JP2005345028A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005345028A
JP2005345028A JP2004166714A JP2004166714A JP2005345028A JP 2005345028 A JP2005345028 A JP 2005345028A JP 2004166714 A JP2004166714 A JP 2004166714A JP 2004166714 A JP2004166714 A JP 2004166714A JP 2005345028 A JP2005345028 A JP 2005345028A
Authority
JP
Japan
Prior art keywords
indoor unit
inverter
pump
flow rate
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004166714A
Other languages
Japanese (ja)
Inventor
Hideki Hara
日出樹 原
Keiji Tomioka
計次 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004166714A priority Critical patent/JP2005345028A/en
Publication of JP2005345028A publication Critical patent/JP2005345028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable useless pump power to be reduced by controlling flow amount of a pump device for pumping cold/warm water according to a load situation inside a room. <P>SOLUTION: In this air conditioner, a heat source machine X having a compressor 1 and a heat-source-side heat exchanger 2, and an indoor unit Y are interconnected via a water pipe 4 having an interposed pump device 3, and a flow regulating valve 5 for controlling the flow amount of cold/warm water W to the indoor unit Y is provided. An inverter pump capable of controlling the rotation speed is employed as the pump device 3, a control means 7 for controlling the rotation speed of the inverter pump 3 according to an operation situation of the indoor unit Y is attached, and the pumping flow rate of the pump device 3 for pumping the cold/warm water W to the indoor unit Y is controlled according to the operation situation of the indoor unit Y. Thus, conventional useless pump power can be reduced to save energy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、チラー等を熱源とする間膨方式の空気調和装置に関するものである。   The present invention relates to an air-conditioning apparatus using a chiller or the like that uses a chiller or the like as a heat source.

例えば、チラー等を熱源とする間膨方式の空気調和装置は、図1に示すように、圧縮機1および熱源側熱交換器2を備えた熱源機Xと2台の室内機Y,Yとをポンプ装置3を介設した水配管4を介して接続してなり、前記各室内機Yへの冷温水Wの流量を制御する流量調整弁5をそれぞれ付設して構成されている。ここで、符号6はバイパス回路である。   For example, as shown in FIG. 1, an air-conditioning apparatus using a chiller or the like as a heat source includes a heat source device X including a compressor 1 and a heat source side heat exchanger 2 and two indoor units Y and Y. Are connected to each other via a water pipe 4 provided with a pump device 3, and each is provided with a flow rate adjusting valve 5 for controlling the flow rate of the cold / hot water W to each indoor unit Y. Here, reference numeral 6 denotes a bypass circuit.

上記のような構成の空気調和装置の場合、二次側の冷温水Wを室内機Y,Yに供給するためのポンプ装置3は一定速で運転されており、室内機Y,Y側での能力調整は、流量調整弁5,5およびバイパス回路6,6により室内機Y,Yを流れる冷温水量を調整することにより行われていた。つまり、室内機Y,Y側の負荷に関係なくポンプ装置3が一定速で運転されることとなっており、間膨方式の効率悪化の一因となっていた。   In the case of the air conditioner configured as described above, the pump device 3 for supplying the secondary side cold / warm water W to the indoor units Y and Y is operated at a constant speed, The capacity adjustment is performed by adjusting the amount of cold / hot water flowing through the indoor units Y and Y by the flow rate adjusting valves 5 and 5 and the bypass circuits 6 and 6. That is, the pump device 3 is operated at a constant speed regardless of the loads on the indoor units Y and Y, which is a cause of deterioration in efficiency of the expansion system.

本願発明は、上記の点に鑑みてなされたもので、冷温水を圧送するポンプ装置の流量を室内側の負荷状況に応じて制御することにより、無駄なポンプ動力を減らし得るようにすることを目的とするものである。   The present invention has been made in view of the above points, and it is possible to reduce useless pump power by controlling the flow rate of a pump device that pumps cold / hot water according to the load condition on the indoor side. It is the purpose.

