JP2005347738A - スイッチ・モード・ガン・ドライバ及び方法 - Google Patents

スイッチ・モード・ガン・ドライバ及び方法 Download PDF

Info

Publication number
JP2005347738A
JP2005347738A JP2005131609A JP2005131609A JP2005347738A JP 2005347738 A JP2005347738 A JP 2005347738A JP 2005131609 A JP2005131609 A JP 2005131609A JP 2005131609 A JP2005131609 A JP 2005131609A JP 2005347738 A JP2005347738 A JP 2005347738A
Authority
JP
Japan
Prior art keywords
current
voltage bus
solenoid coil
switching circuit
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005131609A
Other languages
English (en)
Inventor
Howard Evans
エヴァンス ハワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of JP2005347738A publication Critical patent/JP2005347738A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

【課題】 基材上に流体を吐出するように動作可能な流体吐出機用のドライバ回路を提供する。
【解決課題】 1つのドライバ回路は、高電圧バス及び低電圧バスを使用して、急速な引込電流を供給する。保持電流への移行中におけるフライバック電流は、高電圧バスにクランプされて、コンデンサである高電圧バスにエネルギーを戻す。別のドライバ回路は、移行時の電流基準を使用して、初期の引込移行時、及び、引込から保持への移行時におけるコイル電流を制御する。引込から保持への移行時に、フライバック・コイル電流が、フライバック・モードとフリー・ホイール・モードの間で変調される。
【選択図】図1

Description

本発明は一般に、接着剤、シーラント、コーキング材などのような流動性材料を基材上に吐出するための、流体吐出システムに関し、より詳細には、吐出ガン内のソレノイド作動式弁の動作を制御するためのドライバ回路に関する。
流体吐出ガンは、流体、たとえば、接着剤を移動基材上に正確に塗布することを必要とする吐出用途、たとえば、包装又は織り製品のために開発されてきた。こうした吐出システムの1つの例は、その全体が参照により本明細書に援用される米国特許第5,812,355号に記載される。こうした吐出システムは、流体吐出機内のソレノイドの動作を制御するために、ドライバ回路を使用する。図9に示す階段状電流波形を使用して、吐出機内の吐出弁の動作が制御される。弁を開くために、ドライバ回路は、吐出サイクルの始めに、弁棒を急速に引っ込め、吐出オリフィスを開くために、急速な初期傾斜38の引込電流80をソレノイド・コイルに印加する。その後、電流は、弁棒を開位置に保持する保持電流40まで、37においてランプダウン(ramp down)する。保持電流は引込電流より小さく、したがって、より少ない保持電流を使用することによって、吐出サイクル中におけるソレノイド・コイル及び吐出弁の熱の蓄積が減る。ドライバ回路は次に、42においてソレノイドの急速な減磁を行うため、弁棒は、吐出サイクルの終わりにオリフィスにわたって急速に閉じる。
上述したガン・ドライバはうまく働くが、その性能を改善するたゆまない努力が存在する。たとえば、コイルへの電流は、線間電圧から電力スイッチによって供給されることが多い。そのため、線間電圧の任意の変動は、電力回路からの出力電圧及びガン・ソレノイドに供給される電流を変える。その結果、線間電圧の大きさが上昇する場合、アーマチャが速く移動し、接着剤があまりに速く吐出される。同様に、線間電圧の大きさが低下する場合、アーマチャがゆっくり移動し、接着剤が予想されるより長く吐出される。接着剤を受け取ることを意図していない基材領域上へ、接着剤が予期せず吐出されることによって、廃棄製品がもたらされることが多い。
吐出弁の最大動作速度は、線間電圧の大きさによって決まる。したがって、240ボルトAC源に接続された吐出弁は、吐出弁が120ボルトAC源に接続された場合より速く動作することになる。そのため、線間電圧と無関係な一貫した高速動作を有するドライバ回路を提供する必要性が存在する。
公知のガン・ドライバを使用して、引込電流80及び保持電流40は、電力スイッチを動作させるヒステリシス変調器によって維持されることが多く、それによって、ソレノイド・コイルに鋸歯状又はリップル電流が生成される。電力スイッチのこの変調中に、スイッチが閉じると、コイルの電流増加レートは線間電圧の大きさによって決まり、変調電流は図9の39において示すようにランプアップ(ramp up)する。さらに、電力スイッチが閉じると、図9の41において示すように、コイル・インダクタンス及びコイル回路抵抗によって決まるレートで電流が減衰する。したがって、ヒステリシス変調の周波数は、ソレノイド・コイルの電流特性及び線間電圧によって決まり、制限される。それに対して、吐出弁の動作速度を増加させるには、より高い線間電圧を使用することが望ましい場合があり、こうしたより高い線間電圧は、電流変調の期間中に電流オーバシュートの増加を生成し、それによって、コイル、ひいては、吐出弁の熱を増加させる。そのため、コイルに付加される熱を最小にしながら、吐出弁の動作速度を最大にするガン・ドライバを提供する必要がある。
理解されるであろうが、図9、並びに、本明細書の他の図に示す波形は、説明のためのものである。実際の波形は、限定はしないが、コイルのインダクタンス及び抵抗、吐出パターンの要件、熱考慮事項、寄生静電容量などを含む、多くの因子に応じて、本明細書の図に示す理想化された波形とは全く異なる場合がある。
公知のガン・ドライバを使用して、電流が、図2の168において示すように、引込電流から保持電流への移行部にある時、崩壊磁界の逆EMFから生成されるコイルの電流は、コイル・インダクタンス及びソレノイド・コイル回路抵抗によって決まる割合で減衰する。こうした電流減衰のスルーレートは、比較的小さく、電流は、コイル回路抵抗の熱として消散する。そのため、引込電流から保持電流への移行中におけるコイルの磁界の崩壊から生じ、コイルから電力を取り除く時のコイルの電流をより効率的に利用するガン・ドライバを提供する必要もある。
複数の吐出弁を動作させるガン・ドライバを使用することも知られている。これらの吐出弁が直列に接続される場合、直列接続されたソレノイド・コイルの電流をよりよく制御するために、電流制御モードでガン・ドライバを動作させることが望ましい。しかしながら、これらの吐出弁が並列に接続される場合、ソレノイド・コイルの並列回路の両端に印加される電圧をよりよく制御するために、電圧モード制御でガン・ドライバを動作させることが望ましい。知られているシステムに関して、電圧モード制御は、電流モード制御を実施するのに使用されるガン・ドライバと異なる設計のガン・ドライバを必要とする。そのため、電圧モード制御か、電流モード制御のいずれかを提供するために、選択的に使用することができるガン・ドライバを提供する必要がある。
したがって、上述した必要性に対処するガン・ドライバを提供する必要性が存在する。
[発明の概要]
本発明は、線間電圧変動に無関係な、安定し、一貫性があり、高品質の流体吐出プロセスを実行する流体吐出ガン用のガン・ドライバを提供する。さらに、本発明のガン・ドライバは、吐出弁を、一貫性があり、予測可能な高速度で開けるように動作可能である。さらに、本発明のガン・ドライバを使用すると、引込電流から保持電流への移行中に、コイルのフライバック電流がその後使用するために貯蔵され、知られているシステムで消散されるほどには熱が消散されない。そのため、本発明のガン・ドライバは、電力損失が少ない状態で動作し、自己加熱を減らしながら、広い範囲の用途において、一貫性があり、かつ、予測可能な吐出ガン性能を提供する。電力損失から生じる熱を減らすことによって、吐出ガンの寿命が増加するだけでなく、性能を向上させるために、より高い動作電流が使用されてもよい。
本発明のガン・ドライバのうちの1つは、複数のソレノイド・コイルが電圧バスに対して直列接続されているか、並列接続されているかに応じて、電流制御モードか、電圧制御モードのいずれかで選択的に使用されることができ、電流制御モードでは、低電圧バスを使用して、引込電流及び保持電流を維持するために、非常によく調整された低振幅のリップル電流が供給され、それによって、エネルギー消費、吐出弁の熱、及び電磁放射が減る。電圧制御モードでは、電力切り換え回路は電流フィードバック信号に無関係にパルス幅変調される。
本発明の原理及び述べられる実施形態によれば、本発明は、基材上に流体を吐出するように動作可能な流体吐出機用のガン・ドライバ回路を提供する。流体吐出機は、流体吐出機からの流体の流量を制御する吐出弁を動作させるソレノイド・コイルを有する。ガン・ドライバは、高電圧バスとソレノイド・コイルの一端の間に接続された第1スイッチ、及び、ソレノイド・コイルの反対端に接続された第2スイッチを有する。電流センサは、第2スイッチに接続され、第3スイッチは、低電圧バスとソレノイド・コイルの一端の間に接続される。制御回路は、第1スイッチを閉じて、高電圧バスをソレノイド・コイルに印加し、ソレノイド・コイルに電流を生成し、次に、コイルの電流が引込電流設定点にほぼ等しいことに応答して第1スイッチを開く。制御回路は、第2スイッチを動作させて、低電圧バスをソレノイド・コイルに印加し、コイルの電流を引込電流設定点にほぼ等しく維持する。
本発明の別の実施形態では、ガン・ドライバは、基材上に流体を吐出するように動作可能な複数の流体吐出ガンによって動作する。流体吐出ガンは、複数のソレノイド・コイルのそれぞれに動作可能に接続された複数の吐出弁のそれぞれを有する。ソレノイド・コイルはそれぞれ、各吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であり、それによって各流体吐出ガンからの流体の流量を制御する。ガン・ドライバは、電圧バスと少なくとも1つのソレノイド・コイルの間に接続された電力切り換え回路、及び、電力切り換え回路に、複数のソレノイド・コイルへの引込電流と、その後保持電流を供給させるように、電力切り換え回路に動作可能に接続された制御器を有する。制御器は、複数のソレノイド・コイルが電圧バスにわたって並列に接続されることに応答して使用される電圧モード制御部、及び、複数のソレノイド・コイルが電圧バスにわたって直列に接続されることに応答して使用される電流モード制御部を有する。
本発明の一態様では、電流モード制御部は、複数のソレノイド・コイルに動作可能に接続される電流センサを有し、複数のソレノイド・コイルの電流を表すフィードバック信号が供給される。ヒステリシス値を有する比較器は、フィードバック信号に接続される第1入力部、及び、電流設定点を供給する第2入力部を有する。比較器出力部は、電力切り換え回路に接続され、比較器によって、電力切り換え回路が、最初に、フィードバック信号が電流設定点より低いことに応答して、電圧バスを複数のソレノイド・コイルに接続し、次に、フィードバック信号が電流設定点より高いことに応答して、複数のソレノイド・コイルから電圧バスを切り離す。
本発明の他の態様では、電圧モード制御部は、電力切り換え回路に動作可能に接続されたパルス発生器を有し、パルス発生器によって、電力切り換え回路が、引込電流の持続期間後に、複数のソレノイド・コイルに対して電圧バスを連続して接続し、切り離すようにさせる。
本発明のさらなる実施形態では、ガン・ドライバは、整流された無調整電圧バス、及び、無調整電圧バスとソレノイド・コイルの間に接続された第1切り換え回路を有する。制御回路は、電流センサ及び第1切り換え回路に動作可能に接続され、ランプアップ電流基準、引込電流基準、及びその後の保持電流基準を規定する電流基準波形を供給する波形発生器を含む。制御回路は、最初に、ランプアップ電流基準に、次に、引込電流基準に、その後、保持電流基準にほぼ等しいソレノイド・コイルの電流を生成するように、前記第1切り換え回路を動作させる。
本発明の一態様では、波形発生器は、引込電流基準と保持電流基準の間にランプダウン電流基準をさらに提供する。第2切り換え回路は、ソレノイド・コイルの反対端に接続され、第1切り換え回路が無調整電圧バスからソレノイド・コイルを切り離すことに応答して、無調整電圧バスにフライバック電流を接続する第1状態を有する。第2切り換え回路は、ソレノイド・コイルの電流が、ソレノイド・コイルを含む回路内の抵抗を通して消散することを可能にする第2状態を有する。制御回路は、第2切り換え回路を第1状態と第2状態の間で切り換えて、コイルの電流が、ランプダウン電流基準にほぼ等しくなるようにさせる。
本発明の種々の追加の利点、目的、及び特徴は、添付図面に関連して行われる、実施形態の以下の詳細な説明を考慮して、当業者にはより容易に明らかになるであろう。
[発明の詳細な説明]
図1を参照すると、吐出弁20は、弁座26内に形成された吐出オリフィス24を選択的に閉塞させるように配置された可動のアーマチャ又は弁棒22を有する。弁棒22は、移動基材上に再現性のある流体の吐出パターンを提供するために、電磁コイル28を有するソレノイド27によって、制御された方法で、弁座26に対して延び、引込む。一般に、電磁コイルは、磁極(図示せず)を囲み、磁極に対して電磁界を生成するように駆動され、それによって、弁棒22が極の方へ移動し、吐出弁20を開く。吐出サイクルの終わりで、コイル28は減磁され、戻りばね30が、弁棒22を元の位置に戻し、吐出弁20を閉じる。ソレノイド27のコイル28は、電力回路86及び制御器92を含むガン・ドライバ84によって動作する。電力回路86は、正端子に約325ボルトの高電圧バス89を提供する高電圧電源88を有する。
電力回路86は、制御器92によって動作し、制御器92は次に、システム制御部94に接続される。システム制御部94は、他の吐出システム、及び、吐出弁20の動作に必要な機械装置制御部、例えば、トリガ信号を供給するパターン制御器などの全てを含む。システム制御部94は、キーボード、プッシュボタンなどのような入力デバイス、及び、知られている方法でユーザとの通信リンクを提供するディスプレイ、インジケータ光などのような出力デバイスをさらに含む。
制御器92は、電圧モード制御部96及び電流モード制御部98をさらに含む。複数の吐出弁が並列接続されているか、直列接続されているかに応じて、電圧モード制御部96又は電流モード制御部98が、それぞれ、電圧制御信号104によって選択される。電圧制御信号は、システム制御部94によって、自動的か、ユーザ入力によって生成される。いずれのモードでも、流体吐出サイクルは、流体吐出サイクルの所望の持続期間に等しい持続期間、即ち、吐出弁20がターンオンされる、即ち、開く時間の長さを有するトリガ信号100によって始動される。トリガ信号100の前縁は、引込タイマ102の動作を開始させ、引込タイマ102は次に、電流モード制御部98及び電圧モード制御部96に出力パルスを供給する。電圧モード制御部96が選択される場合、ライン104上の電圧モード信号は、highになり、マルチプレクサ106、108、110をイネーブルして、信号を、各出力部への各入力部112、114、116上に伝える。電流モード制御部98が選択される場合、ライン104上の電圧モード信号は、lowになり、マルチプレクサ106、108、110を動作可能にして、信号を、各出力部への各入力部118、120、122上に伝える。
ユーザが電流モード制御部を選択した場合、制御器92の引込タイマ102は、システム制御部94からのトリガ信号100の前縁によって開始され、トリガ信号100の前縁は流体吐出動作の開始を指示する。引込タイマ102によってカウントされる持続期間は、吐出弁20の動作の引込位相の持続期間を決める。トリガ信号100の正の前縁は、フリップ・フロップ124を同時にセットし、フリップ・フロップ124は、マルチプレクサ106の入力部118へのhigh出力部を供給する。電流モード制御部では、マルチプレクサ106は、フリップ・フロップ124からのhigh出力部を、第1電力スイッチ128を閉じさせるゲート・ドライバ126に伝える。電力スイッチ128を閉じることによって、高電圧バス89を吐出弁コイル28の一端に接続する。同時に、フライバック・モード信号がlowの状態で、マルチプレクサ130は、highレベルをマルチプレクサ110の入力部122に伝え、マルチプレクサ110は次に、highレベルを、第2電力スイッチ134を閉じるように機能する第2のゲート・ドライバ132に伝える。電力スイッチ128及び134が閉じた状態で、高電圧バスから、第1電力スイッチ128、吐出弁コイル28、及び第2電力スイッチ134を通る電流経路が存在する。
引込タイマ102が、出力部103上のhigh信号を電流波形発生器99に供給すると、電流波形発生器99は、ヒステリシス値を有する比較器142の入力部140に引込電流設定点150を供給する。この時点で、図2の147で示すように電流は最小であり、入力部144上の電流フィードバック信号は引込電流設定点150より低い。そのため、比較器142の出力部はhighである。そのhigh信号は、マルチプレクサ108の入力部120、及び、ゲート・ドライバ152に伝えられ、第3電力スイッチ154をターンオンする。
こうして、電流モードにおいて引込電流を開始するために、トリガ信号100の前縁によって、電力スイッチ128、134、及び154が閉じ、それによって、高電圧バス89からソレノイド・コイルへ約325ボルトが印加される。コイル28の両端への高電圧バスの印加は、図2の136において示すように、最大の電流変化レート及び非常に高い引込電流スルーレートを提供する。引込電流の高いスルーレートによって、コイル28の電流が、非常に急速に、かつ、予想通りに、所望の引込電流レベル138に一貫して達する。ソレノイド27が弁棒22を移動させることができる速度は、ソレノイド・コイル28によって生成される磁力によって決まり、磁力は逆に、コイルの電流によって決まる。そのため、コイル電流がその所望の引込値に速く達すれば達するほど、磁界が、より速く、弁棒を移動させるのに十分な力を生成することができることになり、弁棒が、より速く、開位置に移動することになる。したがって、ソレノイド・コイルにおける、速くて、一貫して、予測可能な電流の増加を提供するための、高電圧バス89の使用は、速く、一貫して、予測可能に、吐出弁20を開くことを著しく容易にする。
吐出弁ソレノイド・コイル28の電流が増加するにつれて、電流検知抵抗146の両端の電圧も増加する。フィードバック電流値を表すその電圧は、比較器142のセンス又は第2入力部144に供給される。回路設計に応じて、電流スケーリングを提供する調整可能利得及び絶対電流値出力部を有する増幅器148は、比較器142に電流フィードバック信号を供給するために、オプションとして使用されてもよい。コイル28の引込電流136(図2)が増加するにつれて、引込電流136は、引込電流設定点150より大きな値に達することになる。さらに、ガン・ドライバ84の部品の伝播遅延のために、引込電流136は、図2の152において示すように、引込電流設定点値をオーバシュートすることになる。
センス入力部144上の電流フィードバックが、入力部140上の引込設定点にヒステリシス値を加えたものに等しい大きさを超えると、比較器142は、その出力部をlowに切り換える。そのlow信号は、フリップ・フロップ124のリセット入力部158で反転し、それによって、フリップ・フロップ124の出力部をlow状態に変える。フリップ・フロップ124は、吐出サイクルの残りの部分にわたってリセット状態にとどまる。マルチプレクサ106の入力部118でのlow状態は、ゲート・ドライバ126へ伝えられ、それによって、スイッチ128及び高電圧バス89と吐出弁コイル28の間の接続が開く。比較器142のlow状態は、マルチプレクサ108を通しても伝えられ、それによって、ゲート・ドライバ152が、低電圧バス156に接続される電力スイッチ154を開くようにさせる。ここで、電流は、ダイオード133、コイル抵抗76、ソレノイド・コイル28、及びフィードバック抵抗146を通して流れる。コイル28に貯蔵されたエネルギーが消散し、電流が減るにつれて、センス入力部144上のフィードバック電流の大きさが低下し始める。フィードバック電流の大きさが、入力部140上の引込電流設定点150からヒステリシス値を引いたものに等しい大きさ以下に低下すると、比較器142は、再び状態を変え、それによって、比較器142の出力部をhighに駆動する。high状態は、マルチプレクサ108を通して伝えられ、ゲート・ドライバ152が電力スイッチ154を閉じるようにさせ、それによって、コイル28を低電圧バス156に接続する。
こうして、比較器142は、ヒステリシス変調器として機能し、比較器140のヒステリシス・レベル、並びに、電流の正のスルーレート及び負の減衰レートによって決まる、全体が鋸歯状又はリップルの電流振幅164(図2)を作成する。低電圧バス156の使用によって、オーバシュートが大幅に小さくなり、知れられているガン・ドライバの線間電圧を使用することによって生成される変調電流振幅80(図9)より大幅に小さい変調電流振幅164(図2)が生成される。よりよく調整されたリップル電流は、より小さいリップル電流振幅を有し、負荷時においてRMS電流が小さく、熱生成が少なくなる。熱生成が少なくなることは、寿命の増加、及び/又は、平均電流レベルを増加させることによる吐出弁20の性能の向上を可能にする。スルーレートの減少及びリップルの低下は、電磁放出も減らすことになる。
引込時間の終わりは、引込タイマ102のタイムアウトによって決まり、引込タイマ102の出力部103の状態を変える。その時点で、電流波形発生器99は、入力部140上の設定点の大きさを減らしてより小さい保持電流値166にする。さらに、入力部144上の電流フィードバック電圧は、保持電流値166より大きく、したがって、比較器142の出力状態はlowである。そのlow状態によって、ゲート・ドライバ152が、電力スイッチ154を開くようにさせ、それによって、コイル28から低電圧バスが切り離される。
引込モードの終わりにおいて、ガン・ドライバ84は、次に、コイルのエネルギーがコイル回路によって消散されるフリー・ホイール又はコースト・モードか、コイルのエネルギーが電源に戻されるフライバック・モードのいずれかで動作することができる。フリー・ホイール・モードの動作は、システム制御部94がフライバック・モード信号170の状態をlowに切り換えることによって選択される。マルチプレクサ130の入力部135上のhigh状態は、マルチプレクサ110に伝えられる。電流モード制御部では、トリガ信号のhigh状態によってスイッチ134が閉じたままにされる。このコースト・モードの動作では、崩壊磁界の逆EMFから生成されるコイル28の電流は、図2の168において仮想線で示すように、コイル28のインダクタンス、コイル抵抗76、及びダイオード133の両端の順方向電圧の抵抗によって決まるレートで減衰する。こうした電流減衰のスルーレートは、比較的小さく、エネルギーは、抵抗76及びダイオード133の熱として消散される。
