JP2005341634A - Control method of inverter apparatus - Google Patents

Control method of inverter apparatus Download PDF

Info

Publication number
JP2005341634A
JP2005341634A JP2004152881A JP2004152881A JP2005341634A JP 2005341634 A JP2005341634 A JP 2005341634A JP 2004152881 A JP2004152881 A JP 2004152881A JP 2004152881 A JP2004152881 A JP 2004152881A JP 2005341634 A JP2005341634 A JP 2005341634A
Authority
JP
Japan
Prior art keywords
output power
power value
inverter
determined
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004152881A
Other languages
Japanese (ja)
Other versions
JP4575026B2 (en
Inventor
Seiya Abe
晴也 安部
Koichi Kishida
耕一 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004152881A priority Critical patent/JP4575026B2/en
Publication of JP2005341634A publication Critical patent/JP2005341634A/en
Application granted granted Critical
Publication of JP4575026B2 publication Critical patent/JP4575026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for eliminating the operation of an inverter apparatus within a low conversion efficiency range and efficiently supplying AC power converted into a system power supply, even if the output power value becomes low. <P>SOLUTION: In a power supply system, a plurality of the inverter apparatuses are connected to a DC power supply in parallel, an output power value from the DC power supply is calculated for a predetermined period, the number of the activated inverter apparatuses is determined from the output power value, and the inverter apparatuses are thus operated. In the control method of the inverter apparatus, the number of the activated inverter apparatuses is set to the number at (n-1)th time, at the time of the termination of the n-th period within an output power range determined, in response to the output power value calculated at the n-th time and the number of the inverter apparatuses determined at the (n-1)th time. If the power output lies out of the range, the number of the activated inverter apparatuses is determined again, based on the output power value at the n-th time and a high conversion efficiency input power value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽電池等の直流電源からの直流出力をインバータで交流出力に変換して交流系統に供給する電源システムに係り、特に直流出力の変換を高効率で運転するための技術に関するものである。   The present invention relates to a power supply system that converts a direct current output from a direct current power source such as a solar battery into an alternating current output by an inverter and supplies the alternating current output to an alternating current system, and particularly relates to a technique for operating the conversion of direct current output with high efficiency. is there.

図5は、従来技術の電源システムのブロック図である。同図において、電源システムは、太陽電池からなる直流電源DCと、上記直流電源DCに並列接続されて直流出力をインバータで交流出力に変換して出力する第1インバータ装置PS1乃至第nインバータ装置PSnと、上記直流電源DCからの出力電力値を検出する電力検出部DSと、上記各インバータ装置を上記出力電力値に基づいて制御する出力制御部SAと、上記直流電源DCに接続された上記各インバータ装置を開閉する開閉器SW1乃至開閉器SWnとから形成されている。   FIG. 5 is a block diagram of a conventional power supply system. In the figure, the power supply system includes a direct current power source DC composed of solar cells, and a first inverter device PS1 to an nth inverter device PSn that are connected in parallel to the direct current power source DC and convert a direct current output into an alternating current output by an inverter. A power detection unit DS that detects an output power value from the DC power source DC, an output control unit SA that controls the inverter devices based on the output power value, and each of the above-described DC power sources DC. The switches SW1 to SWn that open and close the inverter device are formed.

図5に示す、第1インバータ装置PS1は、第1インバータ制御回路CO1と第1インバータ回路PC1とで形成され、第2インバータ装置PS2は、第2インバータ制御回路CO1と第2インバータ回路PC1とで形成され、第nインバータ装置PSnは、第nインバータ制御回路COnと第nインバータ回路PCnとで形成されている。   The first inverter device PS1 shown in FIG. 5 is formed by the first inverter control circuit CO1 and the first inverter circuit PC1, and the second inverter device PS2 is formed by the second inverter control circuit CO1 and the second inverter circuit PC1. The n-th inverter device PSn is formed by an n-th inverter control circuit CON and an n-th inverter circuit PCn.

第1インバータ制御回路CO1は、出力制御部SAから起動信号が入力すると動作を開始し、第1開閉器SW1を閉路して第1インバータ回路PC1に直流電源DCからの出力電力を供給し、かつ、第1インバータ回路PC1を起動させて直流電圧を交流電圧に変換して系統電源ACに供給する。第2インバータ制御回路CO2乃至第nインバータ制御回路COnも上記と同一動作を行なう。   The first inverter control circuit CO1 starts operation when the activation signal is input from the output control unit SA, closes the first switch SW1, supplies the output power from the DC power source DC to the first inverter circuit PC1, and The first inverter circuit PC1 is activated to convert the DC voltage into an AC voltage and supply it to the system power supply AC. The second inverter control circuit CO2 to the nth inverter control circuit CON also perform the same operation as described above.

電力検出部DSは、直流電源DCからの出力電力値を検出して出力制御部SAに入力する。上記出力制御部SAは、出力電力演算部PAとインバータ選択部CHとで形成され、上記出力電力演算部PAは、上記出力電力値に基づいてインバータ装置の起動台数を決定する。上記インバータ選択部CHは、上記決定された起動台数に基づいて、各インバータ装置に起動信号を入力する。   The power detector DS detects the output power value from the DC power source DC and inputs it to the output controller SA. The output control unit SA is formed of an output power calculation unit PA and an inverter selection unit CH, and the output power calculation unit PA determines the number of inverter devices to be started based on the output power value. The inverter selection unit CH inputs a start signal to each inverter device based on the determined start number.

特許文献1に記載する従来技術は、図5に示す従来技術の電源システムのインバータ装置1台あたりの最大入力電力値を(定格入力電力値/最大変換効率)で算出し、出力電力値≦(最大入力電力値×n)より起動台数を決定するので、日射強度が曇り等によって低下して、上記出力電力値が低くなっても変換効率の高い状態で起動台数nを決定することかできる。例えば、定格入力電力値100KW、最大変換効率95%とすると、上記最大入力電力値は105KWとなる。このときに上記出力電力値が270KWから120KWに低下すると、上記インバータ装置の起動台数が3台から2台に減少し、上記インバータ装置1台の入力電力値が90KWから60KWに減少する、しかし、インバータ装置の変換効率を考慮して起動台数を決定しているので、上記出力電力値が低下しても図2に示すインバータ装置の定格入力電力の10%(10KW)以下の低変換効率範囲で動作することがなく、上記出力電力値を無駄なく交流電力に変換できる。   The prior art described in Patent Document 1 calculates the maximum input power value per inverter device of the power supply system of the prior art shown in FIG. 5 by (rated input power value / maximum conversion efficiency), and the output power value ≦ ( Since the startup number is determined from the maximum input power value × n), it is possible to determine the startup number n with high conversion efficiency even when the solar radiation intensity decreases due to cloudiness or the like and the output power value decreases. For example, if the rated input power value is 100 KW and the maximum conversion efficiency is 95%, the maximum input power value is 105 KW. When the output power value is reduced from 270 KW to 120 KW at this time, the number of inverter devices started up is reduced from three to two, and the input power value of one inverter device is reduced from 90 KW to 60 KW. Since the number of starting units is determined in consideration of the conversion efficiency of the inverter device, even if the output power value is reduced, the conversion efficiency range is 10% (10 kW) or less of the rated input power of the inverter device shown in FIG. Without operation, the output power value can be converted into AC power without waste.

特開平8−33211号公報JP-A-8-33211

上述の特許文献1の従来技術を適用すると、出力電力値が低下して小さくなっても、図2に示すようにインバータ装置が定格入力電力値の10%以下の低変換効率範囲で動作することが無くなり、上記出力電力値を無駄なく交流電力に変換できる。しかし、上記特許文献1の従来技術の出力電力範囲の値は(定格入力電力値/最大変換効率)で決定され、上記出力電力値に急激な変化が生じて上記出力電力範囲外になったとき、図5に示す開閉器の開閉台数とインバータ装置の起動台数とが変化し、上記開閉器及び上記インバータ装置の寿命を短くしてしまう。   When the conventional technique of Patent Document 1 described above is applied, even if the output power value decreases and decreases, the inverter device operates in a low conversion efficiency range of 10% or less of the rated input power value as shown in FIG. The output power value can be converted into AC power without waste. However, the value of the output power range of the prior art of Patent Document 1 is determined by (rated input power value / maximum conversion efficiency), and when the output power value suddenly changes and falls outside the output power range. 5 changes the number of switches opened and closed and the number of inverter devices started, which shortens the life of the switches and the inverter devices.

図6は時間と出力電力値との関係を示すタイミング図である。同図において、時刻t=t0〜t8の期間において、時間が経過するとともに上記出力電力値が増加し、時刻t=t8以後は減少する。例えば、時刻t=t4において、上記出力電力値が増加して上記出力電力範囲を超えたときに、インバータ装置の起動台数は4台から5台に増加する。しかし、時刻t=t5付近において、上記出力電力値に急激な変化が生じ減少及び増加がおこり上記出力電力範囲外になったとき、図6に示すようにインバータ装置の起動台数は5台から4台に減少し、続いて、4台から6台に増加する。このために、図5に示す開閉器の開閉回数とインバータ装置の起動回数とが増加して上記開閉器及び上記インバータ装置の寿命を短くしてしまう。   FIG. 6 is a timing chart showing the relationship between time and output power value. In the figure, in the period from time t = t0 to t8, the output power value increases as time elapses and decreases after time t = t8. For example, when the output power value increases and exceeds the output power range at time t = t4, the number of inverter devices started up increases from four to five. However, when the output power value suddenly changes and decreases and increases around time t = t5 and falls outside the output power range, the number of inverter devices started up from 5 to 4 as shown in FIG. The number will decrease to 4 and then increase from 4 to 6. For this reason, the number of times of opening / closing of the switch and the number of times of activation of the inverter device shown in FIG. 5 increase, thereby shortening the life of the switch and the inverter device.

そこで、本発明は、上述した課題を解決することができるインバータ装置の制御方法を提供することにある。   Then, this invention is providing the control method of the inverter apparatus which can solve the subject mentioned above.

上述した課題を解決するために、直流電源に複数台のインバータ装置を並列接続し、上記直流電源からの出力電力値を予め定めた周期で算出し、上記周期ごとの出力電力値に基づいて上記インバータ装置の起動台数を決定して運転する電源システムにおいて、第1回目の周期終了時は、第1回目に算出された上記出力電力値と上記インバータ装置の変換効率が高い範囲内で予め定めた高変換効率入力電力値に基づいて起動台数を決定し、第2回目の周期終了時は、第2回目に算出された上記出力電力値が第1回目に決定された起動台数に応じて定まる出力電力範囲内のときには第1回目の起動台数を維持し、上記出力電力範囲外のときには上記第2回目の出力電力値と上記高変換効率入力電力値に基づいて再度起動台数を決定し、続いて、第n回目の周期終了時は、第n回目に算出された出力電力値と第n−1回目に決定された起動台数に応じて定まる出力電力範囲内のときには第n−1回目の起動台数を維持し、上記出力電力範囲外のときには上記第n回目の出力電力値と上記高変換効率入力電力値に基づいて再度起動台数を決定し、以後、上記と同一処理を繰り返すことを特徴とするインバータ装置の制御方法である。   In order to solve the above-described problem, a plurality of inverter devices are connected in parallel to a DC power source, an output power value from the DC power source is calculated at a predetermined cycle, and the above-described output power value for each cycle is In the power supply system that operates by determining the number of inverter devices to be started, at the end of the first cycle, the output power value calculated in the first time and the conversion efficiency of the inverter device are set within a high range. The number of startups is determined based on the high conversion efficiency input power value, and at the end of the second cycle, the output power value calculated at the second time is determined according to the startup number determined at the first time When the number is within the power range, the first number of startups is maintained. When the number is outside the output power range, the number of startups is determined again based on the second output power value and the high conversion efficiency input power value. The second At the end of the cycle, when the output power value is determined according to the output power value calculated for the nth time and the number of startups determined for the (n-1) th time, the (n-1) th startup number is maintained. When the number of start-ups is determined again based on the n-th output power value and the high conversion efficiency input power value when out of the output power range, the same processing is repeated thereafter. It is a control method.

第2の発明の上記高変換効率入力電力値は、上記インバータ装置の変換効率が高い範囲内でありかつ上記インバータ装置の定格入力電力値の1/2を中心値とする所定範囲で予め定めた値であり、上記出力電力範囲は上記高変換効率入力電力値と上記インバータ装置の起動台数との乗算値を中心値とする所定範囲であることを特徴とする請求項1記載のインバータ装置の制御方法である。   The high conversion efficiency input power value of the second aspect of the invention is predetermined within a predetermined range in which the conversion efficiency of the inverter device is within a high range and the center value is 1/2 of the rated input power value of the inverter device. 2. The control of an inverter device according to claim 1, wherein the output power range is a predetermined range centered on a product of the high conversion efficiency input power value and the number of activated inverter devices. Is the method.

上記第1の発明によれば、上記直流電源DCからの出力電力値が低くなっても、インバータ装置の変換効率を考慮した高変換効率の入力電力値と上記出力電力値とに基づいて起動台数を決定しているので、上記出力電力値が低くなっても上記インバータ装置が低変換効率範囲で運転することがなくなり、系統電源に変換された交流電力が効率よく供給できる。   According to the first aspect of the invention, even if the output power value from the DC power supply DC is low, the number of starting units is based on the input power value with high conversion efficiency considering the conversion efficiency of the inverter device and the output power value. Therefore, even if the output power value decreases, the inverter device does not operate in the low conversion efficiency range, and the AC power converted to the system power supply can be supplied efficiently.

第2の発明によれば、出力電力範囲はインバータ装置の起動台数の増加に応じて広くなる。上記より出力電力値が大きいほど上記出力電力範囲は広くなる。この領域で上記出力電力値に急激な変動が生じても出力電力値の変動値が上記広くなった出力電力範囲外になることは極めて少なく、上記出力電力値の急激な変動に応じてインバータ装置の起動台数が変化することが減少し、電源システムを形成している開閉器及びインバータ装置の寿命が延びる。   According to the second invention, the output power range becomes wider as the number of inverter devices started increases. The output power range becomes wider as the output power value is larger than the above. Even if a sudden fluctuation occurs in the output power value in this region, the fluctuation value of the output power value is very rarely outside the widened output power range, and the inverter device according to the sudden fluctuation of the output power value. The change in the number of start-ups is reduced, and the lifespan of the switches and inverters forming the power supply system is extended.

[実施の形態1]
図1は、本発明の実施の形態の電源システムのブロック図である。同図において、図5に示す、従来技術の電源システムのブロック図と同一符号は同一動作を行なうので説明は省略し符号が相違する構成について説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a power supply system according to an embodiment of the present invention. In the figure, the same reference numerals as those in the block diagram of the conventional power supply system shown in FIG.

図1において、電源システムは、太陽電池からなる直流電源DCと、上記直流電源DCに並列接続されて直流出力をインバータで交流出力に変換して出力する第1インバータ装置PS1乃至第nインバータ装置PSnと、上記直流電源DCからの出力電力値を検出する電力検出部DSと、上記各インバータ装置を上記出力電力値に基づいて制御する出力台数制御部SKと、上記直流電源DCに接続された上記直流電源DCからの出力電力を開閉する開閉器SW1乃至開閉器SWnとから形成されている。   In FIG. 1, the power supply system includes a direct current power source DC composed of solar cells, and a first inverter device PS1 to an nth inverter device PSn that are connected in parallel to the direct current power source DC and convert a direct current output into an alternating current output by an inverter. A power detection unit DS that detects an output power value from the DC power source DC, an output number control unit SK that controls the inverter devices based on the output power value, and the DC power source DC connected to the DC power source DC. The switches SW1 to SWn that open and close the output power from the DC power source DC are formed.

