braking force control device for vehicle
CN114258365B (en) In-vehicle actuator control method and in-vehicle actuator control device
JP5752724B2 (en) Vehicle turning control device
WO2015045436A1 (en) Regeneration cooperative brake control device
JP6015312B2 (en) Vehicle control device
JP2007195386A (en) Driving force controller of electric vehicle and driving force control method of car and electric vehicle
JP6443395B2 (en) Stabilizer control device
JP6233203B2 (en) Electric vehicle motor control device
JP2006298094A (en) Vehicle stopping and holding apparatus
JP5912673B2 (en) Electronically controlled throttle device
US20200216046A1 (en) Vehicle control device
JP5304300B2 (en) Vehicle control apparatus and vehicle control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060720

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807