本願発明では、上記課題を解決するための第1の手段として、圧縮機1および熱源側熱交換器2を備えた熱源機Xと室内機Yとをポンプ装置3を介設した水配管4を介して接続してなり、前記室内機Yへの冷温水Wの流量を制御する流量調整弁5を付設してなる空気調和装置において、前記ポンプ装置3として回転数制御可能なインバータポンプを採用するとともに、このインバータポンプ3の回転数を、前記室内機Yの運転状況に応じて制御する制御手段7を付設している。   In the present invention, as a first means for solving the above-described problem, a water pipe 4 having a heat source unit X and an indoor unit Y provided with a compressor 1 and a heat source side heat exchanger 2 provided with a pump device 3 is provided. In the air conditioner which is connected to the air conditioner and is provided with a flow rate adjusting valve 5 for controlling the flow rate of the cold / hot water W to the indoor unit Y, an inverter pump capable of controlling the rotation speed is employed as the pump device 3. At the same time, a control means 7 for controlling the rotation speed of the inverter pump 3 in accordance with the operation status of the indoor unit Y is additionally provided.

上記のように構成したことにより、室内機Yへ冷温水Wを圧送するポンプ装置3の圧送流量が、室内機Yの運転状況に応じて制御されることとなる。従って、従来生じていた無駄なポンプ動力を低減できることとなり、省エネを達成することができる。   With the above configuration, the pumping flow rate of the pump device 3 that pumps the cold / warm water W to the indoor unit Y is controlled according to the operation status of the indoor unit Y. Therefore, it is possible to reduce the useless pump power that has conventionally occurred, and energy saving can be achieved.

本願発明では、さらに、上記課題を解決するための第2の手段として、上記第1の手段を備えた空気調和装置において、前記制御手段7を、前記流量調整弁5の開度の関数として前記インバータポンプ3の回転数を制御するものとすることもでき、そのように構成した場合、室内機Yの運転状況を反映している流量調整弁5の開度に基づいてインバータポンプ3の回転数制御を行うことができるところから、制御手段7の構成が簡略化できる。   In the present invention, as a second means for solving the above-described problem, in the air conditioner including the first means, the control means 7 is set as the function of the opening degree of the flow rate adjusting valve 5. The number of revolutions of the inverter pump 3 can be controlled. In such a case, the number of revolutions of the inverter pump 3 is determined based on the opening degree of the flow rate adjusting valve 5 reflecting the operation status of the indoor unit Y. Since the control can be performed, the configuration of the control means 7 can be simplified.

本願発明では、さらに、上記課題を解決するための第3の手段として、上記第1又は第2の手段を備えた空気調和装置において、前記圧縮機1として、能力制御可能なインバータ圧縮機を用いるとともに、このインバータ圧縮機1を、二次側の負荷変動に応じて負荷下限値でインバータ制御するようにすることもでき、そのように構成した場合、従来の直膨方式と比べて遜色ない省エネ間膨方式を実現させることができる。   In the present invention, as a third means for solving the above problems, an inverter compressor capable of capacity control is used as the compressor 1 in the air conditioner provided with the first or second means. At the same time, the inverter compressor 1 can be inverter controlled with a load lower limit value in accordance with the load fluctuation on the secondary side. In such a configuration, energy saving is comparable to that of the conventional direct expansion method. An interstitial method can be realized.

本願発明の第1の手段によれば、圧縮機1および熱源側熱交換器2を備えた熱源機Xと室内機Yとをポンプ装置3を介設した水配管4を介して接続してなり、前記室内機Yへの冷温水Wの流量を制御する流量調整弁5を付設してなる空気調和装置において、前記ポンプ装置3として回転数制御可能なインバータポンプを採用するとともに、このインバータポンプ3の回転数を、前記室内機Yの運転状況に応じて制御する制御手段7を付設して、室内機Yへ冷温水Wを圧送するポンプ装置3の圧送流量を、室内機Yの運転状況に応じて制御するようにしたので、従来生じていた無駄なポンプ動力を低減できることとなり、省エネを達成することができるという効果がある。   According to the first means of the present invention, the heat source device X provided with the compressor 1 and the heat source side heat exchanger 2 and the indoor unit Y are connected via the water pipe 4 provided with the pump device 3. In the air conditioner provided with the flow rate adjusting valve 5 for controlling the flow rate of the cold / hot water W to the indoor unit Y, an inverter pump capable of controlling the rotation speed is adopted as the pump device 3, and the inverter pump 3 The control means 7 for controlling the rotational speed of the indoor unit Y according to the operating status of the indoor unit Y is attached, and the pumping flow rate of the pump device 3 that pumps the cold / hot water W to the indoor unit Y is changed to the operating status of the indoor unit Y. Since the control is performed in accordance with this, it is possible to reduce the useless pump power that has been generated conventionally, and there is an effect that energy saving can be achieved.

本願発明の第2の手段におけるように、上記第1の手段を備えた空気調和装置において、前記制御手段7を、前記流量調整弁5の開度の関数として前記インバータポンプ3の回転数を制御するものとすることもでき、そのように構成した場合、室内機Yの運転状況を反映している流量調整弁5の開度に基づいてインバータポンプ3の回転数制御を行うことができるところから、制御手段7の構成が簡略化できる。   As in the second means of the present invention, in the air conditioner provided with the first means, the control means 7 controls the rotational speed of the inverter pump 3 as a function of the opening degree of the flow regulating valve 5. In such a configuration, the rotational speed control of the inverter pump 3 can be performed based on the opening degree of the flow rate adjusting valve 5 reflecting the operation status of the indoor unit Y. The configuration of the control means 7 can be simplified.

本願発明の第3の手段におけるように、上記第1又は第2の手段を備えた空気調和装置において、前記圧縮機1として、能力制御可能なインバータ圧縮機を用いるとともに、このインバータ圧縮機1を、二次側の負荷変動に応じて負荷下限値でインバータ制御するようにすることもでき、そのように構成した場合、従来の直膨方式と比べて遜色ない省エネ間膨方式を実現させることができる。   As in the third means of the present invention, in the air conditioner provided with the first or second means, an inverter compressor capable of capacity control is used as the compressor 1, and the inverter compressor 1 is It is also possible to control the inverter with the load lower limit value according to the load fluctuation on the secondary side, and in such a case, it is possible to realize an energy saving expansion method that is comparable to the conventional direct expansion method. it can.

以下、添付の図面を参照して、本願発明の好適な実施の形態について詳述する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

この空気調和装置は、背景技術の項において説明したものと同様な構成とされている。即ち、この空気調和装置は、図1に示すように、能力制御可能なインバータ圧縮機1および熱源側熱交換器2を備えた熱源機Xと2台の室内機Y,Yとをポンプ装置3を介設した水配管4を介して接続してなり、前記室内機Y,Yへの冷温水Wの流量をそれぞれ制御する流量調整弁5,5が付設されている。本実施の形態においては、前記熱源機Xとしては、HCチラーが採用されており、前記ポンプ装置3としては、回転数制御可能なインバータポンプが採用されている。符号6はバイパス回路である。   This air conditioner has the same configuration as that described in the background art section. That is, as shown in FIG. 1, this air conditioner includes a heat source device X including a capacity controllable inverter compressor 1 and a heat source side heat exchanger 2 and two indoor units Y and Y as a pump device 3. Flow rate adjusting valves 5 and 5 for controlling the flow rate of the cold / hot water W to the indoor units Y and Y are respectively attached. In the present embodiment, an HC chiller is employed as the heat source device X, and an inverter pump capable of controlling the rotational speed is employed as the pump device 3. Reference numeral 6 denotes a bypass circuit.

この空気調和装置には、前記インバータ圧縮機1の能力制御、インバータポンプ3の回転数制御および流量調整弁5,5の開度制御を行う制御手段7が付設されている。   The air conditioner is provided with control means 7 for controlling the capacity of the inverter compressor 1, controlling the rotational speed of the inverter pump 3, and controlling the opening of the flow rate adjusting valves 5 and 5.

ついで、制御手段7による制御について図2および図3に示すフローチャートを参照して説明する。
(1) 流量制御の場合(図2のフローチャート参照)
まず、各室内機Yにおける流量調整弁5の開度ΔAと該開度ΔAに応じた室内機Yに必要な流量ΔGとの関係を求めておく(図4参照)。
Next, the control by the control means 7 will be described with reference to the flowcharts shown in FIGS.
(1) In the case of flow control (refer to the flowchart in FIG. 2)
First, the relationship between the opening degree ΔA of the flow rate adjusting valve 5 in each indoor unit Y and the flow rate ΔG required for the indoor unit Y according to the opening degree ΔA is obtained (see FIG. 4).

ステップS1において室内機Yの負荷が変動すると、ステップS2において各室内機Yで流量調整弁5の開度に応じたΔGniの流量変化を求め、ステップS3において各室内機Yで流量調整弁5の開度に応じた流量変化合計ΣΔGniに対応してインバータポンプ3の回転数制御を行う。なお、流量計が付設されている場合、流量変化合計に代えて流量計で計測された流量を用いることもできる。   When the load of the indoor unit Y fluctuates in step S1, the flow rate change of ΔGni according to the opening degree of the flow rate adjustment valve 5 is obtained in each indoor unit Y in step S2, and the flow rate adjustment valve 5 of each indoor unit Y is obtained in step S3. The rotational speed control of the inverter pump 3 is performed corresponding to the total flow change ΣΔGni according to the opening. When a flow meter is attached, the flow rate measured by the flow meter can be used instead of the total flow rate change.

ついで、ステップS4において二次側の負荷変動(換言すれば、流量変動)に応じて負荷下限値でインバータ圧縮機1のインバータ制御を行う。例えば、冷房時には、熱源側熱交換器2の入口温度=12℃、出口温度=7℃とし、暖房時には、熱源側熱交換器2の入口温度=40℃、出口温度=45℃となるようにインバータ制御される。
(2) 圧力制御の場合(図3のフローチャート参照)
この場合、各室内機Yにおける流量調整弁5の開度ΔAと該開度ΔAに応じた室内機Yに必要な流量ΔGとの関係を求める(図4参照)とともに、室内機Yに必要な流量ΔGと該流量ΔGに対応する圧力ΔPとの関係を求める(図5参照)。
Next, in step S4, inverter control of the inverter compressor 1 is performed with the load lower limit value in accordance with the load fluctuation on the secondary side (in other words, the flow rate fluctuation). For example, at the time of cooling, the inlet temperature of the heat source side heat exchanger 2 is 12 ° C. and the outlet temperature is 7 ° C., and at the time of heating, the inlet temperature of the heat source side heat exchanger 2 is 40 ° C. and the outlet temperature is 45 ° C. Inverter controlled.
(2) In the case of pressure control (refer to the flowchart in FIG. 3)
In this case, the relationship between the opening degree ΔA of the flow rate adjusting valve 5 in each indoor unit Y and the flow rate ΔG required for the indoor unit Y according to the opening degree ΔA is obtained (see FIG. 4), and is necessary for the indoor unit Y. The relationship between the flow rate ΔG and the pressure ΔP corresponding to the flow rate ΔG is obtained (see FIG. 5).

ステップS1において室内機Yの負荷が変動すると、ステップS2において各室内機Yで流量調整弁5の開度に応じたΔPniの圧力変化を求め、ステップS3において各室内機Yで流量調整弁5の開度に応じた圧力変化合計ΣΔPniに対応してインバータポンプ3の回転数制御を行う。なお、圧力計が付設されている場合、圧力変化合計に代えて圧力計で計測された圧力を用いることもできる。   When the load of the indoor unit Y fluctuates in step S1, the pressure change of ΔPni corresponding to the opening degree of the flow rate adjustment valve 5 is obtained in each indoor unit Y in step S2, and the flow rate adjustment valve 5 of each indoor unit Y is obtained in step S3. The rotational speed control of the inverter pump 3 is performed corresponding to the total pressure change ΣΔPni according to the opening. In addition, when the pressure gauge is attached, it can replace with the pressure change total and the pressure measured with the pressure gauge can also be used.

ついで、ステップS4において二次側の負荷変動(換言すれば、流量変動)に応じて負荷下限値でインバータ圧縮機1のインバータ制御を行う。例えば、冷房時には、熱源側熱交換器2の入口温度=12℃、出口温度=7℃とし、暖房時には、熱源側熱交換器2の入口温度=40℃、出口温度=45℃となるようにインバータ制御される。   Next, in step S4, inverter control of the inverter compressor 1 is performed with the load lower limit value in accordance with the load fluctuation on the secondary side (in other words, the flow rate fluctuation). For example, at the time of cooling, the inlet temperature of the heat source side heat exchanger 2 is 12 ° C. and the outlet temperature is 7 ° C., and at the time of heating, the inlet temperature of the heat source side heat exchanger 2 is 40 ° C. and the outlet temperature is 45 ° C. Inverter controlled.

上記したように、本実施の形態においては、室内機Yの運転状況に応じてインバータポンプ3の流量を制御するようにしているので、従来生じていた無駄なポンプ動力を低減できることとなり、省エネを達成することができるし、室内機Yの運転状況を反映している流量調整弁5の開度に基づいてインバータポンプ3の回転数制御を行うようにしているところから、制御手段7の構成が簡略化できる。しかも、インバータ圧縮機1を、二次側の負荷変動に応じて負荷下限値でインバータ制御するようにしているので、従来の直膨方式と比べて遜色ない省エネ間膨方式を実現させることができる。   As described above, in the present embodiment, since the flow rate of the inverter pump 3 is controlled according to the operation status of the indoor unit Y, the wasteful pump power that has conventionally been generated can be reduced, thereby saving energy. Since the rotational speed control of the inverter pump 3 is performed based on the opening degree of the flow rate adjusting valve 5 that reflects the operating status of the indoor unit Y, the configuration of the control means 7 can be achieved. It can be simplified. In addition, since the inverter compressor 1 is controlled by the inverter with the load lower limit value according to the load fluctuation on the secondary side, an energy saving expansion system comparable to the conventional direct expansion system can be realized. .

上記説明では、室内機への流量制御用として流量調整弁を用いているが、流量調整弁に代えて小型のインバータポンプを採用する場合もある。   In the above description, the flow rate adjusting valve is used for controlling the flow rate to the indoor unit. However, a small inverter pump may be employed instead of the flow rate adjusting valve.

本願発明の実施の形態にかかる空気調和装置の回路図である。It is a circuit diagram of an air harmony device concerning an embodiment of the invention of this application. 本願発明の実施の形態にかかる空気調和装置における制御手段による流量制御の内容を示すフローチャートである。It is a flowchart which shows the content of the flow control by the control means in the air conditioning apparatus concerning embodiment of this invention. 本願発明の実施の形態にかかる空気調和装置における制御手段による圧力制御の内容を示すフローチャートである。It is a flowchart which shows the content of the pressure control by the control means in the air conditioning apparatus concerning embodiment of this invention. 本願発明の実施の形態にかかる空気調和装置における流量調整弁開度と室内機に必要な流量との関係を示す特性図である。It is a characteristic view which shows the relationship between the flow volume adjustment valve opening degree in the air conditioning apparatus concerning embodiment of this invention, and the flow volume required for an indoor unit. 本願発明の実施の形態にかかる空気調和装置における室内機に必要な流量と圧力との関係を示す特性図である。It is a characteristic view which shows the relationship between the flow volume required for the indoor unit in the air conditioning apparatus concerning embodiment of this invention, and a pressure.

符号の説明Explanation of symbols

1は圧縮機(インバータ圧縮機)
2は熱源側熱交換器
3はポンプ装置
4は水配管
5は流量調整弁
7は制御手段
Xは熱源機
Yは室内機
Wは冷温水
1 is a compressor (inverter compressor)
2 is a heat source side heat exchanger 3 is a pump device 4 is a water pipe 5 is a flow control valve 7 is a control means X is a heat source unit Y is an indoor unit W is cold / hot water

Claims (3)

圧縮機(1)および熱源側熱交換器(2)を備えた熱源機(X)と室内機(Y)とをポンプ装置(3)を介設した水配管(3)を介して接続してなり、前記室内機(Y)への冷温水(W)の流量を制御する流量調整弁(5)を付設してなる空気調和装置であって、前記ポンプ装置(3)として回転数制御可能なインバータポンプを採用するとともに、このインバータポンプ(3)の回転数を、前記室内機(Y)の運転状況に応じて制御する制御手段(7)を付設したことを特徴とする空気調和装置。 A heat source machine (X) provided with a compressor (1) and a heat source side heat exchanger (2) and an indoor unit (Y) are connected via a water pipe (3) provided with a pump device (3). The air conditioner is provided with a flow rate adjustment valve (5) for controlling the flow rate of the cold / hot water (W) to the indoor unit (Y), and the rotation speed can be controlled as the pump device (3). An air conditioner characterized in that an inverter pump is employed and a control means (7) for controlling the rotational speed of the inverter pump (3) in accordance with the operation status of the indoor unit (Y). 前記制御手段(7)を、前記流量調整弁(5)の開度の関数として前記インバータポンプ(3)の回転数を制御するものとしたことを特徴とする請求項1記載の空気調和装置。 The air conditioner according to claim 1, wherein the control means (7) controls the rotational speed of the inverter pump (3) as a function of the opening degree of the flow rate adjusting valve (5). 前記圧縮機(1)として、能力制御可能なインバータ圧縮機を用いるとともに、このインバータ圧縮機(1)を、二次側の負荷変動に応じて負荷下限値でインバータ制御するようにしたことを特徴とする請求項1および2のいずれか一項記載の空気調和装置。
As the compressor (1), an inverter compressor capable of capacity control is used, and the inverter compressor (1) is inverter-controlled with a load lower limit value according to a load fluctuation on the secondary side. The air conditioning apparatus according to any one of claims 1 and 2.
JP2004166714A 2004-06-04 2004-06-04 Air conditioner Pending JP2005345028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166714A JP2005345028A (en) 2004-06-04 2004-06-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166714A JP2005345028A (en) 2004-06-04 2004-06-04 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005345028A true JP2005345028A (en) 2005-12-15

Family

ID=35497580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166714A Pending JP2005345028A (en) 2004-06-04 2004-06-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005345028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063231A (en) * 2007-09-06 2009-03-26 Yamatake Corp Heat source control device and heat source control method
US8019480B2 (en) * 2006-05-29 2011-09-13 Hasegawa Electric Industry Co., Ltd. Method for controlling cooled or heated water pump of air conditioning installation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019480B2 (en) * 2006-05-29 2011-09-13 Hasegawa Electric Industry Co., Ltd. Method for controlling cooled or heated water pump of air conditioning installation
JP2009063231A (en) * 2007-09-06 2009-03-26 Yamatake Corp Heat source control device and heat source control method

Similar Documents

Publication Publication Date Title
JP5182358B2 (en) Refrigeration equipment
TWI573969B (en) Cascade floating intermediate temperature heat pump system
US11573038B2 (en) Methods and systems for operating HVAC systems in low load conditions
WO2009119023A1 (en) Freezing apparatus
US20130274948A1 (en) Heat source system and method for controlling the number of operated devices in heat source system
WO2004063642A1 (en) Refrigeration apparatus
WO2018193518A1 (en) Air conditioner
WO2017203655A1 (en) Heat pump type air conditioning and hot water supplying device
WO2015122171A1 (en) Air conditioning device
JP2012141113A (en) Air conditioning/water heating device system
JP2006177658A (en) Air conditioner
JP2009041845A (en) Operation control method of multi-room type air conditioner
WO2018164253A1 (en) Air-conditioning device
KR20080073996A (en) A air conditioning system by water source and control method thereof
JP2005127586A (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
KR100696718B1 (en) Air Conditioner System for Heating and Dehumidificaton
JP2007046895A (en) Operation control device and method for air conditioner equipped with plural compressors
JP2006234295A (en) Multiple air conditioner
JP5677198B2 (en) Air cooling heat pump chiller
JP2017150689A (en) Air conditioner
KR20060012837A (en) A multi air conditioner and a driving method of it
JP2005345028A (en) Air conditioner
WO2018076734A1 (en) Air-conditioning system
WO2016024504A1 (en) Load distribution system
JP6252636B2 (en) Load distribution system