JP2005338129A - Soundproof material - Google Patents

Soundproof material Download PDF

Info

Publication number
JP2005338129A
JP2005338129A JP2004152940A JP2004152940A JP2005338129A JP 2005338129 A JP2005338129 A JP 2005338129A JP 2004152940 A JP2004152940 A JP 2004152940A JP 2004152940 A JP2004152940 A JP 2004152940A JP 2005338129 A JP2005338129 A JP 2005338129A
Authority
JP
Japan
Prior art keywords
fiber
soundproof
nonwoven fabric
fine powder
soundproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004152940A
Other languages
Japanese (ja)
Inventor
Kosuke Kamae
宏介 構
Tatsuumi Onishi
達海 大西
Teruo Kosuge
輝夫 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Kotobukiya Fronte Co Ltd
Original Assignee
Nissan Motor Co Ltd
Kotobukiya Fronte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Kotobukiya Fronte Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004152940A priority Critical patent/JP2005338129A/en
Publication of JP2005338129A publication Critical patent/JP2005338129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide soundproof fiber which is lightweight and has superior sound absorbing/proofing properties. <P>SOLUTION: Disclosed is a soundproof material made of a fiber structure using a fiber base body and fine powder particles stuck on the periphery of it. Silicon dioxide or activated carbon is used as the fine particle. The mean particle size of the fine powder particle is 0.1 nm to 100 μm. Soundproof fiber obtained by sticking the fine powder particle on the surface of fiber is made into non-woven fabric by a mechanical bonding method, an adhesion method, a fusing method, a wet method, etc., and the non-woven fabric is used as the fiber structure. The fiber is made into the non-woven fabric by the mechanical bonding method, adhesion method, fusing method, wet method, etc., and the fine powder particle is stuck on its surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、防音材に係り、更に詳細には、吸/遮音性能及び軽量性に優れ、代表的には、ダッシュ・インシュレータ、天井基材、フロア・インシュレータ、パーセル・ボード、カーペット、フード・インシュレータ、エンジンカバー、アンダーカバー及びトリム類等に使用することで車両等の騒音を低減し得る防音材に関する。   The present invention relates to a soundproofing material, and more specifically, excellent in sound absorption / sound insulation performance and light weight. Typically, a dash insulator, a ceiling base material, a floor insulator, a parcel board, a carpet, and a hood insulator. The present invention relates to a soundproofing material that can reduce noise of a vehicle or the like by being used for an engine cover, an undercover, a trim, and the like.

近年、自動車の高品質化、高性能化の意識の高まりに伴い、車室内の静粛性及び車外騒音については、ますます要求が厳しくなってきている。このため、車両に適用する防音材については、更に良い防音効果を得る目的で様々な取り組みがなされている。   In recent years, with increasing awareness of high-quality and high-performance automobiles, the requirements for quietness in the vehicle interior and noise outside the vehicle have become increasingly demanding. For this reason, various efforts have been made for soundproofing materials applied to vehicles for the purpose of obtaining a better soundproofing effect.

例えば、車両用の防音材に関する技術として、不織布の面密度を一定の大きさとする技術が開示されている(例えば特許文献1参照)。これにより確かに防音性能の優れた防音材を得ることが可能であるものの、結果的に所望の防音性能を付与するためには繊維集合体の面密度を制御する必要があった。
特開平8−241084号公報
For example, as a technique related to a soundproof material for a vehicle, a technique for making the surface density of a nonwoven fabric a constant size is disclosed (for example, see Patent Document 1). Thus, although it is possible to obtain a soundproofing material having an excellent soundproofing performance, it is necessary to control the surface density of the fiber assembly in order to provide the desired soundproofing performance.
JP-A-8-241084

また、車両用の防音材に関する技術として、構造に関する技術として二重壁構造を用いる技術が開示されている(例えば特許文献2参照)。これにより確かに防音性能の優れた防音構造を得ることが可能であるものの、車両用としては過度のスペースを占有してしまうおそれもあることから、嵩高さという点では満足できるものではなかった。
特開平10−247085号公報
Further, as a technique related to a soundproof material for a vehicle, a technique using a double wall structure is disclosed as a technique related to the structure (see, for example, Patent Document 2). Although it is possible to obtain a soundproof structure with excellent soundproofing performance as a result, there is a possibility of occupying an excessive space for a vehicle, which is not satisfactory in terms of bulkiness.
Japanese Patent Laid-Open No. 10-247085

更に、繊維構造体と粒状物質を組み合わせた防音材に関する技術が開示されている(例えば特許文献3、4参照)。これにより確かに防音性能の優れた防音材を得ることが可能であるものの、繊維分に対して粒状物質を緻密に混合したり、あるいは塗布したりする必要があり結果として重量増加を招くため、特に軽量化が必須である車両用途などに用いるには必ずしも満足のできるものではなかった。
特開平7−104762号公報 特開平11−133980号公報
Furthermore, the technique regarding the soundproofing material which combined the fiber structure and the granular material is disclosed (for example, refer patent documents 3 and 4). Although it is possible to obtain a soundproofing material having excellent soundproofing performance by this, it is necessary to mix or apply a granular substance to the fiber portion, resulting in an increase in weight. In particular, it has not always been satisfactory for use in vehicle applications where weight reduction is essential.
JP-A-7-104762 JP 11-133980 A

以上のように防音材の目付量を多くしたり、二重壁構造などの工夫等が従来の公知技術としてあげられるが、これらの方法によれば防音効果は向上するものの、重量の増加を伴ったり、防音材又は防音構造自体の嵩高さによって容積上の制約を伴うなど、車両用部品としては設計上好ましくないという問題があった。   As described above, the weight per unit area of the soundproofing material is increased, and a device such as a double wall structure is known as a conventionally known technique. However, these methods improve the soundproofing effect, but increase the weight. In addition, there is a problem in that it is not preferable in terms of design as a vehicle component, because the volume of the soundproofing material or the soundproofing structure itself is restricted due to the volume.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、軽量でより優れた吸/遮音性を備えた防音材を提供することにある。   This invention is made | formed in view of the subject which such a prior art has, and the place made into the objective is to provide the soundproof material provided with the light weight and the more excellent sound absorption / sound insulation.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、繊維基体の表面に微細粉粒を周着することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by surrounding fine particles on the surface of the fiber substrate, and have completed the present invention. .

本発明によれば、繊維基体の表面に多数の微細粉粒が点在するため、外部からの振動エネルギーが吸収され易く、該繊維基体及び該微細粉粒が振動することで、振動エネルギーが運動エネルギーや熱エネルギーに変換され消費される。   According to the present invention, since many fine powder particles are scattered on the surface of the fiber substrate, vibration energy from the outside is easily absorbed, and the vibration energy is moved by the vibration of the fiber substrate and the fine powder particles. It is converted into energy and heat energy and consumed.

以下、本発明の防音材について詳細に説明する。なお、本明細書及び特許請求の範囲において、「%」は特記しない限り質量百分率を示す。   Hereinafter, the soundproofing material of the present invention will be described in detail. In the present specification and claims, “%” indicates a mass percentage unless otherwise specified.

本発明の防音材は繊維構造体より構成され、該繊維構造体は繊維基体とこれに周着される微細粉粒を用いて成る。言い換えれば、該繊維構造体は、表面に微細粉粒が分散するように付着(凝着)された繊維基体が集合したものである。
このような構成により、本防音材は、固体中又は空気中を伝播してきた振動エネルギーを吸収し、吸収したエネルギーの一部を、繊維基体と微細粉粒又は微細粉粒同士が構成するマスばね系の運動エネルギーや摩擦抵抗などによる熱エネルギーとして消滅させることにより、振動に伴い発生する音を吸音又は遮音する。また、従来品と比べてより軽量で同等以上の防音性能を発揮し得る。
The soundproofing material of the present invention is composed of a fiber structure, and the fiber structure is composed of a fiber substrate and fine powder particles that are attached to the fiber substrate. In other words, the fiber structure is a collection of fiber substrates attached (adhered) so that fine particles are dispersed on the surface.
With such a configuration, the soundproofing material absorbs vibration energy that has propagated in a solid or in the air, and a mass spring in which a part of the absorbed energy is constituted by a fiber base and fine particles or fine particles. By extinguishing it as thermal energy due to the kinetic energy or frictional resistance of the system, the sound generated by the vibration is absorbed or insulated. Moreover, it is lighter than conventional products and can exhibit the same or better soundproofing performance.

また、本発明の防音材は、不織布の形態とすることが好適である。この不織布の製造方法では、上記微細粉粒を周着する工程と不織布を形成する工程とを、順序を問わずに行うことができる。例えば、繊維の表面に微細粉粒を周着した防音繊維を得た後に、該防音繊維を絡み合わせる工程として、機械結合法(ニードルパンチ法など)、接着法、融着法(スパンボンド法など)又は湿式法(抄紙法など)、及びこれらを任意に組合わせた方法で不織布とすることができる。また、予め繊維を上記方法で不織布とし、その後に該不織布を構成する繊維の表面に微細粉粒を周着することもできる。
これより、従来品より軽量化されるとともに、振動に伴い発生する音がより吸音又は遮音されるので、車両等に用いれば車室内の静粛性を向上できる。また、低コスト且つ良好な生産性で製造し得る。
なお、繊維や微細粉粒は、同一材料を使用しても良いし、異なる性質の材料を適宜組合わせて使用しても良い。また、上記防音材の不織布以外の形態としては、例えば織編物などの布地状又はひも状が挙げられる。
The soundproofing material of the present invention is preferably in the form of a nonwoven fabric. In this method for producing a nonwoven fabric, the step of surrounding the fine particles and the step of forming the nonwoven fabric can be performed regardless of the order. For example, after obtaining a soundproof fiber in which fine powder particles are wrapped around the surface of the fiber, a mechanical bonding method (such as a needle punch method), an adhesion method, a fusion method (spunbond method, etc.) ) Or a wet method (such as a papermaking method), and a method in which these are arbitrarily combined. Moreover, a fiber can be previously made into a nonwoven fabric by the said method, and a fine powder can also be put around the surface of the fiber which comprises this nonwoven fabric after that.
As a result, the weight of the conventional product is reduced, and the sound generated by the vibration is absorbed or insulated. Further, it can be manufactured at low cost and good productivity.
For the fibers and fine particles, the same material may be used, or materials having different properties may be used in appropriate combination. Moreover, as forms other than the nonwoven fabric of the said soundproofing material, fabric shape or string shape, such as a woven / knitted fabric, is mentioned, for example.

更に、上記防音材は、例えば二重壁構造、面密度の制御及び防音繊維の繊度や比表面積の制御など、これら技術を単独で又は適宜組み合わせて設計することで更に防音性能を向上させ得る。
更にまた、上記微細粉粒は微細であるためその凝着力により、車両の振動等では繊維基体表面から簡単に分離するものではないが、必要に応じて該防音材の表面に面密度0.02〜0.05kg/m程度の薄手の不織布などを吸音材製造工程で同時貼合することや、別工程で貼合することができる。このときは、該防音材の搬送作業が容易になる、重ね合わせ時の防音材同士の引っ掛かり等が防止される、などの効果がある。
Further, the soundproofing material can be further improved in soundproofing performance by designing these techniques alone or in combination as appropriate, such as a double wall structure, control of surface density, and control of fineness and specific surface area of soundproofing fibers.
Furthermore, since the fine particles are fine, they are not easily separated from the surface of the fiber substrate by the vibration of the vehicle due to the adhesive force, but the surface density of the soundproof material is 0.02 if necessary. A thin non-woven fabric of about 0.05 kg / m 2 can be bonded simultaneously in the sound absorbing material manufacturing process, or can be bonded in a separate process. At this time, the soundproofing material can be easily transported, and the soundproofing material can be prevented from being caught during the overlapping.

ここで、上記繊維は、合成繊維、天然繊維のいずれでもよく、これらの複合繊維であってもよい。例えば、合成繊維としては、レーヨン系繊維、アセテート系繊維、ポリエステル系繊維、ナイロン系繊維、アクリル系繊維、モダアクリル系繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリウレタン系繊維、芳香族ナイロン繊維、ポリベンズイミダゾール繊維及びノボロイド繊維などが挙げられる。また、天然繊維としては、木綿、パルプ等に代表されるセルロース系繊維、羊毛等に代表される動物系繊維などが挙げられる。これら繊維の原料種や繊度などは、特に限定されないが、車両などに用いるときは、コスト、生産性及び原料の安定供給面などから、ポリエステル系繊維、木綿繊維及び衣料や布地の反毛などを使用するのが望ましい。
また、上記繊維は、異形断面繊維、コンジュゲート繊維及び極細繊維などの特殊形状を有するものでも良い。例えば、空気孔を内部に内含する構造に形成できる。
Here, the fiber may be either a synthetic fiber or a natural fiber, or a composite fiber thereof. For example, as synthetic fibers, rayon fibers, acetate fibers, polyester fibers, nylon fibers, acrylic fibers, modacrylic fibers, polypropylene fibers, polyethylene fibers, polyurethane fibers, aromatic nylon fibers, polybenz Examples include imidazole fiber and novoloid fiber. Examples of natural fibers include cellulosic fibers such as cotton and pulp, and animal fibers such as wool. The raw material type and fineness of these fibers are not particularly limited, but when used in vehicles, polyester fibers, cotton fibers, and clothing and fabric repellents, etc. from the viewpoint of cost, productivity, and stable supply of raw materials. It is desirable to use it.
Moreover, the said fiber may have special shapes, such as an irregular cross-section fiber, a conjugate fiber, and an ultrafine fiber. For example, it can be formed in a structure including air holes therein.

また、上記微細粉粒は、無機材料や有機材料から成るものを用いることができ、例えば、アルミニウム(Al)、鉄(Fe)、銅(Cu)、亜鉛(Zn)及びニッケル(Ni)等の金属、滑石、マイカ、金マイカ、シリカ、カオリン及びタルク等の天然無機物、二酸化ケイ素、二酸化チタン及びアルミナ等の金属酸化物、水酸化アルミニウム等の金属水酸化物、炭酸カルシウム、珪酸カルシウム、塩化カルシウム及び炭酸マグネシウム等の塩、黒鉛、活性炭、炭素繊維、炭化ケイ素及び珪藻土等、更にはポリエチレン、ポリプロペン、ポリアクリロニトリル、アクリル樹脂、フッ素樹脂、ナイロン、ポリエステル、ポリ塩化ビニル、ポリメタクリル酸メチル及びシリコーン樹脂等の有機高分子粒子等が挙げられる。これらの微細粉粒であれば適宜選択でき、単独使用でもよいし、2種以上を複合して使用してもよい。   The fine particles can be made of an inorganic material or an organic material, such as aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), and nickel (Ni). Metals, talc, mica, gold mica, natural minerals such as silica, kaolin and talc, metal oxides such as silicon dioxide, titanium dioxide and alumina, metal hydroxides such as aluminum hydroxide, calcium carbonate, calcium silicate, calcium chloride And salts such as magnesium carbonate, graphite, activated carbon, carbon fiber, silicon carbide and diatomaceous earth, as well as polyethylene, polypropene, polyacrylonitrile, acrylic resin, fluororesin, nylon, polyester, polyvinyl chloride, polymethyl methacrylate and silicone resin Organic polymer particles such as These fine particles can be selected as appropriate, and may be used alone or in combination of two or more.

更に、上記微細粉粒は、車両などに用いることを考慮すると、コスト及び供給安定性などの面から、無機物であることが好適である。更にまた、熱、湿度及び水分など、車両等での使用環境を考慮すると、微細粉粒状態や多孔質常状態をより安定に保持できる二酸化ケイ素、活性炭のいずれか一方又は双方を採用するのがより好適である。
なお、上記繊維及び上記微細粉粒は、特に限定することを要しないが、仕様形態によっては、重量が増大したり、該防音繊維で製造した防音材が嵩高くなって容積上の制約を伴うなど、設計上望ましくないことがある。
Furthermore, considering the use of the fine powder particles in a vehicle or the like, it is preferable that the fine particles are inorganic substances from the viewpoint of cost and supply stability. Furthermore, in consideration of the usage environment in vehicles such as heat, humidity and moisture, it is possible to adopt either or both of silicon dioxide and activated carbon that can maintain a fine powder state and a porous normal state more stably. More preferred.
In addition, although the said fiber and the said fine powder particle do not need to specifically limit, depending on a specification form, a weight increases or the soundproof material manufactured with this soundproof fiber becomes bulky, and is accompanied by restrictions on volume. Etc. may be undesirable in design.

更にまた、上記微細粉粒は、平均粒子径が0.1nm〜100μmであることが好適である。このときは、優れた吸/遮音性能を発揮し得る。一方、例えば、二酸化ケイ素粒子や活性炭の平均粒径が100μmを越えると、繊維の表面へ付着するものの、安定性が悪くなったり目詰まりを起こしたりすることがある。
なお、上記繊維と上記微細粉粒の添加割合は、繊維100部に対して微細繊維が2〜39部、より望ましくは2〜10部であることが良い。
Furthermore, the fine particles preferably have an average particle diameter of 0.1 nm to 100 μm. At this time, excellent absorption / sound insulation performance can be exhibited. On the other hand, for example, when the average particle diameter of silicon dioxide particles or activated carbon exceeds 100 μm, although it adheres to the surface of the fiber, stability may be deteriorated or clogging may occur.
In addition, as for the addition ratio of the said fiber and the said fine particle, it is good that a fine fiber is 2-39 parts with respect to 100 parts of fibers, More desirably, it is 2-10 parts.

また、上記微細粉粒の周着方法としては、例えば、混合攪拌法、噴霧法、スプレー法、抄紙法、接触法などを乾式あるいは湿式で適宜採用でき、繊維の紡糸工程や繊維構造体の製造工程および繊維構造体を形成した後の工程として適宜採用できる。
更に、上記微細粉粒の少なくとも一部は、歩留り向上剤を介して周着しても良い。即ち、上記微細粉粒は、歩留り向上剤を使用せずとも繊維の表面に付着され得るが、上記微細粉粒の周着方法によっては、いわゆる歩留り向上剤を組み合わせて使用するのがコスト等の利点から好適である。
歩留り向上剤としては、例えば、各種のアニオン性、ノニオン性、カチオン性又は両性の水溶性化合物、具体的には、ポリアクリルアミド系のカチオン性、ノニオン性、アニオン性及び両性の樹脂、アクリル系水溶性樹脂、ポリエチレンイミン及びその誘導体、ポリエチレンオキサイド、ポリアミン、ポリアミド、ポリアミドポリアミン及びその誘導体、カチオン性及び両性澱粉、酸化澱粉、カルボキシメチル化澱粉、植物ガム、ポリビニルアルコール、尿素ホルマリン樹脂、メラミンホルマリン樹脂、親水性のカチオンポリマー、ジアリルジメチルアンモニウムクロライドポリマー等を挙げることができる。
なお、繊維に微細粉粒を塗布した構成では、吸/遮音性能が低減し易く、繊維と微細粉粒を混合した構成では、微細粉粒の分散密度に偏りが生じ易い。
Further, as the above-mentioned fine powder particle peripheral method, for example, a mixing stirring method, a spray method, a spray method, a paper making method, a contact method and the like can be appropriately employed in a dry or wet manner, and a fiber spinning process or a production of a fiber structure is possible. It can employ | adopt suitably as a process and the process after forming a fiber structure.
Furthermore, at least a part of the fine powder particles may be attached via a yield improver. That is, the fine particles can be attached to the surface of the fiber without using a yield improver, but depending on the method of surrounding the fine particles, it is costly to use a so-called yield improver in combination. It is preferable because of its advantages.
As the yield improver, for example, various anionic, nonionic, cationic or amphoteric water-soluble compounds, specifically, polyacrylamide-based cationic, nonionic, anionic and amphoteric resins, acrylic water-soluble compounds Resin, polyethyleneimine and derivatives thereof, polyethylene oxide, polyamine, polyamide, polyamide polyamine and derivatives thereof, cationic and amphoteric starch, oxidized starch, carboxymethylated starch, vegetable gum, polyvinyl alcohol, urea formalin resin, melamine formalin resin, Examples include hydrophilic cationic polymers and diallyldimethylammonium chloride polymers.
In addition, in the structure which apply | coated the fine particle to the fiber, an absorption / sound-insulation performance is easy to reduce, and in the structure which mixed the fiber and the fine particle, the dispersion | distribution density of a fine particle is easy to produce.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
ポリエステル繊維(繊度:12デニール、直径:約35μm、テイジンファイバー(株)製 商品名「テイジン テトロン ハイバルキー」)を70%と、低融点融着繊維として芯/鞘構造のポリエステル繊維(繊度:6デニール、直径:約25μm、テイジンファイバー(株)製 商品名「テイジン テトロン PETバインダー」)30%を配合し、得られた原反マットを熱風加熱により加熱軟化させた後、プレスして目付け重量が1.06kg/m、厚み30mmの板状の不織布を予備作製した。
次に、この板状の不織布を直径200mmの円板形に切り出し、底面が同じ直径200mm形状の抄紙型濾過装置(不二コーン(株)製 商品名「抄紙型濾過装置」)に設置した。一方、平均粒子径が8nmの二酸化ケイ素粒子40g(日本アエロジル(株)製 商品名「AEROSIL 300」)を水1リットルに混合、ミキサー(象印(株)製 商品名「ミキサーBM−FS08」)にて攪拌して懸濁液を作製し、上記濾過装置にセットした不織布上面に分散に注意しながら満遍なく注いだ。その後、濾過装置の排水口を開き、自重にて水と懸濁液の混合物不織布内を通過させ、更に減圧により水切りした。更に熱風乾燥炉にて80℃、10時間かけて乾燥し、水分を除去/恒量化の後、室温にて放置冷却し、該二酸化ケイ素粒子がポリエステル繊維表面に付着した円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は1.17kg/mとなり、厚みは30mmのままであった。
(Example 1)
70% polyester fiber (fineness: 12 denier, diameter: about 35 μm, Teijin Fibers Co., Ltd., trade name “Teijin Tetron High Bulky”), polyester fiber with a core / sheath structure as a low melting point fusion fiber (fineness: 6 denier) , Diameter: about 25 μm, Teijin Fibers Co., Ltd., trade name “Teijin Tetron PET Binder”) 30%, and the resulting raw mat is heated and softened by heating with hot air, and then pressed to have a weight of 1 A plate-shaped nonwoven fabric having a thickness of 0.06 kg / m 2 and a thickness of 30 mm was preliminarily produced.
Next, this plate-like nonwoven fabric was cut into a disk shape having a diameter of 200 mm, and placed on a papermaking filter having the same bottom surface of 200 mm in diameter (trade name “papermaking filter” manufactured by Fuji Corn Co., Ltd.). On the other hand, 40 g of silicon dioxide particles having an average particle diameter of 8 nm (trade name “AEROSIL 300” manufactured by Nippon Aerosil Co., Ltd.) are mixed in 1 liter of water and mixed in a mixer (trade name “Mixer BM-FS08” manufactured by Zojirushi Co., Ltd.). The suspension was stirred to prepare a suspension, which was poured evenly onto the upper surface of the nonwoven fabric set in the filtration device while paying attention to dispersion. Thereafter, the drainage port of the filtration device was opened, the mixture was passed through the non-woven fabric of water and suspension by its own weight, and further drained by depressurization. Furthermore, after drying in a hot air drying oven at 80 ° C. for 10 hours, removing moisture / constituting, and allowing to cool at room temperature, a disc-shaped soundproof material in which the silicon dioxide particles adhere to the polyester fiber surface is obtained. Obtained.
A test piece was cut out from the soundproofing material and evaluated. In addition, by the above series of operations, the fabric weight of the nonwoven fabric was 1.17 kg / m 2 and the thickness was still 30 mm.

(実施例2)
予備作製した板状不織布の目付け重量を0.97kg/mとしたこと、懸濁液において平均粒子径が8nmの二酸化ケイ素粒子60gを水1リットルに混合して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.08kg/mとなり、厚みは30mmのままであった。
(Example 2)
Except that the basis weight of the prefabricated plate-shaped nonwoven fabric was 0.97 kg / m 2, and 60 g of silicon dioxide particles having an average particle diameter of 8 nm in the suspension were mixed in 1 liter of water and mixed. The same operation as 1 was repeated to obtain a disk-shaped soundproof material.
A test piece was cut out from the soundproofing material and evaluated. In addition, the fabric weight of the nonwoven fabric became 1.08 kg / m 2 and the thickness remained at 30 mm by the above series of operations.

(実施例3)
予備作製した板状不織布の目付け重量を1.04kg/mとしたこと、懸濁液において平均粒子径が40nmの二酸化ケイ素粒子20g(日本アエロジル(株)製 商品名「AEROSIL TT600」)を水1リットルに混合して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.06kg/mとなり、厚みは30mmのままであった。
(Example 3)
The basis weight of the prefabricated plate-shaped nonwoven fabric was 1.04 kg / m 2, and 20 g of silicon dioxide particles having an average particle diameter of 40 nm in the suspension (trade name “AEROSIL TT600” manufactured by Nippon Aerosil Co., Ltd.) A disc-shaped soundproof material was obtained by repeating the same operation as in Example 1 except that the mixture was mixed in 1 liter.
A test piece was cut out from the soundproofing material and evaluated. In addition, the fabric weight of the nonwoven fabric became 1.06 kg / m 2 and the thickness remained at 30 mm by the above series of operations.

(実施例4)
予備作製した板状不織布の目付け重量を0.98kg/mとしたこと、懸濁液において平均粒子径が40nmの二酸化ケイ素粒子40gを水1リットルに混合して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.03kg/mとなり、厚みは30mmのままであった。
Example 4
Except that the basis weight of the prefabricated plate-shaped nonwoven fabric was 0.98 kg / m 2, and 40 g of silicon dioxide particles having an average particle diameter of 40 nm in the suspension were mixed in 1 liter of water and mixed. The same operation as 1 was repeated to obtain a disk-shaped soundproof material.
A test piece was cut out from the soundproofing material and evaluated. In addition, the fabric weight of the nonwoven fabric became 1.03 kg / m 2 and the thickness remained at 30 mm by the above series of operations.

(実施例5)
予備作製した板状不織布の目付け重量を1.03kg/mとしたこと、懸濁液において平均粒子径が40nmの二酸化ケイ素粒子10gを水1リットルに混合して配合したこと、更にこの懸濁液にアクリル系水溶性樹脂を2g(明成化学(株)製 商品名「ファイレックスRC−104」)追加して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.21kg/mとなり、厚みは30mmのままであった。
(Example 5)
The basis weight of the prefabricated plate-like nonwoven fabric was 1.03 kg / m 2 , 10 g of silicon dioxide particles having an average particle diameter of 40 nm in the suspension were mixed in 1 liter of water, and this suspension The same operation as in Example 1 was repeated except that 2 g of acrylic water-soluble resin (trade name “FIREX RC-104” manufactured by Meisei Chemical Co., Ltd.) was added to the liquid and blended. Soundproof material was obtained.
A test piece was cut out from the soundproofing material and evaluated. In addition, the fabric weight of the nonwoven fabric became 1.21 kg / m < 2 > by the above series of operations, and the thickness remained at 30 mm.

(実施例6)
予備作製した板状不織布の目付け重量を0.95kg/mとしたこと、懸濁液において平均粒子径が25μmの二酸化ケイ素粒子20g(共立マテリアル(株)製 商品名「MK20/250」)を水1リットルに混合したこと、更にこの懸濁液にアクリル系水溶性樹脂を2g追加して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.19kg/mとなり、厚みは30mmのままであった。
(Example 6)
The basis weight of the prefabricated plate-shaped nonwoven fabric was 0.95 kg / m 2, and 20 g of silicon dioxide particles having an average particle diameter of 25 μm in the suspension (trade name “MK20 / 250” manufactured by Kyoritsu Material Co., Ltd.) A disc-shaped soundproof material was obtained by repeating the same operation as in Example 1 except that the mixture was mixed with 1 liter of water, and 2 g of the acrylic water-soluble resin was added to the suspension. .
A test piece was cut out from the soundproofing material and evaluated. In addition, by the above series of operations, the fabric weight of the nonwoven fabric was 1.19 kg / m 2 and the thickness was still 30 mm.

(実施例7)
予備作製した板状不織布の目付け重量を1.02kg/mとしたこと、懸濁液において平均粒子径が20μmの活性炭粒子10g(日本エンバイロケミカルズ(株)製 商品名「白鷺」)を水1リットルに混合したこと、更にこの懸濁液にアクリル系水溶性樹脂を2g追加して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して各評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.16kg/mとなり、厚みは30mmのままであった。
(Example 7)
The basis weight of the prefabricated plate-shaped nonwoven fabric was 1.02 kg / m 2, and 10 g of activated carbon particles having an average particle diameter of 20 μm in the suspension (trade name “Shirakaba” manufactured by Nippon Enviro Chemicals Co., Ltd.) were added to water 1 The same operation as in Example 1 was repeated except that 2 g of an acrylic water-soluble resin was added to the suspension and blended with this suspension to obtain a disc-shaped soundproof material.
A test piece was cut out from the soundproofing material and evaluated. In addition, by the above series of operations, the fabric weight of the nonwoven fabric was 1.16 kg / m 2 and the thickness was still 30 mm.

(実施例8)
予備作製した板状不織布の目付け重量を0.92kg/mとしたこと、懸濁液において平均粒子径が20μmの活性炭粒子20gを水1リットルに混合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.28kg/mとなり、厚みは30mmのままであった。
(Example 8)
Example 1 except that the basis weight of the prefabricated plate-shaped nonwoven fabric was 0.92 kg / m 2, and 20 g of activated carbon particles having an average particle size of 20 μm were mixed in 1 liter of water in the suspension. The operation was repeated to obtain a disk-shaped soundproof material.
A test piece was cut out from this soundproof material and evaluated. In addition, the fabric weight of the nonwoven fabric became 1.28 kg / m < 2 > by the above series of operations, and the thickness remained at 30 mm.

(実施例9)
予備作製した板状不織布の目付け重量を0.98kg/mとしたこと、懸濁液において平均粒子径が85μmの活性炭粒子20g(松尾薬品(株)製 商品名「粉末活性炭」)を水1リットルに混合したこと、更にこの懸濁液にアクリル系水溶性樹脂を2g追加して配合したこと、以外は実施例1と同様の操作を繰り返して、円板形状の防音材を得た。
この防音材よりテストピースを切り出して評価を行った。なお、以上一連の操作により、不織布の目付け重量は、1.22kg/mとなり、厚みは30mmのままであった。
Example 9
The basis weight of the prefabricated plate-shaped nonwoven fabric was 0.98 kg / m 2, and 20 g of activated carbon particles having an average particle diameter of 85 μm in the suspension (trade name “powder activated carbon” manufactured by Matsuo Pharmaceutical Co., Ltd.) were added to water 1 The same operation as in Example 1 was repeated except that 2 g of an acrylic water-soluble resin was added to the suspension and blended with this suspension to obtain a disc-shaped soundproof material.
A test piece was cut out from this soundproof material and evaluated. In addition, the fabric weight of the nonwoven fabric became 1.22 kg / m < 2 > by the above series of operations, and the thickness remained at 30 mm.

(比較例1)
ポリエステル繊維(繊度12デニール、直径:約35μm)を70%と低融点融着繊維として芯/鞘構造のポリエステル繊維(繊度6デニール、直径:約25μm)30%を配合し、得られた原反マットを熱風加熱により加熱軟化させた後、プレスして目付け重量が0.95kg/m、厚み30mmの板状の不織布を作製した。この不織布よりテストピースを切り出して各評価を行った。
(Comparative Example 1)
70% polyester fiber (fineness 12 denier, diameter: about 35 μm) and 30% polyester fiber (fineness 6 denier, diameter: about 25 μm) having a core / sheath structure as a low melting point fusion fiber were obtained. The mat was softened by heating with hot air, and then pressed to produce a plate-like nonwoven fabric having a weight per unit area of 0.95 kg / m 2 and a thickness of 30 mm. A test piece was cut out from this nonwoven fabric and evaluated.

(比較例2)
比較例1と同様の操作を繰り返して、目付け重量が1.21kg/m、厚み30mmの板状の不織布を作製した。この不織布よりテストピースを切り出して各評価を行った。
(Comparative Example 2)
The same operation as in Comparative Example 1 was repeated to produce a plate-shaped nonwoven fabric having a basis weight of 1.21 kg / m 2 and a thickness of 30 mm. A test piece was cut out from this nonwoven fabric and evaluated.

(比較例3)
比較例1と同様の操作を繰り返して、目付け重量が1.50kg/m、厚み30mmの板状の不織布を作製した。この不織布よりテストピースを切り出して各評価を行った。
(Comparative Example 3)
The same operation as in Comparative Example 1 was repeated to produce a plate-shaped nonwoven fabric having a weight per unit area of 1.50 kg / m 2 and a thickness of 30 mm. A test piece was cut out from this nonwoven fabric and evaluated.

(比較例4)
比較例1と同様の操作を繰り返して、目付け重量が1.78kg/m、厚み30mmの板状の不織布を作製した。この不織布よりテストピースを切り出して各評価を行った。
(Comparative Example 4)
The same operation as in Comparative Example 1 was repeated to produce a plate-shaped nonwoven fabric having a basis weight of 1.78 kg / m 2 and a thickness of 30 mm. A test piece was cut out from this nonwoven fabric and evaluated.

(評価方法)
(1)防音材の目付け評価
実施例1〜9及び比較例1〜4の防音材を23℃、50%RHで24hr以上放置して常態調節した後、電子天秤に静置して重量を計測し、小数点以下2桁を有効数字として記録し平面部の面積により除して防音材の目付けを算出した。
また、粒子付着操作による増加目付けについては粒子付着操作前後のテストピースの重量を前述の方法と同様の方法で測定し、粒子付着操作後のテストピースの重量から粒子付着操作前のテストピースの重量を減じ、平面部の面積による除して算出した。
(Evaluation methods)
(1) Evaluation of basis weight of soundproofing material The soundproofing materials of Examples 1 to 9 and Comparative Examples 1 to 4 were allowed to stand for 24 hours at 23 ° C. and 50% RH for normal adjustment, and then placed on an electronic balance to measure the weight. Then, two decimal places were recorded as significant figures and divided by the area of the flat portion to calculate the basis weight of the soundproof material.
In addition, for the increased basis weight due to the particle adhesion operation, the weight of the test piece before and after the particle adhesion operation is measured by the same method as described above, and the weight of the test piece before the particle adhesion operation is determined from the weight of the test piece after the particle adhesion operation. Was calculated by dividing by the area of the flat part.

(2)吸音測定
JIS A1405「管内法による建築材料の垂直入射吸音測定」に準拠して測定を行った。測定範囲100〜1.25Hzの測定には試料サイズがφ90mmのものを用い、測定範囲1.6〜5.0kHzの測定には試料サイズがφ40mmのものを用いて実施し、1kHz時と2kHz時の吸音率を表示した。参考として比較例1の測定結果を基準(0)としたときの吸音性能差も算出した。
(2) Sound absorption measurement Measurement was performed in accordance with JIS A1405 “Measurement of normal incident sound absorption of building materials by pipe method”. Samples with a sample size of φ90 mm are used for measurements in the measurement range of 100 to 1.25 Hz, and samples with a sample size of φ40 mm are used for measurements with a measurement range of 1.6 to 5.0 kHz. The sound absorption coefficient of was displayed. As a reference, the sound absorption performance difference when the measurement result of Comparative Example 1 was used as a reference (0) was also calculated.

(3)遮音測定
JIS A1416「実験室における音響透過損失の測定方法」に準拠して測定を行った。測定には簡易残響箱を使用した。測定結果については250Hz〜4kHzの範囲で平均化した。参考として比較例1の測定結果を基準(0)としたときの差異も算出した。
(3) Sound insulation measurement Measurement was performed in accordance with JIS A1416 "Measurement method of sound transmission loss in a laboratory". A simple reverberation box was used for the measurement. The measurement results were averaged in the range of 250 Hz to 4 kHz. For reference, the difference when the measurement result of Comparative Example 1 was used as the reference (0) was also calculated.

(4)平均粒子径
用いた粒子を光学顕微鏡あるいは電子顕微鏡にて観察し、撮影した像を用いて粒子の平均投影面積を測定しこれを円に換算したときの直径を平均粒子径として算出した。
実施例1〜9及び比較例1〜4で得られた結果について、それぞれ表1〜3に示す。
(4) Average particle diameter The particles used were observed with an optical microscope or an electron microscope, the average projected area of the particles was measured using the photographed image, and the diameter when converted into a circle was calculated as the average particle diameter. .
The results obtained in Examples 1 to 9 and Comparative Examples 1 to 4 are shown in Tables 1 to 3, respectively.

Figure 2005338129
Figure 2005338129

Figure 2005338129
Figure 2005338129

Figure 2005338129
Figure 2005338129

実施例3のテストピースを観察して得られた繊維及び繊維表面に付着した粒子を示す走査型電子顕微鏡像(倍率500倍)である。It is a scanning electron microscope image (magnification 500 times) which shows the particle | grains adhering to the fiber obtained by observing the test piece of Example 3, and the fiber surface. 比較例1のテストピースを観察して得られた繊維及び繊維表面を示す走査型電子顕微鏡像(倍率500倍)である。It is a scanning electron microscope image (500-times multiplication factor) which shows the fiber and fiber surface which were obtained by observing the test piece of the comparative example 1.

Claims (7)

繊維構造体より構成される防音材であって、
該繊維構造体は、繊維基体とこれに周着される微細粉粒を用いて成ることを特徴とする防音材。
A soundproofing material composed of a fiber structure,
The soundproofing material, wherein the fiber structure is made of a fiber base and fine powder particles around the fiber base.
繊維の表面に微細粉粒を周着して得られた防音繊維を、機械結合法、接着法、融着法及び湿式法から成る群より選ばれた少なくとも1種の方法により不織布とし、該不織布を繊維構造体としたことを特徴とする請求項1に記載の防音材。   A soundproof fiber obtained by surrounding fine particles on the surface of the fiber is made into a nonwoven fabric by at least one method selected from the group consisting of a mechanical bonding method, an adhesion method, a fusion method, and a wet method, and the nonwoven fabric The soundproofing material according to claim 1, wherein the soundproofing material is a fiber structure. 繊維を、機械結合法、接着法、融着法及び湿式法から成る群より選ばれた少なくとも1種の方法により不織布とし、該不織布の表面に上記微細粉粒を周着して得られたことを特徴とする請求項1に記載の防音材。   The fiber was made into a non-woven fabric by at least one method selected from the group consisting of a mechanical bonding method, an adhesion method, a fusion method and a wet method, and obtained by surrounding the fine particles on the surface of the non-woven fabric. The soundproof material according to claim 1. 上記微細粉粒は無機物であることを特徴とする請求項1〜3のいずれか1つの項に記載の防音材。   The soundproof material according to any one of claims 1 to 3, wherein the fine powder is an inorganic substance. 上記微細粉粒は、二酸化ケイ素及び/又は活性炭であることを特徴とする請求項1〜4のいずれか1つの項に記載の防音材。   The soundproof material according to any one of claims 1 to 4, wherein the fine particles are silicon dioxide and / or activated carbon. 上記微細粉粒は、平均粒子径が0.1nm〜100μmであることを特徴とする請求項1〜5のいずれか1つの項に記載の防音材。   The soundproof material according to any one of claims 1 to 5, wherein the fine particles have an average particle diameter of 0.1 nm to 100 µm. 上記微細粉粒は歩留り向上剤を介して周着されていることを特徴とする請求項1〜6のいずれか1つの項に記載の防音材。   The soundproof material according to any one of claims 1 to 6, wherein the fine powder particles are circumferentially attached via a yield improver.
JP2004152940A 2004-05-24 2004-05-24 Soundproof material Pending JP2005338129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152940A JP2005338129A (en) 2004-05-24 2004-05-24 Soundproof material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152940A JP2005338129A (en) 2004-05-24 2004-05-24 Soundproof material

Publications (1)

Publication Number Publication Date
JP2005338129A true JP2005338129A (en) 2005-12-08

Family

ID=35491822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152940A Pending JP2005338129A (en) 2004-05-24 2004-05-24 Soundproof material

Country Status (1)

Country Link
JP (1) JP2005338129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004191A1 (en) 2013-07-10 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Sound absorber made of activated carbon granulate
CN111163403A (en) * 2020-01-02 2020-05-15 歌尔股份有限公司 Sound-absorbing particle, sound-generating device, and electronic apparatus
WO2020217131A1 (en) * 2019-04-25 2020-10-29 3M Innovative Properties Company Acoustic articles and methods thereof
WO2023276151A1 (en) * 2021-07-02 2023-01-05 昭和電工マテリアルズ株式会社 Sound absorbing material, and vehicle member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004191A1 (en) 2013-07-10 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Sound absorber made of activated carbon granulate
DE102013213548A1 (en) 2013-07-10 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sound absorber made of activated carbon granules
WO2020217131A1 (en) * 2019-04-25 2020-10-29 3M Innovative Properties Company Acoustic articles and methods thereof
CN113710845A (en) * 2019-04-25 2021-11-26 3M创新有限公司 Acoustic article and method thereof
CN111163403A (en) * 2020-01-02 2020-05-15 歌尔股份有限公司 Sound-absorbing particle, sound-generating device, and electronic apparatus
CN111163403B (en) * 2020-01-02 2022-01-07 歌尔股份有限公司 Sound-absorbing particle, sound-generating device, and electronic apparatus
WO2023276151A1 (en) * 2021-07-02 2023-01-05 昭和電工マテリアルズ株式会社 Sound absorbing material, and vehicle member

Similar Documents

Publication Publication Date Title
CN1279997C (en) Nanofiber filter media
TWI323751B (en) Nonwoven fabric sheet and manufacturing method thereof
JP5586851B2 (en) Porous membrane
JP5319091B2 (en) Ventilation resistance film, manufacturing method thereof, and sound-absorbing laminated member using ventilation resistance film
JPH11508328A (en) Method for attenuating sound and soundproofing body therefor
CN101194070A (en) Web, stampable sheet, expansion-molded stampable sheet, and process for producing these
JP2022530035A (en) Acoustic articles and their methods
JP6729557B2 (en) Filter material for air filter
CN101999145B (en) Sound-absorbing composite structure
TW201006979A (en) Non-woven material and method of making such material
CN101808709A (en) Filter element and filter unit
JPS58163438A (en) Absorbing sheet product
RU2011153054A (en) LOW-DENSITY NONWOVEN MATERIAL APPLICABLE WITH ACOUSTIC CEILING PRODUCTS
JP5092144B2 (en) Sound absorbing material and manufacturing method thereof
CN109046040B (en) Gradient filter membrane material based on nano-fibers and preparation method thereof
JP2004082420A (en) Functional sheet with reinforcing material
CN113306502A (en) Vehicle undercover and method for manufacturing same
JP2018038983A (en) Production method of filtering medium for air filter
JP2005338129A (en) Soundproof material
JP3646861B2 (en) Particle-containing nonwoven fabric and method for producing the same
JP2000042323A (en) Filter material for air filter and air filter
CN108885862B (en) sound absorbing material
JP2010115570A (en) Electrified nonwoven fabric for air filter, and air filter
JP2023542644A (en) Acoustic absorbing fillers and related acoustic articles
US20230395056A1 (en) Acoustic articles and assemblies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105