電力検出部DSは、直流電源DCからの出力電力値を検出して出力台数制御部SKに入力する。上記出力台数制御部SKは、台数演算部NAとインバータ選択部CHとで形成され、上記台数演算部NAは、周期ごとの出力電力値と予め定めた高変換率入力電力値に基づいて起動台数を決定し、かつ上記起動台数に応じて出力電力範囲を決定する。上記インバータ選択部CHは、上記決定された起動台数に基づいて、各インバータ装置に起動信号を入力する。   The power detection unit DS detects the output power value from the DC power source DC and inputs it to the output number control unit SK. The output number control unit SK is formed by a number calculation unit NA and an inverter selection unit CH. The number calculation unit NA is based on the output power value for each cycle and a predetermined high conversion rate input power value. And the output power range is determined in accordance with the number of startups. The inverter selection unit CH inputs a start signal to each inverter device based on the determined start number.

第1インバータ制御回路CO1は、出力台数制御部SKから起動信号が入力すると動作を開始し、第1開閉器SW1を閉路して第1インバータ回路PC1に直流電源DCからの出力電力を供給し、かつ、第1インバータ回路PC1を起動させて直流電圧を交流電圧に変換して系統電源ACに供給する。第2インバータ制御回路CO2及び第nインバータ制御回路COnも上記と同一動作を行なう。また、本発明では電源システムのインバータ装置の接続台数を5台に想定して説明する。   The first inverter control circuit CO1 starts operation when a start signal is input from the output number control unit SK, closes the first switch SW1, and supplies output power from the DC power source DC to the first inverter circuit PC1. Further, the first inverter circuit PC1 is activated to convert the DC voltage into an AC voltage and supply it to the system power supply AC. The second inverter control circuit CO2 and the nth inverter control circuit CON also perform the same operation as described above. In the present invention, the number of connected inverter devices in the power supply system is assumed to be five.

次に、本発明の実施の形態の動作を、図2に示すインバータ装置の入力−変換効率特性図と図3に示すフローチャートとを参照して説明する。   Next, the operation of the embodiment of the present invention will be described with reference to the input-conversion efficiency characteristic diagram of the inverter device shown in FIG. 2 and the flowchart shown in FIG.

図3に示すステップ100において、直流電源DSから検出される周期ごとの第1回目の出力を計測して第1回目の出力電力値として算出する。   In step 100 shown in FIG. 3, the first output for each cycle detected from the DC power source DS is measured and calculated as the first output power value.

ステップ200において、本発明のインバータ装置の定格入力電力が、例えば、100KWのインバータ装置であって、図2に示す、変換効率が高い範囲内であって高変換効率率入力電力値が60KWとする。そして、上記算出した第1回目の出力電力値を上記高変換効率入力電力値の60KWで除算して第1回目のインバータ装置の起動台数nを決定する。   In step 200, the rated input power of the inverter device of the present invention is, for example, an inverter device of 100 kW, and the conversion efficiency is within a high range shown in FIG. 2, and the high conversion efficiency rate input power value is 60 kW. . Then, the calculated first output power value is divided by the high conversion efficiency input power value of 60 KW to determine the first startup number n of inverter devices.

ステップ300において、変換効率が高い範囲で、図2より、定格入力電力100KWの40%〜90%のとき、出力電力範囲は下記に示す式
100n×(0.4〜0.9)
より算出し、第1回目の出力電力範囲を(40nKW〜90nKW)とする。また、図2に示す定格入力電力の40%〜90%は、変換効率が92%〜94%と高い変換効率を維持している。
In step 300, when the conversion efficiency is high and from 40% to 90% of the rated input power of 100 KW from FIG. 2, the output power range is an expression shown below.
100 nx (0.4-0.9)
And the first output power range is (40 nKW to 90 nKW). Further, 40% to 90% of the rated input power shown in FIG. 2 maintains a high conversion efficiency of 92% to 94%.

ステップ400において、直流電源DSから検出される周期ごとの第2回目の出力を計測して第2回目の出力電力値として算出する。   In step 400, the second output for each period detected from the DC power source DS is measured and calculated as the second output power value.

ステップ500において、第2回目に算出された出力電力値と第1回目に決定された起動台数nに応じた出力電力範囲(40nKW〜90nKW)とを比較し、上記第2回目の出力電力値が上記第1回目の出力電力範囲内のときにはステップ600に進み、上記出力電力範囲外のときにはステップ700に進む。   In step 500, the output power value calculated at the second time is compared with the output power range (40 nKW to 90 nKW) corresponding to the number n of startups determined at the first time, and the second output power value is When it is within the first output power range, the process proceeds to step 600, and when it is outside the output power range, the process proceeds to step 700.

ステップ600において、上記第2回目の出力電力値が上記第1回目の出力電力範囲(40nKW〜90nKW)内であるので、上記第1回目に決定された起動台数nを維持してステップ800に進む。   In step 600, since the second output power value is within the first output power range (40 nKW to 90 nKW), the number n of startups determined in the first time is maintained, and the process proceeds to step 800. .

ステップ700において、上記第2回目の出力電力値が上記第1回目の出力電力範囲(40nKW〜90nKW)外のときには、上記第2回目に算出した出力電力値を上記高変換効率入力電力値の60KWで除算して再度起動台数nを決定する。   In step 700, when the second output power value is outside the first output power range (40 nKW to 90 nKW), the second calculated output power value is set to 60 KW of the high conversion efficiency input power value. Divide by to determine the number of startups n again.

ステップ800において、
100n×(0.4〜0.9)
の式に、上記再度決定した起動台数nを入力して第2回目の出力電力範囲を算出する。
In step 800,
100 nx (0.4-0.9)
The second determined output power range is calculated by inputting the re-started number n in the above equation.

以上でルーチンが終了し、電源システムの動作が終了するまで、以後上記ステップ400〜ステップ800のルーチンを繰り返す。   The routine from step 400 to step 800 is repeated thereafter until the routine is finished and the operation of the power supply system is finished.

上述したように、上記周期ごとの出力電力値を上記インバータ装置の高変換効率入力電力値で除算して起動台数を決定しているので、日射強度が曇り等によって低下して、上記出力電力値が低くなっても、図2に示す、低変換効率範囲で運転されることがなくなる。   As described above, since the number of starting units is determined by dividing the output power value for each cycle by the high conversion efficiency input power value of the inverter device, the solar radiation intensity decreases due to clouding or the like, and the output power value 2 is not operated in the low conversion efficiency range shown in FIG.

図4は、時間と出力電力値との関係を示すタイミング図である。同図において、上記出力電力範囲は、100n×(0.4〜0.9)の式より算出しているので、上記インバータ装置の起動台数の増加に応じて出力電力範囲が広くなる。上記より図4に示す時刻t=t5において、上記出力電力値に急激な変動が生じても、上記広くなった出力電力範囲の
効果によって上記インバータ装置の起動台数が変化することが減少する。また、時刻t=t6において、上記出力電力範囲はさらに広くなる。
FIG. 4 is a timing chart showing the relationship between time and output power value. In the figure, since the output power range is calculated from the equation of 100n × (0.4 to 0.9), the output power range becomes wider as the number of inverter devices started increases. From the above, even when the output power value fluctuates suddenly at time t = t5 shown in FIG. 4, the number of inverter devices started up is reduced due to the effect of the widened output power range. Further, at time t = t6, the output power range is further widened.

本発明の実施形態に係る太陽電池の電源システムのブロック図である。It is a block diagram of the power supply system of the solar cell which concerns on embodiment of this invention. インバータ装置の入力−変換効率特性を示す線図である。It is a diagram which shows the input-conversion efficiency characteristic of an inverter apparatus. 本発明の実施の形態の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of embodiment of this invention. 本発明の動作を説明するタイミング図である。It is a timing diagram explaining operation | movement of this invention. 従来技術の太陽電池の電源システムのブロック図である。It is a block diagram of the power supply system of the solar cell of a prior art. 従来技術の動作を説明するタイミング図である。It is a timing diagram explaining operation | movement of a prior art.

符号の説明Explanation of symbols

AC 交流系統
CH インバータ選択部
CO1 第1インバータ制御回路
CO2 第2インバータ制御回路
COn 第n3インバータ制御回路
DC 直流電源(太陽電池)
DS 電力検出部
NA 台数演算部
PA 出力電力演算部
PC1 第1インバータ回路
PC2 第2インバータ回路
PCn 第nインバータ回路
PS1 第1インバータ装置
PS2 第2インバータ装置
PSn 第nインバータ装置
SA 出力制御部
SK 出力台数制御部
SW1 第1開閉器
SW2 第2開閉器
SW3 第3開閉器
SW4 第4開閉器
SWn−1 第n−1開閉器
SWn 第n開閉器
































AC AC system CH Inverter selection unit CO1 First inverter control circuit CO2 Second inverter control circuit CONn n3 inverter control circuit DC DC power supply (solar cell)
DS power detection unit NA number calculation unit PA output power calculation unit PC1 first inverter circuit PC2 second inverter circuit PCn nth inverter circuit PS1 first inverter device PS2 second inverter device PSn nth inverter device SA output control unit SK number of outputs Control part SW1 1st switch SW2 2nd switch SW3 3rd switch SW4 4th switch SWn-1 n-1 switch SWn nth switch
































Claims (2)

直流電源に複数台のインバータ装置を並列接続し、前記直流電源からの出力電力値を予め定めた周期で算出し、前記周期ごとの出力電力値に基づいて前記インバータ装置の起動台数を決定して運転する電源システムにおいて、第1回目の周期終了時は、第1回目に算出された前記出力電力値と前記インバータ装置の変換効率が高い範囲内で予め定めた高変換効率入力電力値に基づいて起動台数を決定し、第2回目の周期終了時は、第2回目に算出された前記出力電力値が第1回目に決定された起動台数に応じて定まる出力電力範囲内のときには第1回目の起動台数を維持し、前記出力電力範囲外のときには前記第2回目の出力電力値と前記高変換効率入力電力値に基づいて再度起動台数を決定し、続いて、第n回目の周期終了時は、第n回目に算出された出力電力値と第n−1回目に決定された起動台数に応じて定まる出力電力範囲内のときには第n−1回目の起動台数を維持し、前記出力電力範囲外のときには前記第n回目の出力電力値と前記高変換効率入力電力値に基づいて再度起動台数を決定し、以後、前記と同一処理を繰り返すことを特徴とするインバータ装置の制御方法。   A plurality of inverter devices are connected in parallel to the DC power source, the output power value from the DC power source is calculated at a predetermined cycle, and the number of inverter devices started is determined based on the output power value for each cycle. In the operating power supply system, at the end of the first cycle, based on the output power value calculated at the first time and a high conversion efficiency input power value determined in advance within a range in which the conversion efficiency of the inverter device is high At the end of the second cycle, when the output power value calculated at the second time is within the output power range determined according to the startup number determined at the first time, the first time is determined. The number of activated units is maintained, and when it is out of the output power range, the number of activated units is determined again based on the second output power value and the high conversion efficiency input power value, and then at the end of the nth cycle , Nth When the output power value is within the output power range determined according to the calculated output power value and the number of startups determined for the (n-1) th time, the (n-1) th startup number is maintained, and when it is outside the output power range, the nth time. A control method for an inverter device, wherein the number of activated devices is determined again based on a first output power value and the high conversion efficiency input power value, and thereafter, the same processing as above is repeated. 前記高変換効率入力電力値は前記インバータ装置の変換効率が高い範囲内でありかつ前記インバータ装置の定格入力電力値の1/2を中心値とする所定範囲で予め定めた値であり、前記出力電力範囲は前記高変換効率入力電力値と前記インバータ装置の起動台数との乗算値を中心値とする所定範囲であることを特徴とする請求項1記載のインバータ装置の制御方法。





























The high conversion efficiency input power value is a value determined in advance within a range in which the conversion efficiency of the inverter device is high and a center value of 1/2 of the rated input power value of the inverter device, and the output 2. The method of controlling an inverter device according to claim 1, wherein the power range is a predetermined range having a center value of a product of the high conversion efficiency input power value and the number of activated inverter devices.





























JP2004152881A 2004-05-24 2004-05-24 Inverter control method Expired - Fee Related JP4575026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152881A JP4575026B2 (en) 2004-05-24 2004-05-24 Inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152881A JP4575026B2 (en) 2004-05-24 2004-05-24 Inverter control method

Publications (2)

Publication Number Publication Date
JP2005341634A true JP2005341634A (en) 2005-12-08
JP4575026B2 JP4575026B2 (en) 2010-11-04

Family

ID=35494589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152881A Expired - Fee Related JP4575026B2 (en) 2004-05-24 2004-05-24 Inverter control method

Country Status (1)

Country Link
JP (1) JP4575026B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182836A (en) * 2007-01-25 2008-08-07 Daihen Corp System interconnection inverter system and its power control method
JP2013172567A (en) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd Power control device and power control method
CN104393618A (en) * 2014-11-21 2015-03-04 南车株洲电力机车研究所有限公司 Multi-inversion-unit parallel connection based photovoltaic inverter control method
CN105870951A (en) * 2015-02-11 2016-08-17 Ls产电株式会社 Battery energy storage system
JP2017011901A (en) * 2015-06-23 2017-01-12 株式会社Nttファシリティーズ Control device of photovoltaic power generation system, photovoltaic power generation system, and control program
JP2017189086A (en) * 2016-04-08 2017-10-12 エルエス産電株式会社Lsis Co., Ltd. Method for controlling inverter system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833211A (en) * 1994-07-20 1996-02-02 Sharp Corp Inverter
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833211A (en) * 1994-07-20 1996-02-02 Sharp Corp Inverter
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182836A (en) * 2007-01-25 2008-08-07 Daihen Corp System interconnection inverter system and its power control method
JP2013172567A (en) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd Power control device and power control method
CN104393618A (en) * 2014-11-21 2015-03-04 南车株洲电力机车研究所有限公司 Multi-inversion-unit parallel connection based photovoltaic inverter control method
CN105870951A (en) * 2015-02-11 2016-08-17 Ls产电株式会社 Battery energy storage system
JP2016149926A (en) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co., Ltd. Power supply system including battery energy storage system
US10003199B2 (en) 2015-02-11 2018-06-19 Lsis Co., Ltd. Battery energy storage system
CN105870951B (en) * 2015-02-11 2018-07-17 Ls产电株式会社 Battery energy storage system
JP2017011901A (en) * 2015-06-23 2017-01-12 株式会社Nttファシリティーズ Control device of photovoltaic power generation system, photovoltaic power generation system, and control program
JP2017189086A (en) * 2016-04-08 2017-10-12 エルエス産電株式会社Lsis Co., Ltd. Method for controlling inverter system

Also Published As

Publication number Publication date
JP4575026B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4794189B2 (en) Solar power plant
JP6170258B2 (en) Power control apparatus, power supply system, and control method for power supply system
JP2010158098A (en) Power supply unit and electronic apparatus
JP5589141B2 (en) Operation control device for photovoltaic power generation system
JP2006333625A (en) Operation method of power supply system
JPWO2013121849A1 (en) Adjusting device, assembled battery device and adjusting method
JPWO2016047146A1 (en) Power supply device, power supply system, and power supply method
JP2007244155A (en) Micro hydraulic power generator
CA2743994A1 (en) Secondary battery system
JP6210649B2 (en) Power conversion apparatus and control method thereof
JP2015136202A (en) chopper circuit
JP4575026B2 (en) Inverter control method
KR100963521B1 (en) Minimize Method for Stop and Operation of Photovoltaic Inverter
TW201122753A (en) Voltage scaling systems
JP4530919B2 (en) Uninterruptible power system
JP2005318705A (en) Control method of inverter
JPWO2016063517A1 (en) Power supply device, power supply system, and power supply method
JP4948881B2 (en) Fuel cell system
EP3182548B1 (en) Power supply device, power supply system and power supply method
JP2009165265A (en) Power converter
WO2018021349A1 (en) Power generation unit and method for controlling same
JP5985000B2 (en) Method for supplying energy from a photovoltaic module of a photovoltaic system and an inverter designed to perform the method
JP2006006019A (en) Control method of inverter device
KR101491794B1 (en) A energy supply system associated with electric home appliance and control method thereof
JP2006187071A (en) Method of operating inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Ref document number: 4575026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees