JP2005347393A - Functional material sensitive to electromagnetic field - Google Patents

Functional material sensitive to electromagnetic field Download PDF

Info

Publication number
JP2005347393A
JP2005347393A JP2004163207A JP2004163207A JP2005347393A JP 2005347393 A JP2005347393 A JP 2005347393A JP 2004163207 A JP2004163207 A JP 2004163207A JP 2004163207 A JP2004163207 A JP 2004163207A JP 2005347393 A JP2005347393 A JP 2005347393A
Authority
JP
Japan
Prior art keywords
circuit
field sensitive
electromagnetic
functional material
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004163207A
Other languages
Japanese (ja)
Other versions
JP4542827B2 (en
Inventor
Yoji Kozuka
洋司 小塚
Mitsuhiro Amano
充博 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2004163207A priority Critical patent/JP4542827B2/en
Publication of JP2005347393A publication Critical patent/JP2005347393A/en
Application granted granted Critical
Publication of JP4542827B2 publication Critical patent/JP4542827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional material sensitive to electromagnetic field in which electromagnetic properties and frequency characteristics are altered easily. <P>SOLUTION: In the functional material sensitive to electromagnetic field where unit cells (1) each having such an electric field sensitive circuit (16) as a diode (14) is connected with a conductor (12) to sense electric field variation, and such a magnetic field sensitive circuit (18) as a diode (20) is connected with a conductor (22) and a capacitor (24) to sense magnetic field variation are aggregated, operation of each diode in the electric field sensitive circuit or the magnetic field sensitive circuit is controlled by the bias voltage thus controlling electromagnetic properties of the functional material sensitive to electromagnetic field. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、入射電磁波に対する電磁気的諸性質を制御できるようにした電磁界感応機能性材料に関する。   The present invention relates to an electromagnetic field sensitive functional material capable of controlling various electromagnetic properties against incident electromagnetic waves.

近年、高層ビルが多くなったため、ビルによる電波の反射により、放送受信や通信に支障が出るようになってきた。このため、電波を反射しない電波吸収体の必要性が増してきた。このような電波吸収体には、フェライト、カーボングラファイト、強誘電体などが用いられる。また、高周波回路素子であるフィルターやサーキュレータなどを構成する材料としても、異方性を付与したフェライトなどが用いられる。   In recent years, the number of high-rise buildings has increased, and the reception of radio waves and communication have been hindered by the reflection of radio waves by the buildings. For this reason, the necessity of the electromagnetic wave absorber which does not reflect an electromagnetic wave has increased. For such a radio wave absorber, ferrite, carbon graphite, ferroelectric, or the like is used. In addition, anisotropy ferrite or the like is also used as a material constituting a high-frequency circuit element such as a filter or a circulator.

しかし、フェライト電波吸収体を例にとれば、誘電率や透磁率といった電磁気的諸性質が製造時に決まってしまい、後日これらの諸性質を変えることは不可能であった。しかも、従来の材料は、その諸性質が周波数に依存していているため、電波吸収体として、使用周波数が制限され、設計の自由度が少ないという問題があった。   However, taking a ferrite wave absorber as an example, electromagnetic properties such as dielectric constant and permeability are determined at the time of manufacture, and it has been impossible to change these properties at a later date. In addition, since various properties of the conventional materials depend on the frequency, the frequency of use as a radio wave absorber is limited and the degree of freedom in design is low.

このため、本発明者は、後記特許文献1で、ゴムフェライトの電波吸収体に貫通孔である調整孔を設けて、整合周波数を調整することを提案している。
特許第3182392号公報
For this reason, the present inventor has proposed in Patent Document 1 described later that an adjustment hole, which is a through hole, is provided in a rubber ferrite radio wave absorber to adjust the matching frequency.
Japanese Patent No. 3182392

前記特許文献1に開示された電波吸収体によれば、調整孔の大きさや形状を変えることにより、かなり整合周波数を変えたり、周波数帯域を広げることが可能になったが、材料が本来有していた誘電率や透磁率といった電磁気的諸性質を変えるものではないので、完成した電波吸収体の周波数特性を必要に応じて適時変えることは困難であるという問題があった。   According to the radio wave absorber disclosed in Patent Document 1, it is possible to considerably change the matching frequency or widen the frequency band by changing the size and shape of the adjustment hole. There is a problem that it is difficult to change the frequency characteristics of the completed radio wave absorber as needed, because it does not change the electromagnetic properties such as the dielectric constant and permeability.

本発明は、前記問題点に鑑みてなされたものであって、電波吸収材やマイクロ波又はミリ波デバイスの電磁気的諸性質と、その周波数特性を随時簡単に変更できる電磁界感応機能性材料を提供することを課題とする。   The present invention has been made in view of the above-described problems, and includes an electromagnetic field-sensitive functional material that can easily change the electromagnetic characteristics of a radio wave absorber, a microwave or a millimeter wave device, and its frequency characteristics at any time. The issue is to provide.

上記の課題を解決するために、請求項1に係る発明は、電界変化に感応する電界感応回路と、磁界変化に感応する磁界感応回路とを有する単位セルを集合させた電磁界感応機能性材料であって、前記電界感応回路内に組み込まれた回路素子又は前記磁界感応回路内に組み込まれた回路素子の動作を制御し、入射電磁界に対して逆位相の電磁界を発生させたり消去したり減衰させたりする手段で、入射電磁波に対する電磁気的諸性質を制御したことを特徴とする。   In order to solve the above problems, the invention according to claim 1 is an electromagnetic field sensitive functional material in which unit cells each having an electric field sensitive circuit sensitive to an electric field change and a magnetic field sensitive circuit sensitive to a magnetic field change are assembled. And controlling the operation of the circuit element incorporated in the electric field sensitive circuit or the circuit element incorporated in the magnetic field sensitive circuit to generate or erase an electromagnetic field having a phase opposite to the incident electromagnetic field. It is characterized by controlling electromagnetic properties with respect to incident electromagnetic waves by means of damaging or attenuating.

請求項2に係る発明は、請求項1に係る発明において、前記電界感応回路中の回路素子及び前記磁界感応回路中の回路素子は、ともにダイオードであり、バイアス電圧を制御することにより、その動作が制御されることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the circuit element in the electric field sensitive circuit and the circuit element in the magnetic field sensitive circuit are both diodes, and their operation is controlled by controlling a bias voltage. Is controlled.

請求項3は、光感受性素子を導体又は抵抗体で結線した単位セルを集合させた電磁界感応機能性材料であって、前記光感受性素子の動作を発光体で制御することにより、入射電磁波に対する電磁気的諸性質を制御できるようにしたことを特徴とする。   Claim 3 is an electromagnetic field sensitive functional material in which unit cells in which photosensitive elements are connected by conductors or resistors are assembled, and the operation of the photosensitive elements is controlled by a light emitter, thereby preventing incident electromagnetic waves. It is characterized in that various electromagnetic properties can be controlled.

請求項1に係る発明によれば、電界感応回路又は磁界感応回路の回路素子の動作を制御すると、回路素子の抵抗による損失を変化させて、外部から入射する電磁界によって各回路に誘起される電流又は電圧を変化させることができ、これによって、透磁率や誘電率等の電磁気的諸性質を簡単に変更できる。特に、各回路の共振周波数付近では、各回路素子を導通、適当な抵抗、高抵抗、非導通と変化させることにより、各回路のインピーダンスが大きく変わって、共振状態等が大きく変化するので、透磁率や誘電率等の電磁気的諸性質が大きく変更できる。これにより、周波数特性を随時簡単に変更できる電磁界感応機能性材料が得られる。   According to the first aspect of the present invention, when the operation of the circuit element of the electric field sensitive circuit or the magnetic field sensitive circuit is controlled, the loss due to the resistance of the circuit element is changed and induced in each circuit by the electromagnetic field incident from the outside. The current or voltage can be changed, thereby easily changing various electromagnetic properties such as magnetic permeability and dielectric constant. In particular, in the vicinity of the resonance frequency of each circuit, by changing each circuit element to conduction, appropriate resistance, high resistance, and non-conduction, the impedance of each circuit changes greatly, and the resonance state changes greatly. Electromagnetic properties such as magnetic susceptibility and dielectric constant can be changed greatly. Thereby, the electromagnetic field sensitive functional material which can change a frequency characteristic easily at any time is obtained.

請求項2に係る発明は、電界感応回路中の回路素子及び前記磁界感応回路中の回路素子は、ともにダイオードであり、バイアス電圧を制御することで、その動作が制御されるから、極めて簡単な構成の電磁界感応機能性材料が得られる。   In the invention according to claim 2, since the circuit element in the electric field sensitive circuit and the circuit element in the magnetic field sensitive circuit are both diodes and their operations are controlled by controlling the bias voltage, it is very simple. An electromagnetic field sensitive functional material having the structure can be obtained.

請求項3に係る発明では、光感受性素子を導体又は抵抗体で結線した単位セルを集合させた電磁界感応材料における光感受性素子を発光体によって制御したから、請求項1に係る発明と同様に、透磁率や誘電率等の電磁気的諸性質と、その周波数特性を随時簡単に変更できる。しかも、光感受性素子に制御用導線を接続する必要がないので、極めて簡単な構成の電磁界感応機能性材料が得られる。   In the invention according to claim 3, since the light sensitive element in the electromagnetic field sensitive material in which the unit cells in which the light sensitive elements are connected by conductors or resistors are assembled is controlled by the light emitter, similarly to the invention according to claim 1. Electromagnetic properties such as magnetic permeability and dielectric constant, and its frequency characteristics can be easily changed at any time. In addition, since there is no need to connect a control conductor to the photosensitive element, an electromagnetic field sensitive functional material having an extremely simple configuration can be obtained.

図1−図4は、本発明の基本概念を説明するものである。図1は、立方体の各頂点に受動又は能動型の3端子の回路素子3が配置された単位セル1を表している。このような回路素子としてはトランジスタ等、制御信号により導通状態を制御できるものであればよい。図2は、受動または能動型の2端子の回路素子4から成る立方体構造の単位セル1の例である。2端子の回路素子4としては、ダイオード、光感受性素子、熱感受性素子、磁気感受性素子、感圧素子等、2端子素子で何らかの制御信号により導通状態が簡単に変化するものであればよい。図3は、3端子の回路素子3と2端子の回路素子4と組み合わせた単位セル1の例である。   1-4 illustrate the basic concept of the present invention. FIG. 1 shows a unit cell 1 in which a passive or active three-terminal circuit element 3 is arranged at each vertex of a cube. Such a circuit element may be any element that can control the conduction state by a control signal, such as a transistor. FIG. 2 shows an example of a unit cell 1 having a cubic structure composed of circuit elements 4 having two terminals, passive or active. The two-terminal circuit element 4 may be a diode, a light-sensitive element, a heat-sensitive element, a magnetic-sensitive element, a pressure-sensitive element, or the like as long as the conduction state can be easily changed by some control signal. FIG. 3 shows an example of a unit cell 1 in which a three-terminal circuit element 3 and a two-terminal circuit element 4 are combined.

回路素子3、4にトランジスタ又はダイオードを用いた場合、回路素子3、4の動作の制御はバイアス電圧を変えることにより行う。回路素子3、4は、バイアス電圧を変えることにより、導通状態が変わるので、無抵抗状態、高抵抗状態、非導通状態、定電流状態又は定電圧状態等に、導通状態を多様に変化させることができる。   When transistors or diodes are used for the circuit elements 3 and 4, the operation of the circuit elements 3 and 4 is controlled by changing the bias voltage. Since the circuit elements 3 and 4 change the conduction state by changing the bias voltage, the conduction state can be variously changed to a non-resistance state, a high resistance state, a non-conduction state, a constant current state, a constant voltage state, or the like. Can do.

単位セル1は、立方体をしているから、各辺は当該辺に平行な入射電磁波の電界変化に感応する電界感応回路となり、各面を一周する四辺は各面を貫く入射磁界変化に感応する磁界感応回路となる。各辺又は各頂点に設置した回路素子3、4の導通状態を変えることにより、電界感応回路又は磁界感応回路のインピーダンスが変わり、その共振状態を制御したり、回路素子3、4の抵抗による損失を制御したりすることができる。   Since the unit cell 1 has a cubic shape, each side becomes an electric field sensitive circuit that is sensitive to an electric field change of an incident electromagnetic wave parallel to the side, and four sides that circulate around each surface are sensitive to an incident magnetic field change that penetrates each surface. It becomes a magnetic field sensitive circuit. By changing the conduction state of the circuit elements 3 and 4 installed on each side or each vertex, the impedance of the electric field sensitive circuit or the magnetic field sensitive circuit is changed, and the resonance state is controlled, or the loss due to the resistance of the circuit elements 3 and 4 Can be controlled.

このような単位セル1を上下左右前後に適切な配置で集合させ、例えば、図4に示したように、結晶格子の如く規則正しく集合させて電磁界感応機能性材料を構成する。もちろん、ガラスの分子のように無秩序な配置で集合させて電磁界感応機能性材料を構成してもよいが、この場合は、バイアス電圧印下用配線が複雑になる。   Such unit cells 1 are assembled in an appropriate arrangement in the vertical and horizontal directions and, for example, as shown in FIG. 4, they are regularly assembled like a crystal lattice to constitute an electromagnetic field sensitive functional material. Of course, the electromagnetic field sensitive functional material may be configured by gathering in a disordered arrangement like glass molecules, but in this case, the bias voltage applying wiring becomes complicated.

ここで、回路素子3、4の動作を制御することにより、回路素子の抵抗による損失を変化させて、外部から入射する電磁界によって電界感応回路又は磁界感応回路に誘起される電流又は電圧を変化させることができ、これによって、本発明の電磁界感応機能性材料の透磁率や誘電率等の電磁気的諸性質を随時簡単に変更できる。特に、各回路の共振周波数付近では、各回路素子を導通、適当な抵抗、高抵抗、非導通と変化させると、各回路のインピーダンスも大きく変わって、共振状態等が大きく変化するので、透磁率や誘電率等の電磁気的諸性質も大きく変化する。これにより、周波数特性も簡単に変更できる電磁界感応機能性材料が得られる。   Here, by controlling the operation of the circuit elements 3 and 4, the loss due to the resistance of the circuit elements is changed, and the current or voltage induced in the electric field sensitive circuit or the magnetic field sensitive circuit is changed by the electromagnetic field incident from the outside. Thus, various electromagnetic properties such as magnetic permeability and dielectric constant of the electromagnetic field sensitive functional material of the present invention can be easily changed at any time. In particular, in the vicinity of the resonance frequency of each circuit, if each circuit element is changed to conductive, appropriate resistance, high resistance, or non-conductive, the impedance of each circuit also changes greatly, and the resonance state changes greatly. Electromagnetic properties such as dielectric constant and dielectric constant also change greatly. Thereby, an electromagnetic field sensitive functional material whose frequency characteristics can be easily changed can be obtained.

一般に、電磁波の反射率、吸収率、透過率、減衰率等の電磁気的諸性質は、主に媒質の誘電率と透磁率と導電率によって決まるため、本発明の電磁界感応機能性材料によれば、各回路の抵抗とともに誘電率又は透磁率を変えることにより、所望の周波数特性を有する電波吸収材が簡単に得られる。特に、回路素子3、4の動作をコンピュータによりプログラム制御すると、本発明の材料の機能性をいっそう高めることが可能になる。   In general, electromagnetic properties such as electromagnetic wave reflectivity, absorptance, transmittance, and attenuation factor are mainly determined by the dielectric constant, permeability, and conductivity of the medium. For example, by changing the dielectric constant or permeability along with the resistance of each circuit, a radio wave absorber having a desired frequency characteristic can be easily obtained. In particular, when the operations of the circuit elements 3 and 4 are program-controlled by a computer, the functionality of the material of the present invention can be further enhanced.

また、単位セル1の結晶学的な空間配置を変更することにより、電磁波に対する諸性質、例えば、反射率、吸収率、透過率、異方性、偏波性、減衰性等も簡単に制御できる。特に、単位セル1の配置を結晶体に類似させたため、結晶の光学的性質から電磁波に対する諸性質を類推でき、この結果、設計時点で電磁波に対し、損失の大きな媒質、カイラル状媒質又は異方性媒質を呈する材料の実現が比較的容易に想定でき、従来の材料開発に要求されていた原子、分子構造レベルにおける複雑な物性的な検討をする必要が少なくなるという大きな効果がある。   In addition, by changing the crystallographic spatial arrangement of the unit cell 1, various properties with respect to electromagnetic waves such as reflectance, absorptivity, transmittance, anisotropy, polarization, attenuation, etc. can be easily controlled. . In particular, since the arrangement of the unit cells 1 is similar to that of a crystal body, various properties against electromagnetic waves can be inferred from the optical properties of the crystal. As a result, a medium having a large loss, a chiral medium, or anisotropic with respect to the electromagnetic waves at the time of design. Realization of a material exhibiting a conductive medium can be assumed relatively easily, and there is a great effect that it is not necessary to carry out complicated physical properties at the atomic and molecular structure level, which has been required for conventional material development.

もちろん、単位セル1は、立方体に限るものではなく、直方体、球形等の適宜形状の3次元構造ばかりでなく、平面的な2次元構造も可能である。勿論、2次元構造の単位セルと3次元構造の単位セルを組み合わせて使用することも可能である。   Of course, the unit cell 1 is not limited to a cube, and may be a planar two-dimensional structure as well as a three-dimensional structure having an appropriate shape such as a rectangular parallelepiped or a sphere. Of course, a unit cell having a two-dimensional structure and a unit cell having a three-dimensional structure can be used in combination.

図5に、電波吸収体として用いる本発明の電磁界感応機能性材料の単位セル1に関する第1の実施例を示す。   FIG. 5 shows a first embodiment relating to the unit cell 1 of the electromagnetic field sensitive functional material of the present invention used as a radio wave absorber.

この単位セル1は、ゴムフェライト材10の表面に上下一対の導体12を固定し、この一対の導体12間を一対のダイオード14で連結し、垂直方向の電界変化に感応する電界感応回路16を有している。これらのダイオード14には図示しないバイアス回路からバイアス電圧が供給されており、このバイアス電圧を制御することにより、ダイオード14の導通状態を制御している。なお、図5では、上下一対の単位セル1の間では、ダイオード14の極性は互いに逆方向にしているが、必ずしも、このように順逆の極性配置にする必要はない。   This unit cell 1 has a pair of upper and lower conductors 12 fixed to the surface of a rubber ferrite material 10, and a pair of diodes 14 are connected between the pair of conductors 12 to provide an electric field sensitive circuit 16 that is sensitive to vertical electric field changes. Have. These diodes 14 are supplied with a bias voltage from a bias circuit (not shown), and the conduction state of the diodes 14 is controlled by controlling the bias voltage. In FIG. 5, the polarities of the diodes 14 are opposite to each other between the pair of upper and lower unit cells 1, but it is not always necessary to have such a reverse polarity arrangement.

この単位セル1は、さらに、電界感応回路16の導体12とダイオード14で囲まれる空間におけるゴムフェライト材10中に、水平方向の磁界変化に感応する一対の磁界感応回路18を埋め込んでいる。この磁界感応回路18は、上下一対のダイオード20と、一対のダイオード20の一端間を導体22で連結するとともに、一対のダイオード20の他端間をマイクロチップコンデンサ24で連結し、水平方向の磁束が貫くループ状の回路である。この一対のダイオード22の極性は、上下逆方向になっている。このダイオード20にも図示しないバイアス回路からバイアス電圧が供給されている。   In the unit cell 1, a pair of magnetic field sensitive circuits 18 sensitive to horizontal magnetic field changes are embedded in the rubber ferrite material 10 in a space surrounded by the conductor 12 and the diode 14 of the electric field sensitive circuit 16. This magnetic field sensitive circuit 18 has a pair of upper and lower diodes 20 and one end of the pair of diodes 20 connected by a conductor 22, and the other end of the pair of diodes 20 is connected by a microchip capacitor 24. Is a loop-like circuit. The polarity of the pair of diodes 22 is upside down. A bias voltage is also supplied to the diode 20 from a bias circuit (not shown).

これらの単位セル1においては、ゴムフェライト材10の背面にはスペーサ11を介して導体板11Aが貼り付けられている。ただし、この導体板11Aは、電波吸収体として用いるときは必須なものであるが、フィルタや減衰器として用いるときは不要である。また、電波吸収材は、ゴムフェライトでなくてもよく、適宜電波吸収材を使用できる。   In these unit cells 1, a conductive plate 11 </ b> A is attached to the back surface of the rubber ferrite material 10 via a spacer 11. However, the conductor plate 11A is indispensable when used as a radio wave absorber, but is not necessary when used as a filter or an attenuator. Further, the radio wave absorber may not be rubber ferrite, and a radio wave absorber can be used as appropriate.

これらの単位セル1を上下左右に適切な配置で集合させ、例えば、結晶格子のように規則正しく又はガラスの分子のように無秩序な配置で集合させて電磁界感応機能性材料を構成する。   These unit cells 1 are assembled in an appropriate arrangement in the upper, lower, left, and right directions. For example, the unit cells 1 are assembled in a regular arrangement such as a crystal lattice or an irregular arrangement such as a glass molecule to constitute an electromagnetic field sensitive functional material.

これらの単位セル1から構成された電磁界感応機能性材料の透磁率、すなわちゴムフェライト材10の誘電率を制御する方法について説明する。透磁率制御の場合は、電界感応回路16の各ダイオード14は零バイアスで使用し、磁界感応回路18の各ダイオード20には可変バイアス電圧を与える。この単位セル1に電界が上下方向、磁界が水平方向に変化する交番電磁界が入射したとする。この交番電磁界によって、磁界感応回路18には、磁界を打ち消すように電流が誘起される。つまり、入射磁界と逆位相の磁界が発生し、入射磁界を打ち消すように作用する。このとき、ダイオード20に与えるバイアス電圧を変化させると、ダイオード20の抵抗が変化して、電界感応回路18に誘起される電流が変化し、電磁界感応機能性材料内の交番磁界の強さも変化する。このことは、バイアス電圧を変化させると、この電磁界感応機能性材料の透磁率、すなわちゴムフェライト材10の透磁率を制御できることを意味する。   A method of controlling the magnetic permeability of the electromagnetic field sensitive functional material composed of these unit cells 1, that is, the dielectric constant of the rubber ferrite material 10 will be described. In the case of permeability control, each diode 14 of the electric field sensitive circuit 16 is used with zero bias, and a variable bias voltage is applied to each diode 20 of the magnetic field sensitive circuit 18. Assume that an alternating electromagnetic field in which the electric field changes in the vertical direction and the magnetic field changes in the horizontal direction is incident on the unit cell 1. By this alternating electromagnetic field, a current is induced in the magnetic field sensitive circuit 18 so as to cancel the magnetic field. That is, a magnetic field having an opposite phase to the incident magnetic field is generated and acts to cancel the incident magnetic field. At this time, when the bias voltage applied to the diode 20 is changed, the resistance of the diode 20 is changed, the current induced in the electric field sensitive circuit 18 is changed, and the strength of the alternating magnetic field in the electromagnetic field sensitive functional material is also changed. To do. This means that the permeability of the electromagnetic field sensitive functional material, that is, the permeability of the rubber ferrite material 10 can be controlled by changing the bias voltage.

特に磁界感応回路18の共振周波数付近では、バイアス電圧によってダイオード20を導通、適当な抵抗、高抵抗、非導通と変化させると、磁界感応回路18の共振状態等が大きく変化するので、透磁率を大きく変化させることができる。こうして、透磁率の周波数特性を大きく変えることができる。透磁率が変化すれば、当然、電磁波に対する反射率や吸収率や透過率等の電磁気的諸性質も変化する。   Particularly, in the vicinity of the resonance frequency of the magnetic field sensitive circuit 18, if the diode 20 is changed to be conductive, appropriate resistance, high resistance, or non-conductive by the bias voltage, the resonance state of the magnetic field sensitive circuit 18 changes greatly. It can be changed greatly. Thus, the frequency characteristics of the magnetic permeability can be changed greatly. If the magnetic permeability changes, naturally, various electromagnetic properties such as reflectance, absorption, and transmittance with respect to electromagnetic waves also change.

次に、これらの単位セル1から構成された電磁界感応機能性材料の誘電率、すなわちゴムフェライト材10の誘電率を制御する方法について説明する。   Next, a method for controlling the dielectric constant of the electromagnetic field sensitive functional material composed of these unit cells 1, that is, the dielectric constant of the rubber ferrite material 10 will be described.

誘電率制御の場合は、磁界感応回路18のダイオード20は零バイアスで使用し、電界感応回路16のダイオード14には可変バイアス電圧を与える。この単位セル1に垂直方向に変化する交番電界が入射したとする。この交番電界によって導体12間に誘起される電位差によって、ダイオード14には電流が流れる。このとき、ダイオード16に与えるバイアス電圧を変化させて、ダイオード16の抵抗を変化させると、一対の導体12間の電位差が変化し、電磁界感応機能性材料内の交番電界の強さも変化する。同時に隣接する単位セル1の導体12A、12B間のキャパシタンス値も変化する。このことは、バイアス電圧を変化させると、この電磁界感応機能性材料の誘電率、すなわちゴムフェライト材10の誘電率が変化することを意味する。   In the case of permittivity control, the diode 20 of the magnetic field sensitive circuit 18 is used with zero bias, and a variable bias voltage is applied to the diode 14 of the electric field sensitive circuit 16. It is assumed that an alternating electric field changing in the vertical direction is incident on the unit cell 1. A current flows through the diode 14 due to the potential difference induced between the conductors 12 by this alternating electric field. At this time, if the bias voltage applied to the diode 16 is changed to change the resistance of the diode 16, the potential difference between the pair of conductors 12 changes, and the strength of the alternating electric field in the electromagnetic field sensitive functional material also changes. At the same time, the capacitance value between the conductors 12A and 12B of the adjacent unit cells 1 also changes. This means that when the bias voltage is changed, the dielectric constant of the electromagnetic field sensitive functional material, that is, the dielectric constant of the rubber ferrite material 10 changes.

特に電界感応回路16の共振周波数付近では、バイアス電圧によってダイオード14を導通、適当な抵抗、高抵抗、非導通と変化させると、電界感応回路16の共振状態等が大きく変化するので、誘電率も大きく変化する。誘電率が変化すれば、当然、電磁波に対する反射率や吸収率や透過率等の電磁気的諸性質も変化する。   Particularly, in the vicinity of the resonance frequency of the electric field sensitive circuit 16, if the diode 14 is changed to be conductive, appropriate resistance, high resistance, or nonconductive by the bias voltage, the resonance state of the electric field sensitive circuit 16 changes greatly, and the dielectric constant is also changed. It changes a lot. If the dielectric constant changes, naturally, electromagnetic properties such as reflectivity, absorption rate, and transmittance for electromagnetic waves also change.

電界感応回路16のダイオード14と磁界感応回路18のダイオード20を同時に変化させると、この電磁界感応機能性材料の誘電率と透磁率を同時に変化させ、いっそう効果的に電磁波に対する反射率や吸収率や透過率等の電磁気的諸性質を変化させることができる。   When the diode 14 of the electric field sensitive circuit 16 and the diode 20 of the magnetic field sensitive circuit 18 are changed at the same time, the dielectric constant and the magnetic permeability of the electromagnetic field sensitive functional material are changed at the same time. And various electromagnetic properties such as transmittance can be changed.

以上の説明から分かるように、図5に示した単位セル1は、垂直偏波(電界の振動方向が垂直で、磁界の振動方向が水平である。)の電磁波に対する電磁気的諸性質を変える効果がある。水平偏波の電磁波に対しては、図5に示した単位セル1を90°回転して使用すればよい。   As can be seen from the above description, the unit cell 1 shown in FIG. 5 has the effect of changing electromagnetic properties with respect to electromagnetic waves of vertically polarized waves (the vibration direction of the electric field is vertical and the vibration direction of the magnetic field is horizontal). There is. For horizontally polarized electromagnetic waves, the unit cell 1 shown in FIG.

図6に、本実施例の電磁界感応機能性材料において、各ダイオード14、20バイアス電圧を変化させたときの電磁波の反射率の周波数特性に関する実験結果を示す。この実験は、単位セル1を固定した厚さ6.3mmのゴムフェライトの背面に厚さ12mmのスペーサ11を介して導体板11Aを貼り付けたものに電波を照射して反射率を求めた。図6において、黒丸(・)はダイオード20のバイアス電圧が0.0Vのときであり、白丸(。)はダイオード20のバイアス電圧が1.0Vのときであり、また、図中の周波数特性曲線に付された0.0V〜1.0Vの数値は、ダイオード14のバイアス電圧を示す。これから、各ダイオード14、20にバイアス電圧をかけると、概して反射率を小さくできるが、特定の周波数での反射率が特に小さくなり、しかも、各ダイオード14、20のバイアス電圧を変えることによって、特に反射率を小さくできる周波数を変えることができることが分かる。   FIG. 6 shows the experimental results regarding the frequency characteristics of the reflectivity of electromagnetic waves when the bias voltages of the diodes 14 and 20 are changed in the electromagnetic field sensitive functional material of this example. In this experiment, the reflectivity was obtained by irradiating a conductor plate 11A with a 12 mm thick spacer 11 attached to the back of a 6.3 mm thick rubber ferrite to which the unit cell 1 was fixed. In FIG. 6, black circles (•) are when the bias voltage of the diode 20 is 0.0 V, white circles (.) Are when the bias voltage of the diode 20 is 1.0 V, and the frequency characteristic curve in the figure. The numerical value of 0.0 V to 1.0 V attached to indicates the bias voltage of the diode 14. From this, when a bias voltage is applied to each of the diodes 14 and 20, the reflectance can generally be reduced, but the reflectance at a specific frequency is particularly reduced, and by changing the bias voltage of each of the diodes 14 and 20, It can be seen that the frequency at which the reflectance can be reduced can be changed.

なお、本実施例では、単位セル1内に磁界感応回路18を複数設けたが、単位セル1内には電界感応回路16と磁界感応回路18をそれぞれ1つ設けるだけでもよい。また、電界感応回路16においては、一対の導体12間を1つのダイオード14で連結するだけでもよいし、3つ以上のダイオード14で連結してもよい。   In this embodiment, a plurality of magnetic field sensitive circuits 18 are provided in the unit cell 1, but only one electric field sensitive circuit 16 and one magnetic field sensitive circuit 18 may be provided in the unit cell 1. Further, in the electric field sensitive circuit 16, the pair of conductors 12 may be connected by only one diode 14 or may be connected by three or more diodes 14.

図7に、本発明の電磁界感応機能性材料の単位セル1に関する第2の実施例を示す。この単位セル1は、導体板11Aから所定距離離して上下一対の導体12間を一対のCdS等の光感受性素子30で連結した電界感応回路32を有しており、この光感受性素子30の背後に近接させてLED(発光ダイオード)34を配置している。もちろん、このLED34の代わりに、電球又は光ファイバー等の適宜発光体を使用することもでき、或いは1つの発光体で単位セル1の全LED34を制御してもよい。この単位セル1も、前記第1の実施例のように、上下左右に適切な配置で集合させて電磁界感応機能性材料を構成する。   FIG. 7 shows a second embodiment relating to the unit cell 1 of the electromagnetic field sensitive functional material of the present invention. This unit cell 1 has an electric field sensitive circuit 32 in which a pair of upper and lower conductors 12 are connected by a pair of photosensitive elements 30 such as CdS at a predetermined distance from the conductor plate 11A. An LED (light emitting diode) 34 is disposed in the vicinity of the LED. Of course, instead of the LED 34, an appropriate light emitter such as a light bulb or an optical fiber may be used, or all the LEDs 34 of the unit cell 1 may be controlled by one light emitter. As in the first embodiment, the unit cells 1 are also assembled in an appropriate arrangement vertically and horizontally to constitute an electromagnetic field sensitive functional material.

本実施例によれば、LED34に供給する電圧を制御すると、光感受性素子30の抵抗値を制御することができる。このことは、前記第1の実施例の電界感応回路16のダイオード14にバイアス電圧を与えることと同じであり、隣接する単位セル1の導体12A、12B間のキャパシタンス値も変化するから、本実施例でも前記第1の実施例と同様に誘電率制御ができるという効果を奏する。また、単位セル1が奥行きの少ない2次元構造であるから、薄い電磁界感応機能性材料を得ることができ、既存の材料の表面に貼って使用することが容易である。   According to the present embodiment, when the voltage supplied to the LED 34 is controlled, the resistance value of the photosensitive element 30 can be controlled. This is the same as applying a bias voltage to the diode 14 of the electric field sensitive circuit 16 of the first embodiment, and the capacitance value between the conductors 12A and 12B of the adjacent unit cell 1 also changes. The example also has an effect that the dielectric constant can be controlled as in the first embodiment. In addition, since the unit cell 1 has a two-dimensional structure with a small depth, a thin electromagnetic field sensitive functional material can be obtained, and it is easy to paste and use it on the surface of an existing material.

図8に、本実施例の実験結果を示す。実験方法は、本実施例の単位セル1を導体板11Aから12mmのスペースをとって固定したものに、電波を照射して反射率を求めた。前記第1の実施例ではダイオード14、20のバイアス電圧を変えたが、本実施例ではLED34にかける電圧0.0V〜2.5Vまで変えている。この実験から、LED34にかける電圧を上げるほど、反射率を小さくすることができ、しかも特定周波数での反射率を特に下げることが分かる。   FIG. 8 shows the experimental results of this example. In the experimental method, the unit cell 1 of this example was fixed with a space of 12 mm from the conductor plate 11A, and radio waves were irradiated to obtain the reflectance. In the first embodiment, the bias voltages of the diodes 14 and 20 are changed, but in this embodiment, the voltage applied to the LED 34 is changed from 0.0 V to 2.5 V. From this experiment, it can be seen that as the voltage applied to the LED 34 is increased, the reflectance can be decreased and the reflectance at a specific frequency is particularly decreased.

なお、電界感応回路16においては、一対の導体12間を1つ又は3つ以上の光感受性素子30で連結してもよい。   In the electric field sensitive circuit 16, the pair of conductors 12 may be connected by one or three or more photosensitive elements 30.

図9に、本発明の第3の実施例を示す。図9に示した単位セル1は、CdS等の光感受性素子30、36から成る立方体構造をしている。ただし、図9において、奥行き方向に延びる4辺の光感受性素子36は、1.0MΩの固定抵抗として用いる。固定抵抗となる光感受性素子36以外の光感受性素子30に近接させて図示しないLEDが配置されている。この単位セル1も、上下左右前後に適切な配置で集合させて電磁界感応機能性材料を構成する。   FIG. 9 shows a third embodiment of the present invention. The unit cell 1 shown in FIG. 9 has a cubic structure composed of photosensitive elements 30 and 36 such as CdS. However, in FIG. 9, the photosensitive element 36 having four sides extending in the depth direction is used as a fixed resistance of 1.0 MΩ. An LED (not shown) is disposed in the vicinity of the light sensitive element 30 other than the light sensitive element 36 serving as a fixed resistor. The unit cells 1 are also assembled in an appropriate arrangement in the vertical and horizontal directions and constitute an electromagnetic field sensitive functional material.

本実施例の場合も、LEDを点灯すると、光感受性素子30の抵抗値が変化する。したがって、前記第2の実施例と同じ効果を奏する。しかも、本実施例の場合、3次元構造の単位セル1であるから、どのような偏波面を有する電磁波が入射しても、電界Eに起因する電流、磁界Hに起因する電流、電磁波の進行方向Sの位相差に起因する電流のいずれに対しても、単位セル1が感応し、光感受性素子30の動作を制御することにより、電磁気的諸性質を効果的に制御できる。さらに、近傍波源による電磁波も吸収でき、従来にない電波吸収体を実現できる。   Also in this embodiment, when the LED is turned on, the resistance value of the photosensitive element 30 changes. Therefore, the same effect as that of the second embodiment can be obtained. Moreover, since the unit cell 1 has a three-dimensional structure in the case of the present embodiment, the current caused by the electric field E, the current caused by the magnetic field H, and the progress of the electromagnetic wave, regardless of the incident electromagnetic wave having any plane of polarization. The unit cell 1 is sensitive to any current caused by the phase difference in the direction S, and the operation of the photosensitive element 30 is controlled, so that various electromagnetic properties can be effectively controlled. In addition, electromagnetic waves from near wave sources can be absorbed, and an unprecedented radio wave absorber can be realized.

図10に、本実施例の電磁界感応機能性材料の反射率に関するシミュレーション結果を示す。各光感受性素子30の抵抗値を100Ω〜1600Ωの間で変化させたところ、各光感受性素子30の抵抗値が約400Ω程度のときが、最も広帯域にわたって電波の反射率が低くなることが分かる。   In FIG. 10, the simulation result regarding the reflectance of the electromagnetic field sensitive functional material of a present Example is shown. When the resistance value of each photosensitive element 30 is changed between 100Ω and 1600Ω, it can be seen that when the resistance value of each photosensitive element 30 is about 400Ω, the reflectance of radio waves is the lowest over the wide band.

なお、本実施例では、光感受性素子30の代わりにダイオードを使用し、適当なバイアス回路でダイオードの動作を制御するように変更してもよい。   In the present embodiment, a diode may be used in place of the photosensitive element 30, and the operation of the diode may be controlled with an appropriate bias circuit.

図11に、本発明の第4の実施例を示す。図11に示した単位セル1は、光感受性素子30だけから成る立方体構造をしている。そして、この光感受性素子30に近接させて図示しないLEDが配置されている。この単位セル1も、上下左右前後に適切な配置で集合させて電磁界感応機能性材料を構成する。   FIG. 11 shows a fourth embodiment of the present invention. The unit cell 1 shown in FIG. 11 has a cubic structure including only the photosensitive element 30. Then, an LED (not shown) is disposed in the vicinity of the photosensitive element 30. The unit cells 1 are also assembled in an appropriate arrangement in the vertical and horizontal directions and constitute an electromagnetic field sensitive functional material.

本実施例の場合も、LEDを点灯すると、光感受性素子30の抵抗値が変化する。しかも、単位セル1が立方体をしているため、上下左右前後いずれの方向の電磁界変化にも感応する。したがって、前記第3の実施例と同じ効果を奏する。   Also in this embodiment, when the LED is turned on, the resistance value of the photosensitive element 30 changes. In addition, since the unit cell 1 has a cubic shape, it is sensitive to electromagnetic field changes in any direction, up, down, left, and right. Therefore, the same effect as that of the third embodiment can be obtained.

図12に本実施例の電磁界感応機能性材料の反射率に関するシミュレーション結果を示す。各光感受性素子30の抵抗値を100Ω〜1600Ωの間で変化させたところ、各光感受性素子30の抵抗値が約400Ω程度のときが、最も広帯域にわたって電波の反射率が低くなることが分かる。   FIG. 12 shows a simulation result regarding the reflectance of the electromagnetic field sensitive functional material of this example. When the resistance value of each photosensitive element 30 is changed between 100Ω and 1600Ω, it can be seen that when the resistance value of each photosensitive element 30 is about 400Ω, the reflectance of radio waves is the lowest over the wide band.

なお、本実施例でも、光感受性素子30の代わりにダイオードを使用し、適当なバイアス回路でダイオードの動作を制御するように変更してもよい。   In the present embodiment, a diode may be used in place of the photosensitive element 30, and the operation of the diode may be controlled with an appropriate bias circuit.

図13及び図14に、本発明の第5の実施例を示す。本実施例の電磁界感応機能性材料は、電波吸収体として用いるものである。   13 and 14 show a fifth embodiment of the present invention. The electromagnetic field sensitive functional material of the present embodiment is used as a radio wave absorber.

図13に示したように、単位セル1は、導体からなる正方形のループをした電界感応回路40の各辺にダイオード42を挿入している。この電界感応回路40の内部には、前後一対の十字形の導体44と、この一対の導体44の先端同士を接続するダイオード46と、後方の十字形の導体44の中心に挿入されたコンデンサ48とからなる磁界感応回路16を有している。これらのダイオード42、46には図示しないバイアス回路からバイアス電圧が供給されており、このバイアス電圧を制御することにより、ダイオード42、46の導通状態を制御している。なお、これらのダイオード42、46は、トランジスタ等の適宜スイッチ素子に変更することが可能である。   As shown in FIG. 13, in the unit cell 1, a diode 42 is inserted on each side of the electric field sensitive circuit 40 having a square loop made of a conductor. Inside the electric field sensitive circuit 40, a pair of front and rear cross conductors 44, a diode 46 connecting the tips of the pair of conductors 44, and a capacitor 48 inserted at the center of the rear cross conductor 44. It has the magnetic field sensitive circuit 16 which consists of these. A bias voltage is supplied to the diodes 42 and 46 from a bias circuit (not shown), and the conduction state of the diodes 42 and 46 is controlled by controlling the bias voltage. These diodes 42 and 46 can be changed to appropriate switching elements such as transistors.

図14に示したように、電界感応回路40はゴムフェライト材10の表面に固定され、磁界感応回路50はゴムフェライト材10の内部に埋め込まれる。ゴムフェライト材10の背面にはスペーサ11を介して導体板11Aが貼り付けられている。ただし、この導体板11Aは、電波吸収体として用いるときは必須なものであるが、フィルタや減衰器として用いるときは不要である。そして、これらの単位セル1を上下左右に適切な配置で集合させ、例えば、結晶格子のように規則正しく集合させて電磁界感応機能性材料を構成する。   As shown in FIG. 14, the electric field sensitive circuit 40 is fixed to the surface of the rubber ferrite material 10, and the magnetic field sensitive circuit 50 is embedded in the rubber ferrite material 10. A conductor plate 11 </ b> A is attached to the back surface of the rubber ferrite material 10 via a spacer 11. However, the conductor plate 11A is indispensable when used as a radio wave absorber, but is not necessary when used as a filter or an attenuator. These unit cells 1 are assembled in an appropriate arrangement vertically and horizontally, for example, regularly assembled like a crystal lattice to constitute an electromagnetic field sensitive functional material.

本実施例によれば、電界感応回路40は正方形をしているので、水平方向x又は垂直方向yのいずれの電界変化にも感応するととともに、ダイオード42のバイアス電圧を制御することによってダイオード42の導通状態を変更することができるので、水平偏波と垂直偏波の電磁波のいずれに対しても前記第1の実施例の電界感応回路16と同様に働くことができる。また、磁界感応回路50も正面視で十字形をしているので、水平方向x又は垂直方向yのいずれの磁界変化にも感応するととともに、ダイオード46のバイアス電圧を制御することによってダイオード46の導通状態を変更することができるので、水平偏波と垂直偏波の電磁波のいずれに対しても前記第1の実施例の磁界感応回路18と同様に働くことができる。   According to the present embodiment, since the electric field sensitive circuit 40 has a square shape, the electric field sensitive circuit 40 is sensitive to any electric field change in the horizontal direction x or the vertical direction y and controls the bias voltage of the diode 42 to control the diode 42. Since the conduction state can be changed, both the horizontally polarized waves and the vertically polarized electromagnetic waves can work in the same manner as the electric field sensitive circuit 16 of the first embodiment. Further, since the magnetic field sensitive circuit 50 has a cross shape when viewed from the front, it is sensitive to any magnetic field change in the horizontal direction x or the vertical direction y, and the conduction of the diode 46 is controlled by controlling the bias voltage of the diode 46. Since the state can be changed, both the horizontally polarized wave and the vertically polarized electromagnetic wave can work similarly to the magnetic field sensitive circuit 18 of the first embodiment.

したがって、本実施例の単位セル1を集合させた電磁界感応機能性材料は、正面方向zから入射する電磁波がいかなる偏波面を有していても、電波吸収体として効果を奏する。   Therefore, the electromagnetic field sensitive functional material in which the unit cells 1 of the present embodiment are assembled is effective as a radio wave absorber regardless of the polarization plane of the electromagnetic wave incident from the front direction z.

ところで、本発明の電磁界感応機能性材料は、電波吸収体として用いられるだけではない。たとえば、電磁界感応機能性材料に対して、搬送波となる連続電磁波を照射するとともに、単位セル1の各回路素子の動作を変調信号で制御することにより、連続電磁波の反射係数を変化させて、変調信号で変調された電磁波を再放射する通信装置としても使用できる。   By the way, the electromagnetic field sensitive functional material of the present invention is not only used as a radio wave absorber. For example, the electromagnetic wave sensitive functional material is irradiated with a continuous electromagnetic wave serving as a carrier wave, and the operation of each circuit element of the unit cell 1 is controlled by a modulation signal, thereby changing the reflection coefficient of the continuous electromagnetic wave, It can also be used as a communication device that re-radiates an electromagnetic wave modulated by a modulation signal.

また、本発明の電磁界感応機能性材料は、カイラル媒質や各種異方性や、所望の周波数特性や反射特性、減衰特性などを実現することが出来るため、これらの特性に基づいて、マイクロ波やミリ波におけるフィルタやサーキュレータ、アイソレータや可変型アッテネータ、可変整合負荷など多くの電磁波デバイスや各種ディスプレイ、ロボット等への応用が考えられる。   Further, the electromagnetic field sensitive functional material of the present invention can realize a chiral medium, various anisotropies, desired frequency characteristics, reflection characteristics, attenuation characteristics, and the like. It can be applied to many electromagnetic devices such as filters, circulators, isolators, variable attenuators, variable matching loads, various displays, robots, etc.

さらに、各単位セル1の電磁気的諸性質をコンピュータでプログラム制御するとともに、電波吸収体にアンテナを設けると、特定周波数の到来電波のみを吸収できるので、その特定周波数の電波が検出可能なセンサとすることができる。   Furthermore, when the electromagnetic properties of each unit cell 1 are program-controlled by a computer and an antenna is provided in the radio wave absorber, only incoming radio waves of a specific frequency can be absorbed. can do.

本発明の電磁界感応機能性材料を構成する単位セルの概念を説明する図である。It is a figure explaining the concept of the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記単位セルの別の例を示す図である。It is a figure which shows another example of the said unit cell. 前記単位セルのさらに別の例を示す図である。It is a figure which shows another example of the said unit cell. 前記単位セルの集合させた電磁界感応機能性材料を示す図である。It is a figure which shows the electromagnetic field sensitive functional material which the said unit cell aggregated. 本発明の電磁界感応機能性材料を構成する単位セルの第1の実施例を示す図である。It is a figure which shows the 1st Example of the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記第1の実施例の効果を示す図である。It is a figure which shows the effect of the said 1st Example. 本発明の電磁界感応機能性材料を構成する単位セルの第2の実施例を示す図である。It is a figure which shows the 2nd Example of the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記第2の実施例の効果を示す図である。It is a figure which shows the effect of the said 2nd Example. 本発明の電磁界感応機能性材料を構成する単位セルの第3の実施例を示す図である。It is a figure which shows the 3rd Example of the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記第3の実施例の効果を示す図である。It is a figure which shows the effect of the said 3rd Example. 本発明の電磁界感応機能性材料を構成する単位セルの第4の実施例を示す図である。It is a figure which shows the 4th Example of the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記第4の実施例の効果を示す図である。It is a figure which shows the effect of the said 4th Example. 本発明の電磁界感応機能性材料を構成する単位セルの第5の実施例を示す図である。It is a figure which shows the 5th Example of the unit cell which comprises the electromagnetic field sensitive functional material of this invention. 前記第5の実施例の単位セルを集合させた状態を示す図である。It is a figure which shows the state which assembled the unit cell of the said 5th Example.

符号の説明Explanation of symbols

1 単位セル
12、44 導体
14、20、42、46 ダイオード(回路素子)
16、32、40 電界感応回路
18、50 磁界感応回路
30 光感受性素子
34 LED(発光体)
1 Unit cell 12, 44 Conductor 14, 20, 42, 46 Diode (circuit element)
16, 32, 40 Electric field sensitive circuit 18, 50 Magnetic field sensitive circuit 30 Photosensitive element 34 LED (light emitting body)

Claims (3)

電界変化に感応する電界感応回路と、磁界変化に感応する磁界感応回路とを有する単位セルを集合させた電磁界感応機能性材料であって、
前記電界感応回路内に組み込まれた回路素子又は前記磁界感応回路内に組み込まれた回路素子の動作を制御することにより、入射電磁波に対する電磁気的諸性質を制御できるようにしたことを特徴とする電磁界感応機能性材料。
An electromagnetic field sensitive functional material in which unit cells having an electric field sensitive circuit sensitive to an electric field change and a magnetic field sensitive circuit sensitive to a magnetic field change are assembled,
Electromagnetic properties with respect to incident electromagnetic waves can be controlled by controlling operations of circuit elements incorporated in the electric field sensitive circuit or circuit elements incorporated in the magnetic field sensitive circuit. Field sensitive functional materials.
前記電界感応回路中の回路素子及び前記磁界感応回路中の回路素子は、ともにダイオードであり、バイアス電圧を制御することにより、その動作が制御されることを特徴とする請求項1に記載の電磁界感応機能性材料。   The circuit element in the electric field sensitive circuit and the circuit element in the magnetic field sensitive circuit are both diodes, and their operations are controlled by controlling a bias voltage. Field sensitive functional materials. 光感受性素子を導体又は抵抗体で結線した単位セルを集合させた電磁界感応機能性材料であって、
前記光感受性素子の動作を発光体で制御することにより、入射電磁波に対する電磁気的諸性質を制御できるようにしたことを特徴とする電磁界感応機能性材料。
An electromagnetic field sensitive functional material in which unit cells in which photosensitive elements are connected by conductors or resistors are assembled,
An electromagnetic field sensitive functional material characterized in that the electromagnetic properties with respect to an incident electromagnetic wave can be controlled by controlling the operation of the photosensitive element with a light emitter.
JP2004163207A 2004-06-01 2004-06-01 Electromagnetic field sensitive functional body Expired - Fee Related JP4542827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163207A JP4542827B2 (en) 2004-06-01 2004-06-01 Electromagnetic field sensitive functional body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163207A JP4542827B2 (en) 2004-06-01 2004-06-01 Electromagnetic field sensitive functional body

Publications (2)

Publication Number Publication Date
JP2005347393A true JP2005347393A (en) 2005-12-15
JP4542827B2 JP4542827B2 (en) 2010-09-15

Family

ID=35499505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163207A Expired - Fee Related JP4542827B2 (en) 2004-06-01 2004-06-01 Electromagnetic field sensitive functional body

Country Status (1)

Country Link
JP (1) JP4542827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218936A (en) * 2007-03-08 2008-09-18 Shunkosha:Kk Electromagnetic wave removing device
JP2009022350A (en) * 2007-07-17 2009-02-05 Shunkosha:Kk Tranquilization tool
CN102752996A (en) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 Wave absorbing device with adjustable frequency
CN103153035B (en) * 2013-04-09 2015-09-16 东南大学 The microwave absorber of frequency-adjustable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207098A (en) * 1985-03-12 1986-09-13 三菱重工業株式会社 Characteristic varying type radio wave absorbing body
JPH08116197A (en) * 1994-10-13 1996-05-07 Nippon Sheet Glass Co Ltd Radio-wave absorptive structure of transparent plate, window member and frame
WO1998015161A1 (en) * 1996-10-04 1998-04-09 Matsushita Electric Industrial Co., Ltd. Electromagnetic field shielding device
JPH11126992A (en) * 1997-10-23 1999-05-11 Shimizu Corp Electromagnetic wave shielded building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207098A (en) * 1985-03-12 1986-09-13 三菱重工業株式会社 Characteristic varying type radio wave absorbing body
JPH08116197A (en) * 1994-10-13 1996-05-07 Nippon Sheet Glass Co Ltd Radio-wave absorptive structure of transparent plate, window member and frame
WO1998015161A1 (en) * 1996-10-04 1998-04-09 Matsushita Electric Industrial Co., Ltd. Electromagnetic field shielding device
JPH11126992A (en) * 1997-10-23 1999-05-11 Shimizu Corp Electromagnetic wave shielded building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218936A (en) * 2007-03-08 2008-09-18 Shunkosha:Kk Electromagnetic wave removing device
JP2009022350A (en) * 2007-07-17 2009-02-05 Shunkosha:Kk Tranquilization tool
CN102752996A (en) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 Wave absorbing device with adjustable frequency
CN102752996B (en) * 2011-04-20 2015-07-15 深圳光启高等理工研究院 Wave absorbing device with adjustable frequency
CN103153035B (en) * 2013-04-09 2015-09-16 东南大学 The microwave absorber of frequency-adjustable

Also Published As

Publication number Publication date
JP4542827B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
Tsilipakos et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software‐defined metasurfaces with an embedded network of controllers
KR102129787B1 (en) Polarization-insensitive active frequency selective surface
US9113559B2 (en) Pressure reconfigured electromagnetic devices
Huang et al. Graphene‐integrated reconfigurable metasurface for independent manipulation of reflection magnitude and phase
WO2010140655A1 (en) Three-dimensional metamaterial
Huang et al. Multifunctional and tunable radar absorber based on graphene‐integrated active metasurface
Zeng et al. Design of a tuneable and broadband absorber using a switchable transmissive/reflective FSS
JP6511532B2 (en) Magnetoresistance effect device
US7030834B2 (en) Active magnetic radome
Yoo et al. Active metasurface for controlling reflection and absorption properties
EP2413184B1 (en) Suspended particle device and method for driving same
CN105807992A (en) Touch display panel and touch display apparatus
Dutta et al. Dual‐band multifunctional metasurface for absorption and polarization conversion
JP4542827B2 (en) Electromagnetic field sensitive functional body
US7088308B2 (en) Feedback and control system for radomes
Ruan et al. Optical transparent and reconfigurable metasurface with autonomous energy supply
Liang et al. An optically transparent reconfigurable intelligent surface with low angular sensitivity
Li et al. A switchable and tunable multifunctional absorber/reflector with polarization‐insensitive features
Lv et al. Tunable liquid crystal metamaterial filter with polarization-insensitive characteristic
CN110880646B (en) Adjustable super surface from full penetration to full absorption, dynamic switching method and adjustable device
JP6511531B2 (en) Magnetoresistance effect device
JP4761246B2 (en) Electromagnetic field sensitive functional body
WO2017140134A1 (en) Two-way inverted optical clock signal generator with photonic crystal t-type waveguide right-angle output
RU2469446C1 (en) Tunable metamaterial filter of teracycle range
CN107732378B (en) Frequency multiplication spatial filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090909

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100628

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees