JP2005338776A - Toner for electrophotographic apparatus and electrophotographic apparatus using the same - Google Patents

Toner for electrophotographic apparatus and electrophotographic apparatus using the same Download PDF

Info

Publication number
JP2005338776A
JP2005338776A JP2005079796A JP2005079796A JP2005338776A JP 2005338776 A JP2005338776 A JP 2005338776A JP 2005079796 A JP2005079796 A JP 2005079796A JP 2005079796 A JP2005079796 A JP 2005079796A JP 2005338776 A JP2005338776 A JP 2005338776A
Authority
JP
Japan
Prior art keywords
toner
transfer
formula
electrophotographic apparatus
charge control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079796A
Other languages
Japanese (ja)
Inventor
Natsuki Kuribayashi
夏城 栗林
Hiroyoshi Matsumoto
博好 松本
Hisao Okada
久雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Ricoh Printing Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Printing Systems Ltd filed Critical Ricoh Printing Systems Ltd
Priority to JP2005079796A priority Critical patent/JP2005338776A/en
Publication of JP2005338776A publication Critical patent/JP2005338776A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce scattering of a toner and to obtain high image quality in electrostatic transfer of an electrophotographic process. <P>SOLUTION: The toner used for an electrophotographic apparatus is so prepared that the number N (piece) of a charge controlling agent existing on the surface of one piece of the toner satisfies formula (1) and formula (2) when the average radius of the toner is defined as r (μm) and the electrostatic charge quantity per unit weight of the toner as q/m (μC/g). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真装置用トナーおよびそれを用いた電子写真装置に関するものである。   The present invention relates to a toner for an electrophotographic apparatus and an electrophotographic apparatus using the same.

以下、従来の現像方法と現像装置について説明する。電子写真方式を用いた記録装置は、感光体上に帯電、露光により静電潜像を形成し、着色粒子を現像して画像として顕像化させた後、記録体表面に着色粒子を転写し、定着させる工程からなる。着色粒子には電子写真専用のトナーと呼ばれる粉末が用いられる。   Hereinafter, a conventional developing method and developing apparatus will be described. A recording apparatus using an electrophotographic method forms an electrostatic latent image on a photosensitive member by charging and exposure, develops the colored particles, and visualizes them as an image, and then transfers the colored particles to the surface of the recording member. The fixing step. As the colored particles, a powder called toner exclusively for electrophotography is used.

感光体はその表面の全面が一旦帯電され、続いて光を照射することにより部分的な電荷放電が行われる。ここに、感光体表面には帯電領域と露光領域による電位コントラストが形成され、これを静電潜像と呼ぶ。   The entire surface of the photosensitive member is once charged, and then a partial charge discharge is performed by irradiating light. Here, a potential contrast between the charged area and the exposed area is formed on the surface of the photoreceptor, which is called an electrostatic latent image.

現像工程では、まず、現像剤を用いて着色粒子であるトナー粒子を帯電させる。現像剤にはトナーと磁性粒子であるキャリアビーズの混合粉体からなる二成分系の場合とトナーのみから成る一成分系の場合とがある。現像剤は現像装置の中に封じ込められそこで攪拌される。その際、二成分現像剤の場合、トナーはキャリアビーズとの摩擦により帯電する。一成分現像剤の場合、部材などとの摩擦によりトナーの帯電が行なわれる。   In the development step, first, toner particles, which are colored particles, are charged using a developer. The developer includes a two-component system composed of a mixed powder of toner and carrier beads, which are magnetic particles, and a one-component system composed of only toner. The developer is contained in a developing device and stirred there. At that time, in the case of a two-component developer, the toner is charged by friction with the carrier beads. In the case of a one-component developer, the toner is charged by friction with a member or the like.

以下、二成分現像剤の場合について説明する。   Hereinafter, the case of a two-component developer will be described.

トナーは平均粒径が6〜10μm程度の微粒子で成分の90%以上が樹脂であり、その他に色剤(カーボンブラックや顔料)、帯電制御剤、外添剤、ワックスなどを内包している。トナーは粒径30〜100μm程度のキャリアビーズとの混合撹拌によりキャリアビーズと接触する際に摩擦帯電し、何回かの接触を繰り返した後、最終的にはどれかのキャリアビーズ表面に静電的に付着する。トナーはキャリアビーズとの接触によってのみ帯電するので、トナー表面は完全に均一に帯電しているわけではなく、局所的な帯電領域が点在している。   The toner is a fine particle having an average particle size of about 6 to 10 μm, and 90% or more of the component is a resin, and further contains a colorant (carbon black or pigment), a charge control agent, an external additive, wax and the like. The toner is triboelectrically charged when contacting with the carrier beads by mixing and stirring with the carrier beads having a particle size of about 30 to 100 μm, and after repeated contact several times, finally the electrostatic charge is applied to any of the carrier beads. Adheres. Since the toner is charged only by contact with the carrier beads, the surface of the toner is not completely uniformly charged, and local charging regions are scattered.

樹脂は一般には摩擦により負帯電し易いので、トナーを正帯電させるには正に帯電する帯電制御剤がその役割を担う。帯電制御剤は金属錯体などの導電性の高い物質で、帯電しやすい性質を持ち、正帯電、負帯電のための様々な物質が使われている。   Since resin is generally easily negatively charged by friction, a positively charged charge control agent plays a role in positively charging the toner. The charge control agent is a highly conductive substance such as a metal complex, and has a property of being easily charged, and various substances for positive charge and negative charge are used.

すなわち、トナー表面の存在している帯電制御剤とキャリアビーズが接触して帯電し、トナー表面には帯電制御剤の部分に局在電荷が存在する。負帯電させる場合も樹脂よりもより負帯電しやすい性質を持つ帯電制御剤を用いて、トナー帯電量をコントロールしている。   That is, the charge control agent present on the toner surface and the carrier beads come into contact with each other to be charged, and the local charge exists in the charge control agent portion on the toner surface. In the case of negative charging, the charge amount of toner is controlled by using a charge control agent having a property of being more negatively charged than resin.

破砕トナーの場合、帯電制御剤はあらかじめ樹脂と混練されて凝固してから破砕によってトナーが作製されるのでトナー表面にほぼ均等に存在することになる。重合トナーの場合は製造方法が種々あるが、トナー表面に存在する帯電制御剤は上述したようにトナーの帯電を担う材料であるのでほぼ均等に分布していると考えられる。   In the case of the crushed toner, the charge control agent is kneaded with the resin in advance and solidified, and then the toner is produced by crushing. In the case of a polymerized toner, there are various production methods. However, it is considered that the charge control agent present on the toner surface is almost uniformly distributed because it is a material responsible for charging the toner as described above.

二成分現像剤の場合は、感光体表面の静電潜像を「磁気ブラシ」で擦ることによりトナーの現像を行う。磁気ブラシとは磁性体粒子であるキャリアビーズが磁石の力で穂立ちしてブラシ状に形成されたもので、個々のキャリアビーズには前述の帯電トナーが付着している。磁気ブラシは静電潜像に対向する現像位置まで現像ローラと呼ばれる磁石を用いた回転ローラにより搬送される。このような現像方法を磁気ブラシ現像と呼ぶ。   In the case of a two-component developer, the toner is developed by rubbing the electrostatic latent image on the surface of the photoreceptor with a “magnetic brush”. The magnetic brush is formed by brushing carrier beads, which are magnetic particles, by the force of a magnet and formed in a brush shape, and the above-mentioned charged toner adheres to each carrier bead. The magnetic brush is conveyed to a developing position facing the electrostatic latent image by a rotating roller using a magnet called a developing roller. Such a development method is called magnetic brush development.

また、静電潜像の顕像化の促進手段として、バイアス現像と呼ばれる方法がよく用いられる。バイアス現像では、現像ローラにバイアス電圧を印加し、感光体表面に形成された潜像電位と現像ローラとの間に発生する電界の作用により帯電されたトナー粒子を現像ローラ上のキャリアビーズから分離して感光体表面に移動させることにより現像が行われる。潜像電位(すなわち感光体の像形成部分の電位)として、前述の帯電電位を用いてもよいし、露光電位を用いてもよい。   Also, a method called bias development is often used as means for promoting visualization of an electrostatic latent image. In bias development, a bias voltage is applied to the developing roller to separate charged toner particles from carrier beads on the developing roller by the action of an electric field generated between the latent image potential formed on the surface of the photoreceptor and the developing roller. Then, development is performed by moving it to the surface of the photoreceptor. As the latent image potential (that is, the potential of the image forming portion of the photoconductor), the above-described charging potential or the exposure potential may be used.

一般に、潜像電位として帯電電位を用いる方法を正規現像法、露光電位を用いる方法を反転現像法と呼ぶ。帯電電位と露光電位のうち潜像電位として用いられない側の電位を背景電位と呼ぶ。現像ローラのバイアス電圧は帯電電位と露光電位の中間に設定され、潜像電位との差を現像電位差と呼ぶ。同様に、背景電位との差を背景電位差と呼ぶ。通常、背景電位差より現像性能そのものを左右する現像電位差の方を大きく設定する。現像電位差が大きければ形成される電界(現像電界と呼ぶ)が強くなるので現像性能(トナー現像量)が多くなることは言うまでもなく、バイアス電圧によってトナー現像量が変わる。現像ローラと感光体との現像ローラの回転速度を上げる方法、距離を狭くする方法、現像剤の電気抵抗を低下させる方法によってもこれと同様に現像電界を強める効果があり、トナー現像量を多くすることができる。   In general, a method using a charging potential as a latent image potential is called a normal development method, and a method using an exposure potential is called a reversal development method. Of the charging potential and the exposure potential, the potential that is not used as the latent image potential is called the background potential. The bias voltage of the developing roller is set between the charging potential and the exposure potential, and the difference between the latent image potential is called a developing potential difference. Similarly, the difference from the background potential is called the background potential difference. Usually, the developing potential difference that determines the developing performance itself is set larger than the background potential difference. If the development potential difference is large, the electric field formed (referred to as the development electric field) becomes strong, and it goes without saying that the development performance (toner development amount) increases, and the toner development amount varies depending on the bias voltage. A method of increasing the developing roller rotation speed between the developing roller and the photosensitive member, a method of reducing the distance, and a method of reducing the electric resistance of the developer have the same effect as increasing the developing electric field, and increase the amount of toner development. can do.

次に転写工程について説明する。感光体上に現像されたトナーは2〜3層に積み重ねられている。トナーは感光体と静電付着しており、トナー同士も同様の静電力で凝集しているので、現像工程の後、現像バイアス電圧が取り除かれても感光体上に層状に凝集している。このトナー画像を用紙などの記録媒体に転写する方法としては、用紙を感光体に近づけてトナー層を感光体との間で挟み込み、用紙の裏面からトナーに用紙側への静電引力が加わるような転写電界を与えて用紙上に転写する静電転写方式が一般的である。具体的な方法としては、コロナ帯電器により用紙裏面にトナーと逆極性の電荷を与える方法(コロナ転写)や用紙裏面からローラで押付けてローラにはトナーと逆極性の電圧を印加する方法(ローラ転写)などがある。   Next, the transfer process will be described. The toner developed on the photoreceptor is stacked in two to three layers. The toner is electrostatically attached to the photoconductor, and the toners are aggregated with the same electrostatic force. Therefore, even after the development process, the toner is aggregated in layers on the photoconductor even if the development bias voltage is removed. As a method of transferring the toner image to a recording medium such as paper, the paper is brought close to the photoconductor and the toner layer is sandwiched between the photoconductor and the electrostatic attraction force from the back side of the paper to the toner on the paper side. An electrostatic transfer method in which a transfer electric field is applied and transferred onto a sheet is generally used. Specific methods include applying a reverse polarity charge to the toner using a corona charger (corona transfer), or applying a reverse voltage to the roller by pressing the roller from the back of the paper with a roller (roller). Transcription).

用紙上へ転写されたトナー画像は、感光体上のトナー画像を忠実に再現した鏡像になっていることが望ましい。また、弱い転写電界では多層のトナーすべてを転写することができないので、強い転写電界を印加する必要がある。しかし、強い転写電界をかけるとコロナ転写、ローラ転写いずれの場合も用紙と感光体とのギャップでパッシェン放電が起こり、トナーを逆帯電させて転写時にトナーの飛散りを引き起こす。結果として用紙上に転写されたトナー画像は感光体上のトナー画像と比べて線画の両側や網点のドットの周りにトナーが飛散るなどの画質劣化を引き起こす。転写時におけるトナーの飛散りについては非特許文献1などで示されている。   The toner image transferred onto the paper is preferably a mirror image that faithfully reproduces the toner image on the photoreceptor. Further, since it is not possible to transfer all the multilayer toners with a weak transfer electric field, it is necessary to apply a strong transfer electric field. However, when a strong transfer electric field is applied, Paschen discharge occurs in the gap between the paper and the photoconductor in both corona transfer and roller transfer, and the toner is reversely charged, causing toner scattering during transfer. As a result, the toner image transferred onto the paper causes image quality degradation such as toner scattering on both sides of the line drawing and around the dots of halftone dots, compared to the toner image on the photoreceptor. Non-patent document 1 shows the scattering of toner at the time of transfer.

高橋 岩井 飯野 小杉 Japan Hardcopy 2003講演論文集 日本画像学会(2003)P53Takahashi Iwai Iino Kosugi Japan Hardcopy 2003 Lecture Collection The Imaging Society of Japan (2003) P53

竹内 電子写真学会誌Vol.36 No.3(1997)P175Takeuchi The Journal of Electrophotographic Society Vol. 36 No. 3 (1997) P175

大谷 竹内 日本画像学会誌Vol.40 No.1(2001)P24Takeshi Otani Journal of the Imaging Society of Japan Vol. 40 No. 1 (2001) P24

長谷 村田 静電気学会誌Vol.22 No.1(1998)P23Hase Murata Journal of the Electrostatic Society of Japan, Vol. No. 22 1 (1998) P23

村田 日本画像学会誌Vol.39 No.3(2000)P248Murata Journal of the Imaging Society of Japan Vol. 39 no. 3 (2000) P248

特開2003−91100号公報JP 2003-91100 A

以上に述べたように、静電転写においてはトナーの飛散りを低減して高画質を得ることが課題であり、本発明はその手段を提供するものである。   As described above, in electrostatic transfer, it is an object to obtain high image quality by reducing toner scattering, and the present invention provides a means for this.

本発明は静電転写においてトナーの飛散りを低減するためにトナー表面の帯電制御剤の大きさについて条件を設定するものである。電子写真装置においてはトナーの単位重量当りの帯電量q/mは10〜25μC/gのものがほとんどである。その理由は感光体の表面電位の上限が1000V程度(表面の電荷密度にして1.0×10−3〜2.0×10−3C/m)であることと、トナーの粒径が6〜10μm程度であることである。6〜10μm程度のトナーを感光体上に2〜3層現像して、表面電荷密度が1.0×10−3〜2.0×10−3C/m程度になるためには帯電量は10〜25μC/g程度にしなければならない。 In the present invention, conditions are set for the size of the charge control agent on the toner surface in order to reduce toner scattering in electrostatic transfer. In an electrophotographic apparatus, the charge amount q / m per unit weight of toner is mostly 10 to 25 μC / g. The reason is that the upper limit of the surface potential of the photoreceptor is about 1000 V (1.0 × 10 −3 to 2.0 × 10 −3 C / m 2 in terms of surface charge density), and the toner particle size is It is about 6-10 micrometers. To develop 2 to 3 layers of toner having a size of about 6 to 10 μm on the photoreceptor, the surface charge density is about 1.0 × 10 −3 to 2.0 × 10 −3 C / m 2. Must be about 10-25 μC / g.

そこで、帯電量がq/m、半径rの球形トナーの場合について付着力を考察する。非特許文献2による実験結果ではトナー1個の感光体との付着力は1.0×10−7N程度である。トナーを球形状として密度pとすると1個のトナー電荷量Qは、式3で表される。
(式3)

Figure 2005338776
Therefore, the adhesion force is considered for a spherical toner having a charge amount of q / m and a radius r. According to the experimental results according to Non-Patent Document 2, the adhesion force of one toner to the photoreceptor is about 1.0 × 10 −7 N. When the toner is spherical and the density is p, one toner charge amount Q is expressed by Equation 3.
(Formula 3)
Figure 2005338776

式3にて、q/m=17.5μC/g、r=5μm、p=1.1×10kg/mとすると、Q=1.0×10−14Cとなる。 In Equation 3, when q / m = 17.5 μC / g, r = 5 μm, and p = 1.1 × 10 3 kg / m 3 , Q = 1.0 × 10 −14 C.

次に、トナー表面が均一帯電であると仮定すると感光体表面との鏡像力は、式4で表される。
(式4)

Figure 2005338776
Next, assuming that the toner surface is uniformly charged, the mirror image force with respect to the surface of the photoreceptor is expressed by Expression 4.
(Formula 4)
Figure 2005338776

式4にて、εr=3、Q=1.0×10−14C、r=5μmとすると、F=4.5×10−9Nとなって、1.0×10−7Nとは明らかに異なる。前述したようにトナー表面は帯電制御剤の部分が局所帯電しているとしてトナー表面にN個の局所電荷を仮定すると、1個の局所電荷に作用する鏡像力は、式5で表される。
(式5)

Figure 2005338776
In Equation 4, if εr = 3, Q = 1.0 × 10 −14 C, and r = 5 μm, F = 4.5 × 10 −9 N and 1.0 × 10 −7 N Obviously different. As described above, assuming that the toner surface is locally charged in the charge control agent portion and assuming N local charges on the toner surface, the mirror image force acting on one local charge is expressed by Equation 5.
(Formula 5)
Figure 2005338776

式5にて、ε=3、d=0.1μm、N=11とすると、F=0.93×10−7Nとなり、1.0×10−7Nとほぼ一致する。 In Equation 5, when ε r = 3, d = 0.1 μm, and N = 11, F = 0.93 × 10 −7 N, which is substantially equal to 1.0 × 10 −7 N.

非特許文献3による実験結果では、トナーに含まれる帯電制御剤の平均粒径は0.2μm程度で、表面上に15個ほどが存在していると考えられ、上記の結果とほぼ一致する。すなわち、このような局所電荷により感光体や他のトナーとの間に付着力が働く。トナー間の付着力は帯電制御剤に局在している局所電荷とトナー樹脂表面との鏡像力である。なお、トナー表面が均一に帯電している場合はトナー間で静電的な引力は働かない。   According to the experimental results by Non-Patent Document 3, it is considered that the average particle diameter of the charge control agent contained in the toner is about 0.2 μm, and there are about 15 particles on the surface, which is almost in agreement with the above results. That is, an adhesive force acts between the photoreceptor and other toners due to such local charges. The adhesion force between the toners is a mirror image force between the local charge localized on the charge control agent and the toner resin surface. When the toner surface is uniformly charged, no electrostatic attractive force acts between the toners.

静電転写の際にこのようなトナー間に働く付着力に抗して、トナーが飛散るのは放電によるトナーの逆帯電が影響すると考えられる。ギャップ放電によってトナー表面には逆極性電荷が付着し、この逆極性電荷どうしの反発力がトナー飛散りの主な原因である。しかし他にもトナー層と用紙などとの接触の際に放電が関与しない原因で飛び散ることも考えられる。   It is conceivable that the toner scattering against the adhesion force acting between the toners during electrostatic transfer is affected by the reverse charging of the toner due to discharge. The reverse polarity charge adheres to the toner surface due to the gap discharge, and the repulsive force between the opposite polarity charges is the main cause of toner scattering. However, it is also conceivable that the toner layer scatters due to the fact that the discharge is not involved in contact between the toner layer and the paper.

この飛散りはトナー間の付着力を強くすることで防ぐことができる。トナー間付着力がこの反発力に打ち勝って飛散らないためにはできるだけ1つの帯電制御剤の電荷量が大きいことが望ましい。トナー1個の帯電量Qを一定とすれば、帯電制御剤の個数が少ないほど局所電荷量が大きくなりその鏡像力も大きくなるので飛散りにくくなることは明らかである。例えば、トナー表面に4個の局所電荷がある場合は、11個の局所電荷がある場合に比べて、鏡像力は約7.5倍と大きくなる。   This scattering can be prevented by increasing the adhesion between the toners. In order for the adhesion force between toners to overcome this repulsive force and not scatter, it is desirable that the charge amount of one charge control agent is as large as possible. Obviously, if the charge amount Q of one toner is constant, the smaller the number of charge control agents, the larger the local charge amount and the greater the image power thereof, and thus the less the scattering. For example, when there are four local charges on the toner surface, the image power is about 7.5 times larger than when there are 11 local charges.

しかし、あまり付着力を大きくすると感光体とトナーとの間の付着力も大きくなり、通常の転写電界強度(0.5×10〜5.0×107V/m)ではトナーを転写できなくなる。 However, if the adhesion force is increased too much, the adhesion force between the photosensitive member and the toner also increases, and the toner cannot be transferred with a normal transfer electric field strength (0.5 × 10 7 to 5.0 × 107 V / m).

以上のことから、転写の際のトナー飛散りを防ぐには、トナー表面上に存在する帯電制御剤の個数を、通常の転写電界強度で転写可能な条件のもとに出来るだけ少なくすることが望ましい。   From the above, in order to prevent toner scattering during transfer, it is necessary to reduce the number of charge control agents present on the toner surface as much as possible under conditions that allow transfer with normal transfer electric field strength. desirable.

そこで、トナー表面に存在している帯電制御剤の個数と、トナーと感光体の付着力との関係を見積もる。帯電制御剤はトナー表面にほぼ均等に存在しておりトナー1個の帯電量Q=1.0×10−14Cとすると、ギャップにおける電界強度Eは用紙とトナーが接触するときギャップ=20μm、電位差1000Vとすると、およそ5.0×10V/mであるのでトナー1個にかかるギャップ電界からの力は、式6で計算される。
(式6)

Figure 2005338776
Therefore, the relationship between the number of charge control agents present on the toner surface and the adhesion between the toner and the photoreceptor is estimated. When the charge control agent is present almost uniformly on the toner surface and the charge amount Q of the toner is 1.0 × 10 −14 C, the electric field strength E in the gap is 20 μm when the paper and the toner are in contact with each other. Assuming that the potential difference is 1000 V, the force from the gap electric field applied to one toner is calculated by Equation 6 because it is approximately 5.0 × 10 7 V / m.
(Formula 6)
Figure 2005338776

トナーが静電転写されるためにはトナー表面の帯電制御剤と感光体表面との鏡像力は式5の値よりも小さくなければならないが、式5でN=5とすると、ほぼ式6の値に一致する。つまり、トナー表面には5個以上の帯電制御剤が存在している必要がある。従って、以上の例ではトナー表面に5個の帯電制御剤が存在していることが最も飛散りの起こりにくい条件である。   In order for the toner to be electrostatically transferred, the mirror image force between the charge control agent on the toner surface and the surface of the photoreceptor must be smaller than the value of Equation 5, but when N = 5 in Equation 5, Match the value. That is, it is necessary that five or more charge control agents exist on the toner surface. Accordingly, in the above example, the presence of five charge control agents on the toner surface is the most difficult condition for scattering.

以上はトナーの帯電量が17.5μC/g、粒径が10μmの場合についての具体的結果であるが、一般の場合では式6>式5とすることで、ギャップ電界からの力と帯電制御剤と感光体表面の鏡像力が等しくなるときのトナー1個の帯電量Qや帯電制御剤の個数Nとの関係を求めることができる。つまり、式7および式8のように表される。
(式7)

Figure 2005338776
The above is a concrete result when the charge amount of the toner is 17.5 μC / g and the particle diameter is 10 μm. In general, the force from the gap electric field and the charge control are obtained by using Equation 6> Equation 5. The relationship between the charge amount Q of one toner and the number N of charge control agents when the image force of the agent and the surface of the photosensitive member becomes equal can be obtained. That is, it is expressed as Expression 7 and Expression 8.
(Formula 7)
Figure 2005338776

(式8)

Figure 2005338776
(Formula 8)
Figure 2005338776

式7および式8からトナーの単位重量あたりの帯電量(q/m)とNの関係を求めると、式9のように表される。
(式9)

Figure 2005338776
When the relationship between the charge amount per unit weight (q / m) of toner and N is obtained from Expression 7 and Expression 8, it is expressed as Expression 9.
(Formula 9)
Figure 2005338776

静電転写において飛散りの少ないトナーの条件は、トナー表面上の帯電制御剤の個数Nが式9で表わされる範囲にあって最小の値のときである。つまり、式10および式11で表される。
(式10)

Figure 2005338776
The condition of the toner with less scattering in electrostatic transfer is when the number N of charge control agents on the toner surface is in the range represented by Equation 9 and is the minimum value. That is, it is expressed by Expression 10 and Expression 11.
(Formula 10)
Figure 2005338776

(式11)

Figure 2005338776
(Formula 11)
Figure 2005338776

ここで、式10の右辺は一般に整数とはならないので、式12で表される。
(式12)

Figure 2005338776
Here, since the right side of Expression 10 is generally not an integer, it is expressed by Expression 12.
(Formula 12)
Figure 2005338776

従って、帯電制御剤の個数Nの最大値が最も飛散りの少ない条件となる。 Therefore, the maximum value of the number N of charge control agents is the condition with the least scattering.

次に、具体的に数値を代入してみる。ε=3、E=5.0×10V/m、p=1.1×10kg/m、d=0.1μmとすると、式13で表される。
(式13)

Figure 2005338776
Next, let's assign a specific value. Assuming that ε r = 3, E = 5.0 × 10 7 V / m, p = 1.1 × 10 3 kg / m 3 , and d = 0.1 μm, it is expressed by Equation 13.
(Formula 13)
Figure 2005338776

例えば、式13において、q/m=15μC/g、r=4μmを代入すると、N=3.16個となるので、N=4が最も望ましい。 For example, if q / m = 15 μC / g and r = 4 μm are substituted in Equation 13, N 0 = 3.16, so N = 4 is most desirable.

さて、式10で表わされるNの値は感光体の比誘電率ε、転写電界強度Eによって変化する。すなわち式11のkが変化する。種々のトナーに使われる樹脂の密度p1μmは固定して通常使用される感光体の比誘電率ε=3〜11、通常の転写電界強度E=0.5×107〜5.0×10V/mの範囲で式11の係数kの最小値、最大値を求めると、それぞれ0.0104、0.173となる。従って、式10〜式12で表わされる条件は、
式14〜式16で表される。
(式14)

Figure 2005338776
Now, the value of N 0 represented by Equation 10 varies depending on the relative dielectric constant ε r and the transfer electric field strength E of the photoreceptor. That is, k in Equation 11 changes. The density p1 μm of the resin used for various toners is fixed, and the relative dielectric constant ε r = 3 to 11 of a commonly used photoreceptor, and the normal transfer electric field strength E = 0.5 × 10 7 to 5.0 × 10 7 When the minimum value and the maximum value of the coefficient k in Expression 11 are obtained in the range of V / m, they are 0.0104 and 0.173, respectively. Therefore, the conditions represented by Equation 10 to Equation 12 are
It represents with Formula 14-Formula 16.
(Formula 14)
Figure 2005338776

(式15)

Figure 2005338776
(Formula 15)
Figure 2005338776

(式16)

Figure 2005338776
(Formula 16)
Figure 2005338776

実機開発においては転写電界強度Eを様々に変えて静電転写における飛散りの少ない条件を設定する必要があるので、式14でkの最大値k=0.173の場合を包含するようなNの条件が必要である。すなわち、式17および式18で表わされるようなトナーを用いることが望ましい。
(式17)

Figure 2005338776
In actual machine development, it is necessary to change the transfer electric field strength E in various ways to set conditions for less scattering in electrostatic transfer. Therefore, N in the equation 14 includes the case where the maximum value k = 0.173. This condition is necessary. That is, it is desirable to use a toner represented by Formula 17 and Formula 18.
(Formula 17)
Figure 2005338776

(式18)

Figure 2005338776
(Formula 18)
Figure 2005338776

トナー半径r=3μm、4μm、5μmの場合に式17によって求められるNとq/mの関係を図1に示す。q/mは10〜25μC/gの範囲で示した。 FIG. 1 shows the relationship between N 0 and q / m obtained by Equation 17 when the toner radius r = 3 μm, 4 μm, and 5 μm. q / m was shown in the range of 10-25 μC / g.

以上は球形トナーの場合について述べたが、破砕形状トナーであってもトナー表面上の1つの帯電制御剤に働く鏡像力は球形の場合と同様に式5で表わされるので、やはり式17および式18が最も飛散の少ない条件となる。   The spherical toner has been described above. However, even in the case of a crushed toner, the mirror image force acting on one charge control agent on the toner surface is expressed by Equation 5 as in the case of the spherical toner. 18 is the condition with the least scattering.

ここで、トナー単位重量あたりの帯電量q/mは、例えばトレック・ジャパン(株)製のトナー帯電量測定装置Model−210HS−2Aを使って測定することができる。また、トナー平均半径rは、例えば米国コールター社製のコールターカウンタを使って測定することができる。トナー1個の表面上に存在する帯電制御剤の個数Nの測定は、例えば非特許文献4および非特許文献5に記載されているように、帯電状態を観察する走査型顕微鏡を用いて行うことができる。   Here, the charge amount q / m per toner unit weight can be measured using, for example, a toner charge amount measuring device Model-210HS-2A manufactured by Trek Japan. Further, the toner average radius r can be measured using, for example, a Coulter counter manufactured by Coulter USA. The number N of charge control agents present on the surface of one toner is measured using a scanning microscope for observing the charged state as described in Non-Patent Document 4 and Non-Patent Document 5, for example. Can do.

なお、高い転写効率を実現するためのトナーとして、トナー粒子表面上の帯電制御剤の比表面積がある値の範囲にあることを特徴とする発明が特許文献1に記載されているが、本発明はトナー粒子表面上の帯電制御剤の個数について規定するものである。   Incidentally, as a toner for realizing high transfer efficiency, an invention characterized in that the specific surface area of the charge control agent on the surface of the toner particles is within a certain value range is described in Patent Document 1, but the present invention Defines the number of charge control agents on the toner particle surface.

本発明によれば、トナー飛散の起こりにくい静電転写を実現することができ、高品質の画像を提供することができる。   According to the present invention, electrostatic transfer that hardly causes toner scattering can be realized, and a high-quality image can be provided.

トナー単位重量あたりの帯電量をq/m、トナー1個の表面上に存在している帯電制御剤の平均個数をNとすると、以下の関係式で表わされるようなトナーを用いることで静電転写におけるトナー飛散を低減することができる。
(式19)

Figure 2005338776
Assuming that the charge amount per unit weight of the toner is q / m and the average number of charge control agents present on the surface of one toner is N, electrostatic charge can be obtained by using the toner represented by the following relational expression. Toner scattering during transfer can be reduced.
(Formula 19)
Figure 2005338776

(式20)

Figure 2005338776
(Formula 20)
Figure 2005338776

以下、本発明の一実施例を図1、図2を用いて説明する。   An embodiment of the present invention will be described below with reference to FIGS.

図2は本実施例のトナーを用いた電子写真装置の断面側面図である。1は感光体ドラム、2は帯電器、3はトナー、4は現像機、5は用紙、6は転写器、7は定着器、8はクリーナ、9は露光装置である。帯電器2により一様に帯電された感光体ドラム1表面に、レーザドライバ等から成る露光制御手段により発光を制御された半導体レーザおよび光学系から成る露光装置9によって静電潜像が形成される。   FIG. 2 is a sectional side view of an electrophotographic apparatus using the toner of this embodiment. Reference numeral 1 denotes a photosensitive drum, 2 denotes a charger, 3 denotes toner, 4 denotes a developing machine, 5 denotes paper, 6 denotes a transfer device, 7 denotes a fixing device, 8 denotes a cleaner, and 9 denotes an exposure device. An electrostatic latent image is formed on the surface of the photosensitive drum 1 uniformly charged by the charger 2 by a semiconductor laser whose light emission is controlled by an exposure control means such as a laser driver and an exposure device 9 consisting of an optical system. .

この後、現像機4により静電潜像をトナー3で現像する。トナー3は、転写器6によって用紙5に転写される。この後、転写されたトナー画像は定着器7で加熱融解され用紙5に定着する。また、転写されずに感光体ドラム1表面に残存したトナー3はクリーナ8により回収され、一連のプロセスを終了する。   Thereafter, the developing device 4 develops the electrostatic latent image with the toner 3. The toner 3 is transferred to the paper 5 by the transfer device 6. Thereafter, the transferred toner image is heated and melted by the fixing device 7 and fixed on the paper 5. Further, the toner 3 remaining on the surface of the photosensitive drum 1 without being transferred is collected by the cleaner 8 and the series of processes is completed.

図3は本発明のトナーを用いた転写器(コロナ転写)の詳細を示す断面側面図である。11は感光体上に現像されたトナー、12は感光体、13は用紙または転写ベルト、14は感光体ドラムの基板、15はコロナワイヤ、16はコロナ転写器のシールドである。   FIG. 3 is a sectional side view showing details of a transfer device (corona transfer) using the toner of the present invention. Reference numeral 11 denotes a toner developed on the photosensitive member, 12 denotes a photosensitive member, 13 denotes a sheet or transfer belt, 14 denotes a substrate of the photosensitive drum, 15 denotes a corona wire, and 16 denotes a shield of the corona transfer unit.

用紙または転写ベルト13はトナー11に感光体との間で挟み込むように接触し、用紙または転写ベルト13の裏面にはコロナ転写器によりトナーと逆極性の電荷を与えることで、用紙または転写ベルト13上にトナーを引きつけるための転写電界を発生させて転写する。コロナ転写の場合は転写電界強度Eは大きく、通常は1.0×10〜5.0×10V/mの範囲にある。図3ではトナー11を負極性としている。トナー11は、トナー単位重量あたりの帯電量q/mが10〜25μC/gの範囲、トナー半径rが3〜5μmの範囲内にあって、トナー1個の表面上に存在する帯電制御剤の個数N(個)が式17および式18で与えられる条件を満たしている。 The sheet or transfer belt 13 is in contact with the toner 11 so as to be sandwiched between the photosensitive member and the back surface of the sheet or transfer belt 13 is charged with a reverse polarity to the toner by a corona transfer device. The image is transferred by generating a transfer electric field for attracting the toner. In the case of corona transfer, the transfer electric field strength E is large and is usually in the range of 1.0 × 10 7 to 5.0 × 10 7 V / m. In FIG. 3, the toner 11 has negative polarity. Toner 11 has a charge amount q / m per unit weight of toner in the range of 10 to 25 μC / g and a toner radius r in the range of 3 to 5 μm, and is a charge control agent present on the surface of one toner. The number N (pieces) satisfies the conditions given by Equation 17 and Equation 18.

図4は本発明のトナーを用いた他の方式の転写器(ローラ転写)の詳細を示す断面側面図である。11は感光体上に現像されたトナー、12は感光体、13は用紙または転写ベルト、14は感光体ドラムの基板、17は転写ローラの芯金、18はゴム等の誘電体である。用紙または転写ベルト13は転写ローラに押付けられてトナー11に感光体との間で挟み込むように接触し、転写ローラにはトナーと逆極性の電圧を印加することで、用紙または転写ベルト13上にトナーを引きつけるための転写電界を発生させて転写する。ローラ転写の場合Eは、通常は0.5×10〜1.0×107V/mの範囲にある。図4ではトナー11を負極性としている。トナー11は、トナー単位重量あたりの帯電量q/mが10〜25μC/gの範囲、トナー半径rが3〜5μmの範囲内にあって、トナー1個の表面上に存在する帯電制御剤の個数N(個)が式17および式18で与えられる条件を満たしている。 FIG. 4 is a sectional side view showing details of another type of transfer device (roller transfer) using the toner of the present invention. Reference numeral 11 denotes a toner developed on the photosensitive member, 12 denotes a photosensitive member, 13 denotes a sheet or transfer belt, 14 denotes a substrate of the photosensitive drum, 17 denotes a core of a transfer roller, and 18 denotes a dielectric such as rubber. The sheet or transfer belt 13 is pressed against the transfer roller and comes into contact with the toner 11 so as to be sandwiched between the photosensitive member and the transfer roller is applied with a voltage having a polarity opposite to that of the toner. Transfer is performed by generating a transfer electric field for attracting toner. In the case of roller transfer, E is usually in the range of 0.5 × 10 7 to 1.0 × 107 V / m. In FIG. 4, the toner 11 has negative polarity. Toner 11 has a charge amount q / m per unit weight of toner in the range of 10 to 25 μC / g and a toner radius r in the range of 3 to 5 μm, and is a charge control agent present on the surface of one toner. The number N (pieces) satisfies the conditions given by Equation 17 and Equation 18.

本発明のトナーを規定するための条件を示した説明図。FIG. 6 is an explanatory diagram showing conditions for defining the toner of the present invention. 本発明のトナーを用いた電子写真装置の断面図。FIG. 3 is a cross-sectional view of an electrophotographic apparatus using the toner of the present invention. 本発明のトナーを用いた電子写真装置の転写装置部分の説明図(実施例1)。FIG. 3 is an explanatory diagram of a transfer device portion of an electrophotographic apparatus using the toner of the present invention (Example 1). 本発明のトナーを用いた電子写真装置の転写装置部分の説明図(実施例2)。FIG. 4 is an explanatory diagram of a transfer device portion of an electrophotographic apparatus using the toner of the present invention (Example 2).

符号の説明Explanation of symbols

1 感光体ドラム
2 帯電器
3 トナー
4 現像機
5 用紙
6 転写器
7 定着機
8 クリーナ
9 露光装置
11 感光体上に現像されたトナー、
12 感光体
13 用紙または転写ベルト
14 感光体ドラムの基板
15 コロナワイヤ
16 コロナ転写器のシールド
17 転写ローラの芯金
18 転写ローラのゴム等の誘電体
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Charging device 3 Toner 4 Developing machine 5 Paper 6 Transfer device 7 Fixing device 8 Cleaner 9 Exposure device 11 Toner developed on the photosensitive member,
12 Photoconductor 13 Paper or transfer belt 14 Photoconductor drum substrate 15 Corona wire 16 Shield of corona transfer device 17 Core of transfer roller 18 Dielectric material such as rubber of transfer roller

Claims (2)

電子写真装置に用いるトナーにおいて、トナー平均半径をr(μm)、トナー単位重量あたりの帯電量をq/m(μC/g)としたとき、トナー1個の表面上に存在する帯電制御剤の個数N(個)が、式1および式2を満足することを特徴とする電子写真装置用トナー。
(式1)
Figure 2005338776
(式2)
Figure 2005338776
In the toner used in the electrophotographic apparatus, when the toner average radius is r (μm) and the charge amount per unit weight of the toner is q / m (μC / g), the charge control agent present on the surface of one toner A toner for an electrophotographic apparatus, wherein the number N satisfies the formulas 1 and 2.
(Formula 1)
Figure 2005338776
(Formula 2)
Figure 2005338776
請求項1記載の電子写真装置用トナーを用いたことを特徴とする電子写真装置。
An electrophotographic apparatus using the toner for an electrophotographic apparatus according to claim 1.
JP2005079796A 2004-04-28 2005-03-18 Toner for electrophotographic apparatus and electrophotographic apparatus using the same Pending JP2005338776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079796A JP2005338776A (en) 2004-04-28 2005-03-18 Toner for electrophotographic apparatus and electrophotographic apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004133839 2004-04-28
JP2005079796A JP2005338776A (en) 2004-04-28 2005-03-18 Toner for electrophotographic apparatus and electrophotographic apparatus using the same

Publications (1)

Publication Number Publication Date
JP2005338776A true JP2005338776A (en) 2005-12-08

Family

ID=35492382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079796A Pending JP2005338776A (en) 2004-04-28 2005-03-18 Toner for electrophotographic apparatus and electrophotographic apparatus using the same

Country Status (1)

Country Link
JP (1) JP2005338776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9152196B2 (en) 2009-03-27 2015-10-06 Qualcomm Incorporated System and method of managing power at a portable computing device and a portable computing device docking station

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421862A (en) * 1990-05-17 1992-01-24 Konica Corp Electrostatic charge image developing toner
JPH05150554A (en) * 1991-11-29 1993-06-18 Mita Ind Co Ltd Electrophotographic toner
JPH08123093A (en) * 1994-10-24 1996-05-17 Minolta Co Ltd Toner for electrostatic latent image developer and its production
JPH08278665A (en) * 1995-04-06 1996-10-22 Mita Ind Co Ltd Electrophotographic toner
JP2000112180A (en) * 1998-10-05 2000-04-21 Mitsubishi Chemicals Corp Electrostatic charge image developing toner
JP2001356530A (en) * 2000-06-15 2001-12-26 Ricoh Co Ltd Electrostatic charge image developing toner
JP2002268280A (en) * 2001-03-08 2002-09-18 Ricoh Co Ltd Toner for electrophotography and image forming device
JP2004004645A (en) * 2002-03-22 2004-01-08 Ricoh Co Ltd Image forming method
JP2004117003A (en) * 2002-09-24 2004-04-15 Ricoh Co Ltd Method for evaluating electrification characteristic in toner for developing static charge image

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421862A (en) * 1990-05-17 1992-01-24 Konica Corp Electrostatic charge image developing toner
JPH05150554A (en) * 1991-11-29 1993-06-18 Mita Ind Co Ltd Electrophotographic toner
JPH08123093A (en) * 1994-10-24 1996-05-17 Minolta Co Ltd Toner for electrostatic latent image developer and its production
JPH08278665A (en) * 1995-04-06 1996-10-22 Mita Ind Co Ltd Electrophotographic toner
JP2000112180A (en) * 1998-10-05 2000-04-21 Mitsubishi Chemicals Corp Electrostatic charge image developing toner
JP2001356530A (en) * 2000-06-15 2001-12-26 Ricoh Co Ltd Electrostatic charge image developing toner
JP2002268280A (en) * 2001-03-08 2002-09-18 Ricoh Co Ltd Toner for electrophotography and image forming device
JP2004004645A (en) * 2002-03-22 2004-01-08 Ricoh Co Ltd Image forming method
JP2004117003A (en) * 2002-09-24 2004-04-15 Ricoh Co Ltd Method for evaluating electrification characteristic in toner for developing static charge image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9152196B2 (en) 2009-03-27 2015-10-06 Qualcomm Incorporated System and method of managing power at a portable computing device and a portable computing device docking station

Similar Documents

Publication Publication Date Title
JP2010020281A (en) Image forming apparatus
JP3328013B2 (en) Electrostatic image developer and multicolor image forming method
JP2010002785A (en) Image forming apparatus
JPH04145460A (en) Image forming device
JP3126863B2 (en) Multicolor image forming device
JPH08286477A (en) Color image recording method
JP2013167850A (en) Image forming apparatus, evaluation method of image forming apparatus, and parameter measuring method
JP2005338776A (en) Toner for electrophotographic apparatus and electrophotographic apparatus using the same
JP2008009178A (en) Image forming apparatus
JPS6118972A (en) Recording method using photoconductive toner
JP2006071846A (en) Development processing device
JP2004219711A (en) Image forming apparatus
JP3363604B2 (en) Image forming device
JPH0374388B2 (en)
JP3081653B2 (en) toner
JPS6117156A (en) Recording method using photoconductive toner
JPH0374392B2 (en)
JP2517205B2 (en) Electrophotographic equipment
JP5464476B2 (en) Developing device and image forming apparatus
JPH05119592A (en) Developing device
JPS5931970A (en) Two-color developing method
JPS6118971A (en) Recording method using photoconductive toner
JPS6326669A (en) Developing method
JPH06324512A (en) Developer and image formation
JPH09127725A (en) Developer for electrostatic latent image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629