ユーザ、又は、システム制御部94によって選択された、代替のフライバック・モードの動作では、イネーブル入力部170上のフライバック・モードは、high状態に切り換えられ、マルチプレクサ130の入力部137をイネーブルするように印加される。さらに、引込タイマ102のタイムアウトによって生成された後縁がフリップ・フロップ141をリセットし、それによって、マルチプレクサ130及び110の出力部が、lowになり、さらに、第2ゲート・ドライバ132が第2電力スイッチ134を開ける。スイッチ134を開けることによって、コイル28の崩壊磁界は、コイル28内に電流を誘導し、その電流は、ダイオード129、133を通る経路を介して、高電圧電源88内のコンデンサ172に電荷を与えるのに効果がある。この状況では、フライバック電圧が高電圧バス89にクランプされた状態で、電流スルーレートは、図2の174において示すように非常に急速であり、コンデンサ172を充電することによって、電力は、その後使用するために、高電圧電源88に戻り、吐出弁20の電力損失が減る。
さらに、コイル28の電流は、図2の所望の保持電流値175より小さい値に非常に急速に低下する。再び、ガン・ドライバ84の部品における伝播遅延のために、アンダーシュート176が発生する。比較器142のセンス入力部144上の電流フォードバックが、入力部140上の保持電流設定点の値からヒステリシス値をひいたものに等しい大きさに降下すると、比較器142は、再び、その出力部をhigh状態に切り換える。そのエッジ移行は、フリップ・フロップ141の出力部をhighにセットし、ゲート・ドライバ132が再びスイッチ134を閉じるようにさせる。比較器142の出力部のhigh状態は、マルチプレクサ108によってゲート・ドライバ152に伝えられ、それによって、スイッチ154が閉じ、再び、低電圧バス156が吐出弁コイル28に印加される。比較器142は、再び、ヒステリシス変調器として動作し、保持電流位相の残りの部分の間で鋸歯状又はリップル電流178を供給するように、電力スイッチ154をオン及びオフに切り換え続ける。引込電流位相に関して先に述べたように、より小さい振幅のリップル電流178は、熱の低減、電磁放出の低下、及び吐出弁の寿命の増加という利点を提供する。
吐出サイクルの終わりは、トリガ信号100の後縁によって決まる。トリガ信号が状態を変えると、そのエッジ移行が、ANDゲート149、157、143に伝えられ、その出力部をlowに駆動する。そのlow状態によって、各電力スイッチ128、154、134が開くようにさせ、それによって、コイル28から高電圧バス89及び低電圧バス156を切り離す。電力スイッチ134が開の状態で、フライバック電圧は、ダイオード129、133を介して高電圧バス89にクランプされ、コイル28の残りのエネルギーのほとんどは、高電圧電源88のコンデンサ172を充電することによって、190において示すように急速に消散される。再び、電源88に戻された電力は、熱に変換されない。吐出弁における電力損失を減らすことによって、吐出弁の寿命が増加し、熱の低減によって、動作電流の増加が可能になって、さらに、その性能が改善される。
電流モード制御部の代替として、ユーザは、電圧モード制御部96によってガン・ドライバ84を動作させるように選択してもよく、電圧モード制御部96は、各吐出弁20のソレノイド・コイルが並列に接続される時に使用されることが多い。電圧モード制御部96に関して2つの動作モード、すなわち、高電圧バス89を使用しない第1動作モード及び高電圧バスを使用する第2動作モードが存在する。高電圧バス89を使用しない電圧制御モード動作が最初に述べられるであろう。システム制御部94は、最初に、電圧モード制御信号104の状態をhighに切り換え、マルチプレクサ106、108、110が、各入力部112、114、116の状態を各出力部に伝える。
トリガ信号100の前縁は、引込タイマ102を開始させるのに効果があり、引込タイマ102の出力部をhighに切り換える。トリガ信号100のhigh状態は、マルチプレクサ110によってゲート・ドライバ132に伝えられ、それによって、電力スイッチ134を閉じる。高電圧タイマが動作しない状態で、ANDゲート149は、継続してlow入力部を有し、それによって、電力スイッチ128を開状態に維持する。ORゲート151は、引込タイマ出力部103に接続された1つの入力部及び方形波186を供給するプログラム可能な方形波発生器153に接続された第2入力部を有する。マルチプレクサ108は、high信号をゲート・ドライバ152に伝え、それによって、スイッチ154を閉じ、低電圧バス156をソレノイド・コイル28に印加する。こうして、電流は、図3の電流188によって示すように、コイル・インダクタンス及びコイル回路の抵抗の関数としてソレノイド・コイル28で増大する。
引込タイマ102がタイムアウトし、その出力部103がlowになると、ソレノイド・コイル28の電流は、図3の191において示すように、そのピーク値に達する。引込パルス184がlowになる時にフライバック・モードがオフの状態では、方形波発生器153の出力部もlowである場合、マルチプレクサ108の入力部114がlowであり、それによって、電力スイッチ154を開く。こうして、ソレノイド・コイル28の電流は、先に述べたようにフリー・ホイール・モードで消散する。
引込パルス184が終わるとすぐに、ORゲート151は、方形波発生器153から方形波保持パルス186を伝え始める。保持パルス186のそれぞれの前縁によって、ANDゲート157の出力部がhighになり、ドライバ152が、電力スイッチ154をオンに切り換えさせ、それによって、保持パルスの後縁がlowになるまで、吐出弁コイル28を低電圧バス156に再接続する。本質的に、コイル28の電流が、192において示すように減衰する間に、電力スイッチ154は、保持パルス186によってパルス幅変調される。最終的に、コイル28の電流は、図3の194において示されるように、保持パルス186による電力スイッチ154のパルス幅変調によって供給される平均電流値まで減衰する。平均保持電流194の大きさは、保持パルス186のデューティ・サイクルをそれぞれ増加又は減少させることによって、増加又は減少することができる。
吐出サイクルの終わりは、トリガ信号100の後縁によって決まり、先に述べたように、トリガ信号が状態を変えると、ANDゲート149、157、143が、各電力スイッチ128、154、134をディセーブルする。先に述べたように、電力スイッチ134が開の状態で、フライバック電圧は、ダイオード129、133を介して高電圧バス89にクランプされ、コイル28の消散電流は、その後使用するために、高電圧電源88に戻される。
高電圧バス89を使用する電圧モード制御部の第2の実施形態では、高電圧タイマ145は、トリガ・パルス100の前縁によって開始し、高電圧パルス182を供給する。高電圧パルス182の持続期間は、任意所望の値に設定されることができ、引込パルス184の持続期間の一部又は引込パルスの全持続期間にわたって有効である。高電圧パルス182は、ANDゲート149に入力され、それによって、その出力部をhighに駆動する。そのhigh出力部によって、ゲート・ドライバ126が電力スイッチ128を閉じるようにさせ、それによって、高電圧バスをソレノイド・コイル28に印加する。図4の196において示すように、電流はソレノイド・コイル28内で急速に増加する。高電圧パルス182の持続期間は、吐出弁20の性能を最大にするように決められる。高電圧パルス182は、その後、lowになり、それによって、ANDゲート149の出力部がlowになるようにさせる。そのlow状態は、マルチプレクサ106を通して伝えられ、ゲート・ドライバ126が、電力スイッチ128を開き、それによって、高電圧バス89をソレノイド・コイル28から切り離す。引込パルス184は、高電圧パルス182より持続期間が長く、そのhigh状態は、ORゲート151の出力部を継続してhighに維持し、それによって、電力スイッチ154を閉に維持し、低電圧バスが継続してソレノイド・コイル28に接続されることを維持する。したがって、ソレノイド・コイル28の電流は、引込タイマ102が終了するまで、図4の198において示すように続く。その時点で、図4の191において示すように、コイルの電流はピーク値になる。理解されるであろうが、高電圧パルスを使用して、引込電流は、高電圧パルスが無い状態より速くその所望の値に達することになり、したがって、引込パルスの持続期間は、高電圧パルスを使用すると、より短い可能性がある。その後、電圧モード制御部のこの実施形態は、電圧モード制御部の第1の実施形態に関して先に述べたのと同様に動作する。
こうして、ガン・ドライバ84は、公知のガン・ドライバに比べて多くの利点を有する。たとえば、ガン・ドライバ84は、複数の吐出弁が使用される時に、電流制御か、電圧制御のいずれかを提供するのに使用されることができる単一ユニットを提供する。同様に、電流制御か、電圧制御のいずれかを使用する時に、吐出弁20は、知られているガン・ドライバについて使用されることが多い線間電圧よりかなり大きい高電圧を印加することによって閉じる。そのため、この高電圧は、最初に弁を開かせるために、一貫して、かつ、速い電流スルーレートを提供するように調整される。
さらに、電流モード制御部を使用すると、引込電流から保持電流への移行時に、フライバック・モードを使用することができ、フライバック電圧は、高電圧バスにクランプされ、逆EMFからの電流は、コンデンサ172を充電するのに使用される。こうして、その電流は、その後使用するために貯蔵され、知られているシステムで消散するほどの熱を消散しない。コイルの電流は、急速に、かつ、一貫して、その所望の値に減少する。同様に、制御モードに関係なく、吐出サイクルの終わりで、フライバック電圧は、高電圧バスにクランプされ、逆EMFからの電流は、コンデンサ172を充電するのに使用される。
電流制御モードでは、引込及び保持電流は、よりよく調整され、振幅の小さいリップル電流を供給するヒステリシス変調によって、低電圧バス156をコイル28に印加することによって維持される。低電圧バスは、よりエネルギー効率がよく、知られている線間電圧変調システムより優れた電流変調を提供する。
コンデンサ172は、唯一の高電圧電源88として使用される。一部の用途では、コンデンサ172は、コイル28からの逆EMFによってのみ充電されることができる。他の用途では、吐出弁20の作動と作動の間がオフである期間の間に、システム制御部94は、スイッチ134及び154を同時に開閉することによって、ガン・ドライバ84が、吐出弁20を低電圧バス156によって断続的にパルス制御するようにさせる信号を供給することができる。すなわち、低電圧バス156は、電流は流れるが、弁棒22は移動しない十分に短いパルス持続期間の間に、吐出弁コイル28に印加される。こうして、コンデンサ172は、高電圧電源88として機能するコイル28のフライバックによって十分に充電されることができる。しかしながら、理解されるであろうが、さらなる用途では、電源(図示せず)は、オプションとして、コンデンサ172上の電荷を維持するのに使用されることができる。
スイッチ・モード・ガン・ドライバの第2の実施形態が図5A及び図5Bに示される。図5Aのドライバ回路のタイマ部分を参照すると、流体吐出動作を開始させる動作コマンドは、入力部200、202で受け取られ、光学結合式アイソレータ204を通して伝えられる。動作コマンドは、出力部206上に供給され、出力部210上にクロック信号を供給するタイマ208をリセットするのに使用される。動作コマンドはさらに、ランプ波発生器214をイネーブルするスイッチ212を切り換える。各排他的ORゲート222、224、226及び線形スイッチ228、230、232と共に、比較器216、218、及び220は、出力部236上に、理想的なガン電流対時間のプロファイルを複製する図6に示す基準電流波形234を供給する。電流波形234の第1の又は引込位相は、保持電流基準235に対してランプアップ電流基準229、引込電流基準231、及びランプダウン電流基準233の持続期間を決める3つのタイミング・パルスT、T、Tによって形成される。
スイッチ・モード・ガン・ドライバのドライバ部分は、図5Bに示され、入力部238、240が無調整線間電力源に接続されている。入力部238、240が120ボルトACに接続される時に、ジャンパ242が設置され、ダイオード244、246、248、250は電圧倍増器として機能する。入力部238、240が240ボルトACに接続される時に、ジャンパ242が取り外される。ジャンパ242が取り外された状態で、ダイオード244、246、248、250は、ブリッジ整流器構成で接続される。約+330ボルトの電圧がバス254上に供給され、約+10ボルトの電圧がバス256上に供給される。回路257は、電圧バス254より大きい電圧を供給し、高圧側スイッチ258のゲート・ドライブ回路を駆動し、バス256上の電圧は、低圧側スイッチ260のゲート・ドライブ回路を駆動する。電圧バス256は、正の電圧レール263を提供する電圧調整器も駆動し、電荷ポンプ264は、対応する負の電圧レール266を提供する。
ライン272上のクロック・パルスは、フリップ・フロップ274をクリアし、そのQ出力部をlowに駆動し、高圧側スイッチ258が閉じるようにし、それによって、流体吐出機内で電圧バス254をソレノイド・コイル280、282に印加する。入力部272上のクロック・パルスはまた、フリップ・フロップ292をクリアし、そのQ出力部をlowに駆動し、低圧側スイッチ260が閉じるようにする。コイル280、282を通って流れる電流は、低圧側スイッチ260を通る経路を有し、電流検知センサ284によって監視される。比較器286は、電流検知抵抗からの電圧を入力部270上で受け取られる電流波形234と比較する。フィードバック電圧が入力部270上の基準を超えると、フリップ・フロップ274はプリセットされ、それによって、高圧側スイッチ258が開き、電圧バスをコイル280、282から取り除く。コイル280、282の逆EMFによって生じる電流は、ダイオード288を通ってフライバックする。ここで、電流フィードバック電圧は、増加する電流波形より小さく、それによって、比較器286がフリップ・フロップ274からプリセット状態を取り除く。
このプロセスは、図7にグラフで示され、電流波形234のランプアップ部分Tの間の、コイルの電流の波形281が示される。入力部272におけるクロック・パルス279のうちの1つのエッジはフリップ・フロップ274をクリアして、高圧側スイッチ258を閉じる出力部を供給して、電圧バス234をコイル280、282に印加し、それによって、283において通常示すように、コイルに流れる電流が増加する。検知抵抗器284からの電流フィードバックがランプアップ電流基準を超えると、フリップ・フロップ274はプリセットされ、それによって、高圧側スイッチ258が開く。コイル280、282の電流は、285において通常示すように、下方にフリー・ホイールする。クロック・パルスがフリップ・フロップ274に印加される時に、フィードバック電圧が依然としてランプアップ電流基準270を超える場合、フリップ・フロップ274は、そのプリセット状態に維持される。
電圧バス254をコイル280、282に対して印加し、それらから取り外す、このプロセスは、ランプアップ電流基準タイミング・パルスT並びに引込電流基準タイミング・パルスTの持続期間の間、即ち、ランプアップ及び引込位相の間、続く。タイミング・パルスTの間、ライン270上のランプアップ電流基準波形229は、所望の引込電流の大きさが達成されるまで、連続して増加する。その時点で、タイミング・パルスTが開始し、入力部270上の引込電流基準波形231は、所望の引込電流に等しい一定の大きさを維持する。引込位相の終わりで、タイミング・パルスTは、ランプダウン位相を開始し、入力部270上のランプダウン電流基準波形233は、保持電流基準の大きさまで減少する。
入力部290上のタイミング・パルスTは、フリップ・フロップ274をプリセット状態に維持し、したがって、高圧側スイッチ258が開に保持される。さらに、入力部272上のクロック・パルスは、Q出力部をlowに駆動し、入力部291上のタイミング・パルスTと共に、低圧側スイッチ260を開にさせる出力部を供給する。ランプダウン電流基準波形233が、保持電流基準値235まで減少すると、コイル280、282からのフライバック電流は、比較器300にフィードバック電圧を供給する電流検知抵抗器298を通って伝えられる。フライバック電流はまた、ダイオード288、289を通って流れ、それによって、電源コンデンサ294、296に誘導エネルギーを戻す。コイル電流が、図8の295において通常示すように、急速に減少するにつれて、電流検知抵抗298は、比較器300に電流フィードバックを供給し続ける。電流フィードバックが入力部302上のランプダウン電流基準233以下に低下すると、比較器300は、状態を変え、フリップ・フロップ292をプリセットし、それによって、低圧側スイッチ260を閉じる。電流は、ダイオード288によってフリー・ホイール・モードに切り換えられ、それによって、図8の297において通常示すように、電流減衰レートが減少する。電流減衰レートが減少するにつれて、電流フィードバックは、入力部302上のランプダウン電流基準233を超え、それによって、比較器300の状態を変え、フリップ・フロップ292からプリセット状態を取り除く。入力部272上での次のクロック・パルスは、フリップ・フロップ292をクリアし、再び、低圧側スイッチ260を開にさせ、それによって、再び、フライバック電流を電源コンデンサ294、296に供給する。このサイクルによって、低圧側スイッチ260は、コイル280、282に貯蔵された残りの誘導エネルギーが電源に戻るまで、急速であるが、ランプダウン電流基準波形233に一致する制御方法で、電流を減らすようにパルス幅変調される。タイミング・パルスTの終わりで、低圧側スイッチは、再び、閉に維持され、高圧側スイッチは、図6の287において通常示すようにコイルを通る電流を維持するように、保持電流基準波形235によって動作する。
このスイッチ・モード・ガン・ドライバによって、瞬時のガン電流が、監視され、理想的な電流対時間のプロファイルを複製する電流波形234と比較される。この比較に基づいて、フリップ・フロップ292によって実施されるパルス幅変調器のデューティ・サイクルは、線間電圧変動、電源リップル、ガンのインダクタンス、及びガンの抵抗によって生じる電流誤差を補償するように変わる。こうして、ガンに印加される時間平均電圧は、無調整電圧のパルス幅変調によって制御される。図6に示すように、図5A及び図5Bのスイッチ・モード・ガン・ドライバは、電流波形234を厳密に近似する、図6の299において示すように、コイル280、282に流れる電流を供給するように動作可能である。
図5A及び図5Bのスイッチ・モード・ガン・ドライバは、電力効率を改善し、自己加熱を低減し、信頼性を向上させ、より小型のパッケージングを可能にし、より再現性のあるガン作動、したがって、より再現性のある弁の開時間及び閉時間を提供するように、整流された、無調整線間電圧によって駆動されるという利点を有する。さらに、誘導エネルギーの貯蔵要素として、ガン巻線を使用することによって、特注の磁性部品の必要性をなくし、製造及び在庫コストが減る。
本発明は種々の実施形態の説明によって示され、これらの実施形態がかなり詳細に述べられたが、添付の特許請求項の範囲をこうした詳細に制限するか、又は、いずれの点においても限定することは意図されない。本発明の精神及び範囲内の付加的な利点及び変更は、当業者には容易に明らかになるであろう。たとえば、図1を参照すると、制御器92は、電圧制御モードか、電流制御モード、或いは、コースト・モードか、フライバック・モードのいずれかを選択するための、操作者入力を有するものとして述べられる。理解されるであろうが、他の実施形態では、これらのモードの選択は、制御器92の供給業者によって決められ、ユーザは利用できない。述べた実施形態では、電流制御モードと電圧制御モードの両方において、トリガ信号100の前縁によって、高電圧バス89と低電圧バス156の両方がソレノイド・コイル28に印加される。理解されるであろうが、代替の実施形態では、高電圧バス89がコイル28から取り除かれる時点まで、低電圧バス156の印加を遅延することができる。
本明細書で述べたガン・ドライバは、デジタル・ロジックで実施される。しかしながら、理解されるであろうが、代替の実施形態では、アナログ部品を使用して、ガン・ドライバの種々の機能を実施してもよい。理解されるであろうが、電圧バスの値の大きさは、特定の吐出ガン及びソレノイド・コイルの特性及び性能、並びに、吐出パターン及びサイクルの要件に応じて調整されてもよい。さらに、理解されるであろうが、本明細書で述べたガン・ドライバの特徴は、電気吐出ガンと空気圧駆動式吐出ガンの両方に印加することができる。
したがって、その最も広い態様での本発明は、示し、述べられた特定の詳細に限定されない。その結果、添付の特許請求項の精神及び範囲から逸脱することなく、本明細書に述べる詳細からの逸脱を行ってもよい。
本発明の原理による、流体吐出ガンを動作させるのに使用することができるガン・ドライバの概略ブロック図である。 図1のガン・ドライバによって供給される電流モード波形の略図である。 図1のガン・ドライバによって供給される電圧モード波形の一実施形態の略図である。 図1のガン・ドライバによって供給される電圧モード波形の別の実施形態の略図である。 本発明の原理による、流体吐出ガンを動作させるのに使用することができるガン・ドライバの別の実施形態の概略ブロック図である。 本発明の原理による、流体吐出ガンを動作させるのに使用することができるガン・ドライバの別の実施形態の概略ブロック図である。 図5A及び図5Bのガン・ドライバによって供給される電流波形及び得られるコイル電流波形の略図である。 図5A及び図5Bのガン・ドライバによって供給されるランプアップ位相の間の電流波形の略図である。 図5A及び図5Bのガン・ドライバによって供給されるランプダウン位相の間の電流波形の略図である。 知られているガン・ドライバによって供給される階段状電流波形の略図である。

Claims (30)

  1. 基材上に流体を吐出するように動作可能な流体吐出機用のガン・ドライバ回路であって、前記流体吐出機は、ソレノイド・コイルに動作可能に接続された吐出弁を有し、前記ソレノイド・コイルは、前記吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって前記流体吐出機からの前記流体の流量を制御し、当該ガン・ドライバ回路は、
    高電圧バスと、
    該高電圧バスに電気接続された第1の側及び前記ソレノイド・コイルの一端に接続されるようになっている第2の側を有する第1スイッチと、
    前記ソレノイド・コイルの反対端に電気接続されるようになっている1つの側を有する第2スイッチと、
    前記ソレノイド・コイルの電流を検知する電流センサと、
    低電圧バスと、
    該低電圧バスに電気接続された第1の側及び前記ソレノイド・コイルの前記一端に電気接続されるようになっている第2の側を有する第3スイッチと、
    前記第1スイッチ、前記第2スイッチ、及び前記第3スイッチに動作可能に接続された制御回路とを備え、該制御回路は、
    引込電流設定点を提供し、
    前記第1スイッチを閉じて、前記高電圧バスを前記ソレノイド・コイルに印加し、該ソレノイド・コイルに電流を生成し、
    前記コイルの電流が前記引込電流設定点にほぼ等しいことに応答して前記第1スイッチを開き、
    前記第2スイッチを動作させて、前記低電圧バスを前記ソレノイド・コイルに印加し、前記コイルの電流を前記引込電流設定点にほぼ等しく維持するガン・ドライバ回路。
  2. 前記制御回路は、前記第1スイッチを閉じるのとほぼ同時に前記第2スイッチを閉じ、それによって前記高電圧バス及び前記低電圧バスを前記ソレノイド・コイルに接続する、請求項1に記載のガン・ドライバ回路。
  3. 前記高電圧バスはコンデンサを備える請求項1に記載のガン・ドライバ回路。
  4. 前記高電圧バスに接続されるカソード及び前記ソレノイド・コイルの他端に接続されるアノードを備える第1ダイオードと、
    前記ソレノイド・コイルの反対端に接続されるカソード及び前記第2スイッチの前記第2の側に接続されるアノードを備える第2ダイオードとをさらに備える請求項1に記載のガン・ドライバ回路。
  5. 前記高電圧バスは、利用可能な線間電圧より大きな電圧を供給し、前記低電圧バスは、前記利用可能な線間電圧より小さい電圧を供給する請求項1に記載のガン・ドライバ回路。
  6. 前記第3スイッチの前記第1の側に接続されるカソード及び前記低電圧バスに接続されるアノードを備える第3ダイオードをさらに備える請求項1に記載のガン・ドライバ回路。
  7. 基材上に流体を吐出するように動作可能な複数の流体吐出ガン用のガン・ドライバであって、前記流体吐出ガンは、複数のソレノイド・コイルのそれぞれに動作可能に接続された複数の吐出弁のそれぞれを有し、前記ソレノイド・コイルはそれぞれ、各吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって各流体吐出ガンからの前記流体の流量を制御し、当該ガン・ドライバは、
    電圧バスと、
    該電圧バスに接続された第1の側及び前記複数のソレノイド・コイルのうちの少なくとも1つに電気接続されるようになっている第2の側を有する電力切り換え回路と、
    該電力切り換え回路に、前記複数のソレノイド・コイルへの引込電流と、その後保持電流を供給させるように、前記電力切り換え回路に動作可能に接続された制御器とを備え、該制御器は、
    前記複数のソレノイド・コイルが前記電圧バスにわたって並列に接続されることに応答して使用される電圧モード制御部と、
    前記複数のソレノイド・コイルが前記電圧バスにわたって直列に接続されることに応答して使用される電流モード制御部とを備えるガン・ドライバ。
  8. 引込電流の持続期間を表す信号を供給する引込タイマをさらに備える請求項7に記載のガン・ドライバ。
  9. 前記電流モード制御部は、
    前記複数のソレノイド・コイルの電流を表すフィードバック信号を供給するように、前記複数のソレノイド・コイルに動作可能に接続される電流センサと、
    ヒステリシス値を有する比較器とを備え、該比較器は、
    前記フィードバック信号に接続される第1入力部と、
    電流設定点を供給する第2入力部と、
    前記電力切り換え回路に接続される出力部とを備え、前記比較器によって、前記電力切り換え回路が、最初に、前記フィードバック信号が前記電流設定点より低いことに応答して、前記電圧バスを前記複数のソレノイド・コイルに接続し、次に、前記フィードバック信号が前記電流設定点より高いことに応答して、前記複数のソレノイド・コイルから前記電圧バスを切り離すようにさせる請求項8に記載のガン・ドライバ。
  10. 前記電流モード制御部は、引込電流設定点及び保持電流設定点をさらに生成し、前記引込電流設定点は、前記引込電流の持続期間中に前記比較器によって使用され、前記保持電流設定点は、前記引込電流の持続期間後に前記比較器によって使用される請求項9に記載のガン・ドライバ。
  11. 前記電圧モード制御部は電圧モード信号を供給し、前記電圧モード制御部によって、前記切り換え回路が、前記引込電流の持続期間中に前記複数のソレノイド・コイルに前記電圧バスを印加するようにさせる請求項8に記載のガン・ドライバ。
  12. 前記電圧モード制御部は、前記電力切り換え回路に動作可能に接続されたパルス発生器をさらに備え、該パルス発生器によって、前記電力切り換え回路が、前記引込電流の持続期間後に、前記複数のソレノイド・コイルに対して前記電圧バスを連続して接続し、切り離すようにさせる請求項11に記載のガン・ドライバ。
  13. 基材上に流体を吐出する流体吐出ガンであって、
    該流体吐出ガンからの前記流体の流量を制御するように、開位置と閉位置の間を移動可能な吐出弁と、
    第1端及び第2端を有し、前記吐出弁に前記開位置と前記閉位置の間を移動させるように動作可能なソレノイド・コイルと、
    高電圧電源であって、
    高電圧バスを提供する第1端子、および、
    第2端子を備える、高電圧電源と、
    該高電圧電源の前記第1端子と前記ソレノイド・コイルの前記第1端の間に電気接続される第1スイッチと、
    低電圧電源であって、
    低電圧バスを提供する第1端子、および、
    前記高電圧電源の前記第2端子との共通接続部を有する第2端子を備える、低電圧電源と、
    該低電圧電源と前記ソレノイド・コイルの前記第1端の間に電気接続される第2スイッチと、
    前記ソレノイド・コイルの前記第2端と前記低電圧電源の前記第2端子の間に電気接続される第3スイッチと、
    前記第1、第2、及び第3スイッチを動作させるために、それぞれ、第1、第2、及び第3出力信号を供給する制御器とを備え、該制御回路はさらに、初期引込位相と、その後より少ない保持位相とを含む階段状波形を供給し、前記制御回路は、
    前記第1スイッチ、前記第2スイッチ、及び前記第3スイッチを閉じ、前記引込位相の初期部分の間に、前記ソレノイド・コイルの前記第1端を、前記高電圧バス及び前記低電圧バスに電気接続するための、前記第1、第2、及び第3出力信号を供給し、
    その後、前記第2スイッチ及び前記第3スイッチを閉じ、前記引込位相の残りの部分の間に、前記ソレノイド・コイルの前記第1端を、前記低電圧バスに電気接続するための、前記第2及び第3出力信号を供給する流体吐出ガン。
  14. 基材上に流体を吐出するように動作可能な流体吐出機用のガン・ドライバ回路であって、前記流体吐出機は、ソレノイド・コイルに動作可能に接続された吐出弁を有し、前記ソレノイド・コイルは、前記吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって前記流体吐出機からの前記流体の流量を制御し、当該ガン・ドライバ回路は、
    整流された、無調整電圧バスと、
    該無調整電圧バスに電気接続された1つの側及び前記ソレノイド・コイルの一端に接続されるようになっている第2の側を有する第1切り換え回路と、
    前記ソレノイド・コイルの電流を検知する電流センサと、
    該電流センサ及び前記第1切り換え回路に動作可能に接続された制御回路であって、該制御回路は、
    ランプアップ電流基準、引込電流基準、及びその後の保持電流基準を規定する電流基準波形を供給する波形発生器を備え、該制御回路は、最初に、前記ランプアップ電流基準に、次に、前記引込電流基準に、その後、前記保持電流基準にほぼ等しい前記ソレノイド・コイルの電流を生成するように、前記第1切り換え回路を動作させる制御回路とを備えるガン・ドライバ回路。
  15. 前記波形発生器は、前記引込電流基準と前記保持電流基準の間にランプダウン電流基準をさらに提供し、前記制御回路は、前記ソレノイド・コイルの反対端に接続された第2切り換え回路をさらに備え、該第2切り換え回路は、
    前記第1切り換え回路が前記無調整電圧バスから前記ソレノイド・コイルを切り離すことに応答して、前記無調整電圧バスにフライバック電流を接続する第1状態と、
    前記ソレノイド・コイルの前記電流が、前記ソレノイド・コイルを含む回路内の抵抗を通して消散することを可能にする第2状態とを有し、
    前記制御回路は、前記第2切り換え回路を前記第1状態と前記第2状態の間で切り換えて、前記コイルの前記電流が、ランプダウン電流基準にほぼ等しくなる請求項14に記載のガン・ドライバ回路。
  16. 基材上に流体を吐出するように動作可能な流体吐出機用のガン・ドライバ回路であって、前記流体吐出機は、ソレノイド・コイルに動作可能に接続された吐出弁を有し、前記ソレノイド・コイルは、前記吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって前記流体吐出機からの前記流体の流量を制御し、当該ガン・ドライバ回路は、
    整流された無調整電圧バスと、
    該無調整電圧バスに電気接続された1つの側及び前記ソレノイド・コイルの一端に接続されるようになっている第2の側を有する第1切り換え回路と、
    前記ソレノイド・コイルの電流を検知する電流センサと、
    該電流センサ及び前記第1切り換え回路に動作可能に接続された制御回路とを備え、
    該制御回路は、
    引込電流基準、ランプダウン電流基準、及びその後の保持電流基準を規定する電流基準波形を供給する波形発生器と、前記電流基準波形にほぼ等しい前記ソレノイド・コイルの電流を生成するように、前記第1切り換え回路を動作させる制御回路と、
    前記ソレノイド・コイルの反対端に接続された第2切り換え回路とを備え、
    該第2切り換え回路は、
    前記第1切り換え回路が前記無調整電圧バスから前記ソレノイド・コイルを切り離すことに応答して、フライバック電流を前記無調整電圧バスに接続する第1状態と、
    前記ソレノイド・コイルの前記電流が、前記ソレノイド・コイルを含む回路内の抵抗を通して消散することを可能にする第2状態とを有し、前記制御回路は、前記第2切り換え回路を前記第1状態と前記第2状態の間で切り換えて、前記コイルの前記電流をランプダウン電流基準にほぼ等しくさせるガン・ドライバ回路。
  17. 基材上に流体を吐出する流体吐出ガンを動作させる方法であって、該流体吐出ガンは、ソレノイド・コイルに動作可能に接続された吐出弁を有し、前記ソレノイド・コイルは、前記吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって前記流体吐出ガンからの前記流体の流量を制御し、当該方法は、
    引込位相持続期間、引込電流設定点、及び、より低い保持電流設定点を設ける工程と、
    高電圧バス及び低電圧バスを設ける工程と、
    前記ソレノイド・コイルを通して引込電流を急速に始動させるために、前記引込位相持続期間の初期部分の間に、前記高電圧バスを前記ソレノイド・コイルに、する工程と、
    前記ソレノイド・コイルの電流が前記引込電流基準にほぼ等しいことに応答して、前記ソレノイド・コイルから前記高電圧バスを取り外す工程と、
    前記ソレノイド・コイルの電流を前記引込電流基準にほぼ等しく維持するために、前記低電圧バスを前記ソレノイド・コイルに印加する工程とを含む方法。
  18. 前記引込電流基準にほぼ等しいリップル電流を供給するために、前記低電圧バスの前記ソレノイド・コイルへの印加を変調する工程をさらに含む請求項17に記載の方法。
  19. 前記引込位相の前記初期部分の間に、前記低電圧バスを前記ソレノイド・コイルに印加する工程をさらに含む請求項17に記載の方法。
  20. 前記引込位相の持続期間の終わりに前記低電圧バスを前記ソレノイド・コイルから取り出す工程をさらに含む請求項17に記載の方法。
  21. 前記低電圧バスを前記ソレノイド・コイルから取り外すことに応答して、前記ソレノイド・コイルから前記高電圧バスへのフライバック電流をクランピングする工程をさらに含む請求項20に記載の方法。
  22. 前記低電圧を取り除くことによって生じる前記フライバック電流により、前記高電圧バスを提供するコンデンサを充電させる工程をさらに含む請求項17に記載の方法。
  23. 前記ソレノイド・コイルの電流を前記保持電流基準にほぼ等しく維持するためのリップル電流を供給するために、前記低電圧バスの前記ソレノイド・コイルへの印加を変調する工程をさらに含む請求項17に記載の方法。
  24. 基材上に流体を吐出する複数の流体吐出ガンを動作させる方法であって、前記複数の流体吐出ガンは、複数のソレノイド・コイルのそれぞれに動作可能に接続された複数の吐出弁のそれぞれを有し、前記ソレノイド・コイルはそれぞれ、各吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって各流体吐出ガンからの前記流体の流量を制御し、当該方法は、
    電圧バスを設ける工程と、
    引込電流位相の持続期間を表すタイミング信号を生成する工程と、
    電圧モード制御信号を生成する工程であって、該電圧モードは、前記複数のソレノイド・コイルが前記電圧バスにわたって並列に接続されることに応答して使用される工程と、
    電流モード制御信号を生成する工程であって、該電流モード制御信号は、前記複数のソレノイド・コイルが前記電圧バスにわたって直列に接続されることに応答して使用される工程と、
    前記タイミング信号、前記電圧モード制御信号、及び前記電流モード制御信号に応答して、前記電圧バスと前記複数のソレノイド・コイルの間に接続された電力切り換え回路を動作させる工程とを含む方法。
  25. 前記電流モード信号に応答して、前記複数のソレノイド・コイルの電流を表すフィードバック信号を生成する工程と、
    電流設定点を生成する工程と、
    前記フィードバック信号及び前記電流設定点を、ヒステリシス値と比較する工程と、
    前記フィードバック信号が前記電流設定点より低いことに応答して、前記電力切り換え回路が、前記電圧バスを前記複数のソレノイド・コイルに接続させる工程と、
    前記フィードバック信号が前記電流設定点より高いことに応答して、前記電力切り換え回路が、前記電圧バスを前記複数のソレノイド・コイルから切り離す工程とをさらに含む請求項24に記載の方法。
  26. 前記電圧モード制御信号に応答して、前記電力切り換え回路が、前記引込電流位相の持続期間の間に、前記電圧バスを前記複数のソレノイド・コイルに印加する工程と、
    前記引込電流設定点にほぼ等しい、前記複数のソレノイド・コイルのうちの1つのソレノイド・コイルの電流を検出する工程と、
    その後、一連のパルスを生成する工程と、
    前記電圧バスを前記複数のソレノイド・コイルに連続して接続し、切り離すために、前記電力切り換え回路を前記一連のパルスによって動作させる工程とをさらに含む請求項24に記載の方法。
  27. 基材上に流体を吐出する流体吐出ガンを動作させる方法であって、前記流体吐出ガンは、ソレノイド・コイルに動作可能に接続された吐出弁を有し、前記ソレノイド・コイルは、前記吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって前記流体吐出ガンからの前記流体の流量を制御し、当該方法は、
    線間電圧からの、整流された無調整電圧バスを提供する工程と、
    該無調整電圧バスと前記ソレノイド・コイルの一端の間に接続された切り換え回路を設ける工程と、
    ランプアップ電流基準、引込電流基準、及びその後の保持電流基準を規定する電流対時間の関係を表す電流基準波形を生成する工程と、
    前記ソレノイド・コイルの電流が、前記電流基準波形にほぼ等しくなるようにさせるために、前記切り換え回路を動作させる工程とを含む方法。
  28. 前記ソレノイド・コイルの前記電流を表す電流フィードバック信号を生成する工程と、
    前記電流基準波形及び前記電流フィードバック信号に応答して前記切り換え回路を動作させる工程とをさらに含む請求項27に記載の方法。
  29. 前記引込電流基準と前記保持電流基準の間にランプダウン電流基準を含む前記電流基準波形を生成する工程と、
    前記ソレノイド・コイルの反対端に接続された第2切り換え回路を設ける工程であって、該第2切り換え回路は、
    前記第1切り換え回路が前記無調整電圧バスから前記ソレノイド・コイルを切り離すことに応答して、フライバック電流を前記無調整電圧バスに接続させる第1状態と、
    前記ソレノイド・コイルの前記電流が、前記ソレノイド・コイルを含む回路内の抵抗を通して消散することを可能にする第2状態とを有する工程と、
    前記コイルの前記電流が、ランプダウン電流基準にほぼ等しくさせるために、前記第2切り換え回路を前記第1状態と前記第2状態の間で切り換える工程とをさらに含む請求項27に記載の方法。
  30. 基材上に流体を吐出する流体吐出ガンを動作させる方法であって、該流体吐出ガンは、ソレノイド・コイルに動作可能に接続された吐出弁を有し、前記ソレノイド・コイルは、前記吐出弁が、開位置と閉位置の間を移動するようにさせるよう動作可能であることによって前記流体吐出ガンからの前記流体の流量を制御し、当該方法は、
    線間電圧からの、整流された、無調整電圧バスを提供する工程と、
    該無調整電圧バスと前記ソレノイド・コイルの間に接続された第1切り換え回路を設ける工程と、
    引込電流基準、ランプダウン電流基準、及びその後の保持電流基準を規定する電流対時間の関係を表す電流基準波形を生成する工程と、
    前記ソレノイド・コイルの電流が、前記引込電流基準にほぼ追従するようにさせるために、前記第1切り換え回路を動作させる工程と、
    前記ソレノイド・コイルの反対端に接続された第2切り換え回路を設ける工程であって、該第2切り換え回路は、
    前記第1切り換え回路が前記無調整電圧バスから前記ソレノイド・コイルを切り離すことに応答して、フライバック電流を前記無調整電圧バスに接続する第1状態と、
    前記ソレノイド・コイルの前記電流が、前記ソレノイド・コイルを含む回路内の抵抗を通して消散することを可能にする第2状態とを有する工程と、
    前記ソレノイド・コイルの前記電流をランプダウン電流基準にほぼ等しくさせるために、前記第2切り換え回路を前記第1状態と前記第2状態の間で切り換える工程とを有する方法。
JP2005131609A 2004-04-30 2005-04-28 スイッチ・モード・ガン・ドライバ及び方法 Withdrawn JP2005347738A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US56726404P 2004-04-30 2004-04-30

Publications (1)

Publication Number Publication Date
JP2005347738A true JP2005347738A (ja) 2005-12-15

Family

ID=35352227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131609A Withdrawn JP2005347738A (ja) 2004-04-30 2005-04-28 スイッチ・モード・ガン・ドライバ及び方法

Country Status (2)

Country Link
JP (1) JP2005347738A (ja)
CN (1) CN1692992A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216150A (ja) * 2014-05-08 2015-12-03 日立オートモティブシステムズ株式会社 誘導負荷駆動回路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184014B2 (en) * 2013-02-01 2015-11-10 General Electric Company Electrical operator for circuit breaker and method thereof
US9211878B2 (en) * 2013-03-06 2015-12-15 Hamilton Sundstrand Corporation In situ flap and slat wing tip brake response tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216150A (ja) * 2014-05-08 2015-12-03 日立オートモティブシステムズ株式会社 誘導負荷駆動回路

Also Published As

Publication number Publication date
CN1692992A (zh) 2005-11-09

Similar Documents

Publication Publication Date Title
EP1592027A2 (en) Switch mode gun driver and method
US6978978B2 (en) PWM voltage clamp for driver circuit of an electric fluid dispensing gun and method
AU701788B2 (en) Improved electric gun driver
US7499254B2 (en) Low power solenoid driver circuit
EP1508961B1 (en) Capacitor charging circuit and method thereof
GB2449063A (en) A saturation control loop for a BJT or IGBT in a switching power supply
US20070053133A1 (en) Using voltage feed forward to control a solenoid valve
US20140240383A1 (en) Method of driving a capacitive load and drive circuit therefor
US4511829A (en) Direct current control in inductive loads
WO2008132511A1 (en) Power converters
WO2007091170A1 (en) Solenoid driver circuit
US20120081929A1 (en) High Efficiency and Low Cost High Voltage Power Converter
JP2005347738A (ja) スイッチ・モード・ガン・ドライバ及び方法
WO2008132508A2 (en) Bipolar transistor drivers
US5760552A (en) Method of controlling driving power of double-solenoid electric percussion tools
JP2005223867A (ja) 磁気エネルギー回生スイッチを用いた昇圧パルス電源装置
US7315440B1 (en) Circuit and method for driving a coil-armature device
CN101499727B (zh) 能量输出控制方法和电路
US6061225A (en) Method and apparatus for controlling a solenoid within an electric dispensing gun
JP2007315179A (ja) 燃料噴射装置の制御方法
WO2008132512A1 (en) Power converters
JP4695543B2 (ja) 燃料噴射装置及び燃料噴射制御装置
AU2013391065A1 (en) Driver circuit for electromagnetic dispenser
CN112703667A (zh) 用于调节使得能够对转换器的转换模块进行电流控制的信号的占空比的方法
JP2590529B2 (ja) 圧電素子の駆動回路

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701