JP2005345245A - Capacitance type dynamic quantity sensor and its manufacturing method - Google Patents

Capacitance type dynamic quantity sensor and its manufacturing method Download PDF

Info

Publication number
JP2005345245A
JP2005345245A JP2004164845A JP2004164845A JP2005345245A JP 2005345245 A JP2005345245 A JP 2005345245A JP 2004164845 A JP2004164845 A JP 2004164845A JP 2004164845 A JP2004164845 A JP 2004164845A JP 2005345245 A JP2005345245 A JP 2005345245A
Authority
JP
Japan
Prior art keywords
weight
fixed electrode
semiconductor substrate
quantity sensor
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004164845A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健二 加藤
Minoru Sudo
稔 須藤
Mitsuo Shoda
光男 鎗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004164845A priority Critical patent/JP2005345245A/en
Publication of JP2005345245A publication Critical patent/JP2005345245A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitance type dynamic quantity sensor and its manufacturing method expected to effectively use a chip size and shorten design time. <P>SOLUTION: By forming a plurality of through holes in part of beams and weights in the capacitance type dynamic quantity sensor, the time required for designing mechanical characteristics is shortened to facilitate designs for compact formation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、加速度、角速度といった力学的物理量を、容量変化として検出する容量型力学量センサに関する。特に、半導体製造プロセスにより製造された容量型力学量センサに関する。   The present invention relates to a capacitive mechanical quantity sensor that detects mechanical physical quantities such as acceleration and angular velocity as capacitance changes. In particular, the present invention relates to a capacitive mechanical quantity sensor manufactured by a semiconductor manufacturing process.

従来、外部から加わる加速度や角速度により変位する錘やその錘を支持する梁を半導体基板内に形成し、錘の可動電極に対し微小間隔を隔てて形成された固定電極との静電容量変化を検出する静電容量型力学量センサが知られている(例えば、特許文献1参照。)。   Conventionally, a weight that is displaced by acceleration or angular velocity applied from the outside and a beam that supports the weight are formed in a semiconductor substrate, and the capacitance change between the movable electrode of the weight and a fixed electrode that is formed at a minute interval. A capacitance type mechanical quantity sensor to detect is known (for example, refer to Patent Document 1).

図8にその概略図を示す。このセンサでは、錘81と梁82を微細加工で半導体基板83内に作製し、両面からガラス基板(上側基板84、下側基板85)で接合し封止している。錘81は、上側基板84、下側基板85及び半導体基板83により形成される微小な空間内で、梁82により支持され、浮いた状態になっている。   FIG. 8 shows a schematic diagram thereof. In this sensor, a weight 81 and a beam 82 are fabricated in a semiconductor substrate 83 by fine processing, and are bonded and sealed from both sides with glass substrates (upper substrate 84 and lower substrate 85). The weight 81 is supported by the beam 82 in a minute space formed by the upper substrate 84, the lower substrate 85, and the semiconductor substrate 83, and is in a floating state.

こういったセンサに、外部より物理量(例えば加速度)が加わると、質量を有する錘81には物理量に比例した力がかかり、梁82の撓みにより錘81が変位する。これにより、硝子上に形成された固定電極86と錘81からなる可動電極との間の容量値が変化し、加わった物理量の大きさを測定することができる。   When a physical quantity (for example, acceleration) is applied to such a sensor from the outside, a force proportional to the physical quantity is applied to the weight 81 having mass, and the weight 81 is displaced by the bending of the beam 82. Thereby, the capacitance value between the fixed electrode 86 formed on the glass and the movable electrode made of the weight 81 changes, and the magnitude of the added physical quantity can be measured.

ここで、センサの感度特性等に大きく影響を及ぼす機械特性(共振周波数、バネ定数)は、錘81及び梁82のサイズに大きく依存する。特に、振動型の角速度センサにおいては、良好な感度特性を示す為に、梁表面に垂直方向(ここではZ方向と定義する)の共振周波数及び梁長手方向(ここではX方向と定義する)の共振周波数を数%の誤差範囲内に形成することが要求される(例えば、非特許文献1参照)。
特開平8−94666号公報 「振動形マイクロジャイロの設計指針」前中他、電気学会論文誌E,Vol.118−E,No.7/8,pp.377−383(1998)
Here, mechanical characteristics (resonance frequency, spring constant) that greatly affect the sensitivity characteristics of the sensor greatly depend on the sizes of the weight 81 and the beam 82. In particular, in the vibration type angular velocity sensor, in order to show good sensitivity characteristics, the resonance frequency in the direction perpendicular to the beam surface (here defined as Z direction) and the beam longitudinal direction (here defined as X direction) It is required to form the resonance frequency within an error range of several percent (for example, see Non-Patent Document 1).
JP-A-8-94666 “Design Guidelines for Vibration Type Micro Gyro” Maechu et al., IEEJ Transactions E, Vol. 118-E, no. 7/8, pp. 377-383 (1998)

しかしながら、特開平8-94666に示すようなセンサ構造は、Z方向とX方向の振動が独立に動くのではなく、連動して動く構造をしている。つまり、X方向の共振周波数を変動させた場合、Z方向の共振周波数も変動する。その為、Z方向の共振周波数を仕様範囲内に収める為に、梁のサイズや錘のサイズを調整した場合に、X方向の共振周波数が仕様から外れ、また、X方向の共振周波数を仕様内に収めようとした場合、Z方向の共振周波数が仕様から外れるといったことが頻繁に起こる。このような計算を幾回か繰り返して、XとZの共振周波数を共に仕様内に収めることが可能となり、設計時間が必要以上にかかる。また、X・Zの共振周波数ともに仕様内に収める為に、やむを得ず錘や梁のサイズを大きくする必要が生ずる場合もあり、チップサイズの拡大及びコスト高の原因となる。   However, the sensor structure shown in Japanese Patent Laid-Open No. 8-94666 has a structure in which the vibrations in the Z direction and the X direction do not move independently but move in conjunction with each other. That is, when the resonance frequency in the X direction is changed, the resonance frequency in the Z direction is also changed. Therefore, when adjusting the size of the beam or the weight in order to keep the resonance frequency in the Z direction within the specified range, the resonance frequency in the X direction is out of the specification, and the resonance frequency in the X direction is within the specification. When trying to fit in, the resonance frequency in the Z direction often deviates from the specification. By repeating this calculation several times, it is possible to keep both the X and Z resonance frequencies within the specifications, and the design time is longer than necessary. In addition, in order to keep both the X and Z resonance frequencies within the specifications, it may be unavoidable to increase the size of the weight and beam, which increases the chip size and increases the cost.

本発明は、上記の問題に鑑みてなされたものであり、加速度、角速度といった力学的物理量を、半導体プロセスを用いて製造する構造体が変位することによる容量変化を検出する容量型力学量センサにおいて、
梁により支持され、外部より印加される加速度や角速度といった力学量により変位する錘を有する半導体基板と、半導体基板の表面の一部と接合し、錘の対向する位置に微小隙間1を隔てて配置した固定電極1を積層させた上部硝子基板と、半導体基板の裏面の一部と接合し、錘の対向する位置に微小隙間2を隔てて配置した固定電極2を積層させた下部硝子基板とから成り、錘の変位により、錘からなる可動電極と固定電極1間の容量変化、及び錘からなる可動電極と固定電極2間の容量変化から力学量を測定する容量型力学量センサにおいて、梁及び錘の一部に貫通孔が形成されていることを特徴とする容量型力学量センサ。
The present invention has been made in view of the above problems, and is a capacitive mechanical quantity sensor that detects a change in capacitance caused by displacement of a structure manufactured using a semiconductor process, such as a mechanical physical quantity such as acceleration and angular velocity. ,
A semiconductor substrate having a weight supported by a beam and displaced by a mechanical quantity such as acceleration or angular velocity applied from the outside and a part of the surface of the semiconductor substrate are joined, and a minute gap 1 is arranged at a position opposite to the weight. The upper glass substrate on which the fixed electrode 1 is laminated, and the lower glass substrate on which the fixed electrode 2 is laminated with a minute gap 2 at a position opposed to the weight and bonded to a part of the back surface of the semiconductor substrate. In the capacitive mechanical quantity sensor for measuring the mechanical quantity from the change in capacitance between the movable electrode made of the weight and the fixed electrode 1 and the change in capacity between the movable electrode made of the weight and the fixed electrode 2 due to the displacement of the weight, A capacitive mechanical quantity sensor, wherein a through hole is formed in a part of a weight.

また、貫通孔が複数個形成されていることを特徴とする容量型力学量センサ。   A capacitive mechanical quantity sensor, wherein a plurality of through holes are formed.

従って、梁及び錘中に貫通孔を形成することにより、梁のサイズや錘のサイズを変更することなく、手間をかけずに共振周波数及びバネ定数等の機械特性の調整が可能となり、設計時間の短縮が期待できる。また、梁及び錘サイズの調整に自由度がでて、センサ形成領域を有効に活用できる。   Therefore, by forming through holes in the beam and the weight, it is possible to adjust the mechanical characteristics such as the resonance frequency and the spring constant without changing the size of the beam and the weight, and without trouble, and the design time Can be expected to shorten. In addition, the degree of freedom in adjusting the beam and weight size can be increased, and the sensor formation region can be used effectively.

また、半導体基板の両面に凹みを形成する工程と、半導体基板の表面の凹み内を加工し、梁及び梁の一部に貫通孔を形成する工程と、半導体基板の裏面の凹み内を加工し、梁に支持された錘及び錘の一部に貫通孔を形成する工程と、平坦な上部硝子基板の表面に、固定電極1を積層形成する工程と、平坦な下部硝子基板の表面に、固定電極2を積層形成する工程と、錘の対向する位置に固定電極1が配置されるよう、上部硝子基板を半導体基板の表面に接合し、且つ、錘の対向する位置に固定電極2が配置されるよう、下部硝子基板を半導体基板の裏面に接合する工程と、を含むことを特徴とする容量型力学量センサの製造方法。   Also, a step of forming recesses on both sides of the semiconductor substrate, a step of processing the inside of the recesses on the surface of the semiconductor substrate, a step of forming a through hole in the beam and a part of the beam, and a processing of the inside of the recess on the back surface of the semiconductor substrate. A step of forming a through-hole in a weight supported by a beam and a part of the weight, a step of forming a fixed electrode 1 on the surface of a flat upper glass substrate, and a step of fixing to the surface of a flat lower glass substrate The upper glass substrate is bonded to the surface of the semiconductor substrate so that the fixed electrode 1 is disposed at the position where the electrode 2 is laminated and the weight is opposed, and the fixed electrode 2 is disposed at the position where the weight is opposed. And a step of joining the lower glass substrate to the back surface of the semiconductor substrate.

また、梁により支持され、外部より印加される加速度や角速度といった力学量により変位する錘を有する半導体基板と、半導体基板の表面の一部と接合し、錘の対向する位置に微小隙間1を隔てて配置した固定電極1を積層させた上部硝子基板と、半導体基板の裏面の一部と接合し、錘の対向する位置に微小隙間2を隔てて配置した固定電極2を積層させた下部硝子基板とから成り、錘の変位により、錘からなる可動電極と固定電極1間の容量変化、及び錘からなる可動電極と固定電極2間の容量変化から力学量を測定する容量型力学量センサにおいて、梁の一部に貫通孔が形成されていることを特徴とする容量型力学量センサを製造するにあたり、梁と梁の一部に形成した貫通孔は、同一のエッチング工程により形成されることを特徴とする容量型力学量センサの製造方法。   Further, a semiconductor substrate having a weight supported by a beam and displaced by a mechanical quantity such as acceleration or angular velocity applied from the outside, and a part of the surface of the semiconductor substrate are joined, and a minute gap 1 is provided at a position opposite to the weight. The upper glass substrate on which the fixed electrodes 1 are stacked, and the lower glass substrate on which the fixed electrodes 2 are bonded to a part of the back surface of the semiconductor substrate and spaced apart by a minute gap 2 at a position facing the weight. In the capacitive mechanical quantity sensor that measures the mechanical quantity from the change in capacitance between the movable electrode made of the weight and the fixed electrode 1 and the change in capacity between the movable electrode made of the weight and the fixed electrode 2 due to the displacement of the weight, In manufacturing a capacitive dynamic quantity sensor characterized in that a through hole is formed in a part of the beam, the through hole formed in the beam and a part of the beam is formed by the same etching process. Features Method of manufacturing a capacitive dynamic quantity sensor.

また、梁により支持され、外部より印加される加速度や角速度といった力学量により変位する錘を有する半導体基板と、半導体基板の表面の一部と接合し、錘の対向する位置に微小隙間1を隔てて配置した固定電極1を積層させた上部硝子基板と、半導体基板の裏面の一部と接合し、錘の対向する位置に微小隙間2を隔てて配置した固定電極2を積層させた下部硝子基板とから成り、錘の変位により、錘からなる可動電極と固定電極1間の容量変化、及び錘からなる可動電極と固定電極2間の容量変化から力学量を測定する容量型力学量センサにおいて、梁の一部に貫通孔が形成されていることを特徴とする容量型力学量センサを製造するにあたり、錘と錘の一部に形成した貫通孔は、同一のエッチング工程により形成されることを特徴とする容量型力学量センサの製造方法。   Further, a semiconductor substrate having a weight supported by a beam and displaced by a mechanical quantity such as acceleration or angular velocity applied from the outside, and a part of the surface of the semiconductor substrate are joined, and a minute gap 1 is provided at a position opposite to the weight. The upper glass substrate on which the fixed electrodes 1 are stacked, and the lower glass substrate on which the fixed electrodes 2 are bonded to a part of the back surface of the semiconductor substrate and spaced apart by a minute gap 2 at a position facing the weight. In the capacitive mechanical quantity sensor that measures the mechanical quantity from the change in capacitance between the movable electrode made of the weight and the fixed electrode 1 and the change in capacity between the movable electrode made of the weight and the fixed electrode 2 due to the displacement of the weight, In manufacturing a capacitive dynamic quantity sensor characterized in that a through hole is formed in a part of a beam, the weight and the through hole formed in a part of the weight are formed by the same etching process. Features Method of manufacturing a capacitive dynamic quantity sensor.

従って、梁及び梁の一部に形成する貫通孔、或いは、錘及び錘の一部に形成する貫通孔を同一プロセスで加工を行うことにより、工程数の低減が図れ、製造コストの低減と共に歩留まりの向上も望める。   Therefore, the number of processes can be reduced by reducing the number of steps by reducing the number of steps by processing the through holes formed in the beam and a part of the beam, or the through holes formed in the weight and a part of the weight in the same process. Can also be improved.

梁及び錘中に貫通孔を形成することにより、共振周波数及びバネ定数等の機械特性の設計における調整時間の短縮が期待でき、開発費の削減が望める。また、梁及び錘サイズの調整に自由度がある為、センサ形成領域を有効に活用できるとともに、センササイズの拡大を防ぐことが可能となる。   By forming through-holes in the beam and weight, it is possible to expect a reduction in adjustment time in the design of mechanical characteristics such as resonance frequency and spring constant, and a reduction in development costs can be expected. In addition, since there is a degree of freedom in adjusting the beam and weight sizes, it is possible to effectively use the sensor formation region and prevent the sensor size from being increased.

以下、本発明の力学量センサを代表して角速度センサを例にあげ、添付の図面を参照して詳細に説明する。   Hereinafter, an angular velocity sensor will be taken as an example of the mechanical quantity sensor of the present invention and will be described in detail with reference to the accompanying drawings.

まず、本発明の実施例1に係わる容量型力学量センサの断面図を図1に示す。本力学量センサは、上部硝子基板1、シリコン基板2及び下部硝子基板3の3層構造をしており、それら3基板を接合して構造体を作製する。半導体(シリコン)基板2内には、エッチングにより梁4と錘5を有した振動体が形成されており、外部より加わる力により、振動体(梁4と錘5)は、振動したり、捩れたりする。梁4の厚み、幅、長さ、及び錘5の厚み、面積等の形状は、任意のバネ定数及び共振周波数が得られるよう、設計される。また、半導体基板2に形成された、梁4及び錘5と、それぞれ対向する上下硝子基板1,3との間には、微小隙間6、7が存在する。振動体(梁4と錘5)は、半導体基板2の外周部に、梁4を介して接続している。外部からの力により、錘5を支持する梁4が撓み、錘5は、微小隙間6、7内で移動する。   First, FIG. 1 shows a cross-sectional view of a capacitive mechanical quantity sensor according to Embodiment 1 of the present invention. This mechanical quantity sensor has a three-layer structure of an upper glass substrate 1, a silicon substrate 2 and a lower glass substrate 3, and these three substrates are joined to produce a structure. A vibrating body having a beam 4 and a weight 5 is formed in the semiconductor (silicon) substrate 2 by etching, and the vibrating body (the beam 4 and the weight 5) is vibrated or twisted by a force applied from the outside. Or The thickness, width, and length of the beam 4 and the thickness, area, and the like of the weight 5 are designed so that an arbitrary spring constant and resonance frequency can be obtained. Further, there are minute gaps 6 and 7 between the beam 4 and the weight 5 formed on the semiconductor substrate 2 and the upper and lower glass substrates 1 and 3 facing each other. The vibrator (beam 4 and weight 5) is connected to the outer periphery of the semiconductor substrate 2 via the beam 4. The beam 4 that supports the weight 5 is bent by the force from the outside, and the weight 5 moves in the minute gaps 6 and 7.

振動体(梁4と錘5)を形成したシリコン基板2を上下より挟み込む上下硝子基板1、3の一部には、貫通穴8が形成され、これら貫通穴8を通して、上下硝子1,3の内側に形成した電極を外側に引き出す構造をしている。貫通穴8の外側には、導電性材料9が積層されており、硝子内(微小隙間6,7)は封止される。上下硝子基板1,3の内側に形成された固定電極11は、貫通穴8の側壁に形成した配線を通し、この導電性材料9から外へ取り出している。なお、梁4及び錘5の一部には、振動体の共振周波数及びバネ定数を調整する目的の貫通孔12が形成されている。   Through holes 8 are formed in a part of the upper and lower glass substrates 1 and 3 sandwiching the silicon substrate 2 on which the vibrating body (the beam 4 and the weight 5) is formed from above and below, and through these through holes 8, the upper and lower glasses 1 and 3 are formed. The structure is such that the electrode formed on the inside is pulled out to the outside. A conductive material 9 is laminated outside the through hole 8, and the inside of the glass (the minute gaps 6 and 7) is sealed. The fixed electrode 11 formed inside the upper and lower glass substrates 1 and 3 is taken out from the conductive material 9 through the wiring formed on the side wall of the through hole 8. Note that a through hole 12 for adjusting the resonance frequency and the spring constant of the vibrating body is formed in a part of the beam 4 and the weight 5.

ここで、実施例1に係わる容量型力学量センサは、例えば、特開平10-227644号公報に記載のセンサと同様の原理により動作する。ここではその動作原理を以下で簡単に説明する。上側硝子基板1と下側硝子基板3の内面側に設けた励起用固定電極10に交流電圧を印加させ、グランド(接地)に保持した可動電極となる振動体(梁4と錘5)との間に働く静電力により振動体(梁4と錘5)を上下振動させる。このようにz軸方向に速度が与えられた振動体(梁4と錘5)に、y軸周りの角速度が加わると、x軸方向にそれらのベクトル積のコリオリ力が与えられ、図2に示すように、梁4が撓む。上側硝子基板1と下側硝子基板3の内面側には、検出用固定電極11を設けてあり、梁4の撓みによる錘5の傾きから、検出用固定電極11と可動電極となる錘5との間の容量に変化が生じ、この容量変化から角速度の大きさを検出する。   Here, the capacitive mechanical quantity sensor according to the first embodiment operates on the same principle as the sensor described in, for example, Japanese Patent Laid-Open No. 10-227644. Here, the operation principle will be briefly described below. An AC voltage is applied to the excitation fixed electrode 10 provided on the inner surface side of the upper glass substrate 1 and the lower glass substrate 3, and a vibrating body (beam 4 and weight 5) serving as a movable electrode held at the ground (ground). The vibrating body (beam 4 and weight 5) is vibrated up and down by an electrostatic force acting between them. When an angular velocity around the y-axis is applied to the vibrating body (beam 4 and weight 5) given velocity in the z-axis direction in this way, the Coriolis force of their vector product is given in the x-axis direction. As shown, the beam 4 bends. On the inner surface side of the upper glass substrate 1 and the lower glass substrate 3, a fixed electrode for detection 11 is provided. From the inclination of the weight 5 due to the bending of the beam 4, the fixed electrode 11 for detection and the weight 5 serving as a movable electrode, A change occurs in the capacity between the two, and the magnitude of the angular velocity is detected from this change in capacity.

図3に、本発明の実施例1に係わる容量型力学量センサの平面図の一例を示す。錘31は四方から梁32で支持されており、梁32の端部34、35、36、37は、図1における半導体基板2の外周部に固定される。錘31と梁32はともに、基本的に上下左右対称形をしている。このような振動体の機械特性を示すバネ定数kは、k=nEbt3/L2、共振周波数fは、f=1/2π・√k/mで示される(n梁本数、Eヤング率、t梁厚み、b梁厚、L梁長、m錘質量)。図3に示すセンサには、振動体の共振周波数及びバネ定数を調整する目的で、梁32に幾つかの貫通孔33が規則的に形成されている。貫通孔33の大きさ及び数を調節し、X,Y,Z軸における任意の共振周波数及びバネ定数を得ている。このような調整機構により、設計が容易となり、設計時間の短縮が期待できる。例えば、共振周波数及びバネ定数を下げたいときには、貫通孔33の数を増やしたりサイズを大きくし、また、共振周波数及びバネ定数を上げたいときには、貫通孔33の数を減らしたりサイズを小さくする。また、図4(a)に示すように、例えば、錘41のサイズに対し、梁42のサイズが小さく設計された場合においても、図4(b)のように、梁43に貫通孔44を挿入することにより、錘45のサイズと梁43のサイズをほぼ同程度に調整することが可能となる。通常の設計のおいては、目標とする機械特性を得る為に、梁の長さや幅を変えて対応しているが、センササイズが大きくなることもあり、コストアップに繋がる。本発明の実施例1に係わる容量型力学量センサによれば、容易な調整により、設計時間の短縮が期待できるとともに、センサ形成領域を有効に活用することが可能となる。 FIG. 3 shows an example of a plan view of the capacitive mechanical quantity sensor according to the first embodiment of the present invention. The weight 31 is supported by beams 32 from four directions, and the end portions 34, 35, 36, and 37 of the beams 32 are fixed to the outer peripheral portion of the semiconductor substrate 2 in FIG. Both the weight 31 and the beam 32 are basically vertically and horizontally symmetrical. The spring constant k indicating the mechanical characteristics of such a vibrating body is represented by k = nEbt 3 / L 2 , and the resonance frequency f is represented by f = 1 / 2π · √k / m (n beam number, E Young's modulus, (t beam thickness, b beam thickness, L beam length, m weight mass). In the sensor shown in FIG. 3, several through holes 33 are regularly formed in the beam 32 for the purpose of adjusting the resonance frequency and the spring constant of the vibrating body. By adjusting the size and number of the through holes 33, arbitrary resonance frequencies and spring constants in the X, Y, and Z axes are obtained. Such an adjustment mechanism facilitates the design and can be expected to shorten the design time. For example, when it is desired to decrease the resonance frequency and the spring constant, the number of through holes 33 is increased or the size is increased. When the resonance frequency and the spring constant are desired to be increased, the number of the through holes 33 is decreased or the size is decreased. Further, as shown in FIG. 4A, for example, even when the size of the beam 42 is designed to be smaller than the size of the weight 41, the through hole 44 is formed in the beam 43 as shown in FIG. By inserting, the size of the weight 45 and the size of the beam 43 can be adjusted to approximately the same level. In the normal design, in order to obtain the target mechanical characteristics, the length and width of the beam are changed. However, the sensor size may increase, leading to an increase in cost. According to the capacitive dynamic quantity sensor according to the first embodiment of the present invention, it is possible to expect a reduction in design time through easy adjustment, and it is possible to effectively utilize the sensor formation region.

Zの共振周波数とX、Yの共振周波数を同程度増大させたり、低下させたりする場合は、図3及び図4に示す対応により可能であるが、Zの共振周波数とX、Yの共振周波数の増大量や低下量に差がある場合は、図5に示す調整方法が有効である。X、Y方向の共振周波数が、目標仕様に対し低めに設計された場合には、図5(a)のように、錘51の端の方に貫通孔52を形成する方法が有効である。Zの共振周波数も若干増大するが、それ以上に、X,Yの共振周波数を増大させる効果が大きい。外側の質量を軽くすることにより、錘の重心にかかるX及びY方向へのモーメントを小さくでき、X、Y方向の共振周波数を効果的に増大させることが可能となる。同様に、Z方向の共振周波数が、目標仕様に対し低めに設計された場合においても、図5(a)での説明と同様な原理により、図5(b)のように、錘53の内の方に、貫通孔54を形成する方法により効率的にZの共振周波数を増大させることが可能となる。   When the resonance frequency of Z and the resonance frequency of X and Y are increased or decreased to the same extent, it is possible by the correspondence shown in FIGS. 3 and 4, but the resonance frequency of Z and the resonance frequency of X and Y If there is a difference between the increase amount and the decrease amount, the adjustment method shown in FIG. 5 is effective. When the resonance frequencies in the X and Y directions are designed to be lower than the target specification, it is effective to form a through hole 52 toward the end of the weight 51 as shown in FIG. Although the resonance frequency of Z is slightly increased, the effect of increasing the resonance frequencies of X and Y is greater than that. By reducing the outer mass, the moment in the X and Y directions applied to the center of gravity of the weight can be reduced, and the resonance frequencies in the X and Y directions can be effectively increased. Similarly, even in the case where the resonance frequency in the Z direction is designed to be lower than the target specification, as shown in FIG. On the other hand, the resonance frequency of Z can be efficiently increased by the method of forming the through hole 54.

このように、図3から図5に示した方法により、Z方向及びX、Y方向の共振周波数及びバネ定数を目標仕様内に、しかもセンササイズを拡大することなく対応可能である。
ここで、図3から図5において、貫通孔の形状が円柱で示してあるが、これに限らず、三角注等の多角柱や楕円柱であっても勿論構わない。また、この貫通孔の形成は、梁を形成する工程及び錘を形成する工程に用いるエッチングで同時に形成可能である為、コスト高には繋がらない。
As described above, the method shown in FIGS. 3 to 5 can deal with the resonance frequency and the spring constant in the Z direction, the X and Y directions within the target specification, and without increasing the sensor size.
Here, in FIG. 3 to FIG. 5, the shape of the through hole is shown as a cylinder. However, the shape of the through hole is not limited to this and may be a polygonal column such as a triangular note or an elliptical column. In addition, since the formation of the through hole can be simultaneously formed by etching used in the step of forming the beam and the step of forming the weight, the cost is not increased.

図6及び図7は、本発明の実施例1に係わる角速度センサの製造工程を説明した図である。まず、図6の601のように、フォトリソ技術によりシリコン基板61の両面にエッチング用マスク62を形成する。マスク材に酸化珪素や窒化珪素を用いるが、シリコンのエッチャントに対し耐性の有る膜であれば他の材料でも問題ない。酸化膜の場合、沸酸により容易にマスク材をエッチングでき、マスクのパターンを作製できる。また、基板には、酸化膜を埋め込んだSOI(Silicon On Insulator)基板を使用しても良い。この場合、中間酸化膜が梁加工や錘加工におけるエッチストップ層として機能するため、厚みに対し高精度な加工を実現する。   6 and 7 are diagrams illustrating the manufacturing process of the angular velocity sensor according to the first embodiment of the present invention. First, as shown at 601 in FIG. 6, etching masks 62 are formed on both surfaces of the silicon substrate 61 by photolithography. Although silicon oxide or silicon nitride is used for the mask material, other materials can be used as long as they are resistant to the etchant of silicon. In the case of an oxide film, the mask material can be easily etched with hydrofluoric acid, and a mask pattern can be produced. Further, an SOI (Silicon On Insulator) substrate in which an oxide film is embedded may be used as the substrate. In this case, since the intermediate oxide film functions as an etch stop layer in beam processing or weight processing, high-precision processing is realized with respect to thickness.

次に、図6の602のように、シリコン基板61を両面からエッチングし、微小隙間用の凹み63、64を形成する。ここで使用するエッチャントは、高精度な微小隙間を得られるよう、例えば、テトラメチルアンモニウムハイドロオキサイド水溶液や水酸化カリウム水溶液といった異方性のエッチャントを使用する。エッチングが終了したら、エッチングマスクを沸酸等により剥離する。また、このエッチング工程602では、反応性イオンエッチング等のドライエッチングにより凹み63、64を形成しても勿論構わない。その場合、エッチング用マスク62は、ドライエッチングに耐えうる材料、例えばレジストを使用できる。   Next, as shown at 602 in FIG. 6, the silicon substrate 61 is etched from both sides to form the recesses 63 and 64 for minute gaps. The etchant used here is, for example, an anisotropic etchant such as a tetramethylammonium hydroxide aqueous solution or a potassium hydroxide aqueous solution so as to obtain a highly accurate minute gap. When etching is completed, the etching mask is peeled off with boiling acid or the like. In this etching step 602, the dents 63 and 64 may of course be formed by dry etching such as reactive ion etching. In that case, the etching mask 62 can be made of a material that can withstand dry etching, such as a resist.

次に、図6の603のように、反応性イオンエッチングや誘導結合プラズマ(ICP)エッチングといったドライエッチによって、表面側から加工を施し、梁65の形状と貫通孔の一部66を同時に作製する。エッチングマスク材には、酸化珪素や窒化珪素用いても良いし、レジストでも構わない。ICPや電子サイクロトロンを利用した高密度プラズマプロセスを使用することにより、より垂直な加工が可能となると共に、エッチングレートが向上する為、梁の振動特性の向上と共に、作製コストの低減へと繋がる。   Next, as shown by reference numeral 603 in FIG. 6, the shape of the beam 65 and a part 66 of the through hole are simultaneously formed by processing from the surface side by dry etching such as reactive ion etching or inductively coupled plasma (ICP) etching. . For the etching mask material, silicon oxide or silicon nitride may be used, or a resist may be used. By using a high-density plasma process using ICP or electron cyclotron, vertical processing is possible, and the etching rate is improved, which improves the vibration characteristics of the beam and reduces the manufacturing cost.

次に、高密度プラズマプロセスにより裏面側からシリコン基板61をエッチングし、錘67の形状及び貫通孔68を同時に形成する。このとき、基板の一部は貫通され、振動体(梁65と錘67)が形成される。
また、SOI基板を使用した場合は、中間酸化膜が残るが、この後中間酸化膜をエッチングすることにより、振動体は形成される。
Next, the silicon substrate 61 is etched from the back side by a high-density plasma process, and the shape of the weight 67 and the through hole 68 are simultaneously formed. At this time, a part of the substrate is penetrated to form a vibrating body (beam 65 and weight 67).
In addition, when an SOI substrate is used, an intermediate oxide film remains, but the vibrator is formed by etching the intermediate oxide film thereafter.

次に、図7に、上部硝子基板と下部硝子基板の作製工程を説明した図を示す。上部硝子基板と下部硝子基板は構造が同様である為、同一図で説明する。   Next, FIG. 7 is a diagram illustrating a manufacturing process of the upper glass substrate and the lower glass substrate. Since the upper glass substrate and the lower glass substrate have the same structure, they will be described with reference to the same drawing.

まず、図7の701のように、貫通穴73を形成した硝子基板71と高不純物濃度シリコン基板72を用意する。硝子は、シリコンと熱膨張係数が同様な硝子を選択し、ブラスト加工等により貫通穴73を形成する。   First, as shown at 701 in FIG. 7, a glass substrate 71 having a through hole 73 and a high impurity concentration silicon substrate 72 are prepared. As the glass, glass having the same thermal expansion coefficient as that of silicon is selected, and the through hole 73 is formed by blasting or the like.

次に、図7の702のように、硝子基板71(穴径の小さい面側)と高不純物濃度シリコン基板72を接合した後、研磨により高不純物濃度シリコン基板72を薄く削る。   Next, as shown at 702 in FIG. 7, after the glass substrate 71 (the surface side with the smaller hole diameter) and the high impurity concentration silicon substrate 72 are joined, the high impurity concentration silicon substrate 72 is thinly cut by polishing.

次に、図7の703のように、高不純物濃度シリコン72をエッチングし、上側硝子基板と下側硝子基板の外側配線74を形成する。このエッチングは、乾式でも湿式でも構わない。   Next, as indicated by reference numeral 703 in FIG. 7, the high impurity concentration silicon 72 is etched to form the outer wiring 74 of the upper glass substrate and the lower glass substrate. This etching may be dry or wet.

次に、図7の704のように、貫通穴の穴径が大きい面側から金属膜を積層させ、パターン形成することにより、内側配線75を形成する。この後、熱処理を行い、外側配線74との電位コンタクトを確保する。   Next, as shown by 704 in FIG. 7, the inner wiring 75 is formed by laminating the metal film from the surface side where the hole diameter of the through hole is large and forming a pattern. Thereafter, heat treatment is performed to secure a potential contact with the outer wiring 74.

最後に、図には示さないが、図6及び図7のような工程により作製する上側硝子基板とシリコン基板と下側硝子基板を接合し、構造体を封止し、図1のようなセンサ構造を作製する。このときの接合は、硝子側に陰極電圧を与え、硝子−シリコン間の静電引力を利用する陽極接合や、接合面に金属を積層させ接合させる共晶接合等を使用する。
このような工程により作製する角速度センサにおいて、梁及び梁の一部に形成する貫通孔や、錘及び錘の一部に形成する貫通孔を同一プロセスで加工を行うことにより、加工工程数を低減でき、コスト低減の効果が得られる。
また、本実施例1の説明において角速度センサを例に取り上げたが、同様な梁及び錘を形成する加速度センサ及び力覚センサにおいても、本実施例1の適応が可能である。
Finally, although not shown in the drawing, the upper glass substrate, the silicon substrate, and the lower glass substrate manufactured by the processes as shown in FIGS. 6 and 7 are joined, the structure is sealed, and the sensor as shown in FIG. Create the structure. Bonding at this time uses anodic bonding in which a cathode voltage is applied to the glass side and electrostatic attraction between the glass and silicon is utilized, or eutectic bonding in which metals are laminated and bonded to the bonding surface.
In the angular velocity sensor manufactured by such a process, the number of processing steps is reduced by processing the through hole formed in the beam and a part of the beam and the through hole formed in the weight and a part of the weight in the same process. And cost reduction effect can be obtained.
In the description of the first embodiment, the angular velocity sensor is taken as an example. However, the first embodiment can be applied to an acceleration sensor and a force sensor that form similar beams and weights.

実施例1に係る容量型力学量センサの断面図である。1 is a cross-sectional view of a capacitive dynamic quantity sensor according to Embodiment 1. FIG. 実施例1に係る容量型力学量センサの断面図である。1 is a cross-sectional view of a capacitive dynamic quantity sensor according to Embodiment 1. FIG. 実施例1に係わる容量型力学量センサの平面図の一例である。1 is an example of a plan view of a capacitive dynamic quantity sensor according to Embodiment 1. FIG. 実施例1に係わる容量型力学量センサの平面図の一例である。1 is an example of a plan view of a capacitive dynamic quantity sensor according to Embodiment 1. FIG. 実施例1に係わる容量型力学量センサの平面図の一例である。1 is an example of a plan view of a capacitive dynamic quantity sensor according to Embodiment 1. FIG. 実施例1に係わる容量型力学量センサの製造工程を説明した断面図である。5 is a cross-sectional view illustrating a manufacturing process of the capacitive dynamic quantity sensor according to Embodiment 1. FIG. 実施例1に係わる容量型力学量センサの製造工程を説明した断面図である。5 is a cross-sectional view illustrating a manufacturing process of the capacitive dynamic quantity sensor according to Embodiment 1. FIG. 従来の容量型力学量センサを説明した断面図である。It is sectional drawing explaining the conventional capacitive mechanical quantity sensor.

符号の説明Explanation of symbols

1 上部硝子基板
2 シリコン基板
3 下部硝子基板
4 梁
5 錘
6、7 微小隙間
8 貫通穴
9 導電性材料
10 励起用固定電極
11 検出用固定電極
12 貫通孔
31、41、45、51、53 錘
32、42、43 梁
33、44、52、54 貫通孔
34、35、36、37 梁の端部
61 シリコン基板
62 エッチング用マスク
63、64 凹み
65 梁
66 貫通孔の一部
67 錘
68 貫通孔
71 硝子基板
72 高不純物濃度シリコン基板
73 貫通穴
74 外側配線
75 内側配線
81 錘
82 梁
83 半導体基板
84 上側基板
85 下側基板
86 固定電極
DESCRIPTION OF SYMBOLS 1 Upper glass substrate 2 Silicon substrate 3 Lower glass substrate 4 Beam 5 Weight 6, 7 Minute clearance 8 Through hole 9 Conductive material 10 Excitation fixed electrode 11 Detection fixed electrode 12 Through hole 31, 41, 45, 51, 53 Weight 32, 42, 43 Beams 33, 44, 52, 54 Through holes 34, 35, 36, 37 Ends 61 of the beam 61 Silicon substrate 62 Etching masks 63, 64 Recess 65 Beam 66 Part of the through hole 67 Weight 68 Through hole 71 Glass substrate 72 High impurity concentration silicon substrate 73 Through hole 74 Outer wiring 75 Inner wiring 81 Weight 82 Beam 83 Semiconductor substrate 84 Upper substrate 85 Lower substrate 86 Fixed electrode

Claims (5)

梁により支持され、外部より印加される加速度又は角速度からなる力学量により変位する錘を有する半導体基板と、
前記半導体基板の表面の一部と接合し、前記錘の対向する位置に微小隙間1を隔てて配置した固定電極1を積層させた上部硝子基板と、
前記半導体基板の裏面の一部と接合し、前記錘の対向する位置に微小隙間2を隔てて配置した固定電極2を積層させた下部硝子基板とから成り、
前記錘の変位により、前記錘からなる可動電極と前記固定電極1間の容量変化、及び前記錘からなる可動電極と前記固定電極2間の容量変化から前記力学量を測定する容量型力学量センサにおいて、
前記梁及び前記錘の一部に貫通孔が形成されていることを特徴とする容量型力学量センサ。
A semiconductor substrate having a weight which is supported by a beam and which is displaced by a mechanical quantity composed of acceleration or angular velocity applied from the outside;
An upper glass substrate that is bonded to a part of the surface of the semiconductor substrate and in which a fixed electrode 1 is disposed at a position opposed to the weight with a minute gap 1 therebetween;
A lower glass substrate formed by laminating a fixed electrode 2 bonded to a part of the back surface of the semiconductor substrate and arranged with a minute gap 2 at a position opposed to the weight;
A capacitive mechanical quantity sensor that measures the mechanical quantity from a change in capacitance between the movable electrode made of the weight and the fixed electrode 1 and a change in capacitance between the movable electrode made of the weight and the fixed electrode 2 due to the displacement of the weight. In
A capacitive mechanical quantity sensor, wherein a through-hole is formed in a part of the beam and the weight.
前記貫通孔が複数形成されていることを特徴とする請求項1に記載の容量型力学量センサ。   The capacitive mechanical quantity sensor according to claim 1, wherein a plurality of the through holes are formed. 半導体基板の両面に凹みを形成する工程と、
前記半導体基板の表面の前記凹み内を加工し、梁及び前記梁の一部に貫通孔を形成する工程と、
前記半導体基板の裏面の前記凹み内を加工し、前記梁に支持された錘及び前記錘の一部に貫通孔を形成する工程と、
平坦な上部硝子基板の表面に、固定電極1を積層形成する工程と、
平坦な下部硝子基板の表面に、固定電極2を積層形成する工程と
前記錘の対向する位置に前記固定電極1が配置されるよう、前記上部硝子基板を前記半導体基板の表面に接合し、且つ、前記錘の対向する位置に前記固定電極2が配置されるよう、前記下部硝子基板を前記半導体基板の裏面に接合する工程と、
を含むことを特徴とする容量型力学量センサの製造方法。
Forming recesses on both sides of the semiconductor substrate;
Processing the inside of the recess of the surface of the semiconductor substrate, forming a through hole in a beam and a part of the beam;
Processing the inside of the recess on the back surface of the semiconductor substrate, forming a weight supported by the beam and a through hole in a part of the weight;
A step of laminating and forming the fixed electrode 1 on the surface of the flat upper glass substrate;
Bonding the upper glass substrate to the surface of the semiconductor substrate such that the fixed electrode 2 is laminated on the surface of the flat lower glass substrate, and the fixed electrode 1 is disposed at a position opposite to the weight; Bonding the lower glass substrate to the back surface of the semiconductor substrate so that the fixed electrode 2 is disposed at a position opposite to the weight;
A method for manufacturing a capacitive dynamic quantity sensor, comprising:
梁により支持され、外部より印加される加速度や角速度といった力学量により変位する錘を有する半導体基板と、
前記半導体基板の表面の一部と接合し、前記錘の対向する位置に微小隙間1を隔てて配置した固定電極1を積層させた上部硝子基板と、
前記半導体基板の裏面の一部と接合し、前記錘の対向する位置に微小隙間2を隔てて配置した固定電極2を積層させた下部硝子基板とから成り、
前記錘の変位により、前記錘からなる可動電極と前記固定電極1間の容量変化、及び前記錘からなる可動電極と前記固定電極2間の容量変化から前記力学量を測定する容量型力学量センサにおいて、
前記梁の一部に貫通孔が形成されていることを特徴とする容量型力学量センサを製造するにあたり、
前記梁と前記梁の一部に形成した貫通孔は、同一のエッチング工程により形成されることを特徴とする容量型力学量センサの製造方法。
A semiconductor substrate having a weight supported by a beam and displaced by a mechanical quantity such as acceleration or angular velocity applied from the outside;
An upper glass substrate that is bonded to a part of the surface of the semiconductor substrate and in which a fixed electrode 1 is disposed at a position opposed to the weight with a minute gap 1 therebetween;
A lower glass substrate formed by laminating a fixed electrode 2 bonded to a part of the back surface of the semiconductor substrate and arranged with a minute gap 2 at a position opposed to the weight;
A capacitive mechanical quantity sensor that measures the mechanical quantity from a change in capacitance between the movable electrode made of the weight and the fixed electrode 1 and a change in capacitance between the movable electrode made of the weight and the fixed electrode 2 due to the displacement of the weight. In
In manufacturing a capacitive mechanical quantity sensor, wherein a through hole is formed in a part of the beam,
The method of manufacturing a capacitive dynamic quantity sensor, wherein the beam and a through hole formed in a part of the beam are formed by the same etching process.
梁により支持され、外部より印加される加速度又は角速度からなる力学量により変位する錘を有する半導体基板と、
前記半導体基板の表面の一部と接合し、前記錘の対向する位置に微小隙間1を隔てて配置した固定電極1を積層させた上部硝子基板と、
前記半導体基板の裏面の一部と接合し、前記錘の対向する位置に微小隙間2を隔てて配置した固定電極2を積層させた下部硝子基板とから成り、
前記錘の変位により、前記錘からなる可動電極と前記固定電極1間の容量変化、及び前記錘からなる可動電極と前記固定電極2間の容量変化から前記力学量を測定する容量型力学量センサにおいて、
前記錘の一部に貫通孔が形成されていることを特徴とする容量型力学量センサを製造するにあたり、
前記錘と前記錘の一部に形成した貫通孔は、同一のエッチング工程により形成されることを特徴とする容量型力学量センサの製造方法。
A semiconductor substrate having a weight which is supported by a beam and which is displaced by a mechanical quantity composed of acceleration or angular velocity applied from the outside;
An upper glass substrate that is bonded to a part of the surface of the semiconductor substrate and in which a fixed electrode 1 is disposed at a position opposed to the weight with a minute gap 1 therebetween;
A lower glass substrate formed by laminating a fixed electrode 2 bonded to a part of the back surface of the semiconductor substrate and arranged with a minute gap 2 at a position opposed to the weight;
A capacitive mechanical quantity sensor that measures the mechanical quantity from a change in capacitance between the movable electrode made of the weight and the fixed electrode 1 and a change in capacitance between the movable electrode made of the weight and the fixed electrode 2 due to the displacement of the weight. In
In manufacturing a capacitive dynamic quantity sensor, wherein a through hole is formed in a part of the weight,
The method of manufacturing a capacitive dynamic quantity sensor, wherein the weight and a through hole formed in a part of the weight are formed by the same etching process.
JP2004164845A 2004-06-02 2004-06-02 Capacitance type dynamic quantity sensor and its manufacturing method Withdrawn JP2005345245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164845A JP2005345245A (en) 2004-06-02 2004-06-02 Capacitance type dynamic quantity sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164845A JP2005345245A (en) 2004-06-02 2004-06-02 Capacitance type dynamic quantity sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005345245A true JP2005345245A (en) 2005-12-15

Family

ID=35497775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164845A Withdrawn JP2005345245A (en) 2004-06-02 2004-06-02 Capacitance type dynamic quantity sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005345245A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192587A (en) * 2006-01-17 2007-08-02 Seiko Instruments Inc Wiring board for dynamic quantity sensor, manufacturing method of the wiring board for dynamic quantity sensor, and dynamic quantity sensor
JP2007298276A (en) * 2006-04-27 2007-11-15 Nissan Motor Co Ltd Semiconductor device and its manufacturing method
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
WO2014119609A1 (en) * 2013-02-04 2014-08-07 富士フイルム株式会社 Angular velocity sensor and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192587A (en) * 2006-01-17 2007-08-02 Seiko Instruments Inc Wiring board for dynamic quantity sensor, manufacturing method of the wiring board for dynamic quantity sensor, and dynamic quantity sensor
JP2007298276A (en) * 2006-04-27 2007-11-15 Nissan Motor Co Ltd Semiconductor device and its manufacturing method
JP2013250133A (en) * 2012-05-31 2013-12-12 Seiko Epson Corp Electronic device, method of manufacturing electronic device, and electronic apparatus
US9520812B2 (en) 2012-05-31 2016-12-13 Seiko Epson Corporation Electronic device, electronic apparatus, and method of manufacturing electronic device
WO2014119609A1 (en) * 2013-02-04 2014-08-07 富士フイルム株式会社 Angular velocity sensor and manufacturing method therefor
JP2014149278A (en) * 2013-02-04 2014-08-21 Fujifilm Corp Angular velocity sensor and manufacturing method therefor
CN104995484A (en) * 2013-02-04 2015-10-21 富士胶片株式会社 Angular velocity sensor and manufacturing method therefor
US9702698B2 (en) 2013-02-04 2017-07-11 Fujifilm Corporation Angular velocity sensor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US9389077B2 (en) Acceleration and angular velocity resonant detection integrated structure, and related MEMS sensor device
EP1762823A2 (en) Combined sensor and its fabrication method
JP2007210083A (en) Mems element and its manufacturing method
JPH11505021A (en) Vibratory gyroscope with gimbal-supported strain relief
US9476903B2 (en) Accelerometer and its fabrication technique
JP6893179B2 (en) MEMS inertial measuring device with tilted electrodes for orthogonal tuning
JP2009002834A (en) Angular rate detecting device
JP2010096538A (en) Angular velocity sensor
US10771042B2 (en) Micro-electro-mechanical device with reduced temperature sensitivity and manufacturing method thereof
JP4815857B2 (en) Manufacturing method of mechanical quantity detection sensor
JP4591000B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof
KR100928761B1 (en) Capacitance dynamic mass sensor and manufacturing method thereof
JP2009033698A (en) Diaphragm structure and acoustic sensor
Kou et al. Design and fabrication of a novel MEMS vibrating ring gyroscope
JP2005345245A (en) Capacitance type dynamic quantity sensor and its manufacturing method
JP2005233926A (en) Capacity type dynamic quantity sensor
JP2011196966A (en) Inertia sensor
JP4628018B2 (en) Capacitive mechanical quantity sensor and manufacturing method thereof
JP2006317242A (en) Dynamic quantity detecting sensor and method for manufacturing it
JP2006153481A (en) Dynamic quantity sensor
JP2010145315A (en) Vibration gyroscope
US6938487B2 (en) Inertia sensor
JP4438518B2 (en) Manufacturing method of capacitive mechanical quantity sensor
JP5635370B2 (en) Nanosheet transducer
JP4520752B2 (en) Manufacturing method of capacitive mechanical quantity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090727