JP2005339885A - Oxide film structure and its manufacturing method - Google Patents

Oxide film structure and its manufacturing method Download PDF

Info

Publication number
JP2005339885A
JP2005339885A JP2004154767A JP2004154767A JP2005339885A JP 2005339885 A JP2005339885 A JP 2005339885A JP 2004154767 A JP2004154767 A JP 2004154767A JP 2004154767 A JP2004154767 A JP 2004154767A JP 2005339885 A JP2005339885 A JP 2005339885A
Authority
JP
Japan
Prior art keywords
film
oxide
sol
substrate
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154767A
Other languages
Japanese (ja)
Other versions
JP4558380B2 (en
Inventor
Naoto Masuyama
直人 桝山
Kenichi Hiwatari
賢一 日渡
Hidekazu Hayama
秀和 羽山
Yuichi Ishikawa
雄一 石川
Hitonori Son
孫  仁徳
Terumi Ikeda
照美 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2004154767A priority Critical patent/JP4558380B2/en
Publication of JP2005339885A publication Critical patent/JP2005339885A/en
Application granted granted Critical
Publication of JP4558380B2 publication Critical patent/JP4558380B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide film structure having a porous film 2 in which a three-dimensional shape is regularly controlled, to provide its manufacturing method, and a dye-sensitized solar cell having high photoelectric conversion efficiency using the oxide film structure 10. <P>SOLUTION: The oxide film structure 10 has a porous film 2 made of a metal oxide formed on a substrate 1 made of glass, a recessed part 3 is formed in the porous film 2, and the recessed part 3 has a shape in which many small globular spaces are continuously formed in a line-shape. The oxide film structure 10 is manufactured by a process forming sol comprising magnetic particles and metal oxide fine particles, a process applying the sol to the substrate 1 and forming a film, a process applying a magnetic field to the film made of the sol and at the same time drying the film, a process forming the porous film 2 by heating and baking the dried film, and a process removing the magnetic particles contained in the porous film 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属酸化物からなる多孔質膜を有する酸化膜構造体およびその製法、ならびにこの酸化膜構造体を用いた色素増感太陽電池に関するものであり、特に多孔質膜の立体形状の制御に関するものである。   The present invention relates to an oxide film structure having a porous film made of a metal oxide, a method for producing the same, and a dye-sensitized solar cell using the oxide film structure, and in particular, control of the three-dimensional shape of the porous film. It is about.

従来、多孔質膜を形成する方法としては、基板上に、金属酸化物微粒子を分散した分散液、金属アルコキシド溶液、金属塩溶液等を、スピンコート法、ブレード法、スプレー法等により塗布し、その後、焼成するゾルゲル法が用いられていた。   Conventionally, as a method for forming a porous film, a dispersion liquid in which metal oxide fine particles are dispersed, a metal alkoxide solution, a metal salt solution, and the like are applied on a substrate by a spin coating method, a blade method, a spray method, etc. Thereafter, a sol-gel method of firing was used.

しかしながら、このような方法では、得られた多孔質膜の形状が一様になるため、その立体形状を規則的に制御することが困難であった。せいぜい、金属酸化物微粒子の粒径を変化させたり、高分子微粒子を分散液や溶液に添加しておき、焼成時に高分子微粒子を熱分解により消散させたりして、細孔を形成する等の制御を行える程度であった。   However, in such a method, since the shape of the obtained porous film becomes uniform, it is difficult to regularly control the three-dimensional shape. At most, the particle size of the metal oxide fine particles is changed, or the fine polymer particles are added to the dispersion or solution, and the fine polymer particles are dissipated by thermal decomposition during firing to form pores, etc. It was just enough to control.

また、これ以外の多孔質膜の製法としては、陽極酸化を利用するものが提案されている(例えば、特許文献1,2,3参照。)。陽極酸化とは、被加工物を陽極として、酸性溶液中において電圧を印加(陽極酸化)することにより、被加工物中にナノスケールの細孔を形成する製法である。
特開2000−178791号公報 特開2000−178792号公報 特開2003−305700号公報
In addition, as a method for producing a porous film other than this, a method utilizing anodization has been proposed (for example, see Patent Documents 1, 2, and 3). Anodization is a method for forming nanoscale pores in a workpiece by applying a voltage (anodic oxidation) in an acidic solution using the workpiece as an anode.
JP 2000-178791 A JP 2000-178792 A JP 2003-305700 A

しかしながら、陽極酸化を利用した上記発明にあっては、多孔質膜自体の立体形状を規則的に制御することが困難であるという問題があった。   However, the above-described invention using anodic oxidation has a problem that it is difficult to regularly control the three-dimensional shape of the porous membrane itself.

本発明は、上記従来技術の問題点に鑑み、多孔質膜の立体形状を規則的に制御することを目的とする。
また、このような多孔質膜を有する酸化膜構造体、およびその製法を提供することを目的とする。
さらに、この酸化膜構造体を用いた光電変換効率が高い色素増感太陽電池を提供することを目的とする。
An object of this invention is to control regularly the three-dimensional shape of a porous membrane in view of the problem of the said prior art.
Moreover, it aims at providing the oxide film structure which has such a porous film, and its manufacturing method.
Furthermore, it aims at providing the dye-sensitized solar cell with high photoelectric conversion efficiency using this oxide film structure.

かかる課題を解決するため、
請求項1にかかる発明は、基板上に、金属酸化物からなる多孔質膜が設けられた酸化膜構造体であって、前記多孔質膜には凹部が形成され、この凹部が、多数の小球状の空間が列状に連続して形成された形状であることを特徴とする酸化膜構造体である。
To solve this problem,
The invention according to claim 1 is an oxide film structure in which a porous film made of a metal oxide is provided on a substrate, wherein the porous film is formed with recesses, and the recesses include a plurality of small films. An oxide film structure having a shape in which spherical spaces are continuously formed in a row.

請求項2にかかる発明は、凹部の深さが1〜3μmであり、この凹部を構成する小球状の空間の直径が0.1〜1μmであることを特徴とする請求項1記載の酸化膜構造体である。   The invention according to claim 2 is characterized in that the depth of the recess is 1 to 3 μm, and the diameter of the small spherical space constituting the recess is 0.1 to 1 μm. It is a structure.

請求項3にかかる発明は、請求項1または2記載の酸化膜構造体の基板が、透明導電膜が形成されているガラス板であることを特徴とする酸化膜構造体である。   The invention according to claim 3 is the oxide film structure, wherein the substrate of the oxide film structure according to claim 1 or 2 is a glass plate on which a transparent conductive film is formed.

請求項4にかかる発明は、請求項3に記載の酸化膜構造体の多孔質膜に光増感色素を担持し、これを作用極として使用したことを特徴とする色素増感太陽電池である。   The invention according to claim 4 is a dye-sensitized solar cell characterized in that a photosensitizing dye is supported on the porous film of the oxide film structure according to claim 3 and used as a working electrode. .

請求項5にかかる発明は、
磁性粒子と金属酸化物微粒子からなるゾルを作製する工程と、
このゾルを基板上に塗布して成膜する工程と、
成膜したゾルに磁界を印加しながら、乾燥させる工程と、
乾燥したゾルを加熱、焼成することにより、多孔質膜を形成する工程と、
この多孔質膜の中に含まれる磁性粒子を除去する工程とを有することを特徴とする酸化膜構造体の製法。
The invention according to claim 5 is:
Producing a sol composed of magnetic particles and metal oxide fine particles;
Applying the sol on a substrate to form a film;
A step of drying while applying a magnetic field to the formed sol;
A step of forming a porous film by heating and baking the dried sol;
And a step of removing magnetic particles contained in the porous film.

請求項6にかかる発明は、基板が、透明導電膜が形成されているガラス板であり、この基板の透明導電膜上に、ゾルを塗布して成膜する工程を有することを特徴とする請求項5記載の酸化膜構造体の製法である。   The invention according to claim 6 is characterized in that the substrate is a glass plate on which a transparent conductive film is formed, and has a step of forming a film by applying a sol on the transparent conductive film of the substrate. Item 6. A method for producing an oxide film structure according to Item 5.

本発明の酸化膜構造体によれば、多孔質膜の立体形状を規則的に制御することができる。
また、本発明の酸化膜構造体の製法によれば、立体形状が規則的に制御された酸化膜構造体を製造することができる。
さらに、本発明の色素増感太陽電池によれば、多孔質膜の実質的な表面積を増大させることが可能であり、光電変換効率が高い色素増感太陽電池を得る可能性がある。
According to the oxide film structure of the present invention, the three-dimensional shape of the porous film can be regularly controlled.
Moreover, according to the manufacturing method of the oxide film structure of the present invention, an oxide film structure whose three-dimensional shape is regularly controlled can be manufactured.
Furthermore, according to the dye-sensitized solar cell of the present invention, the substantial surface area of the porous film can be increased, and a dye-sensitized solar cell with high photoelectric conversion efficiency may be obtained.

本発明の酸化膜構造体の一実施形態を、図1に基づいて説明する。図1において、符号10は本発明の酸化膜構造体の一例を示す。   An embodiment of the oxide film structure of the present invention will be described with reference to FIG. In FIG. 1, the code | symbol 10 shows an example of the oxide film structure of this invention.

この例の酸化膜構造体10は、図1に示すように、基板1と、この基板1の一方の表面に設けられた金属酸化物からなる多孔質膜2と、この多孔質膜2に形成された、多数の小球状の空間が列状に連続して形成された凹部3,3,…とから構成されている。
上記基板1は、FTO(フッ素ドープ酸化スズ)、ATO(アンチモンドープ酸化スズ)等の耐熱性が良好な透明導電膜1aと、普通ガラス、耐熱ガラス、石英ガラス等からなるガラス板1bとからなるものである。なお、ガラス板1bの代わりに、金属またはセラミックス等からなる板を用いてもよい。
As shown in FIG. 1, an oxide film structure 10 of this example is formed on a substrate 1, a porous film 2 made of a metal oxide provided on one surface of the substrate 1, and the porous film 2. A large number of small spherical spaces are formed from recesses 3, 3,... Continuously formed in a row.
The substrate 1 includes a transparent conductive film 1a having good heat resistance such as FTO (fluorine-doped tin oxide) and ATO (antimony-doped tin oxide) and a glass plate 1b made of ordinary glass, heat-resistant glass, quartz glass, or the like. Is. Instead of the glass plate 1b, a plate made of metal or ceramics may be used.

上記多孔質膜2は、基板1の透明導電膜1a上に形成された、厚みが1〜3μmの膜であって、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化ニオブ等の半導性を示す金属酸化物、または、酸化アルミニウム、酸化鉄、酸化鉛等の金属酸化物の微粒子からなっている。また、この多孔質膜2は多孔質であって、その内部に微細な連続気泡や独立気泡が存在するものであり、多数の金属酸化物の微粒子が空隙を介して焼成されて結合したものである。   The porous film 2 is a film having a thickness of 1 to 3 μm formed on the transparent conductive film 1a of the substrate 1 and is made of titanium oxide, tin oxide, tungsten oxide, zinc oxide, zirconium oxide, niobium oxide or the like. It consists of fine particles of a metal oxide exhibiting semiconductivity or metal oxide such as aluminum oxide, iron oxide, lead oxide. The porous film 2 is porous and contains fine open cells and closed cells, and is formed by bonding a large number of fine metal oxide particles through voids. is there.

上記凹部3,3,…は、多孔質膜2の中において、膜厚方向に沿って形成されているものである。この凹部3,3,…を構成する連続した空間の形状は球状であることが好ましいが、これに限定されることなく、楕円球状であってもよい。また、凹部3,3,…の深さは、1〜3μmであり、連続した各空間の直径は0.1〜1μmである。   The recesses 3, 3,... Are formed in the porous film 2 along the film thickness direction. Although the shape of the continuous space which comprises this recessed part 3, 3, ... is preferable spherical shape, it is not limited to this, An elliptical spherical shape may be sufficient. Further, the depth of the recesses 3, 3,... Is 1 to 3 μm, and the diameter of each continuous space is 0.1 to 1 μm.

なお、凹部3,3,…は、図1に示すように、直線状のものだけではなく、その途中において折れ曲がっているもの、傾斜しているものであってもよい。また、この凹部3,3,…の空隙柱密度は1μm当たり5〜10本であり、この密度は酸化膜構造体10において、一様であっても、一様でなくてもよい。 As shown in FIG. 1, the recesses 3, 3,... May be not only linear but also bent or inclined in the middle. Further, the cavity column density of the recesses 3, 3,... Is 5 to 10 per 1 μm 3 , and this density may or may not be uniform in the oxide film structure 10.

このような酸化膜構造体10にあっては、多孔質膜2に多数の凹部3,3,…が形成されているので、形状が一様な膜に比べて実質的な表面積が大きくなり、反応に関与する表面積が増大する。   In such an oxide film structure 10, since a large number of recesses 3, 3,... Are formed in the porous film 2, the substantial surface area becomes larger than a film having a uniform shape, The surface area involved in the reaction increases.

本発明の酸化膜構造体10の製法の一例を、図2に基づいて説明する。
先ず、磁性粒子4aと金属酸化物微粒子からなるゾルを作製する。このゾルは、乾燥、焼成の後に、多孔質膜2となるものである。ゾルを構成する金属酸化物微粒子の材料としては、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化ニオブ等の半導性を示す金属酸化物、または、酸化アルミニウム、酸化鉄、酸化鉛等の金属酸化物であって、粒径が10〜20nmの微粒子が用いられている。
An example of the manufacturing method of the oxide film structure 10 of this invention is demonstrated based on FIG.
First, a sol composed of magnetic particles 4a and metal oxide fine particles is prepared. This sol becomes the porous film 2 after drying and baking. As the material of the metal oxide fine particles constituting the sol, titanium oxide, tin oxide, tungsten oxide, zinc oxide, zirconium oxide, niobium oxide, or other semiconductive metal oxide, or aluminum oxide, iron oxide, oxidation Fine particles having a particle size of 10 to 20 nm, such as lead, are used.

磁性粒子4aは、多孔質膜2に、多数の小球状の空間が列状に連続した凹部3を形成するためのものである。この磁性粒子4aの材料としては、コバルト、ニッケルなどの磁性を示すものであって、粒径が10〜20nmの微粒子が用いられる。   The magnetic particles 4a are for forming the recesses 3 in the porous film 2 in which a large number of small spherical spaces are continuously arranged. As the material of the magnetic particles 4a, fine particles having a particle size of 10 to 20 nm and exhibiting magnetism such as cobalt and nickel are used.

金属酸化物、磁性粒子4aの他に、増粘剤を加えてもよい。この増粘剤は、ゾルと基板1との密着性を向上させるとともに、ゾルの膜形成を容易にするためのものである。この増粘剤の材料としては、エチレングリコール、セルロース誘導体、多糖類等の粘着性を示すものが用いられている。   A thickener may be added in addition to the metal oxide and magnetic particles 4a. The thickener is for improving the adhesion between the sol and the substrate 1 and facilitating the formation of the sol film. As a material for this thickener, an adhesive material such as ethylene glycol, cellulose derivative, polysaccharide, or the like is used.

上記した金属酸化物、磁性粒子4a、増粘剤をイオン交換水などの水、アルコール等の分散媒中において分散し、さらに超音波処理を施す。この超音波の周波数は、10〜30kHz、出力は400〜800W、処理時間は30〜90分、処理温度は0〜10℃である。このような操作により、均一なゾルを作製する。   The above-described metal oxide, magnetic particles 4a, and thickener are dispersed in a dispersion medium such as water such as ion-exchanged water or alcohol, and further subjected to ultrasonic treatment. The frequency of this ultrasonic wave is 10 to 30 kHz, the output is 400 to 800 W, the processing time is 30 to 90 minutes, and the processing temperature is 0 to 10 ° C. By such an operation, a uniform sol is produced.

一方、FTO、ATO等の耐熱性が良好な透明導電膜1aと、普通ガラス、耐熱ガラス、石英ガラス等からなるガラス板1bとからなる基板1を用意し、この基板1の透明導電膜1a上に、作製されたゾルを、スピンコート法、ブレード法、スプレー法等により塗布し、成膜する。この時、ゾル中に存在する磁性粒子4aは、図2(a)に示すように、不規則に分散している。   On the other hand, a substrate 1 comprising a transparent conductive film 1a having good heat resistance such as FTO and ATO and a glass plate 1b made of ordinary glass, heat-resistant glass, quartz glass, etc. is prepared. Then, the produced sol is applied by spin coating, blade, spraying or the like to form a film. At this time, the magnetic particles 4a existing in the sol are irregularly dispersed as shown in FIG.

続いて、基板1上に成膜されたゾルに、磁石5,5を用いて磁界を印加するとともに、このゾルを乾燥させる。磁界の強度は200〜400kA/mである。
磁界を印加すると、不規則に分散していた磁性粒子4aは凝集を始め、直径が0.1〜1μmの磁性凝集体4bを形成する。その後、図2(b)に示すように、この磁性凝集体4bは、磁界の方向に沿って連続的に整列する。また、乾燥を行うことにより、この規則的な磁性凝集体4bの配列は、崩れることなくそのまま保存される。
Subsequently, a magnetic field is applied to the sol formed on the substrate 1 using the magnets 5 and 5, and the sol is dried. The strength of the magnetic field is 200 to 400 kA / m.
When a magnetic field is applied, the irregularly dispersed magnetic particles 4a start to aggregate and form a magnetic aggregate 4b having a diameter of 0.1 to 1 μm. Thereafter, as shown in FIG. 2B, the magnetic aggregates 4b are continuously aligned along the direction of the magnetic field. Further, by performing drying, the regular arrangement of the magnetic aggregates 4b is preserved as it is without breaking.

なお、図2(b)に示した例では、磁界を基板1の垂直方向に印加しているため、磁性凝集体4bはこの方向に沿って整列しているが、本発明はこれに限らず、磁性凝集体4bの整列方向が基板1の表面に対して傾斜するように、磁界を印加してもよい。   In the example shown in FIG. 2B, since the magnetic field is applied in the vertical direction of the substrate 1, the magnetic aggregates 4b are aligned along this direction. However, the present invention is not limited to this. A magnetic field may be applied so that the alignment direction of the magnetic aggregates 4 b is inclined with respect to the surface of the substrate 1.

次に、基板1上の、磁性凝集体4bが整列したゾルを、空気中、加熱炉内において、加熱、焼成する。焼成温度は350〜550℃であり、焼成時間は3〜13時間である。この焼成により、図2(c)に示すように、ゾル中の金属酸化物微粒子が焼結されて結合した多孔質膜2が形成される。   Next, the sol on which the magnetic aggregates 4b are arranged on the substrate 1 is heated and fired in air in a heating furnace. The firing temperature is 350 to 550 ° C., and the firing time is 3 to 13 hours. By this firing, as shown in FIG. 2C, a porous film 2 in which the metal oxide fine particles in the sol are sintered and bonded is formed.

多孔質膜2の内部には、整列した磁性凝集体4bが存在する。そこで、この多孔質膜2を有する酸化膜構造体10を、塩酸水溶液等の磁性凝集体4bを溶解する酸水溶液に浸漬し、この磁性凝集体4bを溶解して除去する。塩酸水溶液の濃度は10〜30重量%である。この操作により、多孔質膜2の内部に、多数の小球状の空間が列状に連続した凹部3,3,…が形成されることになる。以上の製法により、立体形状が規則的に制御された酸化膜構造体10が得られる。   Inside the porous film 2, there are aligned magnetic aggregates 4b. Therefore, the oxide film structure 10 having the porous film 2 is immersed in an acid aqueous solution that dissolves the magnetic aggregate 4b such as a hydrochloric acid aqueous solution, and the magnetic aggregate 4b is dissolved and removed. The concentration of the aqueous hydrochloric acid solution is 10 to 30% by weight. By this operation, concave portions 3, 3,... In which a large number of small spherical spaces are arranged in a row are formed inside the porous membrane 2. By the above manufacturing method, the oxide film structure 10 whose three-dimensional shape is regularly controlled is obtained.

従って、本発明の製法のように、磁性粒子4aと磁石5,5とを用いることにより、多孔質膜2の立体形状を規則的に、かつ、簡便に制御することができる。また、用いる磁性粒子の粒径を、予め決められた値に揃えることにより、凹部3,3,…を構成する小球状の空間の直径を制御することもできる。   Therefore, the three-dimensional shape of the porous film 2 can be controlled regularly and simply by using the magnetic particles 4a and the magnets 5 and 5 as in the production method of the present invention. Moreover, the diameter of the small spherical space which comprises the recessed part 3, 3, ... can also be controlled by aligning the particle size of the magnetic particle to be used to a predetermined value.

本発明の色素増感太陽電池の一例を、図3に基づいて説明する。
本発明の色素増感太陽電池は、上述した酸化膜構造体10のうち、基板1として透明導電膜1aを有するガラス板1bを用いた酸化膜構造体10を、その作用極として用いたものであり、また、多孔質膜2に光増感色素を担持したものである。
An example of the dye-sensitized solar cell of the present invention will be described with reference to FIG.
The dye-sensitized solar cell of the present invention uses the oxide film structure 10 using the glass plate 1b having the transparent conductive film 1a as the substrate 1 among the oxide film structures 10 described above as the working electrode. In addition, the photosensitizing dye is supported on the porous film 2.

この例の色素増感太陽電池は、図3に示すように、作用極21、対極22、電解質層23からなっている。
作用極21は、普通ガラス、耐熱ガラス、石英ガラス等からなる厚みが0.5〜3mmのガラス板24と、このガラス板24の一方の表面に形成されたFTO、ATO等からなる厚みが50〜500nmの透明導電膜25と、この透明導電膜25上に設けられた厚みが0.1〜20μmの酸化物半導体多孔質膜26と、この酸化物半導体多孔質膜26に担持された光増感色素とから構成されている。
The dye-sensitized solar cell of this example includes a working electrode 21, a counter electrode 22, and an electrolyte layer 23 as shown in FIG.
The working electrode 21 is a glass plate 24 having a thickness of 0.5 to 3 mm made of ordinary glass, heat-resistant glass, quartz glass or the like, and a thickness of 50 made of FTO, ATO or the like formed on one surface of the glass plate 24. A transparent conductive film 25 having a thickness of ˜500 nm, an oxide semiconductor porous film 26 having a thickness of 0.1 to 20 μm provided on the transparent conductive film 25, and a photoamplifier carried on the oxide semiconductor porous film 26. It consists of dyes.

上記酸化物半導体多孔質膜26は、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化ニオブ等の半導性を示す金属酸化物微粒子が結合されてなるものであり、その内部には、無数の微細な空孔が形成されており、さらには、多数の小球状の空間が列状に連続した凹部3,3,…が形成されている。そして、この酸化物半導体多孔質膜26の中に上記した光増感色素が担持されている。   The oxide semiconductor porous film 26 is formed by bonding semiconducting metal oxide fine particles such as titanium oxide, tin oxide, tungsten oxide, zinc oxide, zirconium oxide, niobium oxide, and the like. Innumerable fine pores are formed, and furthermore, concave portions 3, 3,... In which a large number of small spherical spaces are arranged in a row are formed. The above-described photosensitizing dye is carried in the oxide semiconductor porous film 26.

上記光増感色素としては、ビピリジン構造、ターピリジン構造などの配位子を含むルテニウム錯体、ポルフィリン、フタロシアニンなどの金属錯体、エオシン、ローダミン、メラシアニンなどの有機色素が用いられ、これらの色素の水溶液またはアルコール溶液を、酸化物半導体多孔質膜26の中に含浸し、乾燥することにより担持される。   As the photosensitizing dye, a ruthenium complex containing a ligand such as a bipyridine structure or a terpyridine structure, a metal complex such as porphyrin or phthalocyanine, or an organic dye such as eosin, rhodamine or melocyanine is used. It is supported by impregnating the alcohol solution into the oxide semiconductor porous film 26 and drying it.

上記対極22には、金属板などの導電性基板、ガラスなどの非導電性基板に白金、金、炭素などの導電膜を蒸着、スパッタ等により形成したもの、非導電性基板上に塩化白金酸溶液を塗布、加熱して白金膜を形成したものが用いられる。   The counter electrode 22 includes a conductive substrate such as a metal plate, a nonconductive substrate such as glass formed by depositing a conductive film such as platinum, gold, and carbon by sputtering, chloroplatinic acid on the nonconductive substrate. What formed the platinum film | membrane by apply | coating and heating a solution is used.

上記電解質層23には、ヨウ素/ヨウ素イオンなどのレドックス対を含む非水溶液からなる電解液、ヨウ化銅、チオシアン銅などの無機p型半導体からなる固体の電荷移送体などが用いられる。固体電荷移送体を用いた場合には、電解液の漏出、揮発の問題がない。
さらに、作用極21と対極22とは、その間に電解質層23を挟んだ状態で、その周囲が樹脂等で封じられることにより、色素増感太陽電池となっている。
For the electrolyte layer 23, an electrolytic solution made of a non-aqueous solution containing a redox pair such as iodine / iodine ions, a solid charge transfer body made of an inorganic p-type semiconductor such as copper iodide, thiocyanic copper, or the like is used. When a solid charge transfer body is used, there is no problem of electrolyte leakage and volatilization.
Furthermore, the working electrode 21 and the counter electrode 22 are a dye-sensitized solar cell by sealing the periphery with a resin or the like with the electrolyte layer 23 sandwiched therebetween.

このような構造の色素増感太陽電池にあっては、発電に寄与する半導体膜構造体21の実質的な表面積が増大し、その空孔の表面に付着している光増感色素の量も増大し、光電変換効率の高いものとなる。   In the dye-sensitized solar cell having such a structure, the substantial surface area of the semiconductor film structure 21 contributing to power generation is increased, and the amount of the photosensitizing dye attached to the surface of the pores is also increased. The photoelectric conversion efficiency is increased.

[具体例]
以下、具体例を示す。
先ず、ゾルの作製を行った。酸化チタン微粒子(粒径5〜30nm)と増粘剤であるエチレングリコールとをイオン交換水で混合し、スラリーを作製した。このスラリーに、磁性粒子4aであるニッケル粒子を体積分率で10%となるように混合した。
[Concrete example]
Specific examples are shown below.
First, a sol was prepared. Titanium oxide fine particles (particle size 5 to 30 nm) and ethylene glycol as a thickener were mixed with ion-exchanged water to prepare a slurry. To this slurry, nickel particles as magnetic particles 4a were mixed so that the volume fraction became 10%.

一方、厚みが1.8mmの耐熱ガラス板の一方の表面に、厚み1μmのATO膜を形成した基板1を用意し、この基板1のATO膜上に、作製したゾルを、ドクターブレード法により塗布し、成膜した。続いて、成膜されたゾルに、磁界を基板1の垂直方向に印加した。磁界の強度は320kA/mであった。また、磁界の印加とともに、このゾルを乾燥した。   On the other hand, a substrate 1 having an ATO film having a thickness of 1 μm formed on one surface of a heat-resistant glass plate having a thickness of 1.8 mm is prepared, and the prepared sol is applied onto the ATO film of the substrate 1 by a doctor blade method. Then, a film was formed. Subsequently, a magnetic field was applied in the vertical direction of the substrate 1 to the formed sol. The strength of the magnetic field was 320 kA / m. The sol was dried with the application of a magnetic field.

乾燥後、ゾルを空気中、加熱炉において、加熱、焼成した。焼成温度は450℃であり、焼成時間は10時間であった。これにより、ニッケル粒子を含む多孔質膜2を得た。
続いて、この多孔質膜2を有する酸化膜構造体10を20体積%の塩酸水溶液に浸漬し、ニッケル粒子を溶解して除去した。この操作により、多数の小球状の空間が列状に連続した凹部3,3,…が形成されている多孔質膜2を得た。
After drying, the sol was heated and fired in air in a heating furnace. The firing temperature was 450 ° C. and the firing time was 10 hours. Thereby, the porous membrane 2 containing nickel particles was obtained.
Subsequently, the oxide film structure 10 having the porous film 2 was immersed in a 20% by volume hydrochloric acid aqueous solution to dissolve and remove the nickel particles. By this operation, a porous membrane 2 was obtained in which a plurality of small spherical spaces were formed with recesses 3, 3,.

この多孔質膜2の走査型電子顕微鏡写真を、図4に示す。この写真から、多孔質膜2の中に、凹部3,3,…が形成されていることが確認された。凹部3,3,…の深さは1〜3μmであり、この凹部を構成する小球状の空間の直径は0.1〜1μmであった。   A scanning electron micrograph of the porous membrane 2 is shown in FIG. From this photograph, it was confirmed that the recesses 3, 3,... Were formed in the porous film 2. The depth of the recesses 3, 3,... Is 1 to 3 μm, and the diameter of the small spherical space constituting the recess is 0.1 to 1 μm.

上述の製法により得られた酸化膜構造体10を用いて、色素増感太陽電池の作用極21を作製した。
酸化膜構造体10の酸化チタンからなる多孔質膜2に光増感色素を担持した。この光増感色素にはルテニウム錯体を用い、これの0.2重量%アルコール溶液を多孔質膜2に滴下し、乾燥した。これにより、酸化膜構造体10を用いた色素増感太陽電池の作用極21を得た。
A working electrode 21 of a dye-sensitized solar cell was manufactured using the oxide film structure 10 obtained by the above-described manufacturing method.
A photosensitizing dye was supported on the porous film 2 made of titanium oxide of the oxide film structure 10. A ruthenium complex was used as the photosensitizing dye, and a 0.2 wt% alcohol solution thereof was dropped onto the porous film 2 and dried. Thereby, the working electrode 21 of the dye-sensitized solar cell using the oxide film structure 10 was obtained.

本発明の酸化膜構造体10の製法は、色素増感太陽電池の作用極21の製法として有用であるほか、これ以外の燃料電池や2次電池等の電極膜の製法として使用できる。   The manufacturing method of the oxide film structure 10 of the present invention is useful as a manufacturing method of the working electrode 21 of the dye-sensitized solar cell, and can be used as a manufacturing method of electrode films of other fuel cells and secondary batteries.

本発明の酸化膜構造体の一例を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically an example of the oxide film structure of this invention. 本発明の酸化膜構造体の製法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the oxide film structure of this invention. 本発明の色素増感太陽電池の一例を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically an example of the dye-sensitized solar cell of this invention. 具体例で得られた多孔質膜の走査型電子顕微鏡写真で、この多孔質膜中に凹部が形成されている状態を示すものである。The scanning electron micrograph of the porous film obtained in the specific example shows a state in which a recess is formed in the porous film.

符号の説明Explanation of symbols

1・・・基板、1a・・・透明導電膜、1b・・・ガラス板、2・・・多孔質膜、3・・・細孔、4a・・・磁性粒子、10・・・酸化膜構造体、21・・・作用極

DESCRIPTION OF SYMBOLS 1 ... Substrate, 1a ... Transparent conductive film, 1b ... Glass plate, 2 ... Porous film, 3 ... Fine pore, 4a ... Magnetic particle, 10 ... Oxide film structure Body, 21 ... Working electrode

Claims (6)

基板上に、金属酸化物からなる多孔質膜が設けられた酸化膜構造体であって、
前記多孔質膜には凹部が形成され、この凹部が、多数の小球状の空間が列状に連続して形成された形状であることを特徴とする酸化膜構造体。
An oxide film structure in which a porous film made of a metal oxide is provided on a substrate,
A concave portion is formed in the porous film, and the concave portion has a shape in which a large number of small spherical spaces are continuously formed in a row.
凹部の深さが1〜3μmであり、この凹部を構成する小球状の空間の直径が0.1〜1μmであることを特徴とする請求項1記載の酸化膜構造体。   2. The oxide film structure according to claim 1, wherein the depth of the recess is 1 to 3 [mu] m, and the diameter of the small spherical space constituting the recess is 0.1 to 1 [mu] m. 請求項1または2記載の酸化膜構造体の基板が、透明導電膜が形成されているガラス板であることを特徴とする酸化膜構造体。   3. The oxide film structure according to claim 1, wherein the substrate of the oxide film structure is a glass plate on which a transparent conductive film is formed. 請求項3に記載の酸化膜構造体の多孔質膜に光増感色素を担持し、これを作用極として使用したことを特徴とする色素増感太陽電池。   A dye-sensitized solar cell, wherein a photosensitizing dye is supported on the porous film of the oxide film structure according to claim 3 and used as a working electrode. 磁性粒子と金属酸化物微粒子からなるゾルを作製する工程と、
このゾルを基板上に塗布して成膜する工程と、
成膜したゾルに磁界を印加しながら、乾燥させる工程と、
乾燥したゾルを加熱、焼成することにより、多孔質膜を形成する工程と、
この多孔質膜の中に含まれる磁性粒子を除去する工程とを有することを特徴とする酸化膜構造体の製法。
Producing a sol composed of magnetic particles and metal oxide fine particles;
Applying the sol on a substrate to form a film;
A step of drying while applying a magnetic field to the formed sol;
A step of forming a porous film by heating and baking the dried sol;
And a step of removing magnetic particles contained in the porous film.
基板が、透明導電膜が形成されているガラス板であり、この基板の透明導電膜上に、ゾルを塗布して成膜する工程を有することを特徴とする請求項5記載の酸化膜構造体の製法。

6. The oxide film structure according to claim 5, wherein the substrate is a glass plate on which a transparent conductive film is formed, and has a step of forming a film by applying a sol on the transparent conductive film of the substrate. The manufacturing method.

JP2004154767A 2004-05-25 2004-05-25 Oxide film structure and manufacturing method thereof Active JP4558380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154767A JP4558380B2 (en) 2004-05-25 2004-05-25 Oxide film structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154767A JP4558380B2 (en) 2004-05-25 2004-05-25 Oxide film structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005339885A true JP2005339885A (en) 2005-12-08
JP4558380B2 JP4558380B2 (en) 2010-10-06

Family

ID=35493219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154767A Active JP4558380B2 (en) 2004-05-25 2004-05-25 Oxide film structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4558380B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567379C (en) * 2006-11-10 2009-12-09 中国科学院化学研究所 A kind of organic ordered porous structural film and method for making thereof that strengthens photoelectric transformation efficiency
JP2014177695A (en) * 2013-02-15 2014-09-25 Sekisui Chem Co Ltd Manufacturing method of composite film, composite film, optical electrode, and dye-sensitized solar cell
KR102419571B1 (en) * 2021-12-07 2022-07-11 (주)한국원자력 엔지니어링 Method for manufacturing porous substrate and porous substrate manufactured by the method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021462A (en) * 1998-07-03 2000-01-21 Toyota Central Res & Dev Lab Inc Manufacture of oxide semiconductor electrode
JP2002175843A (en) * 2000-12-07 2002-06-21 Japan Gore Tex Inc Optical electrode and photochemical cell using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021462A (en) * 1998-07-03 2000-01-21 Toyota Central Res & Dev Lab Inc Manufacture of oxide semiconductor electrode
JP2002175843A (en) * 2000-12-07 2002-06-21 Japan Gore Tex Inc Optical electrode and photochemical cell using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567379C (en) * 2006-11-10 2009-12-09 中国科学院化学研究所 A kind of organic ordered porous structural film and method for making thereof that strengthens photoelectric transformation efficiency
JP2014177695A (en) * 2013-02-15 2014-09-25 Sekisui Chem Co Ltd Manufacturing method of composite film, composite film, optical electrode, and dye-sensitized solar cell
KR102419571B1 (en) * 2021-12-07 2022-07-11 (주)한국원자력 엔지니어링 Method for manufacturing porous substrate and porous substrate manufactured by the method

Also Published As

Publication number Publication date
JP4558380B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
KR101060463B1 (en) Method of preparing graphene deposited counter electrodes by electro-phoretic deposition, counter electrodes prepared by the method and dye-sensitized solar cell comprising the electrodes
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
Guerin et al. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications
JP4446011B2 (en) Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
Sedghi et al. Influence of TiO2 electrode properties on performance of dye-sensitized solar cells
Li et al. Fine tuning of nanocrystal and pore sizes of TiO2 submicrospheres toward high performance dye-sensitized solar cells
WO2004064192A1 (en) Photoelectric conversion element and process for fabricating the same, electronic device and process for fabricating the same
TW201115809A (en) Method for manufacturing an electrode
Chava et al. Synthesis and electrophoretic deposition of hollow-TiO2 nanoparticles for dye sensitized solar cell applications
JP2004311355A (en) Manufacturing method of substrate for electrode
KR101153947B1 (en) Manufacture Method of Partially Reduced Graphine Film By Heating and Manufacture Method of Counter Electrode of Dye-Sensitized Solar Cell
US20140295102A1 (en) Sintering process of metal oxide based formulations
Wang et al. In situ preparation of hierarchically structured dual-layer TiO2 films by E-spray method for efficient dye-sensitized solar cells
JP2007179766A (en) Dye-sensitized solar cell
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP2004311354A (en) Manufacturing method of substrate for electrode
JP2007311243A (en) Action electrode and photoelectric conversion element
JP4558380B2 (en) Oxide film structure and manufacturing method thereof
JP4606775B2 (en) Concave oxide film structure
KR101563261B1 (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
JP2004319131A (en) Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure
JP2007149682A (en) Composition for low temperature sintering semiconductor electrode and dye-sensitized solar cell using the composition
JP5160045B2 (en) Photoelectric conversion element
JP5211281B2 (en) Metal oxide porous film formed with a plurality of three-dimensional structures made of zinc oxide, its production method, and dye-sensitized solar cell using the same
JP2004319197A (en) Photoelectric conversion element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250