JP2005345787A - Illumination optical system and endoscope - Google Patents

Illumination optical system and endoscope Download PDF

Info

Publication number
JP2005345787A
JP2005345787A JP2004165739A JP2004165739A JP2005345787A JP 2005345787 A JP2005345787 A JP 2005345787A JP 2004165739 A JP2004165739 A JP 2004165739A JP 2004165739 A JP2004165739 A JP 2004165739A JP 2005345787 A JP2005345787 A JP 2005345787A
Authority
JP
Japan
Prior art keywords
lens
optical system
illumination optical
light
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004165739A
Other languages
Japanese (ja)
Other versions
JP4338589B2 (en
Inventor
Hiroaki Fujii
宏明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2004165739A priority Critical patent/JP4338589B2/en
Publication of JP2005345787A publication Critical patent/JP2005345787A/en
Application granted granted Critical
Publication of JP4338589B2 publication Critical patent/JP4338589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate loss quantity of illuminating light emitted from a light guide and to uniformly emit illuminating light, such that the angle of luminous intensity distribution is wide. <P>SOLUTION: An illumination optical system 20 is disposed facing the emit end 11 of the light glass 10. The illumination optical system 20 includes, in order from the emit end, a first lens 21 having positive refracting power and a second lens group 22 having positive refracting power, as a whole. The first lens 21 has, in order from the emit end 11, a first face R<SB>1</SB>and a second face R<SB>2</SB>. The light guide 10 emits from the emit end 11 parallel rays of light that is parallel to the optical axis X of the first lens 21. Part (e.g., L5) of the parallel rays of light is totally reflected from the second face R<SB>2</SB>, then totally reflected from the first face R<SB>1</SB>again, passed through the second lens group 22, and emitted toward the object side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばライトガイド等の面発光光源の出射端側に配設される照明光学系および、その照明光学系を有する内視鏡に関する。   The present invention relates to an illumination optical system disposed on an emission end side of a surface emitting light source such as a light guide, and an endoscope having the illumination optical system.

内視鏡には、通常ライトガイドが設けられ、光源装置からの照明光はライトガイドによって内視鏡の先端部まで導かれる。ライトガイドの出射端には、照明光の照明範囲を大きくし、かつ照度むらをなくすために、例えば特許文献1ないし3に記載されるように光学部材を設けることが知られている。   An endoscope is usually provided with a light guide, and illumination light from the light source device is guided to the distal end portion of the endoscope by the light guide. In order to increase the illumination range of illumination light and eliminate unevenness in illuminance, it is known that an optical member is provided at the exit end of the light guide as described in Patent Documents 1 to 3, for example.

ここで、特許文献1には、ライトガイドの出射端に平凸レンズ2枚を配設させることが記載されている。特許文献2においては、ライトガイドの出射端から順に、側面が反射構造を有する光学素子と、第1、第2のレンズを配置させ、ライトガイドからの照明光をロスなく被写体に照射させることが記載されている。また、特許文献3には、h=fθの特性を有する照明用光学系により、ライトガイドから出射される照明光の照度分布を均一にし、かつ照明光のロスを少なく被写体に照射させることが記載されている。   Here, Patent Document 1 describes that two plano-convex lenses are disposed at the light guide emission end. In Patent Document 2, an optical element having a reflecting structure on the side surface and first and second lenses are arranged in order from the light emitting end of the light guide, and illumination light from the light guide is irradiated to the subject without loss. Has been described. Further, Patent Document 3 describes that an illumination optical system having a characteristic of h = fθ makes the illuminance distribution of the illumination light emitted from the light guide uniform and irradiates the subject with little loss of illumination light. Has been.

しかし、特許文献1に記載される光学系においては、その配向角が狭く、照明光の照明範囲は広くない。また、特許文献2においては、レンズ厚が大きい光学素子を使用しているため全長が長く内視鏡先端部の小型化に向いておらず、また加工および組立に時間とコストがかかる。さらに、特許文献3の光学系においては、内視鏡先端部の限られたスペースでその特性を得るために非球面レンズが必要であるが、非球面レンズは球面レンズに比べ加工が容易ではない。   However, in the optical system described in Patent Document 1, the orientation angle is narrow, and the illumination range of illumination light is not wide. Further, in Patent Document 2, since an optical element having a large lens thickness is used, the total length is long and it is not suitable for downsizing of the distal end portion of the endoscope, and processing and assembly take time and cost. Furthermore, in the optical system of Patent Document 3, an aspherical lens is required to obtain the characteristics in a limited space at the distal end portion of the endoscope, but the aspherical lens is not easily processed as compared with the spherical lens. .

更に、特許文献1において、配光レンズの表面において光線が全反射することによる光量ロスは、目標とする配光角が狭いということもあり、全く考慮されていない。特許文献2、3においては配光レンズ表面における全反射を考慮し、いずれも全反射が発生しないようにすることを主眼としているが、そのことが逆に設計の足枷となり、十分な配光特性が得られているとは言えない。
特開昭51−42551号公報 特開2002−182126号公報 特許第3020074号公報
Furthermore, in Patent Document 1, the light loss caused by the total reflection of light rays on the surface of the light distribution lens is not considered at all because the target light distribution angle is narrow. In Patent Documents 2 and 3, the total reflection on the surface of the light distribution lens is taken into consideration, and the main objective is to prevent the total reflection from occurring. It cannot be said that has been obtained.
Japanese Patent Laid-Open No. 51-42551 JP 2002-182126 A Japanese Patent No. 3020074

そこで、本発明は上記問題点に鑑みてなされたものであり、組立および加工が容易な照明光学系であって、光量ロスを少なくし、照明範囲を広くすることができる照明光学系を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and provides an illumination optical system that is easy to assemble and process, and that can reduce the loss of light amount and widen the illumination range. For the purpose.

本発明に係る照明光学系は、面発光光源の出射端側から順に正の屈折力を持つ第1のレンズと、全体として正の屈折力を持つ第2のレンズ群とが配設され、第1のレンズは、出射端側から順に第1の面と第2の面とを有し、出射端から出射される第1のレンズの光軸に平行な平行光線の一部を第2の面で全反射させた後、第1の面で再び全反射させ、第2のレンズ群を通過させて物体側に出射させることを特徴とする。   In the illumination optical system according to the present invention, a first lens having a positive refractive power and a second lens group having a positive refractive power as a whole are arranged in order from the emission end side of the surface-emitting light source. The first lens has a first surface and a second surface in order from the emission end side, and a part of parallel light rays parallel to the optical axis of the first lens emitted from the emission end are provided on the second surface. Then, the light is totally reflected again by the first surface, and is then totally reflected again by the first surface, passes through the second lens group, and is emitted toward the object side.

第1のレンズは、平行光線の他の一部を第1および第2の面、さらに第2のレンズ群を通過させ、物体側に出射させることが好ましい。また、0.3φ≦h≦0.5φの条件を満たす平行光線の少なくとも一部の光線は、後述する(1)式の条件を満足することが好ましい。この場合、hは平行光線が第1の面を通過後、第2の面に入射する位置から光軸までの距離である。さらに本発明に係る照明光学系は、後述する(2)式の条件を満足することが好ましく、さらに好ましくは、(3)式の条件を満足する。   The first lens preferably allows the other part of the parallel rays to pass through the first and second surfaces and further the second lens group to be emitted toward the object side. Moreover, it is preferable that at least some of the parallel rays satisfying the condition of 0.3φ ≦ h ≦ 0.5φ satisfy the condition of the expression (1) described later. In this case, h is the distance from the position where the parallel light beam enters the second surface after passing through the first surface to the optical axis. Furthermore, the illumination optical system according to the present invention preferably satisfies the condition of the expression (2) described later, and more preferably satisfies the condition of the expression (3).

また、本発明に係る照明光学系は、後述する(4)式の条件を満足することが好ましい。さらに、本発明に係る照明光学系は、後述する(5)式の条件を満足することが好ましい。第2レンズ群は、物体側が平面である単レンズから成るほうが良い。また、面発光光源は、ライトガイドであることが好ましい。   Moreover, it is preferable that the illumination optical system according to the present invention satisfies the condition of the formula (4) described later. Furthermore, it is preferable that the illumination optical system according to the present invention satisfies the condition of the following formula (5). The second lens group is preferably composed of a single lens whose object side is a plane. Further, the surface emitting light source is preferably a light guide.

本発明に係る内視鏡は、平面の出射端から光線を発する面発光光源と、出射端側から順に正の屈折力を持つ第1のレンズと、全体として正の屈折力を持つ第2のレンズ群とが配設され、第1のレンズが、出射端側から順に第1の面と第2の面とを有し、出射端から出射される第1のレンズの光軸に平行な平行光線の一部を第2の面で全反射させた後、第1の面で再び全反射させ、第2のレンズ群を通過させて物体側に出射させる照明光学系と、物体側に出射された光線が観察対象物に照射され、その照射された観察対象物を観察する観察手段とを備えることを特徴とする。   An endoscope according to the present invention includes a surface emitting light source that emits light from a flat emission end, a first lens having positive refractive power in order from the emission end side, and a second lens having positive refractive power as a whole. A lens group, and the first lens has a first surface and a second surface in order from the emission end side, and is parallel to the optical axis of the first lens emitted from the emission end. A part of the light beam is totally reflected on the second surface, then totally reflected again on the first surface, passed through the second lens group and emitted to the object side, and emitted to the object side. And an observation means for observing the irradiated observation object.

本発明に係る照明光学系は、出射端から出射される光線の一部を第1のレンズで2回全反射させた後物体側に出射させることにより、照明光の光量ロスを少なくし、照明範囲を広くすることができる。   The illumination optical system according to the present invention reduces the light amount loss of illumination light by emitting a part of the light beam emitted from the emission end to the object side after being totally reflected twice by the first lens, The range can be widened.

以下本発明に係る実施形態を図1〜図3を用いて説明する。図1は、本実施形態の内視鏡を模式的に示す。図2は、後述する光軸Xを含む平面における断面図であって、本実施形態に係るライトガイド10と、照明光学系20を示す。図1に示すように、内視鏡40は、体腔内に挿入される挿入部30と、内視鏡40が把持されて内視鏡10が操作されるための操作部31とを有する。挿入部30には、ライトガイド10(図2参照)が挿通され、ライトガイド10の一方の端部(図示せず)には光源32が光学的に接続され、他方の端部が、その光源32の照明光を出射するための出射端11(図2参照)となる。図2に示すように、出射端11に面する位置には、照明光学系20が配設され、出射端11および照明光学系20は内視鏡の先端部33に設けられる。   Embodiments according to the present invention will be described below with reference to FIGS. FIG. 1 schematically shows the endoscope of the present embodiment. FIG. 2 is a cross-sectional view in a plane including an optical axis X described later, and shows the light guide 10 and the illumination optical system 20 according to the present embodiment. As shown in FIG. 1, the endoscope 40 includes an insertion unit 30 that is inserted into a body cavity, and an operation unit 31 that is used to operate the endoscope 10 by gripping the endoscope 40. The light guide 10 (see FIG. 2) is inserted through the insertion portion 30, a light source 32 is optically connected to one end (not shown) of the light guide 10, and the other end is the light source. It becomes the radiation | emission end 11 (refer FIG. 2) for radiating | emitting 32 illumination light. As shown in FIG. 2, the illumination optical system 20 is disposed at a position facing the emission end 11, and the emission end 11 and the illumination optical system 20 are provided at the distal end portion 33 of the endoscope.

光源からの照明光は、ライトガイド10を通って、出射端11に送られる。出射端11に送られた照明光は、照明光学系20によって集光および拡散された後、観察対象物(内臓器官)(図示せず)に照射される。照明光は観察対象物で反射し、その反射光が観察手段(撮像素子(CCD))によって捉えられ、捉えられた反射光に応じて観察対象物は画像としてモニタ等(図示せず)に出力される。なお、観察手段は、観察対象物の反射光を捉えることにより、観察対象物を観察するものであれば、例えばファイバースコープ等であっても良い。   Illumination light from the light source passes through the light guide 10 and is sent to the emission end 11. The illumination light sent to the emission end 11 is condensed and diffused by the illumination optical system 20 and then irradiated to an observation object (internal organ officer) (not shown). The illumination light is reflected by the observation object, and the reflected light is captured by the observation means (imaging device (CCD)), and the observation object is output as an image to a monitor or the like (not shown) according to the captured reflected light. Is done. The observation means may be, for example, a fiber scope as long as it observes the observation object by capturing the reflected light of the observation object.

照明光学系20は、出射端11側から順に正の屈折力を有する第1のレンズ21と、全体として正の屈折力を有する第2のレンズ群22が配設されて形成される。第1のレンズ21と、第2のレンズ群22は同一の光軸X上に配設される。第1のレンズ21は、出射端11側から第1面R1と、第2面R2とを有し、第1および第2面R1、R2は、凸面に形成される。第1のレンズ21は球面レンズであるので、第1および第2面R1、R2は球面である。 The illumination optical system 20 is formed by arranging a first lens 21 having a positive refractive power and a second lens group 22 having a positive refractive power as a whole from the emission end 11 side. The first lens 21 and the second lens group 22 are disposed on the same optical axis X. The first lens 21 has a first surface R 1 and a second surface R 2 from the emission end 11 side, and the first and second surfaces R 1 and R 2 are formed as convex surfaces. Since the first lens 21 is a spherical lens, the first and second surfaces R 1 and R 2 are spherical.

第2のレンズ群22は、1以上のレンズによって構成され、好ましくは1つのレンズによって構成される。したがって、第2のレンズ群22は、少なくとも2以上の面を有し、少なくとも最もライトガイド10側に位置する第3面R3と、最も物体側に位置する第4面R4を有する。 The second lens group 22 is composed of one or more lenses, and preferably is composed of one lens. Therefore, the second lens group 22 has at least two or more surfaces, and has at least a third surface R 3 positioned closest to the light guide 10 and a fourth surface R 4 positioned closest to the object side.

ライトガイド10は、多数の光学繊維が束ねられて円柱に形成され、その出射端11は平面を呈する。すなわち、ライトガイド10は、平面の出射端を有する面発光光源である。出射端11近傍のライトガイド10の中心軸は、第1のレンズ21および第2のレンズ群22の光軸Xと一致する。ここで、出射端11から出射される照明光の光線は、拡散光線および、光軸Xに対して平行な平行光線等の集合である。しかし、出射端から出射される光線は平行光線の強度が高いので、主に平行光線の出射角(配光角)のみを考慮すればよく、以下の説明においては平行光線のみを説明する。   The light guide 10 is formed in a cylindrical shape by bundling a large number of optical fibers, and its emission end 11 has a flat surface. That is, the light guide 10 is a surface emitting light source having a flat emission end. The central axis of the light guide 10 in the vicinity of the emission end 11 coincides with the optical axis X of the first lens 21 and the second lens group 22. Here, the rays of illumination light emitted from the emission end 11 are a set of diffused rays, parallel rays parallel to the optical axis X, and the like. However, since the intensity of parallel rays is high from the exit end, it is necessary to consider mainly only the emission angle (light distribution angle) of parallel rays. In the following description, only parallel rays will be described.

図3に示すように、出射端11から出射される平行光線は、その大部分が第1および第2面R1、R2を通過して、第3面R3から第2のレンズ群22に入射する(以下、この入射光線を直接入射光線という)。しかし、その平行光線の一部は、第1面R1を通過した後、第2面R2における入射角が臨界角を越えるので、第2面R2で全反射し、第1面R1に戻る。その戻った光線は、第1面R1における入射角が再び臨界角を越えるので、第1面R1で再び全反射する。その2回全反射した光線は、第2面R2を通過し、第3面R3から第2のレンズ群22に入射する(以下、この入射光線を2回全反射光線という)。第2のレンズ群22に入射した直接入射光線および2回全反射光線はいずれも、第4面R4から出射し観察対象物側(すなわち、物体側)に出射される。 As shown in FIG. 3, most of the parallel rays emitted from the emission end 11 pass through the first and second surfaces R 1 and R 2, and the second lens group 22 from the third surface R 3 . (Hereinafter, this incident ray is referred to as a direct incident ray). However, part of the parallel light passes through the first surface R 1, the incident angle of the second surface R 2 exceeds the critical angle, it is totally reflected by the second surface R 2, the first surface R 1 Return to. Its back light rays are incident angle on the first surface R 1 because again exceeds the critical angle, it is totally reflected again by the first surface R 1. The light beam that has been totally reflected twice passes through the second surface R 2 and is incident on the second lens group 22 from the third surface R 3 (hereinafter, this incident light beam is referred to as a two-time total reflection light beam). Both the direct incident light and the two-time totally reflected light incident on the second lens group 22 are emitted from the fourth surface R 4 and emitted to the observation object side (that is, the object side).

図3においては、出射端11の中心部から外縁部にかけて、等間隔に出射される光線L1〜L5を示す。ここでこれらの光線のうち、相対的に外側から出射する光線、すなわち例えば出射端11の最外縁から出射する最外縁光線L5が2回全反射光線となり、その他の光線L1〜L4は直接入射光線となる。   In FIG. 3, light rays L <b> 1 to L <b> 5 emitted at equal intervals from the center portion of the emission end 11 to the outer edge portion are shown. Here, among these light rays, a light ray relatively emitted from the outside, that is, an outermost edge ray L5 emitted from the outermost edge of the emission end 11, for example, is a total reflection ray twice, and the other rays L1 to L4 are directly incident rays It becomes.

つまり、本実施形態において、2回全反射光線は、例えば最外縁光線L5のように出射端11の最外縁近傍から出射する光線である。すなわち、2回全反射光線は、第1のレンズ21で全反射しなければ、例えば第2のレンズ群22のレンズ保持枠等によってけられ、また第2のレンズ群22において全反射するような光線であって、観察対象物に照射されない光線である。しかし、本実施形態においては、そのような光線についても、物体側に出射することができるので、照明光の光量ロスを少なくすることができる。   That is, in the present embodiment, the twice total reflected light beam is a light beam emitted from the vicinity of the outermost edge of the emission end 11 like the outermost edge light beam L5, for example. That is, the two-time total reflection light beam is not totally reflected by the first lens 21, for example, by the lens holding frame of the second lens group 22, or totally reflected by the second lens group 22. It is a light beam that is not irradiated on the observation object. However, in the present embodiment, even such a light beam can be emitted to the object side, so that a light amount loss of illumination light can be reduced.

また、2回全反射光線(例えば最外縁光線L5)は、第2のレンズ群22の外縁部近傍を通過するので、直接入射光線(例えば光線L1〜L4)と第2のレンズ群22における通過する領域が異なる。したがって、第2のレンズ群22の第3面R3の曲率を変更することにより、直接入射光線の配光を大きく変えずに容易に2回全反射光線の配光をコントロールすることができる。 Further, since the twice total reflected light beam (for example, the outermost edge light beam L5) passes near the outer edge portion of the second lens group 22, it directly passes through the incident light beam (for example, the light beams L1 to L4) and the second lens group 22. Different areas. Therefore, by changing the curvature of the third surface R 3 of the second lens group 22, the light distribution of the totally reflected light beam can be easily controlled twice without largely changing the light distribution of the directly incident light beam.

ここで、第1のレンズ21は、例えば最外縁光線L5のように出射端11の最外縁近傍から出射する光線であって、0.3φ≦h≦0.5φの条件を満たす平行光線の少なくとも一部の光線が第2面R2で全反射できるように、以下に示す条件式(1)を満足するように設定される。ただし、φはライトガイド10の直径(=幅)、Nは第1のレンズ21の屈折率、r1は第1のレンズ21の第1面R1側の曲率半径、r2は第1のレンズ21の第2面R2側の曲率半径、hは平行光線が第1面R1を通過後、第2面R2に入射する位置から光軸までの距離である。 Here, the first lens 21 is a light ray that is emitted from the vicinity of the outermost edge of the emission end 11, such as the outermost edge ray L5, and is at least a parallel ray that satisfies the condition of 0.3φ ≦ h ≦ 0.5φ. some of the light rays so as to be totally reflected by the second surface R 2, is set so as to satisfy the expression (1) shown below. Where φ is the diameter (= width) of the light guide 10, N is the refractive index of the first lens 21, r 1 is the radius of curvature on the first surface R 1 side of the first lens 21, and r 2 is the first radius. The radius of curvature on the second surface R 2 side of the lens 21, h is the distance from the position where the parallel rays pass through the first surface R 1 and then enter the second surface R 2 to the optical axis.

Figure 2005345787
Figure 2005345787

なお、Aが条件式(1)において、下限を越えると、第2面R2で全反射が起こらない。また、Aが、条件式(1)において、上限を越えると、第2面R2で全反射した光線が、第1面R1に当たらないため、第1レンズから出射せず光量ロスとなる。すなわち、0.3φ≦h≦0.5φの条件を満たす少なくとも一部の光線が、条件式(1)を満たすように屈折率N、曲率半径r1、r2が設定されれば、その光線は第2面R2で全反射し、第1面R1に到達することができるので、ライトガイドから射出される光束の大部分を有効利用することができる。 Incidentally, A conditional formula (1), the lower limit, does not occur total reflection at the second surface R 2. Further, if A exceeds the upper limit in the conditional expression (1), the light beam totally reflected by the second surface R 2 does not hit the first surface R 1 , so that it is not emitted from the first lens, resulting in a light amount loss. . That is, if the refractive index N and the radii of curvature r 1 and r 2 are set so that at least a part of light rays satisfying the condition of 0.3φ ≦ h ≦ 0.5φ satisfies the conditional expression (1), the light rays Can totally reflect on the second surface R 2 and reach the first surface R 1 , so that most of the light beam emitted from the light guide can be used effectively.

また、第1のレンズ21は、以下に示す条件式(2)を満足する。ただし、φはライトガイド10の直径(=幅)、Nは第1のレンズ21の屈折率、r1は第1のレンズ21の第1面R1側の曲率半径、r2は第1のレンズ21の第2面R2側の曲率半径、h2は出射端11の最外縁から出射される平行光線が第2面R2に入射する位置から光軸までの距離である。 The first lens 21 satisfies the following conditional expression (2). Where φ is the diameter (= width) of the light guide 10, N is the refractive index of the first lens 21, r 1 is the radius of curvature on the first surface R 1 side of the first lens 21, and r 2 is the first radius. The radius of curvature on the second surface R 2 side of the lens 21, h 2 is the distance from the position where the parallel rays emitted from the outermost edge of the emission end 11 enter the second surface R 2 to the optical axis.

Figure 2005345787
Figure 2005345787

条件式(2)を満たすように屈折率N、曲率半径r1、r2を設定することによって、特にライトガイドの最外縁から射出される平行光線が第2面R2で全反射し、更に第1面R1に到達することができる。最外縁の光線が全反射できるように、屈折率N、曲率半径r1、r2を設定すれば、ライトガイドから射出される光束の更に大部分を有効利用することができる。 By setting the refractive index N and the radii of curvature r 1 and r 2 so as to satisfy the conditional expression (2), in particular, parallel rays emitted from the outermost edge of the light guide are totally reflected by the second surface R 2 , and The first surface R 1 can be reached. If the refractive index N and the radii of curvature r 1 and r 2 are set so that the light beam at the outermost edge can be totally reflected, it is possible to effectively use the greater part of the light beam emitted from the light guide.

また、第1のレンズ21は、以下に示す条件式(3)を満足する。ただし、出射端11から出射される平行光線のうち出射端11の最外縁から出射する最外縁光線L5は、第2面R2において光軸Xから距離h2離れた位置で全反射した後、さらに第1面R1において、光軸Xから距離h1離れた位置に到達するものとする。なお、本実施形態においては、上述した距離hは距離h2に等しい。さらに、最外縁とは、出射端11の最も外側の部分を言い、ライトガイドの中心軸からの距離がφ/2の部分を言う。 The first lens 21 satisfies the following conditional expression (3). However, the outermost edge light L5 emitted from the outermost edge of the exit end 11 of the parallel light emitted from the exit end 11 is totally reflected at a position distance h 2 distant from the optical axis X in the second surface R 2, Further, it is assumed that the first surface R 1 reaches a position away from the optical axis X by a distance h 1 . In the present embodiment, the distance h mentioned above is equal to the distance h 2. Furthermore, the outermost edge refers to the outermost part of the emission end 11 and refers to the part whose distance from the central axis of the light guide is φ / 2.

Figure 2005345787
Figure 2005345787

Bが条件式(3)の下限を下回ると、第2面R2で全反射した光線が第1面R1で全反射されない。Bが条件式(3)の上限を越えると、第1面R1では全反射が起こるが、その全反射した光線は発散光となるため、第1のレンズ21のレンズ保持枠等によってけられる、または、第2レンズが大径化するため内視鏡先端部の小型化に向かない。 When B is below the lower limit of conditional expression (3), the light beam totally reflected by the second surface R 2 is not totally reflected by the first surface R 1 . When B exceeds the upper limit of the conditional expression (3), total reflection occurs on the first surface R 1 , but the totally reflected light beam becomes divergent light, and is therefore broken by the lens holding frame of the first lens 21. Or, since the diameter of the second lens is increased, it is not suitable for downsizing the distal end portion of the endoscope.

さらに、第2のレンズ群22は、第1のレンズ21から入射された光線を、被観察体にロスなくかつ配向角を広く照射させるために、第2レンズ群22の焦点距離f2は以下の条件式(4)(5)を満足することが望ましい。なお、fは照明光学系20の全系の焦点距離である。
1.5<f2/f<2.3 ・・・・(4)
0.7<f2/φ<1.2 ・・・・(5)
Further, in order for the second lens group 22 to irradiate the object to be observed with a light beam incident from the first lens 21 without loss and with a wide orientation angle, the focal length f 2 of the second lens group 22 is as follows. It is desirable to satisfy the conditional expressions (4) and (5). Note that f is the focal length of the entire illumination optical system 20.
1.5 <f 2 /f<2.3 (4)
0.7 <f 2 /φ<1.2 (5)

ここで、焦点距離f2が式(4)(5)の上限を越えて大きくなりすぎると、配向角が狭くなり、照明光の照明範囲を充分に広くすることができない。また、焦点距離f2が、式(4)(5)の下限を超えて小さくなりすぎると、第2レンズ群22の第4面R4において全反射が生じやすくやり、物体側に出射せずに光量ロスが大きくなる。 Here, if the focal length f 2 exceeds the upper limit of the expressions (4) and (5), the orientation angle becomes narrow and the illumination range of the illumination light cannot be sufficiently widened. On the other hand, if the focal length f 2 becomes too small beyond the lower limits of the equations (4) and (5), total reflection is likely to occur on the fourth surface R 4 of the second lens group 22 and it does not exit to the object side. The amount of light loss increases.

さらに、第1のレンズ21の焦点距離f1についても、下記の条件式(6)に満足するように調整されることが好ましい。
1.4<f1/f<2 ・・・・(6)
Furthermore, the focal length f 1 of the first lens 21 is preferably adjusted so as to satisfy the following conditional expression (6).
1.4 <f 1 / f <2 (6)

焦点距離f1が、照明光学系20全系の焦点距離fに比べて(6)式における上限を越えると、出射される照明光の配向角が充分に大きくならない。一方、焦点距離f1が、(6)式における下限を越えると、直接入射光線は、第2レンズ群22内(第4面R4)で全反射を起こしやすく、光量のロスが大きくなる。また、2回全反射光線は、充分に第2のレンズ群22に入射しない。 When the focal length f 1 exceeds the upper limit in the expression (6) as compared with the focal length f of the entire illumination optical system 20, the orientation angle of the emitted illumination light is not sufficiently increased. On the other hand, when the focal length f 1 exceeds the lower limit in the expression (6), the directly incident light beam easily causes total reflection in the second lens group 22 (fourth surface R 4 ), and the light amount loss increases. Further, the twice total reflected light does not sufficiently enter the second lens group 22.

さらに、全系の焦点距離fは、ライトガイドの直径φに対して以下の条件式に調整されることが好ましい。
1.8<φ/f<2.3 ・・・・(7)
Further, the focal length f of the entire system is preferably adjusted to the following conditional expression with respect to the diameter φ of the light guide.
1.8 <φ / f <2.3 (7)

ライトガイドの直径φに対する焦点距離fが大きくなりすぎ(7)式の下限を越えると、出射される照明光の配光角が十分に大きくならない。一方(7)式の上限を越えると、光線がレンズ保持枠等にけられ、また第2レンズ群22で全反射が生じ、光量ロスが大きくなる。   If the focal length f with respect to the diameter φ of the light guide becomes too large and exceeds the lower limit of the expression (7), the light distribution angle of the emitted illumination light will not be sufficiently large. On the other hand, if the upper limit of the expression (7) is exceeded, the light beam is directed to the lens holding frame or the like, and total reflection occurs in the second lens group 22, resulting in a large light loss.

出射端11から出射した直接入射光線および2回全反射光線は、一旦照明光学系20によって集光された後に、再び拡散されることにより観察対象物に照射される。ここで、直接入射光線および2回全反射光線の集光点は異なる。そして、直接入射光線の集光点は、第2のレンズ群22の第4面R4より、ライトガイド10側に位置することが好ましく、さらに好ましくは第2のレンズ群22内に位置する。集光点が第4面R4より物体側にあると、観察対象物上に集光し、高温になるおそれがあるからである。 The directly incident light beam and the twice total reflected light beam emitted from the emission end 11 are once condensed by the illumination optical system 20 and then diffused again to irradiate the observation object. Here, the condensing points of the directly incident light and the twice total reflected light are different. The condensing point of the directly incident light beam is preferably located closer to the light guide 10 than the fourth surface R 4 of the second lens group 22, and more preferably located within the second lens group 22. This is because if the condensing point is on the object side from the fourth surface R 4, the light is condensed on the observation target and may become high temperature.

直接入射光線の集光点が第4面R4より、ライトガイド10側にある場合、第4面R4はノンパワーまたは負のパワーを有すること、すなわち第4面R4は平面もしくは凹面であることが好ましい。第4面R4が正のパワーを持つと、出射する光線の配向角は狭くなるからである。さらに第4面R4は平面であることが好ましい。内視鏡に使用される際には、外部に露出している第4面R4が平面であれば、レンズが非常に小さくとも洗浄が容易だからである。したがって、第2のレンズ群22が1つのレンズによって構成される場合、例えば第3面R3は球面でかつ凸面に形成され、第4面R4は平面に形成される。 When the condensing point of the direct incident light is on the light guide 10 side from the fourth surface R 4 , the fourth surface R 4 has non-power or negative power, that is, the fourth surface R 4 is a flat surface or a concave surface. Preferably there is. This is because when the fourth surface R 4 has positive power, the orientation angle of the emitted light beam becomes narrow. Furthermore, the fourth surface R 4 is preferably a flat surface. This is because, when the fourth surface R 4 exposed to the outside is a flat surface when used in an endoscope, cleaning is easy even if the lens is very small. Therefore, when the second lens group 22 is constituted by one lens, for example, the third surface R 3 is formed as a spherical surface and a convex surface, and the fourth surface R 4 is formed as a flat surface.

ライトガイド10の出射端11を図4のように、同心円状に領域1〜4に4分割した場合における、各領域から出射される光線の光分布を模式的に図5に示す。領域4から出射される光線は、第1のレンズ21で2回全反射しなければ、けられまた第2のレンズ群22で全反射して、図6に示すように、ほとんど観察対象物には照射されない。しかし、本実施形態においては、領域4から出射される光線は、第1のレンズ21で2回全反射された後、第2のレンズ群22に入射される2回全反射光線となるので、図5に示すように、充分に観察対象物に照射される。また、2回全反射光線は、比較的大きな配光角で出射されるので、照明光は図5に示すように広い範囲に均一に照射される。したがって、本実施形態の照明光学系は特に、非常に広い範囲(例えば100〜150°)の照明範囲が求められる際に有効である。   FIG. 5 schematically shows the light distribution of the light beam emitted from each region when the emission end 11 of the light guide 10 is concentrically divided into regions 1 to 4 as shown in FIG. If the light beam emitted from the region 4 is not totally reflected twice by the first lens 21, it is totally reflected by the second lens group 22, and as shown in FIG. Is not irradiated. However, in the present embodiment, the light emitted from the region 4 is totally reflected twice by the first lens 21 and then becomes a twice total reflected light incident on the second lens group 22. As shown in FIG. 5, the observation object is sufficiently irradiated. In addition, since the twice totally reflected light beam is emitted with a relatively large light distribution angle, the illumination light is uniformly irradiated over a wide range as shown in FIG. Therefore, the illumination optical system of the present embodiment is particularly effective when a very wide illumination range (for example, 100 to 150 °) is required.

なお、本実施形態においては、第1および第2面R1、R2のいずれもが球面であるときについて説明したが、第1および第2面R1、R2のいずれか一方、もしくは両方が非球面であっても良い。例えば、第2面R2のみが非球面である場合、第1のレンズ21の第2面R2が、出射端11から出射される平行光線の一部を全反射させるためには、以下に示す条件式(8)が満足されなければならない。 In the present embodiment, the case where both the first and second surfaces R 1 and R 2 are spherical has been described, but either one or both of the first and second surfaces R 1 and R 2 are described. May be an aspherical surface. For example, if only the second surface R 2 is an aspherical surface, a second surface R 2 of the first lens 21, in order to totally reflect a portion of the parallel light emitted from the exit end 11 is below Conditional expression (8) shown must be satisfied.

Figure 2005345787
Figure 2005345787

また、第1および第2面R1、R2いずれも非球面である場合、第1のレンズ21の第2面R2が、出射端11から出射される平行光線の一部を全反射させるためには、以下に示す条件式(9)が満足されなければならない。 When both the first and second surfaces R 1 and R 2 are aspherical surfaces, the second surface R 2 of the first lens 21 totally reflects a part of the parallel rays emitted from the emission end 11. For this purpose, the following conditional expression (9) must be satisfied.

Figure 2005345787
ただし、S1(y)は第1面R1の高さyでのサグ、S2(y)は第2面R2の高さyでのサグである。
Figure 2005345787
However, S 1 (y) is a sag at the height y of the first surface R 1 , and S 2 (y) is a sag at the height y of the second surface R 2 .

次に実施例1〜6を用いて説明する。各実施例において、第2のレンズ群22は、単一のレンズによって構成された。本実施例においては、ライトガイドの出射端を第0面とした。   Next, examples 1 to 6 will be described. In each example, the second lens group 22 was constituted by a single lens. In this embodiment, the light guide emission end is the 0th surface.

実施例1〜6の光学データをそれぞれ表1〜表6に示す。表中、Rはレンズ各面の曲率半径、Dはレンズ厚さ、もしくはレンズ間隔、Nは屈折率、νはアッベ数を示す。

Figure 2005345787
Figure 2005345787
Figure 2005345787
Figure 2005345787
Figure 2005345787
Figure 2005345787
The optical data of Examples 1 to 6 are shown in Tables 1 to 6, respectively. In the table, R represents the radius of curvature of each lens surface, D represents the lens thickness or lens spacing, N represents the refractive index, and ν represents the Abbe number.
Figure 2005345787
Figure 2005345787
Figure 2005345787
Figure 2005345787
Figure 2005345787
Figure 2005345787

実施例1〜6において、最外縁光線L5のみの軌跡を示したレンズ図を、それぞれ図7、9、11、13、15、17に示す。実施例1〜6において、光線L1〜L5の軌跡を示したレンズ図を、それぞれ図8、10、12、14、16、18に示す。なお、各レンズ図は、照明光学系の光軸Xを含む断面におけるライトガイドおよび照明光学系を示す。   In Example 1-6, the lens figure which showed the locus | trajectory of only the outermost edge light ray L5 is shown to FIG. 7, 9, 11, 13, 15, and 17, respectively. In Example 1-6, the lens figure which showed the locus | trajectory of the light rays L1-L5 is shown to FIG. 8, 10, 12, 14, 16, 18 respectively. Each lens diagram shows the light guide and the illumination optical system in a cross section including the optical axis X of the illumination optical system.

また、各実施例1〜6における条件式(1)ないし(9)の計算結果は表7に示す。また、実施例の全てにおいて、第1面ないし第2面は、球面であったが、参考のため条件式(8)(9)についても計算した。

Figure 2005345787
Table 7 shows the calculation results of conditional expressions (1) to (9) in Examples 1 to 6. In all of the examples, the first surface and the second surface were spherical surfaces, but conditional expressions (8) and (9) were also calculated for reference.
Figure 2005345787

実施例1においては、表7に示すように、sin-1(1/N)=0.560であった。ここで、最外縁光線L5は、0.3φ≦h≦0.5φの条件を満たす平行光線であり、h=h2であったため、A(またはA’)=0.667であり、式(1)および式(2)の条件を満足した。また、B=0.663であり、式(3)の条件も満足した。このとき、図7に示すように、例えば最外縁光線L5は、第2面で全反射した後、第1面でさらに全反射した。すなわち、実施例1においては、出射端から出射した平行光線の一部が第1のレンズで2回全反射した後、第2のレンズ群に入射した。 In Example 1, as shown in Table 7, it was sin −1 (1 / N) = 0.560. Here, the outermost edge ray L5 is a parallel ray satisfying the condition of 0.3φ ≦ h ≦ 0.5φ, and h = h 2 , so A (or A ′) = 0.667, and the formula ( The conditions of 1) and formula (2) were satisfied. B = 0.663, which satisfied the conditions of the expression (3). At this time, as shown in FIG. 7, for example, the outermost edge light beam L5 was totally reflected on the second surface and then further totally reflected on the first surface. That is, in Example 1, a part of the parallel light beam emitted from the emission end was totally reflected twice by the first lens and then incident on the second lens group.

また、実施例1では、表7に示すように式(4)ないし式(7)の条件を満足した。このとき、図8に示すように、ライトガイドから出射されるそれぞれの光線は、けられることなく、また第2のレンズ群で全反射されることもなく、物体側に出射した。また、最外縁から出射した光線L5は、比較的大きな配向角で出射するので、照明光は、広範囲に亘って均一に照射された。以上のように、実施例1の照明光学系は、条件式(1)ないし(7)の式を全て満足し、ライトガイドの光線をロスなく、かつ広範囲に照射することができた。   In Example 1, the conditions of the formulas (4) to (7) were satisfied as shown in Table 7. At this time, as shown in FIG. 8, each light beam emitted from the light guide was emitted to the object side without being scattered and not totally reflected by the second lens group. In addition, since the light beam L5 emitted from the outermost edge is emitted with a relatively large orientation angle, the illumination light was uniformly irradiated over a wide range. As described above, the illumination optical system of Example 1 satisfied all the conditional expressions (1) to (7), and was able to irradiate light rays from the light guide in a wide range without loss.

また、実施例2ないし6においても、実施例1と同様に、各照明光学系は条件式(1)ないし(3)を満足し、例えば最外縁光線L5は、第2面で全反射した後、さらに第1面で全反射し、第2のレンズ群を通って物体側に出射した。さらに、実施例1と同様に、各照明光学系は、条件式(4)ないし(7)の条件を満足し、出射端から出射された光線は、ロスなく、広範囲に観察対象物に照射された。   In the second to sixth embodiments, as in the first embodiment, each illumination optical system satisfies the conditional expressions (1) to (3). For example, the outermost light ray L5 is totally reflected on the second surface. Further, the light was totally reflected by the first surface and emitted to the object side through the second lens group. Further, similarly to the first embodiment, each illumination optical system satisfies the conditions of the conditional expressions (4) to (7), and the light beam emitted from the emission end is irradiated to the observation object in a wide range without loss. It was.

なお、各実施例1ないし6における照明光学系は、表7に示すように、それぞれ条件式(8)(9)を満足した。   The illumination optical systems in Examples 1 to 6 satisfied conditional expressions (8) and (9), respectively, as shown in Table 7.

本実施形態の内視鏡を示した模式図である。It is the schematic diagram which showed the endoscope of this embodiment. 本実施形態の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of this embodiment, Comprising: It is the figure which showed only 2 times total reflected light. 本実施形態の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of this embodiment, Comprising: It is the figure which showed the twice total reflected light beam and the direct incident light beam. ライトガイドの出射端を模式的に4分割して示した模式図である。It is the schematic diagram which divided and showed the output end of the light guide typically into four. 本実施形態の光線の光分布を示した模式図である。It is the schematic diagram which showed the light distribution of the light beam of this embodiment. 2回全反射光線のない出射端から出射される光線の光分布を示した模式図である。It is the schematic diagram which showed the light distribution of the light ray radiate | emitted from the outgoing end which does not have two total reflection light rays. 実施例1の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of Example 1, Comprising: It is the figure which showed only 2 times total reflected light. 実施例1の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of Example 1, Comprising: It is the figure which showed the twice total reflected light and the direct incident light. 実施例2の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of Example 2, Comprising: It is the figure which showed only 2 times total reflection light. 実施例2の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of Example 2, Comprising: It is the figure which showed the twice total reflection light beam and the direct incident light beam. 実施例3の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of Example 3, Comprising: It is the figure which showed only 2 times total reflected light. 実施例3の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of Example 3, Comprising: It is the figure which showed the twice total reflected light and the direct incident light. 実施例4の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of Example 4, Comprising: It is the figure which showed only 2 times total reflected light. 実施例4の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of Example 4, Comprising: It is the figure which showed the twice total reflected light and the direct incident light. 実施例5の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of Example 5, Comprising: It is the figure which showed only 2 times total reflected light. 実施例5の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of Example 5, Comprising: It is the figure which showed the twice total reflected light and the direct incident light. 実施例6の照明光学系を示した断面図であって、2回全反射光線のみを示した図である。It is sectional drawing which showed the illumination optical system of Example 6, Comprising: It is the figure which showed only 2 times total reflected light. 実施例6の照明光学系を示した断面図であって、2回全反射光線および直接入射光線を示した図である。It is sectional drawing which showed the illumination optical system of Example 6, Comprising: It is the figure which showed the twice total reflected light beam and the direct incident light beam.

符号の説明Explanation of symbols

10 ライトガイド
11 出射端
20 照明光学系
21 第1のレンズ
22 第2のレンズ群

DESCRIPTION OF SYMBOLS 10 Light guide 11 Output end 20 Illumination optical system 21 1st lens 22 2nd lens group

Claims (11)

面発光光源の出射端側から順に正の屈折力を持つ第1のレンズと、全体として正の屈折力を持つ第2のレンズ群とが配設され、前記第1のレンズは、前記出射端側から順に第1の面と第2の面とを有し、前記出射端から出射される前記第1のレンズの光軸に平行な平行光線の一部を前記第2の面で全反射させた後、前記第1の面で再び全反射させ、前記第2のレンズ群を通過させて物体側に出射させることを特徴とする照明光学系。   A first lens having a positive refractive power and a second lens group having a positive refractive power as a whole are arranged in order from the emission end side of the surface emitting light source, and the first lens is arranged at the emission end. A first surface and a second surface in order from the side, and a part of a parallel light beam parallel to the optical axis of the first lens emitted from the emission end is totally reflected by the second surface. After that, the illumination optical system is characterized in that it is totally reflected again by the first surface, passes through the second lens group, and is emitted toward the object side. 前記第1のレンズは、前記平行光線の他の一部を前記第1および第2の面、さらに前記第2のレンズ群を通過させ、物体側に出射させることを特徴とする請求項1に記載の照明光学系。   2. The first lens according to claim 1, wherein another part of the parallel rays passes through the first and second surfaces and further the second lens group, and is emitted to the object side. The illumination optical system described. 0.3φ≦h≦0.5φの条件を満たす前記平行光線の少なくとも一部の光線が、以下の(1)式の条件を満足することを特徴とする請求項1または2に記載の照明光学系。
Figure 2005345787
なお、φは前記面発光光源の幅、Nは前記第1のレンズの屈折率、r1は前記第1のレンズの前記第1の面側の曲率半径、r2は前記第1のレンズの前記第2の面側の曲率半径、hは前記平行光線が前記第1の面を通過後前記第2の面に入射する位置から光軸までの距離。
3. The illumination optical system according to claim 1, wherein at least a part of the parallel rays satisfying a condition of 0.3φ ≦ h ≦ 0.5φ satisfies the following expression (1). system.
Figure 2005345787
Is the width of the surface-emitting light source, N is the refractive index of the first lens, r 1 is the radius of curvature of the first lens on the first surface side, and r 2 is the radius of the first lens. The radius of curvature on the second surface side, h is the distance from the position where the parallel light rays enter the second surface after passing through the first surface to the optical axis.
以下の(2)式の条件を満足することを特徴とする請求項1ないし3に記載の照明光学系。
Figure 2005345787
ただし、φは前記面発光光源の幅、Nは前記第1のレンズの屈折率、r1は前記第1のレンズの前記第1の面側の曲率半径、r2は前記第1のレンズの前記第2の面側の曲率半径、h2は前記平行光線のうち前記面発光光源の最外縁から出射した最外縁光線が前記第1の面を通過後に前記第2の面に入射する位置から前記光軸までの距離。
The illumination optical system according to any one of claims 1 to 3, wherein the condition of the following expression (2) is satisfied.
Figure 2005345787
Where φ is the width of the surface-emitting light source, N is the refractive index of the first lens, r 1 is the radius of curvature of the first lens on the first surface side, and r 2 is the radius of the first lens. The radius of curvature on the second surface side, h 2, is the position from which the outermost edge ray emitted from the outermost edge of the surface-emitting light source among the parallel rays enters the second surface after passing through the first surface. Distance to the optical axis.
以下の(3)式の条件を満足することを特徴とする請求項4に記載の照明光学系。
Figure 2005345787
ただし、h1は前記最外縁光線が前記第2の面で全反射した後、前記第1の面に入射する位置から前記光軸までの距離。
The illumination optical system according to claim 4, wherein the condition of the following expression (3) is satisfied.
Figure 2005345787
However, the distance h 1 after the outermost light beam is totally reflected by the second surface, from a position incident on the first surface to the optical axis.
以下の(4)式の条件を満足することを特徴とする請求項1ないし5に記載の照明光学系。
1.5<f2/f<2.3 ・・・・(4)
ただし、fは前記照明光学系全系の焦点距離、f2は前記第2レンズ群の焦点距離。
The illumination optical system according to any one of claims 1 to 5, wherein a condition of the following expression (4) is satisfied.
1.5 <f 2 /f<2.3 (4)
Where f is the focal length of the entire illumination optical system, and f 2 is the focal length of the second lens group.
以下の(5)式の条件を満足することを特徴とする請求項1ないし6に記載の照明光学系。
0.7<f2/φ<1.2 ・・・・(5)
ただし、f2は前記第2レンズ群の焦点距離、φは前記面発光光源の幅。
The illumination optical system according to claim 1, wherein the condition of the following expression (5) is satisfied.
0.7 <f 2 /φ<1.2 (5)
Here, f 2 is the focal length of the second lens group, and φ is the width of the surface-emitting light source.
前記第2レンズ群は、物体側が平面である単レンズから成ることを特徴とする請求項1ないし7に記載の照明光学系。   The illumination optical system according to claim 1, wherein the second lens group includes a single lens having a plane on the object side. 前記面発光光源は、ライトガイドであることを特徴とする請求項1ないし8に記載の照明光学系。   9. The illumination optical system according to claim 1, wherein the surface-emitting light source is a light guide. 請求項1ないし9のいずれかに記載の照明光学系と、前記照明光学系から物体側に出射された光線が観察対象物に照射され、その照射された観察対象物を観察する観察手段とを備える内視鏡。   An illumination optical system according to any one of claims 1 to 9, and observation means for irradiating an observation object with a light beam emitted from the illumination optical system toward the object side and observing the irradiated observation object Endoscope equipped. 平面の出射端から光線を発する面発光光源と、
前記出射端側から順に正の屈折力を持つ第1のレンズと、全体として正の屈折力を持つ第2のレンズ群とが配設され、前記第1のレンズが、前記出射端側から順に第1の面と第2の面とを有し、前記出射端から出射される前記第1のレンズの光軸に平行な平行光線の一部を前記第2の面で全反射させた後、前記第1の面で再び全反射させ、前記第2のレンズ群を通過させて物体側に出射させる照明光学系と、
前記物体側に出射された光線が観察対象物に照射され、その照射された観察対象物を観察する観察手段と
を備える内視鏡。


A surface emitting light source that emits a light beam from a plane exit end;
A first lens having a positive refractive power in order from the emission end side and a second lens group having a positive refractive power as a whole are arranged, and the first lens is arranged in order from the emission end side. A first surface and a second surface, and a part of a parallel light beam parallel to the optical axis of the first lens emitted from the emission end is totally reflected by the second surface; An illumination optical system that causes total reflection again at the first surface, passes through the second lens group, and emits the light toward the object side;
An endoscope comprising: observation means for irradiating an observation object with a light beam emitted toward the object side, and observing the irradiated observation object.


JP2004165739A 2004-06-03 2004-06-03 Illumination optics and endoscope Expired - Fee Related JP4338589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165739A JP4338589B2 (en) 2004-06-03 2004-06-03 Illumination optics and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165739A JP4338589B2 (en) 2004-06-03 2004-06-03 Illumination optics and endoscope

Publications (2)

Publication Number Publication Date
JP2005345787A true JP2005345787A (en) 2005-12-15
JP4338589B2 JP4338589B2 (en) 2009-10-07

Family

ID=35498228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165739A Expired - Fee Related JP4338589B2 (en) 2004-06-03 2004-06-03 Illumination optics and endoscope

Country Status (1)

Country Link
JP (1) JP4338589B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059949B2 (en) 2006-10-18 2011-11-15 Hoya Corporation Gyro-sensor mounting structure in a camera having an image-stabilizing function
US8118734B2 (en) 2006-08-25 2012-02-21 Hoya Corporation Endoscope illumination optical system
JP2018194746A (en) * 2017-05-19 2018-12-06 富士フイルム株式会社 Lens for illumination and illumination optical system for endoscope
US20200271915A1 (en) * 2019-02-27 2020-08-27 Fujifilm Corporation Illumination lens, illumination optical system, and endoscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118734B2 (en) 2006-08-25 2012-02-21 Hoya Corporation Endoscope illumination optical system
DE102007040123B4 (en) * 2006-08-25 2017-12-14 Hoya Corp. Endoscope illumination optics
US8059949B2 (en) 2006-10-18 2011-11-15 Hoya Corporation Gyro-sensor mounting structure in a camera having an image-stabilizing function
JP2018194746A (en) * 2017-05-19 2018-12-06 富士フイルム株式会社 Lens for illumination and illumination optical system for endoscope
US20200271915A1 (en) * 2019-02-27 2020-08-27 Fujifilm Corporation Illumination lens, illumination optical system, and endoscope
JP2020140051A (en) * 2019-02-27 2020-09-03 富士フイルム株式会社 Illumination lens, illumination optical system, and endoscope
CN111624760A (en) * 2019-02-27 2020-09-04 富士胶片株式会社 Illumination lens, illumination optical system, and endoscope
JP7010865B2 (en) 2019-02-27 2022-01-26 富士フイルム株式会社 Illumination lenses, illumination optics, and endoscopes
CN111624760B (en) * 2019-02-27 2024-01-16 富士胶片株式会社 Lighting lens, lighting optical system, and endoscope
US11906725B2 (en) * 2019-02-27 2024-02-20 Fujifilm Corporation Illumination lens, illumination optical system, and endoscope

Also Published As

Publication number Publication date
JP4338589B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US20050083587A1 (en) Imaging optical instrument
JP2006317508A (en) Light intensity distribution correction optical system and optical microscope using the same
JP2002186578A (en) Light guide and endoscope
JP2015223463A5 (en)
JP2008048980A (en) Endoscope illumination optical system
WO2016027634A1 (en) Endscope device
JP5018192B2 (en) Lighting device
CN110892191B (en) Light source device and distance measuring sensor having the same
JP4338589B2 (en) Illumination optics and endoscope
JP2009276502A (en) Illumination optical system for endoscope
JP5084331B2 (en) Observation optical system
JP2011033958A (en) Light source device
JP2009198736A (en) Illuminating device and endoscope
JP2010051606A (en) Illumination optical system and endoscope using the same
US7480095B2 (en) Microscope
JP5339098B2 (en) Light intensity distribution correcting optical system and optical microscope using the same
CN113613544B (en) Endoscope with a lens
US7248404B2 (en) Microscope
JP2018194746A (en) Lens for illumination and illumination optical system for endoscope
JP4147037B2 (en) Illumination system and endoscope having the same
US20110235360A1 (en) Light source device for supplying light to fiber optic illumination system
JP5097798B2 (en) Fiber optic lighting equipment
JPH06273678A (en) Diffusing and illuminating optical system for endoscope
JP2899974B2 (en) Illumination optical system
JP2014074801A (en) Optical shaping instrument, illumination optical system, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Ref document number: 4338589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees