JP2005347535A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2005347535A
JP2005347535A JP2004165742A JP2004165742A JP2005347535A JP 2005347535 A JP2005347535 A JP 2005347535A JP 2004165742 A JP2004165742 A JP 2004165742A JP 2004165742 A JP2004165742 A JP 2004165742A JP 2005347535 A JP2005347535 A JP 2005347535A
Authority
JP
Japan
Prior art keywords
iron core
coil
reactor
secondary coil
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004165742A
Other languages
Japanese (ja)
Other versions
JP4867053B2 (en
Inventor
Mitsuhiko Fujisaki
崎 満 彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP2004165742A priority Critical patent/JP4867053B2/en
Publication of JP2005347535A publication Critical patent/JP2005347535A/en
Application granted granted Critical
Publication of JP4867053B2 publication Critical patent/JP4867053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor of low cost and high reliability wherein magnetic core texture is simple, and stable manufacturing technology of a laminated core transformer can be used, in addition to high performance that swinging and noise are small since a block magnetic core is not used, loss by fringing is small, local overheat is little and waveform distortion is small. <P>SOLUTION: In the reactor using a magnetic core, the magnetic core of each phase is constituted of a main magnetic core which makes a closed magnetic circuit or an open magnetic circuit, and a bypass magnetic core which makes a closed magnetic circuit. Around the main magnetic core, a secondary coil is wound to interior, and a primary coil is wound around the exterior in the shape of a concentric circle. The bypass magnetic core is installed in the position of a main air gap which is located in exterior of the secondary coil and interior of the primary coil, and it is constituted so that the secondary coil is short-circuited. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は交流電力回路に使用される電力リアクトルもしくは限流リアクトルに係り、より詳しくは、通常の変圧器と同様の積層鉄心を用いて作ることができて、安価で大容量化に適したリアクトルに関するものである。   The present invention relates to a power reactor or a current-limiting reactor used in an AC power circuit, and more specifically, a reactor that can be made using a laminated core similar to a normal transformer and is inexpensive and suitable for increasing capacity. It is about.

一般に使用されている電力リアクトルは、磁束の通路である鉄心と、その鉄心に巻かれたコイル(巻線)と、それらを固定する付属構造物から構成されている。
例えば、図1を参照すると、従来のリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。
A generally used power reactor is composed of an iron core that is a path for magnetic flux, a coil (winding) wound around the iron core, and an attached structure that fixes them.
For example, referring to FIG. 1, it is a figure explaining the structure of the conventional reactor, (A) is a whole block diagram, (B) is a top view, (C) is an elevation view.

図1(A)に示すように、鉄心10にはコイル20が巻かれ、交流電源vを印加すると、鉄心10に磁束φが生成される。
図1(B)に示すように、積層鉄心の場合、鉄心10の脚部11は、幅(図で横方向)の異なる薄鉄板14aを積層して、全体を略円筒状に形成し、その外側にコイル20を設置する。鉄心10の下部ヨーク部15も、図示していないが同様に積層鉄心で形成する。上部ヨーク部は簡便のため図示を省いてある。
As shown in FIG. 1A, a coil 20 is wound around the iron core 10, and when an AC power supply v is applied, a magnetic flux φ is generated in the iron core 10.
As shown in FIG. 1 (B), in the case of a laminated iron core, the leg portion 11 of the iron core 10 is formed by laminating thin iron plates 14a having different widths (lateral directions in the figure) to form a substantially cylindrical shape as a whole. The coil 20 is installed outside. Although not shown, the lower yoke portion 15 of the iron core 10 is also formed of a laminated iron core. The upper yoke portion is not shown for simplicity.

図1(C)に示すように、空隙入り鉄心リアクトルの場合は、鉄心の脚部に複数の空隙13を設けることによって等価的に透磁率を低下させ、さらにコイルの巻回数を適宜に行い、所望のリアクタンスを得ている。
その場合、空隙と空隙で切り離された個々のブロック状の鉄心14をブロック鉄心という。
As shown in FIG. 1C, in the case of a core reactor with a gap, the magnetic permeability is equivalently reduced by providing a plurality of gaps 13 in the legs of the core, and the number of turns of the coil is appropriately set. The desired reactance is obtained.
In that case, each block-shaped iron core 14 separated by the air gap is referred to as a block iron core.

図2を参照すると、鉄心のB/H(v/i)特性曲線であり、通常の変圧器用積層鉄心の場合、非飽和領域‘a’での透磁率μは非常に高く(略、数1000)、B/H特性曲線の傾斜は非常に急である。
しかしながら空隙入り鉄心の場合、等価透磁率μ’は、ブロック鉄心部の透磁率μと空隙部の透磁率(略、1)の合成値になり、ある程度μより低い任意の値を得ることができ、所定の定格電流I0に対して所望の定格電圧V0を発生する特性曲線‘b’、即ち所望のインダクタンス(リアクタンス)値を持つリアクトルが提供できる。
Referring to FIG. 2, it is a B / H (v / i) characteristic curve of an iron core, and in the case of a normal laminated iron core for a transformer, the magnetic permeability μ in the non-saturated region “a” is very high (approximately several thousand). ), The slope of the B / H characteristic curve is very steep.
However, in the case of a core with a gap, the equivalent permeability μ ′ is a composite value of the permeability μ of the block core and the permeability (substantially 1) of the gap, and an arbitrary value lower than μ can be obtained to some extent. A characteristic curve 'b' that generates a desired rated voltage V0 for a predetermined rated current I0, that is, a reactor having a desired inductance (reactance) value can be provided.

図3を参照すると、従来の空隙入り鉄心リアクトルの、図1(B)のX−X断面で見た立面図において、磁束の分布を示す図である。
図1(B)、図3に示すように、ブロック鉄心14の薄鉄板14aは積層して形成されており、ブロック鉄心及び空隙の中央部では磁束φaが薄鉄板に沿って概ね上下方向に形成される(磁束φaは薄鉄板14aの内部を図で上下に貫通している。)が、空隙の周辺部では空隙の透磁率が鉄板の透磁率に比べ著しく低いので、磁束φbは、外側に膨らんだ形で鉄板に出入りする(フリンジング)。
Referring to FIG. 3, it is a diagram showing the distribution of magnetic flux in an elevational view of a conventional voided core reactor as seen in the section XX in FIG. 1 (B).
As shown in FIGS. 1B and 3, the thin iron plate 14 a of the block core 14 is formed by stacking, and the magnetic flux φa is formed substantially vertically along the thin iron plate at the center of the block core and the gap. (The magnetic flux φa penetrates the inside of the thin iron plate 14a up and down in the figure.) However, since the permeability of the air gap is significantly lower than the magnetic permeability of the iron plate at the periphery of the air gap, the magnetic flux φb Enters and exits the iron plate in a swollen form (fringe).

空隙入り鉄心の空隙は、所望のμ’を得るためにある程度大きい空隙を設ける必要がある場合には、これを数箇所〜数10箇所に分割する。
その理由は、もし1箇所の空隙が大きすぎると、フリンジング効果が過大になるからである。
即ち上記のように、空隙部分で主磁束が大きく広がり、ブロック鉄心に出入りする前記磁束φbが増え、薄鉄板14aの面に直角に出入りする成分が増加して渦電流が大きくなり、さらにコイルの導線を通ろうとする磁束φcが増加し、これを打ち消そうとする渦電流が流れ、合わせて渦電流損が大きくなり、局部的な温度上昇が過大になるからである。
さらに、主磁束が広がりすぎる結果、コイルとの鎖交磁束数が減じ実効リアクタンスが減少するからである。
When it is necessary to provide a gap that is somewhat large in order to obtain a desired μ ′, the gap in the iron core with gaps is divided into several to several tens.
The reason for this is that if one of the gaps is too large, the fringing effect becomes excessive.
That is, as described above, the main magnetic flux greatly spreads in the gap portion, the magnetic flux φb entering and exiting the block iron core increases, the component entering and exiting at right angles to the surface of the thin iron plate 14a increases, the eddy current increases, and the coil This is because the magnetic flux φc that attempts to pass through the conducting wire increases, eddy currents that try to counteract this flow, eddy current loss increases, and local temperature rise becomes excessive.
Furthermore, as a result of the main magnetic flux spreading too much, the number of flux linkages with the coil is reduced and the effective reactance is reduced.

また、この空隙の上下両側のブロック鉄心間には吸引力が働き、ブロック鉄心内の薄鉄板相互間には機械的斥力が働き、磁力線の成長・変化に伴う、特にフリンジング近傍での磁歪音と合わせて、振動や騒音の原因になる。   In addition, an attractive force acts between the block cores on both the upper and lower sides of this gap, and a mechanical repulsive force acts between the thin iron plates in the block core, resulting in magnetostrictive sound especially in the vicinity of fringing due to the growth and change of magnetic field lines. Together with it, it causes vibration and noise.

図4を参照すると、従来のリアクトルにおける放射状ブロック鉄心14の平面図である。
図4に示すように、特に大型のリアクトルでは、上記の問題を一部改善するため、脚のブロック鉄心を積層から放射状(ラジアル状)に変更したものを一般的に採用している。
即ち、幅の異なる薄鉄板14aを順次積層して、断面が扇形のサブブロック14zを形成し、これを円形に並べて円筒状のブロック鉄心を形成する。
Referring to FIG. 4, it is a plan view of a radial block core 14 in a conventional reactor.
As shown in FIG. 4, in particular, a large reactor generally adopts a structure in which the leg block iron core is changed from a laminated shape to a radial shape (radial shape) in order to partially improve the above problem.
That is, the thin iron plates 14a having different widths are sequentially stacked to form the fan-shaped sub blocks 14z, which are arranged in a circle to form a cylindrical block core.

このような放射状鉄心の場合には薄鉄板の面が露出していないので、フリンジジング磁束が図の‘Y’方向から出入りする際、常に薄鉄板の厚さ方向から出入りすることになり、渦電流損を抑えることができる。しかし、放射状鉄心は、薄鉄板の積層工程が通常の鉄心ほど容易ではない上にブロック鉄心固有の振動・騒音の問題は未解決のままである。   In the case of such a radial iron core, the surface of the thin iron plate is not exposed. Therefore, when the fringing magnetic flux enters and exits from the 'Y' direction in the figure, it always enters and exits from the thickness direction of the thin iron plate. Current loss can be suppressed. However, in the radial iron core, the lamination process of thin iron plates is not as easy as a normal iron core, and the problems of vibration and noise inherent to the block iron remain unsolved.

なお、振動や騒音に対しては、ブロック鉄心を単体ごとに、積層鉄心の場合は穴をあけてボルトで締め付け、ラジアル鉄心の場合はコンパウンドで固め、さらに、ブロック鉄心間の空隙には、フェノールレジン積層板やセラミック材などからなる間隔片を入れ、鉄心と間隔片が一体となるように上下締め付けスタッドで締め付ける構造を取り、全体を防音タンクに入れるなど種々の工夫がなされているが、振動・騒音の問題は解決し切れない。   In addition, for vibration and noise, block iron cores are singly united, in the case of laminated iron cores, holes are drilled and tightened with bolts, and in the case of radial iron cores, they are hardened with compounds. Various measures have been taken, such as placing a gap piece made of resin laminate, ceramic material, etc., and tightening with an upper and lower tightening stud so that the iron core and the gap piece are integrated, and placing the whole in a soundproof tank.・ Noise problem cannot be solved.

以上をまとめると、従来技術によるリアクトルの場合は、性能的に振動・騒音が大きく、フリンジングによる損失が大きかった。   In summary, in the case of the reactor according to the prior art, the vibration and noise are large in performance and the loss due to fringing is large.

さらに、通常の積層鉄心変圧器と比べて構造が複雑になり、ブロック鉄心を個別に、特に放射状に積層し、締め付け、あるいはコンパウンドで固め、できたブロック鉄心を積み重ねて最終的な鉄心構造まで組みたてなければならず、製造自動化が困難で、工数・製作時間がかかり、納期的にも価格的にも問題があった。   In addition, the structure is more complex than that of ordinary laminated core transformers, and the block cores are stacked individually, especially radially, and tightened or hardened with a compound, and the resulting block cores are stacked and assembled to the final core structure. It was difficult to automate manufacturing, requiring man-hours and production time, and there were problems in terms of delivery time and price.

また、従来技術によるリアクトルを分路リアクトルとして用いる場合、1次コイル側で直接スイッチしなければならず、特に超高圧(例えば、66KV級)の場合、超高圧でしかも多頻度(少なくとも日に一度開閉)用の高価な遮断器が必要になり、なおかつ、開閉動作のたびに励磁突流が問題になる場合があった。   In addition, when a reactor according to the prior art is used as a shunt reactor, it must be switched directly on the primary coil side, especially in the case of an ultra-high voltage (for example, 66 KV class), an ultra-high voltage and frequently (at least once a day). An expensive circuit breaker for switching) is required, and excitation rush current may become a problem every time the switching operation is performed.

これらの従来技術に関連して、特許文献1には、リアクトルの放射状鉄心からなるブロック鉄心の空隙を支えるギャップ材に関する技術が開示されている。
特開平06−267758号公報
In relation to these conventional techniques, Patent Document 1 discloses a technique relating to a gap material that supports a gap of a block core made of a radial core of a reactor.
Japanese Patent Laid-Open No. 06-267758

本発明は、上記の問題点を解消するために、ブロック鉄心を用いないので、性能的に振動・騒音が小さく、フリンジングによる損失が小さく、局部過熱が少ないリアクトルを提供することを目的とする。   An object of the present invention is to provide a reactor that does not use a block core in order to solve the above-described problems, and therefore has low vibration and noise in performance, low loss due to fringing, and low local overheating. .

本発明は、鉄心構造が簡明で安定した積層鉄心変圧器の製造技術が使えるので、安価、高信頼度で大容量化が可能なリアクトルを提供することを他の目的とする。   Another object of the present invention is to provide a reactor capable of increasing the capacity at a low cost, with high reliability because the manufacturing technology of a laminated core transformer having a simple and stable iron core structure can be used.

本発明は、低電圧用の安価な遮断器を用いることができ、しかも励磁突流の問題のない、分路リアクトルを提供することを他の目的とする。   Another object of the present invention is to provide a shunt reactor in which an inexpensive circuit breaker for low voltage can be used and there is no problem of excitation rush.

上記の目的を達成するためになされた本発明によるリアクトルは請求項1に記載のとおり、鉄心を用いたリアクトルにおいて、各相の鉄心は主鉄心とバイパス鉄心からなり、前記主鉄心には内側に2次コイルを、その外側に1次コイルを巻き、前記1次コイルの内側で前記2次コイルの外側に位置する主空隙の位置に前記バイパス鉄心の脚部を設置し、前記2次コイルを短絡したことを特徴とする。   The reactor according to the present invention made to achieve the above object is a reactor using an iron core according to claim 1, wherein each phase iron core is composed of a main iron core and a bypass iron core, and the main iron core is disposed inside. A secondary coil is wound around a primary coil on the outer side, and a leg portion of the bypass iron core is installed at a position of a main gap located outside the secondary coil inside the primary coil. It is characterized by a short circuit.

好ましくは請求項5に記載のとおり、前記バイパス鉄心を各相2個設け、その各々に制御コイルを巻き、前記制御コイルが互いに逆方向の直流励磁がなされるように接続されたことを特徴とする。   Preferably, as described in claim 5, two bypass iron cores are provided for each phase, a control coil is wound around each of the phases, and the control coils are connected so as to perform DC excitation in opposite directions. To do.

また、請求項6に記載のとおり、前記バイパス鉄心のヨーク部だけを2分割し、その2分割された各々に制御コイルを巻き、前記制御コイルが互いに逆方向の直流励磁がなされるように接続されたことを特徴とする。   In addition, as described in claim 6, only the yoke portion of the bypass core is divided into two parts, and a control coil is wound around each of the two parts, and the control coils are connected so that direct current excitation is performed in opposite directions. It is characterized by that.

好ましくは請求項2に記載のとおり、前記2次コイルは、一方の端が前記1次コイルの一方の端に接続され、他方の端が前記1次コイルの中間部に設けたタップに接続され、前記1次コイルと2次コイルが減極性になるように接続されていることを特徴とする。   Preferably, as described in claim 2, one end of the secondary coil is connected to one end of the primary coil, and the other end is connected to a tap provided in an intermediate portion of the primary coil. The primary coil and the secondary coil are connected so as to be depolarized.

上記の目的を達成するためになされた本発明によるリアクトルは請求項3に記載のとおり、鉄心を用いたリアクトルにおいて、各相の鉄心は主鉄心とバイパス鉄心からなり、各々、前記主鉄心及びバイパス鉄心の脚部、前記主鉄心の脚部を囲むように1次コイル、2次コイルを巻き、前記1次コイルの一方の端と前記2次コイルの一方の端を接続して単巻変圧器を構成し、前記2次コイルの一方の端もしくは前記2次コイルの中間に設けたタップと前記2次コイルの他方の端とを接続することにより、各々、前記2次コイルの全部もしくは一部を短絡したことを特徴とする。   The reactor according to the present invention made to achieve the above object is a reactor using an iron core as set forth in claim 3, wherein the iron core of each phase includes a main iron core and a bypass iron core, and the main iron core and the bypass iron respectively. A primary coil and a secondary coil are wound so as to surround the leg of the iron core and the leg of the main iron core, and one end of the primary coil and one end of the secondary coil are connected to each other to form a single-winding transformer And connecting one end of the secondary coil or a tap provided in the middle of the secondary coil and the other end of the secondary coil, respectively, so that all or part of the secondary coil is respectively connected Are short-circuited.

上記の目的を達成するためになされた本発明によるリアクトルは請求項4に記載のとおり、鉄心を用いたリアクトルにおいて、各相の鉄心は主鉄心とバイパス鉄心からなり、各々、前記主鉄心及びバイパス鉄心の脚部、前記主鉄心の脚部、前記バイパス鉄心の脚部を囲むように1次コイル、2次コイル、3次コイルを巻き、前記1次コイルの一方の端と前記3次コイルの一方の端を接続し、前記3次コイルの他方の端と前記2次コイルの一方の端を接続し、前記2次コイルの一方の端もしくは前記2次コイルの中間に設けたタップと前記2次コイルの他方の端とを接続することにより、各々、前記2次コイルの全部もしくは一部を短絡したことを特徴とする。   The reactor according to the present invention made to achieve the above object is a reactor using an iron core as set forth in claim 4, wherein the iron core of each phase is composed of a main iron core and a bypass iron core, and the main iron core and the bypass iron respectively. A primary coil, a secondary coil, and a tertiary coil are wound so as to surround the legs of the iron core, the legs of the main iron core, and the legs of the bypass iron core, and one end of the primary coil and the third coil One end is connected, the other end of the tertiary coil and one end of the secondary coil are connected, and one end of the secondary coil or a tap provided in the middle of the secondary coil and the 2 By connecting the other end of the secondary coil, all or a part of the secondary coil is short-circuited.

また、請求項7に記載のとおり、前記1次コイルは、前記バイパス鉄心部と主鉄心部を分割して巻くように、「8」の字形をなすことを特徴とする。   According to a seventh aspect of the present invention, the primary coil has a letter “8” shape so that the bypass core portion and the main core portion are divided and wound.

上記の目的を達成するためになされた本発明によるリアクトルは請求項8に記載のとおり、鉄心を用いたリアクトルにおいて、各相の主鉄心を囲むように、内側に2次コイルを、その外側に1次コイルを巻き、前記2次コイルは、一方の端が前記1次コイルの一方の端に接続され、他方の端が前記1次コイルの中間部に設けたタップに接続され、前記1次コイルと2次コイルが減極性になるように接続されていることを特徴とする。   A reactor according to the present invention made to achieve the above object is a reactor using an iron core as defined in claim 8, wherein a secondary coil is arranged on the inner side so as to surround the main iron core of each phase. A primary coil is wound, and the secondary coil has one end connected to one end of the primary coil and the other end connected to a tap provided in an intermediate portion of the primary coil. The coil and the secondary coil are connected so as to be depolarized.

好ましくは請求項9に記載のとおり、前記2次コイルを短絡する回路に遮断器もしくは断路器を装備したことを特徴とする。   Preferably, as described in claim 9, the circuit for short-circuiting the secondary coil is equipped with a circuit breaker or a disconnector.

本発明によれば、ブロック鉄心を用いないので、性能的に振動・騒音が小さく、フリンジングによる損失が小さく、局部過熱が少ないリアクトルが得られる。   According to the present invention, since a block iron core is not used, a reactor with low vibration and noise in performance, low loss due to fringing, and low local overheating can be obtained.

また、本発明によれば、ブロック鉄心を用いず、鉄心構造が簡明で安定した積層鉄心変圧器の製造技術が使えるので、安価、高信頼度で大容量化が可能なリアクトルが得られる。   Further, according to the present invention, since a manufacturing technique of a laminated core transformer with a simple and stable iron core structure can be used without using a block iron core, a reactor capable of increasing the capacity with low cost and high reliability can be obtained.

また、本発明によれば、遮断器を2次側に設けることができるので、低電圧用の安価な遮断器を使うことができ、さらに励磁突流の発生しない分路リアクトルが得られる。   Further, according to the present invention, since the circuit breaker can be provided on the secondary side, an inexpensive circuit breaker for low voltage can be used, and a shunt reactor that does not generate exciting rush current can be obtained.

以下、本発明によるリアクトルの実施例を、添付図を参照して詳細に説明する。
従来技術もしくは既述の実施例の説明と同一部分についての説明は省略する場合がある。
Hereinafter, embodiments of a reactor according to the present invention will be described in detail with reference to the accompanying drawings.
A description of the same parts as those of the prior art or the above-described embodiments may be omitted.

図5を参照して、第1の実施例に係るリアクトルの構成を説明する。
図5において、(A)は全体構成図、(B)は平面図、(C)は立面図である。
なお、図5及び以下の同様の図において、(A)(B)(C)はいずれも、単相の場合、あるいは3相の場合の1相分だけを示す。
また、以下、構成と動作原理を簡単のため単相回路で説明するが、多相(3相)回路についても原理的には全く同じ説明が適用できる。
With reference to FIG. 5, the structure of the reactor which concerns on a 1st Example is demonstrated.
5A is an overall configuration diagram, FIG. 5B is a plan view, and FIG. 5C is an elevation view.
In FIG. 5 and the following similar figures, (A), (B), and (C) all show only one phase in the case of a single phase or three phases.
In the following description, the configuration and operation principle will be described using a single-phase circuit for simplicity. However, the same description can be applied to a multi-phase (three-phase) circuit in principle.

本実施例においては、鉄心は額縁形ラップ積層鉄心からなり、閉磁路型をなす。
額縁形の縦の部分を脚部といい、横の部分をヨーク部という。この額縁形鉄心10、40を並列に配置し、一方の鉄心10を主鉄心、他方の鉄心40をバイパス鉄心とする。
2次コイル30を主鉄心10の脚部11の周りの最内側に巻き、1次コイル20を、2次コイル30の外側に同心状に、かつバイパス鉄心40の脚部41をも一緒に包むように巻く構造にする。
2次コイルの両端は直接短絡されている。
In this embodiment, the iron core consists of a frame-shaped lap laminated iron core and forms a closed magnetic circuit type.
The vertical part of the frame shape is called the leg part, and the horizontal part is called the yoke part. The frame-shaped iron cores 10 and 40 are arranged in parallel, and one iron core 10 is a main iron core and the other iron core 40 is a bypass iron core.
The secondary coil 30 is wound around the innermost part around the leg portion 11 of the main iron core 10, and the primary coil 20 is concentrically formed outside the secondary coil 30 and the leg portion 41 of the bypass iron core 40 is also wrapped together. Make the structure so that it winds.
Both ends of the secondary coil are directly short-circuited.

両鉄心の脚部は各々、薄鉄板11a、41aを積層して形成され、各々、下部ヨーク部15、45、及び上部ヨーク部(図示せず)にラップジョイントされる。
これらの構造については通常の変圧器の場合と同等である。
The legs of both iron cores are formed by laminating thin steel plates 11a and 41a, and are lap jointed to lower yoke parts 15 and 45 and an upper yoke part (not shown), respectively.
These structures are the same as those for ordinary transformers.

最初に、この構成状態で、2次コイルの両端を仮に開放した場合を考察する。
1次コイル20の両端に交流電圧vを印加すると、その積分値に見合う主磁束が誘起される。
主磁束は1次、2次両コイル間の鎖交磁束φMと鎖交しない磁束の和からなり、鎖交しない磁束は、バイパス鉄心によって主磁束がバイパスされた分φLに応じて増加し、鎖交磁束φM、従って、φMに比例する2次誘起電圧は、φLが増加するにつれて減少する。
First, a case where both ends of the secondary coil are temporarily opened in this configuration state will be considered.
When an AC voltage v is applied to both ends of the primary coil 20, a main magnetic flux corresponding to the integral value is induced.
The main magnetic flux consists of the sum of the interlinkage magnetic flux φM between the primary and secondary coils and the magnetic flux not interlinked, and the non-interlinkage magnetic flux increases according to φL by which the main magnetic flux is bypassed by the bypass iron core. The magnetic flux exchange φM, and therefore the secondary induced voltage proportional to φM, decreases as φL increases.

即ち2次誘起電圧は、バイパス鉄心と主鉄心の断面積の和に対する主鉄心の断面積の比に応じて増減する。
それに伴って、2次容量、即ち、2次コイル側の定格容量(定格電流と定格電圧の積)も同じく、バイパス鉄心と主鉄心の断面積の和に対する主鉄心の断面積の比に応じて増減する。
その際の、即ち、2次コイル開放の際の主磁束はバイパス鉄心と主鉄心の磁束密度が同じになるように、全て鉄心を通るとみなして良い。
That is, the secondary induced voltage increases or decreases according to the ratio of the cross-sectional area of the main iron core to the sum of the cross-sectional areas of the bypass iron core and the main iron core.
Accordingly, the secondary capacity, that is, the rated capacity (the product of the rated current and the rated voltage) on the secondary coil side also depends on the ratio of the cross-sectional area of the main core to the sum of the cross-sectional areas of the bypass core and the main core. Increase or decrease.
In this case, that is, when the secondary coil is opened, the main magnetic flux may be regarded as passing through the iron core so that the magnetic flux densities of the bypass iron core and the main iron core are the same.

次に、再び図5に戻って、図示したとおり、2次コイルの両端を短絡すると、短絡電流i2が流れ、主磁束のうち鎖交磁束φMは短絡電流i2の起磁力による磁束φM’により殆どキャンセルされるので、2次コイル開放の際の主磁束に相当する量の磁束の大部分がバイパス鉄心に移動し、残りが主鉄心10、又はコイル間の空隙を通ることになる。
この、1次2次コイルに鎖交しない磁束を漏れ磁束というが、これは結局短絡電流i2の起磁力により生ずるものであるからその位相は短絡電流i2と同相になる。
Next, returning to FIG. 5 again, as shown in the figure, when both ends of the secondary coil are short-circuited, a short-circuit current i2 flows, and the interlinkage magnetic flux φM of the main magnetic flux is almost due to the magnetic flux φM ′ generated by the magnetomotive force of the short-circuit current i2. Since the cancellation is canceled, most of the magnetic flux corresponding to the main magnetic flux when the secondary coil is opened moves to the bypass iron core, and the rest passes through the main iron core 10 or the gap between the coils.
This magnetic flux not interlinked with the primary / secondary coil is referred to as a leakage magnetic flux, which is eventually generated by the magnetomotive force of the short-circuit current i2, and therefore its phase is in phase with the short-circuit current i2.

2次コイルの短絡電流i2がちょうど変圧器としての定格電流になる場合の1次コイルの印加電圧のうち、この漏れ磁束により誘起された電圧を、漏れリアクタンス電圧と言い、短絡電流i2と90°位相がずれたものとなる。
また、上記印加電圧のうち、短絡電流i2と同位相の成分を抵抗電圧と言い、これらのベクトル和をインピーダンス電圧という。
また、漏れリアクタンス電圧、抵抗電圧、インピーダンス電圧の、各々変圧器としての定格電圧に対する比を%リアクタンス電圧、%抵抗電圧、%インピーダンス電圧という。
Of the applied voltage of the primary coil when the short-circuit current i2 of the secondary coil becomes the rated current as the transformer, the voltage induced by this leakage magnetic flux is called the leakage reactance voltage, and the short-circuit current i2 and 90 ° It will be out of phase.
Of the applied voltages, a component having the same phase as the short-circuit current i2 is referred to as a resistance voltage, and a vector sum of these components is referred to as an impedance voltage.
The ratio of leakage reactance voltage, resistance voltage, and impedance voltage to the rated voltage of each transformer is called% reactance voltage,% resistance voltage, and% impedance voltage.

通常の同心配置変圧器においては、%リアクタンス電圧「%IX」は、変圧器の幾何学的寸法を使って次式のように表される。
%IX=4.96f(kVA)rg/eh [%]
ここで、
IX:漏れリアクタンス電圧[V]
g:空隙の幅[m]
f:周波数[Hz]
e:1ターン当たりの誘起電圧[V]
kVA:定格容量[kVA]
h:コイルの高さ[m]
r:1次2次コイル間の空隙の平均半径[m]
In a normal concentric transformer, the% reactance voltage “% IX” is expressed as:
% IX = 4.96f (kVA) rg / e 2 h [%]
here,
IX: Leakage reactance voltage [V]
g: width of the gap [m]
f: Frequency [Hz]
e: Induced voltage per turn [V]
kVA: Rated capacity [kVA]
h: coil height [m]
r: average radius of air gap between primary and secondary coils [m]

従って、本実施例のリアクトルの、1次側から見た%IXは、上記%IXにバイパス鉄心によるリアクタンスを加算した値になる。
実際にリアクトルとして動作させるには、短絡電流i2に見合って流れる1次コイルの電流が所望の定格電流に、また、その際の1次コイルに対する印加電圧が所望の定格電圧になるように、バイパス鉄心と主鉄心の断面積の比と、2次コイルと1次コイルの間のインピーダンスとを調整する。その結果、1次側から見た総インピーダンス電圧が100%になる。
Therefore,% IX seen from the primary side of the reactor of the present embodiment is a value obtained by adding reactance due to the bypass iron core to the% IX.
In order to actually operate as a reactor, bypass the current so that the primary coil current flowing in accordance with the short-circuit current i2 becomes a desired rated current, and the applied voltage to the primary coil at that time becomes a desired rated voltage. The ratio of the cross-sectional area of the iron core to the main iron core and the impedance between the secondary coil and the primary coil are adjusted. As a result, the total impedance voltage viewed from the primary side becomes 100%.

ここで特徴的なのは、バイパス鉄心と主鉄心の断面積の比により、2次コイル容量が変化することである。
通常の変圧器であれば1次と2次のコイル容量は一致し、2次コイル短絡の際は、コイル間インピーダンスの逆数倍(10%のインピーダンスであれば交流実効値ベースで10倍)という過大な短絡電流が流れ、変圧器は変形あるいは破壊してしまう。
What is characteristic here is that the secondary coil capacity varies depending on the ratio of the cross-sectional area of the bypass core and the main core.
In the case of a normal transformer, the primary and secondary coil capacities match, and when the secondary coil is short-circuited, the reciprocal of the impedance between the coils is 10 times (10% on an AC effective value basis if the impedance is 10%). An excessive short-circuit current flows, and the transformer is deformed or destroyed.

しかしながら、本発明によるリアクトルの場合は、バイパス鉄心によって1次2次コイル間の鎖交磁束が少なくなっており、その分、2次容量が減少しているので、短絡電流の量は定格電流程度に抑えられ、従って2次コイルの銅損も小さいものが提供できる。   However, in the case of the reactor according to the present invention, the interlinkage magnetic flux between the primary and secondary coils is reduced by the bypass iron core, and the secondary capacity is reduced accordingly, so the amount of short-circuit current is about the rated current. Therefore, it is possible to provide a secondary coil having a small copper loss.

図6を参照すると、本発明による鉄心のB/H(v/i)特性曲線を、通常の変圧器の場合の特性曲線と対比して示す。
通常の変圧器の場合の特性曲線は‘a’であるが、2次コイルを短絡した場合の特性曲線は‘c’となる。
即ち、定格電流I0に見合う印加電圧VR0、即ちインピーダンス電圧は、%IZが10%の場合、定格電圧V0の10%になる。
ここで、定格電圧V0を無理に印加すると、‘c’線とV0の交点に当たる電流、即ち、定格電流の10倍が流れ、変形あるいは破壊に至る。
Referring to FIG. 6, the B / H (v / i) characteristic curve of the iron core according to the present invention is shown in comparison with the characteristic curve in the case of a normal transformer.
The characteristic curve for a normal transformer is 'a', but the characteristic curve for a secondary coil short-circuited is 'c'.
That is, the applied voltage VR0 commensurate with the rated current I0, that is, the impedance voltage, becomes 10% of the rated voltage V0 when% IZ is 10%.
Here, if the rated voltage V0 is forcibly applied, a current corresponding to the intersection of the 'c' line and V0, that is, 10 times the rated current flows, leading to deformation or destruction.

しかしながら、本発明によるリアクトルの場合は、バイパス鉄心によって漏れインピーダンス電圧をVR*=V0―VR0だけ増加してあるので、定格電圧V0を印加しても定格電流分I0しか流れないことになり、空隙入りではない通常の鉄心を使って所望の特性曲線‘b’を得ることができる。   However, in the case of the reactor according to the present invention, the leakage impedance voltage is increased by VR * = V0−VR0 by the bypass iron core, so that only the rated current I0 flows even if the rated voltage V0 is applied. The desired characteristic curve 'b' can be obtained using a normal iron core that is not contained.

図7を参照して、第2の実施例に係るリアクトルの構成を説明する。
図7に示すように、2分割したバイパス鉄心41、42を用意し、その各々の脚部に制御コイル51、52を巻き、制御コイル51、52を直列に接続して直流電圧を印加する。(バイパス鉄心41、42の帰路は簡単のため記載を省いてある。)
With reference to FIG. 7, the structure of the reactor which concerns on a 2nd Example is demonstrated.
As shown in FIG. 7, two bypass iron cores 41 and 42 are prepared, and control coils 51 and 52 are wound around the respective leg portions, and the control coils 51 and 52 are connected in series to apply a DC voltage. (The return path of the bypass iron cores 41 and 42 is omitted for simplicity.)

その際に流れる制御電流ic=Ic(直流値)がバイパス鉄心41、42を互いに逆方向に等量だけ直流励磁するように、制御コイルの巻き方向と接続が施される。
図7(B)に示すように本実施例では、バイパス鉄心41、42の脚部は主鉄心10の脚部11を挟んで対称形に設けてある。
The control coil is connected to the winding direction of the control coil so that the control current ic = Ic (DC value) flowing at this time causes the bypass iron cores 41 and 42 to be DC-excited by equal amounts in opposite directions.
As shown in FIG. 7B, in this embodiment, the leg portions of the bypass iron cores 41 and 42 are provided symmetrically with the leg portion 11 of the main iron core 10 interposed therebetween.

この状態で交流電圧vを印加すると、バイパス鉄心41、42には交流磁束が重畳して発生し、交流磁束が直流磁束と同方向になるときと逆方向になるときが半サイクル毎に訪れる。
しかも、それが2つの鉄心において180度位相が異なるので、一方の鉄心が飽和に近づくと他方は遠ざかる関係にある。
When an AC voltage v is applied in this state, an AC magnetic flux is superimposed on the bypass iron cores 41 and 42, and when the AC magnetic flux is in the same direction as the DC magnetic flux and in the opposite direction, it occurs every half cycle.
Moreover, since the two iron cores are 180 degrees out of phase, when one of the iron cores approaches saturation, the other is away.

この状態で制御電流Icを増加して行くと、交流磁束と直流磁束が同方向になる側の鉄心(仮に41とする)が、交流磁束のピーク付近で飽和領域に入り、鉄心の透磁率の低下、即ち磁気抵抗の増加が生じ始める。
さらに制御電流Icを増加すると、鉄心41が飽和している時間が長く、飽和の程度が深くなり、相応して鉄心の透磁率の低下、即ち鉄心41、42の磁気抵抗の増加が徐々に進む。
When the control current Ic is increased in this state, the iron core on the side where the AC magnetic flux and the DC magnetic flux are in the same direction (assumed to be 41) enters the saturation region near the peak of the AC magnetic flux, and the permeability of the iron core is reduced. A decrease, i.e. an increase in magnetoresistance, begins to occur.
When the control current Ic is further increased, the time during which the iron core 41 is saturated becomes longer and the degree of saturation becomes deeper, and accordingly, the permeability of the iron core decreases, that is, the magnetic resistance of the iron cores 41 and 42 gradually increases. .

交流電圧vによる交流磁束は1次コイル20の内側にある、主鉄心10、バイパス鉄心41と42を通る磁束φM,φL1、φL2の和であり、磁束は各鉄心の磁気抵抗の大小に応じて分配される。   The AC magnetic flux by the AC voltage v is the sum of the magnetic fluxes φM, φL1, and φL2 passing through the main iron core 10 and the bypass iron cores 41 and 42 inside the primary coil 20, and the magnetic flux depends on the magnitude of the magnetic resistance of each iron core. Distributed.

2次コイルが短絡されているリアクトルの場合には、主鉄心10の磁束φMは、2次短絡電流i2の起磁力による磁束φM’によって常に殆ど打ち消されるので、主鉄心の磁気抵抗は等価的に大きいものとなり、交流磁束の大部分はバイパス鉄心41、42が担う。   In the case of a reactor in which the secondary coil is short-circuited, the magnetic flux φM of the main iron core 10 is almost almost canceled by the magnetic flux φM ′ due to the magnetomotive force of the secondary short-circuit current i2, so that the magnetic resistance of the main iron core is equivalently Bypass iron cores 41 and 42 carry most of the AC magnetic flux.

しかし、さらに制御電流Icがゼロではなく有限の場合、Icの値に応じて印加交流電圧のある位相範囲でバイパス鉄心41、42の磁気抵抗が大きくなり、その際、主に1次、2次コイル間の空隙に漏れる磁束が増加する。   However, when the control current Ic is not zero but finite, the magnetic resistance of the bypass iron cores 41 and 42 increases in a certain phase range of the applied AC voltage according to the value of Ic. Magnetic flux leaking into the gap between the coils increases.

結局、上述のように、バイパス鉄心41と42による漏れリアクタンスの総和は、制御電流Icによって、ある範囲内で変えることができる。
即ち、リアクトルのリアクタンス値の調整が、小さな直流電流Icを変化させるだけで可能になるので、通常のタップなどによる切り替えと比べた場合、容易に、連続的にしかも短時間応答で実現できる。
Eventually, as described above, the sum of leakage reactances by the bypass cores 41 and 42 can be changed within a certain range by the control current Ic.
That is, the reactance value of the reactor can be adjusted only by changing a small DC current Ic. Therefore, when compared with switching by a normal tap or the like, it can be realized easily and continuously with a short time response.

図8を参照して、第3の実施例に係るリアクトルの構成を説明する。
図8(A)に示すように、バイパス鉄心41、42の脚部は共通であり、上下ヨーク部は2分割され、制御コイル51、52の2つの組が各々上下のヨーク部に巻かれている。(図8(B)(C)には、簡単のため下部ヨーク部45、46、下部制御コイル51、52だけを示す。)
制御コイルの巻き方向と接続は、制御電流ic=Ic(直流値)がバイパス鉄心41、42を互いに逆方向に等量だけ直流励磁するようになされる。
With reference to FIG. 8, the structure of the reactor which concerns on a 3rd Example is demonstrated.
As shown in FIG. 8A, the leg portions of the bypass iron cores 41 and 42 are common, the upper and lower yoke portions are divided into two, and two sets of control coils 51 and 52 are wound around the upper and lower yoke portions, respectively. Yes. (In FIGS. 8B and 8C, only the lower yoke portions 45 and 46 and the lower control coils 51 and 52 are shown for simplicity.)
The winding direction and connection of the control coil are such that the control current ic = Ic (DC value) causes the bypass iron cores 41 and 42 to be DC-excited in equal amounts in opposite directions.

本実施例によれば、上記実施例2と比べて、ヨーク部の磁気抵抗だけを制御しているので、バイパス鉄心全体の磁気抵抗に対する調整量の比率が小さく、リアクタンスの調整幅が比較的小さいリアクトルの場合に、精度よく調整ができる。   According to this embodiment, since only the magnetic resistance of the yoke portion is controlled as compared with the second embodiment, the ratio of the adjustment amount to the magnetic resistance of the entire bypass iron core is small, and the adjustment range of the reactance is relatively small. In the case of a reactor, it can be adjusted accurately.

図9を参照して、第4の実施例に係るリアクトルの構成を説明する。
上述の実施例1〜3においては、いずれの場合も2次コイルは単独で、即ち1次コイルから絶縁された状態で設置され、短絡されている。
With reference to FIG. 9, the structure of the reactor which concerns on a 4th Example is demonstrated.
In any of the above-described Examples 1 to 3, the secondary coil is installed alone and short-circuited, that is, insulated from the primary coil.

本実施例でも、鉄心、コイルの配置は上述の実施例と同一でよく、例えば、図9の場合は第1の実施例の場合の図5と同一である。
しかしながら本実施例では、2次コイルの一方の端子は1次コイルの一方の端子に接続され(これを共通接続点と称する)、2次コイルの他方の端子は、1次コイルの中間に設けたタップTに減極性に接続されている。
即ち、2次コイルの前記他方の端子をタップTから仮に開放した場合において、前記共通接続点から見て、タップTの電圧が、2次コイルの前記他方の端子に誘起される電圧より所定値(以下、タップ差電圧と称する)だけ高いように設定する。
Also in this embodiment, the arrangement of the iron core and the coil may be the same as that of the above-described embodiment. For example, the case of FIG. 9 is the same as FIG. 5 in the case of the first embodiment.
However, in this embodiment, one terminal of the secondary coil is connected to one terminal of the primary coil (this is called a common connection point), and the other terminal of the secondary coil is provided in the middle of the primary coil. Is connected to the tap T in a depolarized manner.
That is, when the other terminal of the secondary coil is temporarily opened from the tap T, the voltage at the tap T is a predetermined value from the voltage induced at the other terminal of the secondary coil when viewed from the common connection point. (Hereinafter referred to as tap difference voltage).

この場合、2次短絡電流の値は、タップ差電圧を電圧源とし、1次・2次コイル間インピーダンスによって制限された値となる。
これを1次側から見れば、1次コイルが単巻変圧器の構成となる。
即ち、1次コイルの他方の端子からタップまでが直列コイル、タップから1次コイルの前記共通接続点までが分路コイルとなり、分路コイルに2次コイルが負荷となって接続され、負荷電流i2が流れたことと等価になる。従って直列コイルと分路コイルには単巻変圧器のアンペアターンの法則に則った1次入力電流が流れる。
In this case, the value of the secondary short-circuit current is a value limited by the impedance between the primary and secondary coils using the tap difference voltage as a voltage source.
If this is seen from a primary side, a primary coil will become a structure of a single volume transformer.
That is, from the other terminal of the primary coil to the tap is a series coil, and from the tap to the common connection point of the primary coil is a shunt coil, and the secondary coil is connected to the shunt coil as a load. This is equivalent to the flow of i2. Therefore, the primary input current according to the ampere-turn law of the autotransformer flows through the series coil and the shunt coil.

この電流が仕様上の定格電流になるようバイパス鉄心と主鉄心の断面積の比を調整して1次・2次コイル間インピーダンスを決め、また、タップ差電圧を決めることにより所望のリアクトルの機能を提供できる。
即ち、中間タップの位置という設計自由度が増し、タップ差電圧を大きくとると2次コイルの電流i2が大きくなり、分路コイル、即ち1次コイルのタップと共通接続点の間には、2次コイルの電流i2が1次側の電流i1をキャンセルする方向に流れるので、1次コイルの所要容量が減少し、上記実施例1と比べて小さいコイルサイズで同一のリアクトル容量を得ることができる。
逆に、タップ差電圧を小さくとると、2次コイルの電流i2を小さくでき、1次側から見たリアクタンス値を高精度で調整できる。
バイパス鉄心の全体に対する比率によって、2次コイル容量が変化することは上述の実施例の場合と同じである。
By adjusting the ratio of the cross-sectional area of the bypass core and the main core so that this current becomes the rated current, the impedance between the primary and secondary coils is determined, and the desired reactor function is determined by determining the tap differential voltage. Can provide.
That is, the degree of freedom in design of the position of the intermediate tap increases, and when the tap differential voltage is increased, the current i2 of the secondary coil increases, and between the shunt coil, that is, the tap of the primary coil and the common connection point, 2 Since the current i2 of the secondary coil flows in the direction of canceling the primary current i1, the required capacity of the primary coil is reduced, and the same reactor capacity can be obtained with a smaller coil size than in the first embodiment. .
Conversely, when the tap difference voltage is reduced, the current i2 of the secondary coil can be reduced, and the reactance value viewed from the primary side can be adjusted with high accuracy.
The secondary coil capacity varies depending on the ratio of the bypass iron core to the whole as in the above-described embodiment.

図10を参照して、第5の実施例に係るリアクトルの構成を説明する。
本実施例では、各々、主鉄心10及びバイパス鉄心40の脚部、前記主鉄心10の脚部を囲むように1次コイル20、2次コイル30を巻き、1次コイル20の一方の端と2次コイル30の一方の端を接続する、即ち、1次コイル、2次コイルを各々直列コイル、分路コイルとする単巻変圧器を構成する。
その単巻変圧器において、2次コイル30の一方の端と2次コイル30の他方の端とを接続することにより、2次コイルの全部を短絡してある。
With reference to FIG. 10, the structure of the reactor which concerns on a 5th Example is demonstrated.
In the present embodiment, the primary coil 20 and the secondary coil 30 are wound so as to surround the legs of the main iron core 10 and the bypass iron core 40 and the legs of the main iron core 10, respectively. One end of the secondary coil 30 is connected, that is, the primary coil and the secondary coil are configured as a series coil and a shunt coil, respectively.
In the autotransformer, all the secondary coils are short-circuited by connecting one end of the secondary coil 30 and the other end of the secondary coil 30.

結局、上記実施例4において、負荷としての2次コイルを省いてタップTを共通接続点に直結したことになり、分路コイル、即ち2次コイルの所要容量は最小でよく、しかも1次コイルは直列コイルの所要容量を満たせばよいので、上記実施例4の1次コイルよりも2次コイルの分だけ小さくてよく、合わせて上記実施例4よりもさらに小さいコイルサイズで同一のリアクトル容量を得ることができる。   Eventually, in Example 4 described above, the secondary coil as a load is omitted and the tap T is directly connected to the common connection point, and the required capacity of the shunt coil, that is, the secondary coil may be minimized, and the primary coil. Can satisfy the required capacity of the series coil, and may be smaller than the primary coil of the fourth embodiment by the amount of the secondary coil. In addition, the same reactor capacity can be obtained with a coil size smaller than that of the fourth embodiment. Can be obtained.

図11を参照して、第6の実施例に係るリアクトルの構成を説明する。
本実施例では、上記実施例5において、さらにバイパス鉄心40に3次コイル35を巻き、1次コイル20と3次コイル35を直列に接続して単巻変圧器としての直列コイルとする。
With reference to FIG. 11, the structure of the reactor which concerns on a 6th Example is demonstrated.
In this embodiment, the third coil 35 is further wound around the bypass iron core 40 in the fifth embodiment, and the primary coil 20 and the third coil 35 are connected in series to form a series coil as a single winding transformer.

本実施例によれば、上記実施例5よりも、3次コイルの巻き数という設計自由度が増し、実施例1、4と比べると、一般に総コイルサイズが同じ場合、1次側から見たリアクタンス容量が大きくとれる。   According to the present embodiment, the degree of design freedom of the number of turns of the tertiary coil is increased as compared with the fifth embodiment, and when compared with the first and fourth embodiments, the total coil size is generally the same, as viewed from the primary side. Reactance capacity can be increased.

図12を参照して、第7の実施例に係るリアクトルの構成を説明する。
本実施例では、上記第1の実施例(図5)と比較して、1次コイル20が、2次コイル30を含む主鉄心10の脚部11と、バイパス鉄心を‘8’字型に巻いてある。
図12(B)の「8」字型の中央部において、1次コイル20の導線の上方巻き線と下方巻き線が交互に重ねられる。
With reference to FIG. 12, the structure of the reactor which concerns on a 7th Example is demonstrated.
In this embodiment, compared with the first embodiment (FIG. 5), the primary coil 20 has a leg portion 11 of the main iron core 10 including the secondary coil 30 and the bypass iron core in an “8” shape. It is rolled up.
In the central portion of the “8” shape in FIG. 12B, the upper winding and lower winding of the primary coil 20 are alternately stacked.

両鉄心、2次コイルと1次コイルの間の間隙が少ないので、鉄心外への漏れ磁束が最小限に抑えられ、設計上の誤差が少なくなり、設計精度を向上できる。
本実施例の鉄心とコイルの配置は実施例1に対応するものであるが、例えば、実施例3(図8)、実施例4(図9)の構成にも適用できる。
さらに、実施例2(図7)の構成のようにバイパス鉄心の脚部を2分割した場合に、バイパス鉄心42、主鉄心11、及びバイパス鉄心41の3者を、1次コイルが「8」の字形を続けるようにして個別に巻くと好適である。
Since there are few gaps between both the iron cores, the secondary coil, and the primary coil, the leakage magnetic flux to the outside of the iron core is minimized, design errors are reduced, and design accuracy can be improved.
Although the arrangement of the iron core and the coil in the present embodiment corresponds to that in the first embodiment, it can be applied to the configurations of the third embodiment (FIG. 8) and the fourth embodiment (FIG. 9), for example.
Further, when the leg portion of the bypass core is divided into two as in the configuration of the second embodiment (FIG. 7), the primary coil of the bypass core 42, the main core 11, and the bypass core 41 is “8”. It is preferable to wrap them individually so as to continue the shape.

図13を参照して、第8の実施例に係るリアクトルの構成を説明する。
本実施例は、上記第4の実施例(図9)と比べた場合、バイパス鉄心を欠く。
With reference to FIG. 13, the structure of the reactor which concerns on an 8th Example is demonstrated.
This embodiment lacks a bypass iron core when compared with the fourth embodiment (FIG. 9).

バイパス鉄心を欠いても、タップTの位置とコイルの巻き線数比を適切に選ぶならば、ほぼ定格容量のリアクトルが実現でき、特に小容量リアクトルの場合に、バイパス鉄心を欠く分経済的にできる。   Even if the bypass core is missing, if the tap T position and the coil winding ratio are properly selected, a reactor with almost the rated capacity can be realized, especially in the case of a small-capacity reactor. it can.

図14を参照して、第9の実施例に係るリアクトルの構成を説明する。
本実施例では、上記第1の実施例と比べた場合、2次側短絡回路にスイッチSwが介在する点が異なる。
他の、上記第2〜8のすべての実施例の構成に対しても、2次側短絡回路にスイッチSwを介在させることができる。
With reference to FIG. 14, the structure of the reactor which concerns on a 9th Example is demonstrated.
This embodiment is different from the first embodiment in that the switch Sw is interposed in the secondary side short circuit.
The switches Sw can be interposed in the secondary side short circuit also for the other configurations of the second to eighth embodiments.

特に高圧系統に設置される分路リアクトルの場合、2次側に遮断器あるいは断路器としてスイッチSwを開閉可能に挿入し、1次側を直接系統に接続する。
こうすれば、本発明によるリアクトルの有する、上述の「2次側が1次側より低電圧で動作し、2次短絡容量が小さい」という特徴が活用できて、例えば、分路リアクトルの系統への挿入・遮断に際して、従来のような高価な、高電圧・大電流の多頻度遮断器ではなく、安価な、低圧多頻度遮断器あるいは低圧開閉器をスイッチSwとして使うことができるという効果がある。
また、2次側のスイッチSwの開閉で系統へのリアクタンスの接続有無を制御できるので、励磁突流の発生を無くすことができる。
In particular, in the case of a shunt reactor installed in a high-voltage system, a switch Sw is inserted on the secondary side as a circuit breaker or disconnector so that it can be opened and closed, and the primary side is directly connected to the system.
In this way, the characteristics of the reactor according to the present invention that the above-mentioned "secondary side operates at a lower voltage than the primary side and the secondary short-circuit capacity is small" can be utilized, for example, to the system of the shunt reactor At the time of insertion / breaking, there is an effect that an inexpensive, low-voltage multi-frequency circuit breaker or low-voltage switch can be used as the switch Sw instead of an expensive high-voltage / large-current multi-frequency circuit breaker.
In addition, since the presence / absence of reactance connection to the system can be controlled by opening / closing the secondary side switch Sw, it is possible to eliminate the occurrence of exciting rush current.

近年、電力系統は大容量化、超高電圧化の一途をたどり、加えて風力発電や太陽光発電等の分散電源が増加し、それらの系統連携電力の変動がもたらす系統周波数や系統電圧の電力品質の悪化が懸念されている。
このような電力品質の安定化方策の一つとして、高電圧に耐え、高速で連続的リアクタンス値制御が出来る、高品質のリアクトルが必須であるが、この要求性能を大電力用で高信頼性を確保しつつ、しかも安価に供給することは、従来のブロック鉄心式リアクトル、可飽和リアクトル、機械式タップによる切換え型リアクトルでは困難であった。
本発明による電力用リアクトルは実用的に初めてこの要求に応えるものである。
In recent years, the power system has been increasing in capacity and ultra-high voltage, and in addition, the number of distributed power sources such as wind power generation and solar power generation has increased. There is concern about the deterioration of quality.
As one of the measures to stabilize the power quality, a high-quality reactor that can withstand high voltage and can perform continuous reactance value control at high speed is indispensable. However, it has been difficult to supply at a low cost while securing the above-described characteristics with conventional block core reactors, saturable reactors, and switching reactors using mechanical taps.
The power reactor according to the present invention meets this requirement for the first time in practical use.

従来技術によるリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor by a prior art, (A) is a whole block diagram, (B) is a top view, (C) is an elevation view. 従来技術による空隙入り鉄心のB/H(v/i)特性曲線を示す図である。It is a figure which shows the B / H (v / i) characteristic curve of the iron core with a space | gap by a prior art. 従来技術による空隙入り鉄心リアクトルにおけるブロック鉄心の断面と磁束の分布を示す図である。It is a figure which shows the cross section and magnetic flux distribution of a block iron core in the void core reactor by a prior art. 従来技術によるリアクトルにおける放射状ブロック鉄心14の平面図である。It is a top view of the radial block iron core 14 in the reactor by a prior art. 本発明による第1の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on 1st Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation view. 本発明によるリアクトルの鉄心のB/H(v/i)特性曲線を示す図である。It is a figure which shows the B / H (v / i) characteristic curve of the iron core of the reactor by this invention. 本発明による第2の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on 2nd Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation. 本発明による第3の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on 3rd Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation. 本発明による第4の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on the 4th Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation view. 本発明による第5の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on the 5th Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation. 本発明による第6の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on the 6th Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation view. 本発明による第7の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on the 7th Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation. 本発明による第8の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on the 8th Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation. 本発明による第9の実施例に係るリアクトルの構成を説明する図であり、(A)は全体構成図、(B)は平面図、(C)は立面図である。It is a figure explaining the structure of the reactor which concerns on the 9th Example by this invention, (A) is a whole block diagram, (B) is a top view, (C) is an elevation view.

符号の説明Explanation of symbols

10 鉄心、主鉄心
11 脚部
11a、14a、15a、41a、42a 薄鉄板
13 空隙
14 ブロック鉄心
14z 放射状鉄心の扇形サブブロック
15、45 下部ヨーク部
20 コイル、1次コイル
30 2次コイル
35 3次コイル
40、41、42 バイパス鉄心
51、52 制御コイル
T タップ
Sw スイッチ
DESCRIPTION OF SYMBOLS 10 Iron core, main iron core 11 Leg part 11a, 14a, 15a, 41a, 42a Thin iron plate 13 Space | gap 14 Block core 14z Radial core fan-shaped subblock 15, 45 Lower yoke part 20 Coil, Primary coil 30 Secondary coil 35 Tertiary Coil 40, 41, 42 Bypass iron core 51, 52 Control coil T Tap Sw switch

Claims (9)

鉄心を用いたリアクトルにおいて、各相の鉄心は主鉄心とバイパス鉄心からなり、前記主鉄心には内側に2次コイルを、その外側に1次コイルを巻き、前記1次コイルの内側で前記2次コイルの外側に位置する主空隙の位置に前記バイパス鉄心の脚部を設置し、前記2次コイルを短絡したことを特徴とするリアクトル。   In a reactor using an iron core, the iron core of each phase is composed of a main iron core and a bypass iron core. The main iron core is wound with a secondary coil on the inner side and a primary coil on the outer side, A reactor in which a leg portion of the bypass iron core is installed at a position of a main gap located outside a secondary coil, and the secondary coil is short-circuited. 前記2次コイルは、一方の端が前記1次コイルの一方の端に接続され、他方の端が前記1次コイルの中間部に設けたタップに接続され、前記1次コイルと2次コイルが減極性になるように接続されていることを特徴とする請求項1に記載のリアクトル。   The secondary coil has one end connected to one end of the primary coil, the other end connected to a tap provided in an intermediate portion of the primary coil, and the primary coil and the secondary coil are connected to each other. The reactor according to claim 1, wherein the reactor is connected so as to be depolarized. 鉄心を用いたリアクトルにおいて、各相の鉄心は主鉄心とバイパス鉄心からなり、各々、前記主鉄心及びバイパス鉄心の脚部、前記主鉄心の脚部を囲むように1次コイル、2次コイルを巻き、前記1次コイルの一方の端と前記2次コイルの一方の端を接続して単巻変圧器を構成し、前記2次コイルの一方の端もしくは前記2次コイルの中間に設けたタップと前記2次コイルの他方の端とを接続することにより、各々、前記2次コイルの全部もしくは一部を短絡したことを特徴とするリアクトル。   In a reactor using an iron core, the iron core of each phase consists of a main iron core and a bypass iron core, and a primary coil and a secondary coil are respectively enclosed so as to surround the main iron core, the bypass iron leg, and the main iron leg. Winding, connecting one end of the primary coil and one end of the secondary coil to form a single-winding transformer, and a tap provided at one end of the secondary coil or in the middle of the secondary coil And the other end of the secondary coil are connected to each other to short-circuit all or part of the secondary coil. 鉄心を用いたリアクトルにおいて、各相の鉄心は主鉄心とバイパス鉄心からなり、各々、前記主鉄心及びバイパス鉄心の脚部、前記主鉄心の脚部、前記バイパス鉄心の脚部を囲むように1次コイル、2次コイル、3次コイルを巻き、前記1次コイルの一方の端と前記3次コイルの一方の端を接続し、前記3次コイルの他方の端と前記2次コイルの一方の端を接続し、前記2次コイルの一方の端もしくは前記2次コイルの中間に設けたタップと前記2次コイルの他方の端とを接続することにより、各々、前記2次コイルの全部もしくは一部を短絡したことを特徴とするリアクトル。   In a reactor using an iron core, the iron core of each phase is composed of a main iron core and a bypass iron core. A secondary coil, a secondary coil and a tertiary coil are wound, one end of the primary coil and one end of the tertiary coil are connected, and the other end of the tertiary coil and one of the secondary coils are connected. By connecting the ends and connecting one end of the secondary coil or a tap provided in the middle of the secondary coil and the other end of the secondary coil, respectively, The reactor characterized by having short-circuited the part. 前記バイパス鉄心を各相2個設け、その各々に制御コイルを巻き、前記制御コイルが互いに逆方向の直流励磁がなされるように接続されたことを特徴とする請求項1、3又は4に記載のリアクトル。   5. The bypass iron core is provided with two each phase, and a control coil is wound around each of the bypass iron cores, and the control coils are connected so that direct current excitation in opposite directions is performed. Reactor. 前記バイパス鉄心のヨーク部だけを2分割し、その2分割された各々に制御コイルを巻き、前記制御コイルが互いに逆方向の直流励磁がなされるように接続されたことを特徴とする請求項1、3又は4に記載のリアクトル。   2. The bypass iron core is divided into two parts, and a control coil is wound around each of the two parts, and the control coils are connected so as to perform DC excitation in opposite directions. The reactor according to 3 or 4. 前記1次コイルは、前記バイパス鉄心部と主鉄心部を分割して巻くように、「8」の字形をなすことを特徴とする請求項1、3又は4に記載のリアクトル。   5. The reactor according to claim 1, wherein the primary coil has a shape of “8” so that the bypass core portion and the main core portion are divided and wound. 鉄心を用いたリアクトルにおいて、各相の主鉄心を囲むように、内側に2次コイルを、その外側に1次コイルを巻き、前記2次コイルは、一方の端が前記1次コイルの一方の端に接続され、他方の端が前記1次コイルの中間部に設けたタップに接続され、前記1次コイルと2次コイルが減極性になるように接続されていることを特徴とするリアクトル。   In a reactor using an iron core, a secondary coil is wound on the inner side and a primary coil is wound on the outer side so as to surround the main core of each phase, and one end of the secondary coil is one of the primary coils. A reactor, wherein the reactor is connected to one end, the other end is connected to a tap provided in an intermediate portion of the primary coil, and the primary coil and the secondary coil are connected so as to be depolarized. 前記2次コイルを短絡する回路に遮断器もしくは断路器を装備したことを特徴とする請求項1、3、4、又は8に記載のリアクトル。
The reactor according to claim 1, 3, 4, or 8, wherein a circuit for short-circuiting the secondary coil is equipped with a circuit breaker or a disconnector.
JP2004165742A 2004-06-03 2004-06-03 Reactor Expired - Fee Related JP4867053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165742A JP4867053B2 (en) 2004-06-03 2004-06-03 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165742A JP4867053B2 (en) 2004-06-03 2004-06-03 Reactor

Publications (2)

Publication Number Publication Date
JP2005347535A true JP2005347535A (en) 2005-12-15
JP4867053B2 JP4867053B2 (en) 2012-02-01

Family

ID=35499621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165742A Expired - Fee Related JP4867053B2 (en) 2004-06-03 2004-06-03 Reactor

Country Status (1)

Country Link
JP (1) JP4867053B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200471864Y1 (en) 2010-04-21 2014-03-21 현대중공업 주식회사 Improvement of yoke structure of shunt reactor
US9330834B2 (en) 2010-05-18 2016-05-03 Kobe Steel Ltd. Reactor
CN107146694A (en) * 2017-07-06 2017-09-08 华侨大学 A kind of structure for being used to improve Industrial Frequency Transformer short-circuit impedance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913315A (en) * 1982-07-13 1984-01-24 Kansai Electric Power Co Inc:The Shunt reactor of variable capacitance type
JPS6133422A (en) * 1984-07-25 1986-02-17 Nisso Eng Kk Pneumatic transfer device for granular material
JPS6194322A (en) * 1984-10-16 1986-05-13 Canon Inc Apparatus for correcting surface shape of laminar plate
JPS62283610A (en) * 1986-06-02 1987-12-09 Mitsubishi Electric Corp Electromagnetic induction machine
JPH01164014A (en) * 1987-09-11 1989-06-28 Nishi Nippon Teikouki Seisakusho:Kk Adjustable reactor
JP2003168612A (en) * 2001-12-03 2003-06-13 Tohoku Electric Power Co Inc Three-phase electromagnetic apparatus
JP2004103877A (en) * 2002-09-10 2004-04-02 Sumida Technologies Inc High voltage transformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913315A (en) * 1982-07-13 1984-01-24 Kansai Electric Power Co Inc:The Shunt reactor of variable capacitance type
JPS6133422A (en) * 1984-07-25 1986-02-17 Nisso Eng Kk Pneumatic transfer device for granular material
JPS6194322A (en) * 1984-10-16 1986-05-13 Canon Inc Apparatus for correcting surface shape of laminar plate
JPS62283610A (en) * 1986-06-02 1987-12-09 Mitsubishi Electric Corp Electromagnetic induction machine
JPH01164014A (en) * 1987-09-11 1989-06-28 Nishi Nippon Teikouki Seisakusho:Kk Adjustable reactor
JP2003168612A (en) * 2001-12-03 2003-06-13 Tohoku Electric Power Co Inc Three-phase electromagnetic apparatus
JP2004103877A (en) * 2002-09-10 2004-04-02 Sumida Technologies Inc High voltage transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200471864Y1 (en) 2010-04-21 2014-03-21 현대중공업 주식회사 Improvement of yoke structure of shunt reactor
US9330834B2 (en) 2010-05-18 2016-05-03 Kobe Steel Ltd. Reactor
CN107146694A (en) * 2017-07-06 2017-09-08 华侨大学 A kind of structure for being used to improve Industrial Frequency Transformer short-circuit impedance

Also Published As

Publication number Publication date
JP4867053B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
AU2006201301B2 (en) Multiple three-phase inductor with a common core
JP4646327B2 (en) Three-phase electromagnetic equipment
EP2088603B1 (en) Shunt reactor
KR20030007703A (en) Magnetic controlled current or voltage regulator and transformer
KR20150002731A (en) Three-phase choke
JP2014529987A (en) Fault current limiter
US20090079532A1 (en) Composite Magnetic Core Construction
EP2439756A2 (en) Multi-phase transformer
US20180019589A1 (en) Fault current limiter
Zhu et al. Power transformer design practices
JP2001044051A (en) Variable transformer
US20150170821A1 (en) Transformer
US6456184B1 (en) Reduced-cost core for an electrical-power transformer
JP4867053B2 (en) Reactor
JP7029920B2 (en) Transformer
US10504645B2 (en) Gapless core reactor
JP5520613B2 (en) Magnetic flux control type variable transformer
JP2007235014A (en) Split balanced winding type transformer and single-phase three-wired power distribution system
KR200352351Y1 (en) 3 phase transformer
EP0844626B1 (en) Transformer
US11139109B2 (en) Leakage reactance plate for power transformer
JP2003068539A (en) Electromagnetic equipment
JP2006108477A (en) Dust core reactor
RU2269176C1 (en) Electrical reactor
JP2022071238A (en) Iron core for static induction electric appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees