JP2005343706A - Method of manufacturing porous carbon material - Google Patents

Method of manufacturing porous carbon material Download PDF

Info

Publication number
JP2005343706A
JP2005343706A JP2004161793A JP2004161793A JP2005343706A JP 2005343706 A JP2005343706 A JP 2005343706A JP 2004161793 A JP2004161793 A JP 2004161793A JP 2004161793 A JP2004161793 A JP 2004161793A JP 2005343706 A JP2005343706 A JP 2005343706A
Authority
JP
Japan
Prior art keywords
carbon material
porous carbon
electrodialysis
metals
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004161793A
Other languages
Japanese (ja)
Inventor
Kenichi Uehara
健一 上原
Toshiharu Nonaka
俊晴 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2004161793A priority Critical patent/JP2005343706A/en
Publication of JP2005343706A publication Critical patent/JP2005343706A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing porous carbon material simply with good precision, for preventing the deterioration with time of a porous carbon material for electric double layer capacitor, which has a high specific surface area and is obtained by alkali-treating mesocarbon microbeads or the like. <P>SOLUTION: The porous carbon material is obtained by treating a suspension containing a porous carbon material by electrodialysis. And specially, the porous carbon material having such superior characteristics that the total content of alkali metals is 100 mass ppm or lower, the total content of transition metals is 100 mass ppm or lower, the pH of an extract obtained by extraction processing with an ion exchange water is 5-8, and the conductance is 10 μS/cm or lower, is obtained by rapidly reducing the remained alkali metals and transition metals by the electrodialysis treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば電気二重層キャパシタ用電極の活物質材料として用いる多孔質炭素材料の製造方法に関する。   The present invention relates to a method for producing a porous carbon material used as an active material for an electrode for an electric double layer capacitor, for example.

多孔質炭素材料は一般には活性炭と呼ばれる。この活性炭の製造方法としては、石炭、石炭コークス、ヤシ殻、木粉、樹脂などの炭素質材料に対して、水蒸気、空気、酸素、CO2などの酸化性ガスを作用させるガス賦活法、又は、塩化亜鉛、水酸化カリウムなどの薬品を作用させる薬品賦活法により、細孔を形成するものが一般的である。 The porous carbon material is generally called activated carbon. As a method for producing this activated carbon, a gas activation method in which an oxidizing gas such as water vapor, air, oxygen, CO 2 is allowed to act on a carbonaceous material such as coal, coal coke, coconut shell, wood powder, resin, or In general, pores are formed by a chemical activation method in which chemicals such as zinc chloride and potassium hydroxide are allowed to act.

従来から、活性炭は吸着剤として環境の保全・改善などに使用されてきた。また最近では、活性炭は圧力スイング吸着用担体、クロマト分離用担体、触媒担体など担体として新たな用途が検討されている。   Conventionally, activated carbon has been used as an adsorbent for environmental conservation and improvement. Recently, activated carbon has been studied for new uses such as a pressure swing adsorption carrier, a chromatographic separation carrier, and a catalyst carrier.

さらに、活性炭を電子分野に用いる試みがなされており、この中でも電気二重層キャパシタが注目を集めている。電気二重層キャパシタはエネルギー貯蔵デバイスのひとつであり、多孔質炭素材料を含む一対の分極性電極、セパレータ、電解質溶液などにより構成されている。   Furthermore, attempts have been made to use activated carbon in the electronic field, and among these, electric double layer capacitors are attracting attention. An electric double layer capacitor is one of energy storage devices, and is composed of a pair of polarizable electrodes including a porous carbon material, a separator, an electrolyte solution, and the like.

一般的なエネルギー貯蔵デバイスである二次電池の充放電機構は電気化学反応を伴うものであるが、電気二重層キャパシタの充放電機構は電気化学反応を伴わず、分極性電極界面への電解質の正・負イオンの単純な吸脱着により行われる。   The charge / discharge mechanism of a secondary battery, which is a general energy storage device, involves an electrochemical reaction, but the charge / discharge mechanism of an electric double layer capacitor does not involve an electrochemical reaction. This is done by simple adsorption / desorption of positive and negative ions.

従って、電気二重層キャパシタは二次電池にはない優れた特長を有する。すなわち瞬時充放電特性に優れ、広い温度範囲で安定した充放電特性を示し、かつ充放電の繰り返しによる性能劣化が少ないという特性を有している。   Therefore, the electric double layer capacitor has an excellent feature not found in the secondary battery. That is, it has excellent instantaneous charge / discharge characteristics, stable charge / discharge characteristics over a wide temperature range, and low performance deterioration due to repeated charge / discharge.

上記電気二重層キャパシタの静電容量は活物質の表面積と比例的な関係にあるとされるため、比表面積の大きな多孔質材料を活物質として使用し、静電容量の大きい電気二重層キャパシタを得ることが検討されてきた。   Since the capacitance of the electric double layer capacitor is proportional to the surface area of the active material, a porous material having a large specific surface area is used as the active material, and an electric double layer capacitor having a large capacitance is used. Obtaining has been studied.

比表面積の大きな多孔質材料としては、高い導電性を示し、電気化学的に比較的安定であり、しかも入手が容易であることから、多孔質炭素材料、すなわち活性炭が主として使用されてきている。   As a porous material having a large specific surface area, a porous carbon material, that is, activated carbon has been mainly used because it exhibits high conductivity, is electrochemically relatively stable, and is easily available.

ところで各種電子機器・電子部品、各種電気自動車などの用途に使用される電気二重層キャパシタには、充放電の繰り返しによる性能劣化がないもの、すなわち耐久性に優れたものが望まれる。充放電の繰り返しによる性能劣化の主な原因は上記多孔質炭素材料に残留する金属類などによるものと言われている。   By the way, an electric double layer capacitor used for various electronic devices / electronic parts, various electric vehicles and the like is desired to have no performance deterioration due to repeated charge and discharge, that is, to have excellent durability. It is said that the main cause of performance deterioration due to repeated charge and discharge is due to metals remaining in the porous carbon material.

ところが、例えば薬品賦活により細孔を形成した多孔質炭素材料では、薬品として使用したアルカリ金属類や装置・容器から混入した遷移金属類が多孔質炭素材料中に残留する可能性がある。   However, for example, in a porous carbon material in which pores are formed by chemical activation, there is a possibility that alkali metals used as chemicals and transition metals mixed from the apparatus / container may remain in the porous carbon material.

多孔質炭素材料中に残留したこれらの金属類は充放電時に触媒的に電解液を分解してガス発生の原因となる。このガス発生により
(1)集電体からの活物質の剥がれによる内部抵抗の増加と静電容量の低下
(2)細孔開口部ヘのガス吸着による有効比表面積低下による静電容量の低下
(3)活物質の一部脱落による静電容量の低下と漏れ電流の増加
などが引き起こされ、電気二重層キャパシタの耐久性が著しく低下する。
These metals remaining in the porous carbon material catalyze decomposition of the electrolytic solution during charge / discharge and cause gas generation. Due to this gas generation, (1) increase in internal resistance and decrease in capacitance due to peeling of the active material from the current collector (2) decrease in capacitance due to decrease in effective specific surface area due to gas adsorption to the pore openings ( 3) A decrease in electrostatic capacity and an increase in leakage current due to a partial drop of the active material are caused, and the durability of the electric double layer capacitor is significantly decreased.

多孔質炭素材料中に残留する金属類の存在形態として、物理的吸着状態、化学的吸着状態などが考えられる。従って、これらを除去する技術として一般的にイオン交換水などを洗浄溶媒として、これに酸類などを組み合わせて、物理的吸着状態や化学的吸着状態にある金属類を低減・除去することが行われてきた。   As the existence form of metals remaining in the porous carbon material, a physical adsorption state, a chemical adsorption state, and the like are conceivable. Therefore, as a technique for removing these, generally, ion-exchanged water or the like is used as a washing solvent, and this is combined with acids to reduce or remove metals in a physical adsorption state or a chemical adsorption state. I came.

例えば、活性炭粉末を精製水と混合し煮沸などを行った後、濾過することを必要回数行うことにより、活性炭中に含有されていた重金属その他の不純物を水へ溶出除去させる方法がある(例えば、特許文献1参照。)。   For example, there is a method of eluting and removing heavy metals and other impurities contained in activated carbon by mixing the activated carbon powder with purified water and boiling, followed by filtering the required number of times (for example, (See Patent Document 1).

この技術では主として物理的吸着状態にある重金属やその他の不純物を煮沸によって脱着を促進させているので、残留する金属類の量がある程度低減されると、脱着の推進力である濃度差が小さくなり、洗浄操作を多数回繰り返すことが必要である。   In this technology, desorption is promoted mainly by boiling heavy metals and other impurities that are in a physically adsorbed state. Therefore, if the amount of residual metals is reduced to some extent, the concentration difference that is the driving force for desorption is reduced. It is necessary to repeat the washing operation many times.

さらに、この技術では主として化学的吸着状態にある重金属その他の不純物の除去は困難である。このためこれらを効果的に低減・除去するために酸類を添加する場合がある。しかし、その際にも添加した酸類の除去のために、洗浄操作を多数回繰り返す必要があり、非常な手間と時間を要していた。
特開平7−142295号公報
Further, it is difficult to remove heavy metals and other impurities mainly in a chemically adsorbed state by this technique. For this reason, in order to reduce and remove these effectively, acids may be added. However, also in this case, it is necessary to repeat the washing operation many times in order to remove the added acids, which requires a lot of labor and time.
Japanese Patent Laid-Open No. 7-142295

本発明は、電気二重層キャパシタ用電極の活物質の材料として用いる優れた特性を有する多孔質材料、すなわち、アルカリ金属類の合計の含有量が100質量ppm以下、遷移金属類の合計の含有量が100質量ppm以下、イオン交換水による抽出処理で得られる抽出液のpHが5〜8、導電率が10μS/cm以下のような多孔質炭素材料を、容易に精度よく製造する方法を提供することを目的とする。   The present invention is a porous material having excellent characteristics used as an active material of an electrode for an electric double layer capacitor, that is, the total content of alkali metals is 100 mass ppm or less, and the total content of transition metals Provides a method for easily and accurately producing a porous carbon material having an extract of 100 mass ppm or less, an extract obtained by extraction with ion-exchanged water having a pH of 5 to 8, and an electrical conductivity of 10 μS / cm or less. For the purpose.

本発明は、多孔質炭素材料を含む懸濁液を電気透析処理することを特徴とする多孔質炭素材料の製造方法である。   The present invention is a method for producing a porous carbon material, characterized by electrodialyzing a suspension containing the porous carbon material.

また、本発明は、多孔質炭素材料を含む懸濁液を電気透析処理し、アルカリ金属類の合計の含有量が100質量ppm以下、遷移金属類の合計の含有量が100質量ppm以下、イオン交換水による抽出処理で得られる抽出液のpHが5〜8、および該抽出液の導電率が10μS/cm以下である多孔質炭素材料を製造することを特徴とする多孔質炭素材料の製造方法である。   In the present invention, the suspension containing the porous carbon material is electrodialyzed, the total content of alkali metals is 100 mass ppm or less, the total content of transition metals is 100 mass ppm or less, ions A method for producing a porous carbon material, comprising producing a porous carbon material in which the pH of the extract obtained by the extraction treatment with exchange water is 5 to 8, and the conductivity of the extract is 10 μS / cm or less It is.

電気透析処置とは、イオン・分子の静電気的特性と形状、大きさの違いにより分離を行うことを原理とする処理であり、懸濁液に含まれる多孔質炭素材料中に残留するアルカリ金属類及び遷移金属類を容易に低減させることが可能である。   Electrodialysis treatment is a treatment based on the principle of separation based on differences in electrostatic properties, shape, and size of ions and molecules. Alkali metals remaining in the porous carbon material contained in the suspension In addition, transition metals can be easily reduced.

この処理を適用することによって、上記のような特性を有し経時劣化のほとんどない多孔質炭素材料を得ることができる。   By applying this treatment, it is possible to obtain a porous carbon material that has the above-described characteristics and hardly deteriorates with time.

前記多孔質炭素材料が、炭素材料を水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属化合物によって薬品賦活したものである場合に、本発明方法は、これらのアルカリ金属類及び遷移金属類を容易に精度よく低減させることができるので好ましい。   When the porous carbon material is a material obtained by chemically activating a carbon material with an alkali metal compound such as lithium hydroxide, sodium hydroxide, or potassium hydroxide, the method of the present invention uses these alkali metals and transition metals. Can be easily reduced with high accuracy.

また、前記炭素材料がメソフェーズ小球体及び/又はバルクメソフェーズであると、好適である。   Further, it is preferable that the carbon material is a mesophase microsphere and / or a bulk mesophase.

本発明によれば、多孔質炭素材料を含む懸濁液を電気透析処理し、多孔質炭素材料中に残留するアルカリ金属類及び遷移金属類を低減させ、耐久性が良好な電気二重層キャパシタ用電極の活物質材料を容易に製造させることができる。すなわち、アルカリ金属類の合計の含有量が100質量ppm以下、遷移金属類の合計の含有量が100質量ppm以下であり、イオン交換水による抽出処理で得られる抽出液のpHが5〜8、および該抽出液の導電率が10μS/cm以下である多孔質炭素材料を容易に得ることができる。   According to the present invention, a suspension containing a porous carbon material is electrodialyzed to reduce alkali metals and transition metals remaining in the porous carbon material, and has excellent durability for an electric double layer capacitor. The active material of the electrode can be easily manufactured. That is, the total content of alkali metals is 100 mass ppm or less, the total content of transition metals is 100 mass ppm or less, and the pH of the extract obtained by the extraction treatment with ion-exchanged water is 5 to 8, And the porous carbon material whose electrical conductivity of this extract is 10 microsiemens / cm or less can be obtained easily.

以下図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明者は、多孔質炭素材料中に残留する不純物であるアルカリ金属類、遷移金属類などを低減させる方法について鋭意検討した結果、アルカリ金属類、遷移金属類が残留する多孔質炭素材料を含む懸濁液を電気透析処理することにより、単位操作で、しかも非常に短時間の処理によって低減することができることを見出し本発明に達した。   As a result of intensive studies on a method for reducing alkali metals, transition metals, and the like, which are impurities remaining in the porous carbon material, the present inventor includes porous carbon materials in which alkali metals and transition metals remain. It has been found that the suspension can be reduced by electrodialysis treatment in a unit operation and by a very short treatment.

すなわち、本発明は、多孔質炭素材料中に残留するアルカリ金属類、遷移金属類を低減させるための電気透析処理による多孔質炭素材料の製造方法である。   That is, the present invention is a method for producing a porous carbon material by electrodialysis treatment for reducing alkali metals and transition metals remaining in the porous carbon material.

本発明においてアルカリ金属類の合計の含有量が100質量ppm以下、遷移金属類の合計の含有量が100質量ppm以下としたのは、これらの何れかが100質量ppmを越える多孔質炭素材料では、電気二重層キャパシタ用電極の活物質として用いたときに十分な耐久性を得ることができないためである。また、イオン交換水による抽出処理で得られる抽出液のpHを5〜8とし、導電率を10μS/cm以下としたのは、これらの範囲を逸脱すると、電気二重層キャパシタ用電極の活物質として用いたときに耐久性が不十分となるからである。   In the present invention, the total content of alkali metals is 100 mass ppm or less, and the total content of transition metals is 100 mass ppm or less. This is because sufficient durability cannot be obtained when used as an active material for an electrode for an electric double layer capacitor. In addition, the pH of the extract obtained by the extraction treatment with ion-exchanged water was set to 5 to 8 and the conductivity was set to 10 μS / cm or less, as the active material of the electrode for the electric double layer capacitor when deviating from these ranges. This is because the durability becomes insufficient when used.

なお、本発明において、イオン交換水とは導電率が0.1μS/cm以下の精製水であり、イオン交換樹脂で処理することにより得られるものである。   In the present invention, ion-exchanged water is purified water having a conductivity of 0.1 μS / cm or less, and is obtained by treating with ion-exchange resin.

また、本発明で定義する抽出処理とは具体的には以下の方法によって行われる。   The extraction process defined in the present invention is specifically performed by the following method.

すなわち、多孔質炭素材料試料1g(乾燥重量換算として)を正確に計り取り、これを100ml容エルレンマイヤーフラスコに移す。これに正確に計り取ったイオン交換水50mlを注入し試料を懸濁させ、振盪機(タイテック祉製、ダブルシェーカー、NR−30型)にて室温で150rpmで16時間撹拌する。この懸濁液を濾紙(アドバンテック東洋製、5C)で濾過する。この抽出操作によって得られた抽出液(濾液)の導電率を導電率計(堀場製作所製、ES−14型)にて、pHをpHメーター(堀場製作所製、F−14型)、それぞれ室温(25℃)にて測定するものである。もちろん、各機器の校正が正しく行われていれば、これら固有の機器に依らず、一般的な導電率計、pHメーターを使用することが可能である。   That is, 1 g of a porous carbon material sample (as a dry weight) is accurately weighed and transferred to a 100 ml Erlenmeyer flask. To this, 50 ml of accurately measured ion-exchanged water is poured to suspend the sample, and the mixture is stirred for 16 hours at 150 rpm at room temperature with a shaker (manufactured by Taitec Corp., double shaker, NR-30 type). The suspension is filtered with a filter paper (Advantech Toyo, 5C). The conductivity of the extract (filtrate) obtained by this extraction operation was measured with a conductivity meter (manufactured by Horiba, ES-14), and the pH was measured by a pH meter (manufactured by Horiba, F-14) at room temperature ( 25 ° C.). Of course, as long as each device is calibrated correctly, it is possible to use a general conductivity meter and pH meter regardless of these unique devices.

この抽出方法によれば、イオン交換水により多孔質炭素材料中に残留していたアルカリ金属類、遷移金属類などが溶出し、導電率およびpHを測定することによって、多孔質炭素材料中に残留するアルカリ金属類、遷移金属類の量を間接的に知ることができる。   According to this extraction method, alkali metals and transition metals remaining in the porous carbon material are eluted by ion-exchanged water, and are retained in the porous carbon material by measuring conductivity and pH. It is possible to indirectly know the amount of alkali metals and transition metals to be used.

本発明の多孔質炭素材料は、炭素材料を水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属化合物によって薬品賦活したものであることが好ましい。これらアルカリ金属化合物の使用量は、所望する多孔質材料の比表面積などによって異なるが、500m2/g以上の比表面積を得ようとするときには、炭素材料に対して、質量比で0.5〜5倍量、好ましくは1〜3倍量を使用するとよい。 The porous carbon material of the present invention is preferably obtained by chemically activating a carbon material with an alkali metal compound such as lithium hydroxide, sodium hydroxide, or potassium hydroxide. The amount of these alkali metal compounds used varies depending on the specific surface area of the desired porous material, but when trying to obtain a specific surface area of 500 m 2 / g or more, the mass ratio is 0.5 to Five times the amount, preferably 1-3 times the amount may be used.

本発明に用いられる炭素材料としては、ソフト系炭素材料が好ましい。ソフト系炭素材料の中でもメソフェーズ小球体及び/又はバルクメソフェーズがより好ましい。メソフェーズ小球体及び/又はバルクメソフェーズは、公知のものを広く用いることができ、これらを粉砕したものを用いても良い。その粒径は特に限定されないが、平均粒径が2〜100μm範囲内のものが好ましく、さらに2〜40μmのものがより好ましい。   As the carbon material used in the present invention, a soft carbon material is preferable. Among the soft carbon materials, mesophase microspheres and / or bulk mesophase are more preferable. As the mesophase microspheres and / or the bulk mesophase, known ones can be widely used, and those obtained by pulverizing them may be used. The particle size is not particularly limited, but those having an average particle size in the range of 2 to 100 μm are preferable, and those having an average particle size of 2 to 40 μm are more preferable.

メソフェーズ小球体及び/又はバルクメソフェーズの原料としては、一般的に、石炭系タールあるいはピッチ、石油系重質油あるいはピッチなどのピッチ類が用いられる。   As raw materials for mesophase spherules and / or bulk mesophase, generally, pitches such as coal-based tar or pitch, petroleum-based heavy oil, or pitch are used.

これらのピッチ類を好ましくは窒素雰囲気下、350〜500℃で0.5〜10時間加熱処理を行うことによりピッチ中に、先ずメソフェーズ小球体が生成し、次いでメソフェーズ小球体同士が凝集したメソフェーズが生成してくる。したがってメソフェーズ小球体及び/又はバルクメソフェーズの生成は加熱処理条件を所望に応じて適宜選択すればよい。   These pitches are preferably heated in a nitrogen atmosphere at 350 to 500 ° C. for 0.5 to 10 hours, so that mesophase spherules are first formed in the pitch and then mesophase globules are aggregated. Generate. Therefore, the generation of the mesophase microspheres and / or the bulk mesophase may be appropriately selected according to the heat treatment conditions as desired.

上記加熱後のメソフェーズ小球体及びバルクメソフェーズを含むピッチから、例えばキノリンなどを用いた溶剤分離操作によってメソフェーズ小球体及び/又はバルクメソフェーズを得ることができる。   The mesophase microspheres and / or the bulk mesophase can be obtained from the pitch containing the mesophase microspheres and the bulk mesophase after the heating by a solvent separation operation using, for example, quinoline.

本発明ではこれらの市販品を使用しても良い。メソフェーズ小球体又はバルクメソフェーズはいずれか一方を用いてもよく、これらの混合物を用いても良い。   In the present invention, these commercially available products may be used. Either mesophase microspheres or bulk mesophase may be used, or a mixture thereof may be used.

このようなソフト系炭素材料は、黒鉛前駆体であって、賦活過程では黒鉛化が進み、黒鉛層構造を形成しやすいため、賦活後に内部抵抗の少ない微細構造体を形成することができて好ましい。   Such a soft carbon material is a graphite precursor, and graphitization progresses in the activation process, and it is easy to form a graphite layer structure. Therefore, a fine structure with less internal resistance can be formed after activation. .

賦活時の雰囲気は窒素又はアルゴンのような不活性ガス雰囲気が、賦活の過程で遷移金属酸化物の生成を抑制するので好ましい。本発明では、上記のような、炭素材料のアルカリ金属の水酸化物を用いた賦活処理は、これら各材料の添加順序について特に限定するものではないが、通常まずこれらの懸濁液(スラリー)、例えばアルカリ金属の水酸化物の水溶液と炭素材料を混合し容易に懸濁液を得ることができる。   The atmosphere at the time of activation is preferably an inert gas atmosphere such as nitrogen or argon because generation of transition metal oxides is suppressed during the activation process. In the present invention, the activation treatment using the alkali metal hydroxide of the carbon material is not particularly limited with respect to the order of addition of these materials. For example, an aqueous solution of an alkali metal hydroxide and a carbon material can be mixed to easily obtain a suspension.

次いで得られた懸濁液を加熱処理し、乾燥混合物または低水分含有混合物とした後、不活性ガス雰囲気下で、300〜1500℃、好ましくは500〜900℃まで加熱する賦活処理を行う。この加熱時には、ロータリーキルン、流動床、移動床、固定床などの各種加熱装置を用いることができる。賦活時間は通常10分〜24時間程度である。この加熱は、温度を一定割合で上昇させた後、所望温度で保持してもよく、最終温度に到達するまでに途中で何度か温度保持してもよい。   Next, the obtained suspension is heat-treated to obtain a dry mixture or a low-moisture-containing mixture, and then an activation treatment is performed by heating to 300 to 1500 ° C., preferably 500 to 900 ° C. in an inert gas atmosphere. In this heating, various heating devices such as a rotary kiln, a fluidized bed, a moving bed, and a fixed bed can be used. The activation time is usually about 10 minutes to 24 hours. This heating may be performed at a desired temperature after the temperature is raised at a certain rate, or may be held several times in the middle until the final temperature is reached.

賦活処理の後、本発明の重要な処理である電気透析処理を行う。電気透析処理の前に賦活処理後の孔質炭素材料中にかなりの量存在するアルカリ金属化合物をイオン交換水や酸類などによって洗浄除去することが好ましい。   After the activation treatment, an electrodialysis treatment which is an important treatment of the present invention is performed. Prior to the electrodialysis treatment, it is preferable to wash away an alkali metal compound present in a considerable amount in the porous carbon material after the activation treatment with ion-exchanged water or acids.

電気透析処理は、陰イオンのみを透過させる陰イオン交換膜と陽イオンのみを透過させる陽イオン交換膜とを交互に並べ、膜と直角方向に電位勾配を与え、静電気的特性と形状、大きさの差により成分分離を行うものである。処理する多孔質材料を含む懸濁液(電解質溶液)をイオン交換膜に平行に流すと電解質の電位勾配に基づく電気泳動と選択的な膜透過によって、脱塩室を出る溶液は脱塩され、塩濃縮室を出る溶液は濃縮される。   In electrodialysis treatment, anion exchange membranes that allow only anions to pass through and cation exchange membranes that allow only cations to pass through are alternately arranged to give a potential gradient in a direction perpendicular to the membrane, and electrostatic characteristics, shape, and size. The components are separated by the difference between the two. When a suspension (electrolyte solution) containing a porous material to be treated is flowed in parallel to the ion exchange membrane, the solution exiting the desalting chamber is desalted by electrophoresis based on the potential gradient of the electrolyte and selective membrane permeation, The solution leaving the salt concentration chamber is concentrated.

電気透析処理の際には、多孔質化した直後の多孔質炭素材料をイオン交換水などに懸濁させて懸濁液とし、この懸濁液をそのまま電気透析処理を行ってもよいし、予め何度かイオン交換水や酸類を用いて洗浄処理を行ったものを電気透析処理してもよい。ただし前者の場合、電気透析の結果溶出される濃縮液の濃度が非常に高くなり、操作が煩雑になるので、予め何度かイオン交換水や酸類などの洗浄溶媒で洗浄処理したものを電気透析処理する後者の方が好ましい。   In the electrodialysis treatment, the porous carbon material immediately after being made porous may be suspended in ion-exchanged water or the like to form a suspension, and this suspension may be subjected to electrodialysis treatment as it is. What was washed several times with ion exchange water or acids may be electrodialyzed. However, in the former case, the concentration of the concentrate eluted as a result of electrodialysis becomes very high and the operation becomes complicated, so electrodialysis is performed several times in advance with a washing solvent such as ion-exchanged water or acids. The latter is preferred.

また、細孔内に存在する金属類を除去するために、細孔内へ洗浄溶媒が完全に浸透するように、メタノールなどの親水性有機溶媒や電気透析に電気的に影響が少ないノニオン系界面活性剤を添加したイオン交換水などを洗浄溶媒として使用することが好ましい。さらに超音波処理や真空脱気処理を併用することも同様の理由で有効である。   In addition, in order to remove metals present in the pores, a nonionic interface that has little electrical influence on hydrophilic organic solvents such as methanol and electrodialysis so that the washing solvent completely penetrates into the pores. It is preferable to use ion-exchanged water or the like to which an activator is added as a washing solvent. Furthermore, it is effective for the same reason to use ultrasonic treatment and vacuum deaeration treatment in combination.

電気透析処理の処理条件としては、直流電源を使用して、定電圧印加又は定電流印加を行う。電気透析装置の大きさ及び処理する液の量によって異なるが、定電圧印加の場合、1〜10Vの範囲で行うのが好ましい。定電流印加の場合、5mA〜10Aの範囲で行うのが好ましい。前記範囲の電圧、電流条件とすることにより、アルカリ金属塁、遷移金属類を効果的に低減できる。   As a treatment condition of the electrodialysis treatment, a constant voltage application or a constant current application is performed using a DC power source. Although it varies depending on the size of the electrodialyzer and the amount of the liquid to be treated, it is preferable to apply a constant voltage in the range of 1 to 10 V. In the case of constant current application, it is preferably performed in the range of 5 mA to 10 A. By setting the voltage and current conditions in the above ranges, alkali metal soot and transition metals can be effectively reduced.

電気透析処理する温度は、高いほど懸濁液の粘度が低下するなどの理由により好ましいが、イオン交換膜の耐熱性の点から室温付近での処理が好ましい。   The higher the temperature at which electrodialysis is performed, the better because the viscosity of the suspension decreases, but the treatment at around room temperature is preferred from the viewpoint of the heat resistance of the ion exchange membrane.

処理する液を脱塩室に通液する速度は電気透析装置の大きさによって異なるが通常10〜1000ml/minの範囲で行うと、懸濁液中の多孔質炭素材料が沈降するのを防止することができるので好ましい。   Although the speed at which the liquid to be treated is passed through the desalting chamber varies depending on the size of the electrodialysis apparatus, it usually prevents sedimentation of the porous carbon material in the suspension when it is performed in the range of 10 to 1000 ml / min. This is preferable.

上記のような本発明の多孔質炭素材料の製造方法によれば、多孔質炭素材料を含む懸濁液を電気透析処理することにより多孔質炭素材料中に残留するアルカリ金属類及び遷移金属類を低減させ、アルカリ金属類の合計の含有量が100質量ppm以下、遷移金属類の合計の含有量が100質量ppm以下であり、イオン交換水による抽出処理で得られる抽出液のpHが5〜8、および該抽出液の導電率が10μS/cm以下である、優れた特性を有する多孔質炭素材料を容易に得ることができる。   According to the method for producing a porous carbon material of the present invention as described above, alkali metals and transition metals remaining in the porous carbon material are obtained by electrodialyzing the suspension containing the porous carbon material. The total content of alkali metals is 100 mass ppm or less, the total content of transition metals is 100 mass ppm or less, and the pH of the extract obtained by the extraction treatment with ion-exchanged water is 5 to 8 And the porous carbon material which has the outstanding characteristic whose electrical conductivity of this extract is 10 microsiemens / cm or less can be obtained easily.

本発明の実施例を説明する。ただし、本発明は以下に述べる実施例のみに限定されるものではない。   Examples of the present invention will be described. However, the present invention is not limited to only the examples described below.

(実施例1)
メソフェーズ小球体(JFEケミカル製、商品名KMFC、平均粒径18μm)1kgと、2kgのイオン交換水に溶解させた水酸化カリウム(和光純薬製、特級)2kgとを混合し、ニッケル製容器に移し、120℃で24時間加熱処理した。その後、その容器ごと電気炉に装入し、窒素雰囲気下、昇温速度5℃/minで800℃まで昇温し、2時間加熱後、冷却し賦活処理を終了した。
(Example 1)
Mesophase microspheres (JFE Chemical, trade name KMFC, average particle size 18 μm) 1 kg and 2 kg of potassium hydroxide (made by Wako Pure Chemicals, special grade) dissolved in 2 kg of ion-exchanged water are mixed in a nickel container. And heat-treated at 120 ° C. for 24 hours. Thereafter, the entire vessel was charged into an electric furnace, heated to 800 ° C. at a heating rate of 5 ° C./min in a nitrogen atmosphere, heated for 2 hours, cooled, and the activation treatment was completed.

10リットルのイオン交換水による賦活処理物の洗浄を二度行い、多孔質炭素材料を得た。このものはICP分析の結果、カリウムを8000質量ppm、ニッケルを450質量ppm含有していた。この多孔質炭素材料200gをイオン交換水2リットルに懸濁させた。この懸濁液のpHは10.7、導電率は300μS/cmであった。   The activated product was washed twice with 10 liters of ion exchange water to obtain a porous carbon material. As a result of ICP analysis, this contained 8000 ppm by mass of potassium and 450 ppm by mass of nickel. 200 g of this porous carbon material was suspended in 2 liters of ion exchange water. The pH of this suspension was 10.7, and the conductivity was 300 μS / cm.

この懸濁液を電気透析槽に注入し、電流を5A、通液速度を200ml/minとして電気透析処理を行った。   This suspension was injected into an electrodialysis tank, and electrodialysis was performed at a current of 5 A and a flow rate of 200 ml / min.

30分間毎に電気透析処理液をサンプリングしpHと導電率を測定した。その結果を図1及び図2に示す。図1及び図2は処理時間を横軸にとり、縦軸にそれぞれpH及び導電率をとって経過を示したグラフである。線1及び線2は電気透析処理を行った実施例のpH及び導電率を示すものである。実施例では図1、図2から明らかなように、6時間後にはpH5.8,導電率1.5μS/cmを示した。   The electrodialysis solution was sampled every 30 minutes and the pH and conductivity were measured. The results are shown in FIGS. FIG. 1 and FIG. 2 are graphs showing the progress with the treatment time taken on the horizontal axis and the vertical axis taken pH and conductivity, respectively. Lines 1 and 2 indicate the pH and conductivity of the examples subjected to the electrodialysis treatment. As is apparent from FIGS. 1 and 2, the example showed pH 5.8 and conductivity 1.5 μS / cm after 6 hours.

また電気透析処理を6時間行った後、多孔質炭素材料を集め、乾燥した。この多孔質炭素材料に残留するカリウム及びニッケルを分析した結果、それぞれ70質量ppm、10質量ppmであった。また、この多孔質炭素材料を前述の様にしてイオン交換水による抽出処理を行った。この抽出処理で得られた抽出液のpHは6.2、導電率は2.3μS/cmであった。   Further, after 6 hours of electrodialysis treatment, the porous carbon material was collected and dried. As a result of analyzing potassium and nickel remaining in the porous carbon material, they were 70 mass ppm and 10 mass ppm, respectively. The porous carbon material was extracted with ion exchange water as described above. The pH of the extract obtained by this extraction treatment was 6.2, and the conductivity was 2.3 μS / cm.

(比較例1)
実施例1と同様に賦活処理後、洗浄を二度行った多孔質炭素材料200gをイオン交換水5リットルに懸濁させ、懸濁液を50分間撹拌し、10分間濾過を行った。このようにして得られた撹拌・濾過後の多孔質炭素材料のケーキを再度イオン交換水5リットルに懸濁して50分間撹拌、10分間懸濁の操作を繰返した。撹拌・濾過の操作毎にその濾液をサンプリングしpHと導電率を測定した。その結果を図1及び図2にそれぞれ線3、4で示した。上記操作を6回行った、6時間後の抽出液はそれぞれpH9.43、導電率19.7μS/cmを示した。6回操作後の多孔質炭素材料を集め、乾燥した。この多孔質炭素材料に残留するカリウム、ニッケルを分析したところ、それぞれ2050質量ppm、250質量ppmであった。また、この多孔質炭素材料のイオン交換水により抽出処理で得られた抽出液のpHは9.2、導電率は21.6μS/cmであった。
(Comparative Example 1)
After the activation treatment as in Example 1, 200 g of the porous carbon material that had been washed twice was suspended in 5 liters of ion-exchanged water, and the suspension was stirred for 50 minutes and filtered for 10 minutes. The obtained porous carbon material cake after stirring and filtration was suspended again in 5 liters of ion-exchanged water, stirred for 50 minutes, and suspended for 10 minutes. The filtrate was sampled for each stirring and filtration operation, and the pH and conductivity were measured. The results are shown by lines 3 and 4 in FIGS. 1 and 2, respectively. The extract obtained after 6 hours of the above operation and after 6 hours showed pH 9.43 and conductivity 19.7 μS / cm, respectively. The porous carbon material after the sixth operation was collected and dried. When potassium and nickel remaining in the porous carbon material were analyzed, they were 2050 ppm by mass and 250 ppm by mass, respectively. Further, the pH of the extract obtained by the extraction treatment with ion-exchanged water of the porous carbon material was 9.2, and the conductivity was 21.6 μS / cm.

このように従来方法では、電気二重層キャパシタ用電極の活物質材料として適する特性を有する多孔質炭素材料を製造することは長時間を要し、容易ではない。   As described above, in the conventional method, it takes a long time to manufacture a porous carbon material having characteristics suitable as an active material for an electrode for an electric double layer capacitor.

一方、本発明による方法では電気二重層キャパシタ用電極の活物質材料として適する特性を有する多孔質炭素材料を製造できる。   On the other hand, the method according to the present invention can produce a porous carbon material having characteristics suitable as an active material for an electrode for an electric double layer capacitor.

電気透析処理による実施例1及び撹拌濾過処理による比較例1の処理時間とpHとの関係を示すグラフである。It is a graph which shows the relationship between the processing time of Example 1 by electrodialysis processing, and the comparative example 1 by stirring filtration processing, and pH. 電気透析処理による実施例1及び撹拌濾過処理による比較例1の処理時間と導電率との関係を示すグラフである。It is a graph which shows the relationship between the process time of Example 1 by an electrodialysis process, and the comparative example 1 by a stirring filtration process, and electrical conductivity.

符号の説明Explanation of symbols

1〜4 線   1-4 lines

Claims (4)

多孔質炭素材料を含む懸濁液を電気透析処理することを特徴とする多孔質炭素材料の製造方法。   A method for producing a porous carbon material, comprising subjecting a suspension containing the porous carbon material to electrodialysis. 多孔質炭素材料を含む懸濁液を電気透析処理し、アルカリ金属類の合計の含有量が100質量ppm以下、遷移金属類の合計の含有量が100質量ppm以下、イオン交換水による抽出処理で得られる抽出液のpHが5〜8、および該抽出液の導電率が10μS/cm以下である多孔質炭素材料を製造することを特徴とする多孔質炭素材料の製造方法。   The suspension containing the porous carbon material is electrodialyzed, and the total content of alkali metals is 100 mass ppm or less, the total content of transition metals is 100 mass ppm or less, and the extraction treatment is performed with ion-exchanged water. A method for producing a porous carbon material, comprising producing a porous carbon material having a pH of 5 to 8 of the obtained extract and a conductivity of the extract of 10 μS / cm or less. 前記多孔質炭素材料が炭素材料をアルカリ金属化合物によって薬品賦活したものであることを特徴とする請求項1又は2記載の多孔質炭素材料の製造方法。   3. The method for producing a porous carbon material according to claim 1, wherein the porous carbon material is obtained by chemically activating a carbon material with an alkali metal compound. 前記炭素材料がメソフェーズ小球体及び/又はバルクメソフェーズであることを特徴とする請求項3記載の多孔質炭素材料の製造方法。   The method for producing a porous carbon material according to claim 3, wherein the carbon material is a mesophase microsphere and / or a bulk mesophase.
JP2004161793A 2004-05-31 2004-05-31 Method of manufacturing porous carbon material Withdrawn JP2005343706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161793A JP2005343706A (en) 2004-05-31 2004-05-31 Method of manufacturing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161793A JP2005343706A (en) 2004-05-31 2004-05-31 Method of manufacturing porous carbon material

Publications (1)

Publication Number Publication Date
JP2005343706A true JP2005343706A (en) 2005-12-15

Family

ID=35496429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161793A Withdrawn JP2005343706A (en) 2004-05-31 2004-05-31 Method of manufacturing porous carbon material

Country Status (1)

Country Link
JP (1) JP2005343706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015229A1 (en) * 2011-07-22 2013-01-31 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
WO2019035633A1 (en) * 2017-08-14 2019-02-21 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015229A1 (en) * 2011-07-22 2013-01-31 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
JP2013047171A (en) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
JP2016104701A (en) * 2011-07-22 2016-06-09 株式会社半導体エネルギー研究所 Electrodialysis device
US9573813B2 (en) 2011-07-22 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Graphite oxide, graphene oxide or graphene, electric device using the same and method of manufacturing the same, and electrodialysis apparatus
WO2019035633A1 (en) * 2017-08-14 2019-02-21 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
KR101948020B1 (en) * 2017-08-14 2019-05-08 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
CN110997564A (en) * 2017-08-14 2020-04-10 韩国东海炭素株式会社 Method for producing activated carbon for electrode material
TWI691458B (en) * 2017-08-14 2020-04-21 韓商韓國東海炭素股份有限公司 Method for manufacturing activated carbon for electrode material
JP2020531405A (en) * 2017-08-14 2020-11-05 トカイ カーボン コリア カンパニー,リミティド Manufacturing method of activated carbon for electrode material

Similar Documents

Publication Publication Date Title
KR100547455B1 (en) Electrode material
JP2006248848A (en) Method for manufacturing porous carbon material and method for processing the same
Zou et al. Using activated carbon electrode in electrosorptive deionisation of brackish water
JP5210504B2 (en) Activated carbon purification method and activated carbon purification apparatus
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
US20120186980A1 (en) Methods and systems for separating ions from fluids
CN104724798A (en) Composite material, electrode, device with electrode and electrochemical phosphorus removal method
CN1227509A (en) Modified carbon adsorbents and process for adsorption
JP2011041940A (en) Capacitive deionization device
KR101402604B1 (en) Metal-Complexed carbon Menmbrane and method for preparing the same
Wouters et al. Influence of metal oxide coatings, carbon materials and potentials on ion removal in capacitive deionization
CN112566871A (en) Activated carbon and method for producing same
JP4576374B2 (en) Activated carbon, its production method and its use
El-Deen et al. Polystyrene sulfonate coated activated graphene aerogel for boosting desalination performance using capacitive deionization
JP4609829B2 (en) Electrode material and capacitor
CN114262034B (en) Method for separating rubidium from salt lake brine by using polyvinyl alcohol/chitosan/graphene/nickel copper hexacyanide complex
JP4167865B2 (en) Method for producing low ash porous carbon material
Wang et al. Confined self-assembly of S, O co-doped GCN short nanotubes/EG composite towards HMIs electrochemical detection and removal
Liu et al. High electrosorption capacity of uranium (VI) by carboxylic acid functionaliszed N, P Co-doped carbon materials
JP2005343706A (en) Method of manufacturing porous carbon material
JP2017225927A (en) Desalinization capacitor
KR101688543B1 (en) Filter Media Coated by Nanosheet Graphene Oxide and Method for Manufacturing the Same
CN111252870A (en) Magnetic nano-coated cross-linked polymer carbon electrode material and preparation method and application thereof
CN116803909A (en) Composite material, electrode carrying composite material and preparation method
Xie et al. Enhanced desalination performance in flow electrode capacitive deionization with nitrogen doped porous carbon

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807