JP2005337783A - Method for estimating weatherability of resin - Google Patents

Method for estimating weatherability of resin Download PDF

Info

Publication number
JP2005337783A
JP2005337783A JP2004154364A JP2004154364A JP2005337783A JP 2005337783 A JP2005337783 A JP 2005337783A JP 2004154364 A JP2004154364 A JP 2004154364A JP 2004154364 A JP2004154364 A JP 2004154364A JP 2005337783 A JP2005337783 A JP 2005337783A
Authority
JP
Japan
Prior art keywords
resin
amount
weather resistance
radical
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154364A
Other languages
Japanese (ja)
Other versions
JP4429803B2 (en
Inventor
Yuichi Fujii
雄一 藤井
Tamotsu Yoneyama
保 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004154364A priority Critical patent/JP4429803B2/en
Publication of JP2005337783A publication Critical patent/JP2005337783A/en
Application granted granted Critical
Publication of JP4429803B2 publication Critical patent/JP4429803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the weatherability of an acrylic resin molded product simply and extremely rapidly with high precision. <P>SOLUTION: The weatherability of a resin is compared and evaluated from the amount of radicals generated by irradiating the plane of the resin molded into the same form and size with ultraviolet rays at a constant angle. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、簡便にかつ高い精度で極めて迅速に樹脂の耐候性を評価する方法に関する。   The present invention relates to a method for evaluating the weather resistance of a resin in a simple and highly accurate manner.

樹脂は、あらゆる産業分野で活用されている。例えば透明性と優れた耐候性を有するアクリル系樹脂は、看板、ディスプレイ、自動車用部品、照明材料、建築材料、弱電材料に利用され、さらに近年ではプラスチック光ファイバー、液晶用バックライトなど新しい分野への用途の広がりを見せている。アクリル系樹脂に限らず樹脂は一般的に、時間の経過に従い空気中の酸素および水分、温度変化、機械的な衝撃などの影響により徐々に性能が低下する。これが耐侯劣化であり、材料の光、熱、風雨などの屋外条件下の暴露に対する耐久性が耐候性である。この耐侯劣化が顕在化してくると物性の低下、変色、退色、光沢性の低下など見た目の変化として現れてくる。アクリル系樹脂は透明性を特徴としている樹脂であるため耐侯劣化が生じた場合、変色が特に問題となる。   Resins are used in all industrial fields. For example, acrylic resins with transparency and excellent weather resistance are used for signboards, displays, automotive parts, lighting materials, building materials, and weak electrical materials. In recent years, they have been used in new fields such as plastic optical fibers and liquid crystal backlights. It shows a wide range of uses. In general, not only acrylic resins but also resins gradually deteriorate in performance due to the influence of oxygen and moisture in the air, temperature change, mechanical impact, and the like over time. This is weathering deterioration, and the durability of the material against exposure under outdoor conditions such as light, heat, and wind and rain is weather resistance. When this wrinkle deterioration becomes obvious, it appears as a change in appearance such as a decrease in physical properties, discoloration, fading, and a decrease in glossiness. Since acrylic resin is a resin characterized by transparency, discoloration becomes a particular problem when wrinkle resistance deterioration occurs.

従来、耐候性を試験する方法としては、長い年月に渡り屋外に検体を放置してその劣化度で評価する屋外暴露試験が用いられてきた。ここでいう劣化度とは機械的強度の低下、変色、退色光沢度の低下、重量の減少など劣化現象の進行の度合いである。しかしながら10年の劣化度を測定するには10年の継続試験が必要であり、結果が判明するまで長い年月が必要であり、問題があった。
この屋外暴露試験に対して自然環境を模し迅速に耐候性を評価できる方法として促進耐侯試験がある。例えばプラスチック建材の促進耐侯試験方法(JIS A 1414)に準じて実施される「サンシャインウエザーメーター試験(S−W−O−M)」、プラスチック−実験室光源による暴露試験方法−(JIS K 7350−4)、塗膜に関してはサンシャインカーボンアークを用いる塗料の一般試験方法(JIS K 5400)およびキセノンランプを用いる方法(JIS K 5600)がある。しかしながらこれら促進耐侯試験においても最低でも数100時間の試験時間が必要とされ検体の耐候性の判断に長い時間が必要とされていた。
Conventionally, as a method for testing weather resistance, an outdoor exposure test has been used in which a specimen is left outdoors and evaluated by its degree of deterioration for many years. Here, the degree of deterioration is the degree of progress of a deterioration phenomenon such as a decrease in mechanical strength, discoloration, a decrease in fading gloss, or a decrease in weight. However, in order to measure the degree of deterioration for 10 years, a continuous test for 10 years is necessary, and it takes a long time until the results are known, which is problematic.
There is an accelerated weathering test as a method for simulating the natural environment and quickly evaluating weather resistance for this outdoor exposure test. For example, “Sunshine weather meter test (S-W-O-M)” performed in accordance with the accelerated weathering test method for plastic building materials (JIS A 1414), plastic—exposure test method using laboratory light sources— (JIS K 7350-) 4) Regarding the coating film, there are a general test method for paint using sunshine carbon arc (JIS K 5400) and a method using a xenon lamp (JIS K 5600). However, even in these accelerated weathering tests, a test time of several hundred hours is required at a minimum, and a long time is required for judging the weather resistance of the specimen.

極めて迅速に有機材料の劣化度を測定し、有機材料の劣化度将来予測を可能とする方法が特許文献1に開示されている。極めて迅速に有機材料の耐候性を評価する技術であるが実施例に示されている方法はプラズマ発生装置が必要であり大きな電力、圧力調整装置などを必要とする方法であり簡便な方法とは言い難い。また、耐侯劣化に伴う黄変度に関しては具体的な予測評価法についての記載は示されていない。
樹脂の耐候性の迅速な評価法としては高分子材料の超短時間耐候性評価の新方法として非特許文献1に電子スピン共鳴(以下ESRと言う。)装置を用いて短時間に耐候性を予測する技術の開示がある。しかしながら記載されている樹脂がポリカーボネート、ポリアミド、ウレタンのみであり、測定データもラジカルの測定を実施し、比較しているに過ぎず耐候性の予測評価方法については具体的に示されていない。
Patent Document 1 discloses a method for measuring the deterioration degree of an organic material very quickly and enabling the future prediction of the deterioration degree of the organic material. Although it is a technology that evaluates the weather resistance of organic materials very quickly, the method shown in the examples requires a plasma generator and requires a large electric power, pressure adjusting device, etc. It's hard to say. Moreover, the description about the specific prediction evaluation method is not shown regarding the yellowing degree accompanying a weather-resistant deterioration.
As a rapid evaluation method for weather resistance of a resin, as a new method for evaluating ultra-short time weather resistance of a polymer material, Non-Patent Document 1 discloses an electron spin resonance (hereinafter referred to as ESR) apparatus, which provides weather resistance in a short time. There is a disclosure of technology to predict. However, the resins described are only polycarbonate, polyamide, and urethane, and the measurement data are only measured and compared with radicals, and the weather resistance prediction evaluation method is not specifically shown.

さらに樹脂のラジカルを補足し、耐候性との関係を論じた文献としては非特許文献2に不安定なラジカルを安定なものに変換して測定することで元の不安定なラジカルの構造や種類を測定するスピントラッピング法の技術が示されている。この技術はスピントラップ剤としてビスフェノールA系エポキシ樹脂を塗膜中に5%程度含有させ、樹脂塗膜から生じた不安定なラジカルを補足し、トラップすることでエポキシ樹脂が安定なフェノキシラジカルに変化して容易に補足でき、このESR信号のフェノキシラジカルの増加量が多い樹脂塗膜ほど耐侯劣化が早いとした文献である。さらに、特許文献2にラジカルトラップ剤を塗膜に加え、紫外線を照射して生じるラジカルをラジカルトラップ剤に補足させ紫外線の照射前後のラジカル変化量から塗膜の劣化を測定する技術の開示がある。しかしながら非特許文献3によればポリメタクリル酸メチルにベンゾフェノンを添加して紫外線照射下ラジカルを測定した例から不純物の添加によりポリマーが軟化し、ラジカル発生に影響を与える記載が有り、数wt%もの不純物を添加するスピントラッピング法は、不純物を添加することで検体の物性に影響を与え、本来のラジカル発生量との差異が生じる恐れがあり精度の観点から問題があった。   Furthermore, as a document that supplements resin radicals and discusses the relationship with weather resistance, Non-Patent Document 2 converts the unstable radicals into stable ones and measures them to determine the structure and type of the original unstable radicals. A technique of spin trapping method for measuring is shown. This technology contains about 5% of bisphenol A epoxy resin as a spin trapping agent in the coating film, which captures and traps unstable radicals generated from the resin coating film, thereby converting the epoxy resin into a stable phenoxy radical. It is a document that can be easily supplemented, and that the resin coating film with a larger amount of increase in the phenoxy radical of the ESR signal has a faster deterioration resistance. Furthermore, Patent Document 2 discloses a technique for adding a radical trapping agent to a coating film, capturing radicals generated by irradiating ultraviolet rays to the radical trapping agent, and measuring the deterioration of the coating film from the amount of radical change before and after irradiation with ultraviolet rays. . However, according to Non-Patent Document 3, there is a description that the polymer is softened by the addition of impurities and affects radical generation from an example in which benzophenone is added to poly (methyl methacrylate) and the radical is measured under ultraviolet irradiation. The spin trapping method in which impurities are added has a problem from the viewpoint of accuracy because the addition of impurities may affect the physical properties of the specimen and may cause a difference from the original radical generation amount.

また、樹脂に不純物を添加すること無しに紫外線照射下のラジカル発生量を測定し、劣化を測定する方法としては特許文献3にエポキシ樹脂に直接紫外線を照射し、フェノキシラジカルを発生させ、このフェノキシラジカルから劣化を測定する方法が開示されている。しかしながらこの方法は、検体のつや保持率の序列が相対発生フェノキシラジカル量順位と一致したことを示したに過ぎず定量性は論じられていない。さらに、この技術はエポキシ樹脂にのみ適用可能な技術でありアクリル系樹脂等他の樹脂には適用ができず問題があった。   Further, as a method of measuring the amount of radical generation under ultraviolet irradiation without adding impurities to the resin and measuring the degradation, Patent Document 3 directly irradiates the epoxy resin with ultraviolet rays to generate phenoxy radicals, and this phenoxy A method for measuring degradation from radicals is disclosed. However, this method only shows that the order of specimen gloss and retention was consistent with the relative phenoxy radical amount ranking, and quantitativeness is not discussed. Furthermore, this technique is a technique that can be applied only to an epoxy resin, and cannot be applied to other resins such as an acrylic resin.

アクリル系樹脂に紫外線を照射し、ESRを用いてラジカルを測定し、耐侯劣化との関係を論じた例としては非特許文献4にメタクリル酸メチルの共重合体塗膜の紫外線照射下でのラジカル発生と塗膜の光沢保持率と色差の関係が示されているが単に傾向が示されているに過ぎずラジカル発生量から光沢保持率の低下、色差の変化を精度良く予測するには至っていない。また、非特許文献5には熱可塑性フッ素樹脂とポリメタクリル酸メチル樹脂の共重合体の紫外線照射下におけるラジカル発生量と屋外暴露における光沢保持率関係を示した例があり、ラジカル発生量と屋外暴露試験における光沢保持率が極めて良い相関関係を示すと結論付けているが定量性との関係は明らかにされておらず耐候性を精度良く予測できる技術ではなかった。
すなわちこれまで不純物等の添加をすることなしにアクリル系樹脂の耐候性を簡便かつ迅速に高い精度で評価する技術は存在しなかった。
As an example of irradiating an acrylic resin with ultraviolet rays, measuring radicals using ESR, and discussing the relationship with wrinkle resistance degradation, Non-Patent Document 4 describes radicals under ultraviolet irradiation of a methyl methacrylate copolymer coating film. The relationship between the occurrence and the gloss retention of the coating film and the color difference is shown, but only a tendency is shown, and it has not yet been possible to accurately predict the decrease in gloss retention and the change in color difference from the amount of radicals generated. . Further, Non-Patent Document 5 has an example showing the relationship between the amount of radical generated under the ultraviolet irradiation of the copolymer of thermoplastic fluororesin and polymethyl methacrylate resin and the gloss retention ratio in outdoor exposure. Although it was concluded that gloss retention in the exposure test shows a very good correlation, the relationship with quantitativeness was not clarified, and it was not a technique that could predict weatherability with high accuracy.
That is, until now, there has been no technique for simply and quickly evaluating the weather resistance of an acrylic resin with high accuracy without adding impurities.

特開平9−178727号公報JP-A-9-178727 特公平1−41216号公報Japanese Examined Patent Publication No. 1-41216 特公平1−38258号公報Japanese Patent Publication No. 1-38258 SAE Technical Paper Series,SAE−900855,(1990)p.1−5SAE Technical Paper Series, SAE-900855, (1990) p. 1-5 色材協会誌、73巻、11号、2000年、p.559−563Journal of Color Material Association, Vol. 73, No. 11, 2000, p. 559-563 Polymer Photochemistry,2,(1982)p.297−308Polymer Photochemistry, 2, (1982) p. 297-308 色材協会誌、58巻、6号、1985年、p.323−333Japan Society for Color Material, Vol.58, No.6, 1985, p. 323-333 色材協会誌、63巻、7号、1990年、p.392−398Journal of Color Material Association, Vol. 63, No. 7, 1990, p. 392-398

本発明の目的は、樹脂に紫外線を照射し、発生するラジカル量から耐候性を予測評価することである。   An object of the present invention is to predict and evaluate weather resistance from the amount of radicals generated by irradiating a resin with ultraviolet rays.

本発明者らは前記課題を解決すべく鋭意、検討を重ねた結果、同一形態、サイズに成型した樹脂の平面に紫外線を一定の角度から照射し、発生するラジカル量と耐候性例えば黄変度が極めて高い相関性を示すことを見出し、本発明を成すに至った。
すなわち、本発明は下記1)〜6)の発明である。
1)樹脂の耐候性を予測する方法であって、同一形態、サイズに成型した樹脂の平面に紫外線を一定の角度から照射し、発生するラジカル量から耐候性を比較評価する耐候性の予測評価方法。
2)紫外線が200nmから390nmの波長を含む紫外線である前記1)に記載の方法。
3)発生するラジカル量がESRを用いて測定したラジカル発生量である前記1)〜2)に記載の方法。
4)耐候性が黄変度を用いて評価した耐候性である前記1)〜3)いずれかに記載の方法。
5)樹脂がアクリル系樹脂である前記1)〜4)いずれかに記載の方法。
6)樹脂がポリメタクリル酸メチルを含む樹脂である請求項1〜5いずれかに記載の方法。
7)ラジカル量がメタクリレートラジカルおよびまたはメチルラジカル量である6)に記載の方法。
As a result of intensive studies and studies to solve the above problems, the present inventors irradiate the plane of the resin molded into the same form and size with ultraviolet rays from a certain angle, and the amount of radicals generated and weather resistance, for example, the degree of yellowing Has been found to exhibit extremely high correlation, and the present invention has been achieved.
That is, this invention is invention of following 1) -6).
1) A method for predicting the weather resistance of a resin, which irradiates the plane of the resin molded into the same form and size with ultraviolet rays from a certain angle, and compares and evaluates the weather resistance from the amount of generated radicals. Method.
2) The method according to 1) above, wherein the ultraviolet rays are ultraviolet rays having a wavelength of 200 nm to 390 nm.
3) The method according to 1) to 2) above, wherein the amount of radicals generated is a radical generation amount measured using ESR.
4) The method according to any one of 1) to 3) above, wherein the weather resistance is weather resistance evaluated using the degree of yellowing.
5) The method according to any one of 1) to 4) above, wherein the resin is an acrylic resin.
6) The method according to any one of claims 1 to 5, wherein the resin is a resin containing polymethyl methacrylate.
7) The method according to 6), wherein the radical amount is a methacrylate radical and / or a methyl radical amount.

本発明によれば、樹脂成型品の耐候性を簡便にかつ高い精度で極めて迅速に予測評価することができる。   ADVANTAGE OF THE INVENTION According to this invention, the weather resistance of a resin molded product can be estimated and evaluated very rapidly simply and with high accuracy.

本発明について以下、具体的に説明する。
測定に用いる樹脂の形状としては同一形態、サイズに成型した樹脂であればいずれの形状も使用できる。例えば塗膜の場合、ラジカルを測定する装置に組み込む目的で特別な塗膜過程を与えた場合、実製品との性能に差異が生じ、測定精度が低くなる可能性がある。一方、成型品の場合、製品の一部がそのまま測定に用いられるため好ましく用いられる。
本発明で用いられる紫外線は、照射する電磁波に紫外線が含まれれば良く、光源の性質等から可視部、赤外部の電磁波が存在しても差し支えない。用いられる紫外線の波長としては200nmから390nmの範囲が含まれることが好ましく、地球表面で観測される太陽光に含まれる波長と同等の280nmから390nmの範囲の波長が含まれる紫外線がさらに好ましく用いられる。
The present invention will be specifically described below.
As the shape of the resin used for the measurement, any shape can be used as long as the resin is molded in the same form and size. For example, in the case of a coating film, if a special coating process is applied for the purpose of incorporating it into an apparatus for measuring radicals, there is a possibility that the performance differs from the actual product and the measurement accuracy is lowered. On the other hand, in the case of a molded product, a part of the product is preferably used because it is used for measurement as it is.
The ultraviolet rays used in the present invention only need to be contained in the electromagnetic waves to be irradiated, and there may be visible and infrared electromagnetic waves due to the properties of the light source. The wavelength of ultraviolet rays used is preferably in the range of 200 nm to 390 nm, and more preferably ultraviolet rays having a wavelength in the range of 280 nm to 390 nm, which is equivalent to the wavelength contained in sunlight observed on the earth surface. .

紫外線を発生させる光源としては低圧、中圧、高圧及び超高圧の水銀ランプ、キセノンランプ、サンシャインカーボンアーク、紫外線カーボンアーク、紫外線蛍光灯などが用いられる。照射する際の出力は、樹脂検体にラジカルが発生し、ラジカル量の測定が可能であれば十分であり、1Wから5kWの範囲で用いられ、好ましくは100Wから2kWの範囲で用いられる。
樹脂検体が受ける紫外線量は各種光量測定器、光電流測定器で測定することができる。樹脂検体が受ける紫外線量としては例えば320nmから390nmの波長範囲で光電流測定器を用いて測定した場合、0.1mW/cmから100mW/cmに相当する範囲で用いることができ、好ましくは0.5mW/cmから50mW/cmに相当する範囲で用いることができる。樹脂検体が受ける紫外線量が十分でない場合は発生するラジカルの量が少なくなり精度が低下し、受ける紫外線量が多すぎる場合はラジカルの発生が飽和に達する現象が生じたり、または樹脂検体への輻射熱等の影響により精度が低下する可能性があり、好ましくない。
As a light source for generating ultraviolet rays, low pressure, medium pressure, high pressure and ultrahigh pressure mercury lamps, xenon lamps, sunshine carbon arcs, ultraviolet carbon arcs, ultraviolet fluorescent lamps and the like are used. The output upon irradiation is sufficient if radicals are generated in the resin specimen and the amount of radicals can be measured, and is used in the range of 1 W to 5 kW, preferably in the range of 100 W to 2 kW.
The amount of ultraviolet rays received by the resin specimen can be measured by various light quantity measuring devices and photocurrent measuring devices. If The amount of ultraviolet rays is a resin specimen undergoes measured by using an optical current measuring device in the wavelength range of 390nm from 320nm example, it can be used in a range corresponding from 0.1 mW / cm 2 to 100 mW / cm 2, preferably It can be used in a range corresponding to 0.5 mW / cm 2 to 50 mW / cm 2 . If the amount of ultraviolet rays received by the resin sample is not sufficient, the amount of generated radicals will decrease and accuracy will be reduced. If the amount of received ultraviolet rays is too large, the generation of radicals will reach saturation or radiant heat to the resin sample. The accuracy may decrease due to the influence of the above and the like, which is not preferable.

紫外線の照射時間は迅速な測定のためには短い方が好ましいが測定精度向上のためには紫外線の照射時間とラジカル発生量に直線性が得られる範囲であれば長くしても構わない。好ましくは10分から3時間の範囲で用いられる。
樹脂検体への紫外線照射の方向としては成型片の平面が紫外線光源の光軸と垂直の関係であることが好ましく、垂直からのずれは5°以内が好ましい。
発生するラジカルの測定は、一般的なラジカル分析方法が用いられる。例えばIRスペクトル法、UV−VISスペクトル法、ESRスペクトル法、発光スペクトル法などの分光学的手法によりラジカルを直接的あるいは間接的に測定する方法が用いられる。好ましくは直接ラジカルを測定することが可能なESRスペクトル法が用いられる。
具体的に例えばESRを用いて測定する場合、ESR測定用試験管に挿入可能な成型品を作製し、ESR測定用試験管に挿入後、キャビティ内部に組み込み測定する。ESR測定用試験管としては石英製が好ましく用いられる。
The ultraviolet irradiation time is preferably short for rapid measurement, but may be long as long as linearity is obtained in the ultraviolet irradiation time and the amount of radical generation in order to improve measurement accuracy. Preferably it is used in the range of 10 minutes to 3 hours.
The direction of ultraviolet irradiation to the resin specimen is preferably such that the plane of the molded piece is perpendicular to the optical axis of the ultraviolet light source, and the deviation from the vertical is preferably within 5 °.
A general radical analysis method is used to measure the generated radicals. For example, a method of directly or indirectly measuring radicals by a spectroscopic method such as IR spectrum method, UV-VIS spectrum method, ESR spectrum method, emission spectrum method or the like is used. Preferably, an ESR spectrum method capable of directly measuring radicals is used.
Specifically, for example, when measuring using ESR, a molded product that can be inserted into an ESR measurement test tube is prepared, inserted into the ESR measurement test tube, and then incorporated into the cavity for measurement. Quartz is preferably used as the ESR measurement test tube.

本発明ではラジカルの発生量と耐候性の関係を示す検量線を作成する目的で検量線用樹脂検体の耐候性を評価する必要がある。
樹脂検体の耐候性の試験方法としては屋外暴露法、促進耐侯試験等が用いられるが屋外暴露法は試験に時間がかかりすぎること、試験を実施する地点の違いによる差異が大きいこと、測定期間の気象条件等に差異が生じた場合、測定誤差が大きくなる点から促進耐侯試験が好ましく用いられる。例えばプラスチック建材の促進耐侯試験方法(JIS A 1415)に準じて実施される「サンシャインウエザーメーター試験(S−W−O−M)」、プラスチック−実験室光源による暴露試験方法−(JIS K 7350−4)、サンシャインカーボンアークを用いる塗料の一般試験方法(JIS K 5400)、キセノンランプを用いる方法(JIS K 5600)が用いられるが好ましくはプラスチック建材の促進耐侯試験方法(JIS A 1415)、プラスチック−実験室光源による暴露試験方法−(JIS K 7350−4)が用いられる。
In the present invention, it is necessary to evaluate the weather resistance of a calibration specimen resin specimen for the purpose of creating a calibration curve showing the relationship between the amount of radicals generated and the weather resistance.
The outdoor exposure method, accelerated weathering test, etc. are used as the test methods for weather resistance of resin specimens, but the outdoor exposure method takes too much time for the test, the difference due to the difference in the point where the test is performed, When there is a difference in weather conditions, the accelerated weathering test is preferably used because the measurement error increases. For example, “Sunshine weather meter test (SWOM)” conducted according to the accelerated weathering test method for plastic building materials (JIS A 1415), plastic—exposure test method using a laboratory light source— (JIS K 7350-) 4) The general test method for paints using sunshine carbon arc (JIS K 5400) and the method using xenon lamps (JIS K 5600) are used, but preferably the accelerated weathering test method for plastic building materials (JIS A 1415), plastic- An exposure test method using a laboratory light source (JIS K 7350-4) is used.

耐候性の評価は、機械的強度の低下、変色、退色、光沢度の低下、重量の低下、有機・無機ガスの発生等で評価することができるが変色、退色、光沢度による評価が好ましく用いられ、変色の中でも黄変度が最も好ましく用いられる。
黄変度の評価にはUV−VISスペクトルなどの分光学的手法も用いることができるが初期の黄色度と暴露後の黄色度の差により表示される黄変度を評価する方法、例えばプラスチックの黄色度及び黄変度試験法(JIS K 7103)が好ましく用いられる。
本発明のアクリル系樹脂とは、アクリル樹脂を含む樹脂を指し、アクリル樹脂がポリマー構造中に取り込まれていても単純に混合されたものでも構わない。アクリル樹脂はアクリル酸エステル類またはメタクリル酸エステル類の重合体を指す。アクリル酸エステル類としてはアクリル酸エステル構造であればいずれでも用いられるがメチルエステル、エチルエステル、ブチルエステル、または2−エチルヘキシルエステルが好ましく用いられる。メタクリル酸エステル類としてはメタクリル酸エステル構造であればいずれも用いられるがメチルエステル、エチルエステル、ブチルエステル、ラウリルエステル、ステアリルエステルが好ましく用いられる。
Evaluation of weather resistance can be evaluated by mechanical strength reduction, discoloration, fading, glossiness reduction, weight reduction, generation of organic and inorganic gases, etc., but evaluation by discoloration, fading, glossiness is preferably used Among these discolorations, the yellowing degree is most preferably used.
A spectroscopic method such as UV-VIS spectrum can also be used to evaluate the yellowing degree, but a method for evaluating the yellowing degree displayed by the difference between the initial yellowness and the yellowness after exposure, for example, plastic The yellowness and yellowing test method (JIS K 7103) is preferably used.
The acrylic resin of the present invention refers to a resin containing an acrylic resin, and the acrylic resin may be incorporated into the polymer structure or simply mixed. Acrylic resin refers to a polymer of acrylic acid esters or methacrylic acid esters. Any acrylic ester structure can be used as the acrylic ester, but methyl ester, ethyl ester, butyl ester, or 2-ethylhexyl ester is preferably used. Any methacrylic acid ester structure may be used as the methacrylic acid ester, but methyl ester, ethyl ester, butyl ester, lauryl ester, and stearyl ester are preferably used.

本発明で測定するラジカル種としては紫外線を照射して発生するラジカル種であれば特に限定しない。アクリル系樹脂に紫外線を照射して発生するラジカル種としてはポリメタクリル酸メチル共重合体に紫外線を照射して生成するラジカル種を測定した例があり、メタクリレートラジカル、メチルラジカルが主として生成するとされている。メタクリレートラジカルは主鎖開裂の過程から生成し、ESR測定において超微細構造で9本のスペクトルで現れ、分光学的分離定数g値2.0033、分離定数a=11.25Gで観測される。一方、メチルラジカルは側鎖脱離により生成するとされ、ESR測定において超微細構造で4本のスペクトルで現れ、分離定数a=22.5Gで観測される(例えば色材協会誌、58巻、6号、1985年、p.323−333および色材協会誌、63巻、7号、1990年、p.392−398を参照)。いずれのラジカル種の発生も劣化前兆を示すラジカル種と考えられるため測定の対象として好ましく用いられる。   The radical species to be measured in the present invention is not particularly limited as long as it is a radical species generated by irradiation with ultraviolet rays. Radical species generated by irradiating acrylic resin with ultraviolet rays include an example of measuring radical species generated by irradiating polymethyl methacrylate copolymer with ultraviolet rays. It is said that methacrylate radicals and methyl radicals are mainly produced. Yes. The methacrylate radical is generated from the main chain cleavage process, appears in 9 spectra with an ultrafine structure in ESR measurement, and is observed with a spectroscopic separation constant g value of 2.0033 and a separation constant a = 11.25G. On the other hand, methyl radicals are considered to be generated by side chain elimination, appear in four spectra with an ultrafine structure in ESR measurement, and are observed with a separation constant a = 22.5 G (for example, Color Material Association, Vol. 58, 6). No., 1985, p.323-333 and the Color Material Association, Vol.63, No.7, 1990, p.392-398). Generation of any radical species is considered to be a radical species showing a sign of deterioration, and thus is preferably used as a measurement target.

Figure 2005337783
Figure 2005337783

メタクリレートラジカル Rは任意
CH・メチルラジカル
Methacrylate radical R is an optional CH 3 methyl radical

本発明では、あらかじめ耐候性への影響が判明している物質を樹脂に低濃度で濃度を変えて含有させ、それぞれの樹脂検体の耐候性を評価した後、ラジカル量を測定し、耐候性と発生したラジカル量の関係から検量線を作成する。ついで耐候性の判明していない樹脂検体のラジカル量を測定し、先の検量線との比較から該樹脂検体の耐候性を予測評価する。
ここであらかじめ耐候性への影響が判明している物質の選択が必要であるが耐候性へ影響を与える物質に関して例えば耐候性低下の主たる原因である光劣化についての記述が大沢善治郎著、「高分子の光劣化と安定化」、第1刷、(株)シーエムシー、1986年、p.47にある。該文献によれば高分子中に微量に存在するヒドロペルオキシド、カルボニル基、不飽和基、などの異種構造を持つ分子等が発色団となり高分子の光劣化を開始し、290nm以上の長波長の光を吸収する発色団を持たない高分子においても光により劣化する記載がある。よって添加する物質としては例えば上記記載に相当する物質が好ましく用いられる。例えばメタクロレイン、メチルビニルケトン、フェニルビニルケトン、メチルイソプロピルケトン、α−メチルスチレン、ベンゾフェノンが用いられ、メチルビニルケトンが好ましく用いられる。
In the present invention, a substance whose influence on weather resistance is known in advance is contained in the resin at a low concentration and the concentration is changed, and after evaluating the weather resistance of each resin specimen, the radical amount is measured, and the weather resistance and A calibration curve is created from the relationship between the amount of radicals generated. Next, the radical amount of a resin specimen whose weather resistance is not known is measured, and the weather resistance of the resin specimen is predicted and evaluated from a comparison with the previous calibration curve.
Here, it is necessary to select substances whose influence on weather resistance is known in advance, but with regard to substances that affect weather resistance, for example, a description of photodegradation, which is the main cause of the decrease in weather resistance, is written by Zenjiro Osawa, Photodegradation and Stabilization of Molecules ", First Printing, CMC Co., 1986, p. 47. According to this document, molecules having different structures such as hydroperoxides, carbonyl groups, unsaturated groups, etc. present in minute amounts in the polymer become chromophores and start photodegradation of the polymer, and have a long wavelength of 290 nm or more. There is a description that even a polymer having no chromophore that absorbs light deteriorates due to light. Therefore, for example, substances corresponding to the above description are preferably used as the substance to be added. For example, methacrolein, methyl vinyl ketone, phenyl vinyl ketone, methyl isopropyl ketone, α-methyl styrene, and benzophenone are used, and methyl vinyl ketone is preferably used.

本発明を実施例に基づいて説明する。
[実施例1]
検量線の作成
検量線用検体Aの作製:
モノマーとしてメタクリル酸メチル97wt%、アクリル酸メチル3wt%、添加剤としてチヌビンpを0.01重量部含む原料から懸濁重合により重合体ビーズを得た。これをシリンダー温度220℃の条件で射出成型し、220mm×20mm×3mmの成型検体を得、検量線用検体Aとした。
The present invention will be described based on examples.
[Example 1]
Preparation of calibration curve Preparation of calibration curve sample A:
Polymer beads were obtained by suspension polymerization from a raw material containing 97 wt% methyl methacrylate as a monomer, 3 wt% methyl acrylate, and 0.01 part by weight of tinuvin p as an additive. This was injection molded under the condition of a cylinder temperature of 220 ° C. to obtain a molded specimen of 220 mm × 20 mm × 3 mm, which was designated as a calibration curve specimen A.

検量線用検体Bの作製:
検量線用検体Aの作製条件と比較してモノマーの総量に対してメチルビニルケトンを260ppm添加したこと以外は同じ条件で重合及び成型を行い、検量線用検体Bを得た。
検量線用検体Cの作製:
検量線用検体Aの作製条件と比較してモノマーの総量に対してメチルビニルケトンを500ppm添加したこと以外は同じ条件で重合及び成型を行い、検量線用検体Cを得た。
検量線用検体の耐候性試験:
耐候性試験はJIS K 7350−4の方法に従って実施した。光源フィルターのタイプはI形、ブラックパネル温度は63℃、水噴霧は120分中18分のサイクルの条件で240時間の耐侯促進試験を実施した。
Preparation of calibration curve sample B:
Polymerization and molding were performed under the same conditions except that 260 ppm of methyl vinyl ketone was added to the total amount of monomers as compared with the preparation conditions of the calibration curve sample A, and a calibration curve sample B was obtained.
Preparation of calibration curve sample C:
Polymerization and molding were performed under the same conditions except that 500 ppm of methyl vinyl ketone was added to the total amount of monomers as compared with the preparation conditions of the calibration curve sample A, and a calibration curve sample C was obtained.
Weather resistance test for calibration curve samples:
The weather resistance test was conducted according to the method of JIS K 7350-4. The light source filter type was I, the black panel temperature was 63 ° C., and the water spray was subjected to a 240 hour wrinkle resistance acceleration test under a cycle of 18 minutes in 120 minutes.

検量線用検体の黄変度測定:
黄変度はプラスチックの黄色度および黄変度測定方法(JIS K 7103)に基づいて実施し、透過法で試験片の220mm長光路を測定した。耐侯試験前後の黄色度の差から黄変度(ΔYI)を求めた。
紫外線量の測定:
紫外線照射装置としてはウシオ電機(株)USH−1005D 超高圧水銀ランプを用い、出力は1120Wで照射した。樹脂検体が紫外線を受ける位置での紫外線量をウシオ電機(株)UIT−100光電流測定器で受光器にウシオ電機(株)UVD−365Pを用いて320nmから390nmの範囲において測定したところ4.5mW/cmであった。
Measurement of yellowing degree of sample for calibration curve:
The yellowing degree was measured based on the yellowness of the plastic and the yellowing degree measuring method (JIS K 7103), and the 220 mm long optical path of the test piece was measured by the transmission method. The yellowing degree (ΔYI) was determined from the difference in yellowness before and after the weather resistance test.
Ultraviolet light measurement:
USH-1005D ultra-high pressure mercury lamp was used as the ultraviolet irradiation device, and the output was 1120W. 3. The amount of ultraviolet rays at the position where the resin specimen receives ultraviolet rays was measured in the range of 320 nm to 390 nm using Ushio Electric Co., Ltd. UIT-100 photocurrent measuring device and Ushio Electric Co., Ltd. UVD-365P as the light receiver. It was 5 mW / cm 2 .

検量線用検体のラジカル量測定:
先に作製した検量線用検体Aの同じロット成型品から1.5mm×3.0mm×50mmの試験片を切り出し、石英製ESR用試験管に入れ、ESRキャビティに組み込んだ。樹脂検体の方向は切削面と反対の3mmの成型面を紫外線の照射方向に向け成型面が光源の光軸と垂直となるように調整した。紫外線はESR装置キャビティの真横から入射するように設計されており、紫外線光源ランプ中心からESR試験管中心軸までの距離は650mmである。直径50mmの導入管から入射した紫外線はESR試験管中心軸から250mmの位置に設置した集光レンズにより集光され、ESR試験管中心軸の位置では直径10mmの範囲に紫外線が照射される。ついで紫外線を30分照射し、消灯直後にESR装置によりラジカル発生量を測定した。
ESRの測定には日本電子社製の形式−JES−FES2XGの装置を用いた。測定条件としてはマイクロ波:1.0mW、フィールド:3380±250G、磁場補正の内標としてはMn(マンガン)マーカーを用いた。
ESR測定から得られたスペクトルは9本線スペクトルで分光学的分離定数g値は、2.0034、a値は11.1Gであることからメチルメタクリレートラジカルであると同定した。結果を図1に示す。
Measurement of the amount of radicals in a calibration curve sample:
A test piece of 1.5 mm × 3.0 mm × 50 mm was cut out from the same lot molded product of the calibration curve specimen A prepared earlier, placed in a quartz ESR test tube, and incorporated into an ESR cavity. The direction of the resin specimen was adjusted so that the molding surface of 3 mm opposite to the cutting surface was directed to the ultraviolet irradiation direction, and the molding surface was perpendicular to the optical axis of the light source. The ultraviolet rays are designed to enter from the side of the ESR device cavity, and the distance from the ultraviolet light source lamp center to the ESR test tube central axis is 650 mm. Ultraviolet light incident from a 50 mm diameter introduction tube is condensed by a condensing lens installed at a position 250 mm from the central axis of the ESR test tube, and ultraviolet light is irradiated in a range of 10 mm in diameter at the central axis of the ESR test tube. Subsequently, ultraviolet rays were irradiated for 30 minutes, and immediately after extinguishing the light, the amount of radicals generated was measured with an ESR apparatus.
For measurement of ESR, a JES-FES2XG device manufactured by JEOL Ltd. was used. As measurement conditions, microwave: 1.0 mW, field: 3380 ± 250 G, and Mn (manganese) marker was used as an internal standard for magnetic field correction.
The spectrum obtained from the ESR measurement was a 9-line spectrum, the spectroscopic separation constant g value was 2.0034, and the a value was 11.1 G. Therefore, it was identified as a methyl methacrylate radical. The results are shown in FIG.

次に得られたESRスペクトルの微分形を3300Gから3450Gの範囲で2回積分を行い、樹脂検体のESR強度をラジカル量既知のDPPH(ジフェニルピクリルヒドラジル)溶液(ベンゼン溶液l×10−4mol/l)のESR強度と比較して樹脂検体のラジカル発生の絶対量を求め、この数値を樹脂検体の紫外線を受ける面積で除し、単位面積当たりのラジカル発生量を求めた。同様の測定法を用い検量線用検体B及びCの紫外線照射後のラジカル発生量を求めた。結果を表1に示す。
次いで検量線用検体A,B,Cの耐侯試験後の黄変度yと単位面積当たりのラジカル発生量xから最小二乗法により検量線を求め、以下のような結果となった。
y=1.10×x−0.0486
黄変度y:ΔYI、x:発生ラジカル量(×10−11mol/mm
Next, the differential form of the obtained ESR spectrum was integrated twice in the range of 3300G to 3450G, and the ESR intensity of the resin specimen was changed to a DPPH (diphenylpicrylhydrazyl) solution (benzene solution l × 10 −4 ) with a known radical amount. The absolute amount of radical generation of the resin specimen was determined by comparison with the ESR intensity of mol / l), and this value was divided by the area of the resin specimen that received ultraviolet rays to determine the amount of radical generation per unit area. Using the same measurement method, the radical generation amount after ultraviolet irradiation of the specimens for calibration curve B and C was determined. The results are shown in Table 1.
Subsequently, a calibration curve was obtained by the least square method from the yellowing degree y after the weather resistance test of the calibration curve specimens A, B, and C and the radical generation amount x per unit area, and the following results were obtained.
y = 1.10 × x−0.0486
Yellowing degree y: ΔYI, x: Amount of generated radicals (× 10 −11 mol / mm 2 )

[実施例2]
実施例1記載の検量線用検体Aの作製条件と比較してモノマーの総量に対してメタクロレインを20ppm添加したこと以外は同じ条件で重合及び成型を行い、樹脂検体Aを得た。
実施例1記載の方法で樹脂検体Aのラジカル発生量を測定した結果41.0×10−11mol/mmであった。このラジカル発生量を実施例1で求めた検量線と比較した結果、ラジカル発生量から予測される240時間耐侯促進試験後の黄変度の評価予測値がΔYI=45.1となった。
[Example 2]
Polymerization and molding were performed under the same conditions except that 20 ppm of methacrolein was added to the total amount of monomers as compared with the preparation conditions of the calibration curve sample A described in Example 1 to obtain a resin sample A.
The radical generation amount of the resin specimen A was measured by the method described in Example 1, and the result was 41.0 × 10 −11 mol / mm 2 . As a result of comparing the radical generation amount with the calibration curve obtained in Example 1, the estimated value of yellowing after the 240-hour weathering resistance promotion test predicted from the radical generation amount was ΔYI = 45.1.

[実施例3]
メタクロレインをフェニルビニルケトンに変えること以外は実施例2と同じ条件で重合及び成型を行い樹脂検体Bを得た。
実施例1記載の方法で樹脂検体Bのラジカル発生量を測定した結果40.5×10−11mol/mmであった。このラジカル発生量を実施例1で求めた検量線と比較した結果、ラジカル発生量から予測される240時間耐侯促進試験後の黄変度の評価予測値がΔYI=44.5となった。
[Example 3]
Polymerization and molding were performed under the same conditions as in Example 2 except that methacrolein was changed to phenyl vinyl ketone to obtain a resin specimen B.
It was 40.5 * 10 < -11 > mol / mm < 2 > as a result of measuring the radical generation amount of the resin specimen B by the method described in Example 1. As a result of comparing this radical generation amount with the calibration curve obtained in Example 1, the evaluation predicted value of the yellowing degree after the 240-hour weathering resistance promotion test predicted from the radical generation amount was ΔYI = 44.5.

[実施例4]
メタクロレインをメチルイソプロピルケトンに変えること以外は実施例2と同じ条件で重合及び成型を行い樹脂検体Cを得た。
実施例1記載の方法で樹脂検体Cのラジカル発生量を測定した結果43.5×10−11mol/mmであった。このラジカル発生量を実施例1で求めた検量線と比較した結果、ラジカル発生量から予測される240時間耐侯促進試験後の黄変度の評価予測値がΔYI=47.8となった。
[Example 4]
Polymerization and molding were performed under the same conditions as in Example 2 except that methacrolein was changed to methyl isopropyl ketone to obtain a resin specimen C.
The radical generation amount of the resin specimen C was measured by the method described in Example 1, and the result was 43.5 × 10 −11 mol / mm 2 . As a result of comparing this radical generation amount with the calibration curve obtained in Example 1, the predicted value of yellowing after the 240-hour weathering acceleration test predicted from the radical generation amount was ΔYI = 47.8.

[実施例5]
メタクロレインをα−メチルスチレンに変えること以外は実施例2と同じ条件で重合及び成型を行い樹脂検体Dを得た。
実施例1記載の方法で樹脂検体Dのラジカル発生量を測定した結果45.7×10−11mol/mmであった。このラジカル発生量を実施例1で求めた検量線と比較した結果、ラジカル発生量から予測される240時間耐侯促進試験後の黄変度の評価予測値がΔYI=50.2という結果が得られた。
[Example 5]
Resin specimen D was obtained by polymerization and molding under the same conditions as in Example 2 except that methacrolein was changed to α-methylstyrene.
It was 45.7 * 10 < -11 > mol / mm < 2 > as a result of measuring the radical generation amount of the resin test substance D by the method of Example 1. FIG. As a result of comparing this radical generation amount with the calibration curve obtained in Example 1, a result that the predicted value of yellowing after the 240-hour accelerated weathering resistance test predicted from the radical generation amount is ΔYI = 50.2 is obtained. It was.

[実施例6]
メタクロレインをベンゾフェノンに変えること以外は実施例2と同じ条件で重合及び成型を行い樹脂検体Eを得た。
実施例1記載の方法で樹脂検体Eのラジカル発生量を測定した結果44.0×10−11mol/mmであった。このラジカル発生量を実施例1で求めた検量線と比較した結果、ラジカル発生量から予測される240時間耐侯促進試験後の黄変度の評価予測値がΔYI=48.4となった。
[Example 6]
Resin specimen E was obtained by polymerization and molding under the same conditions as in Example 2 except that methacrolein was changed to benzophenone.
It was 44.0 * 10 < -11 > mol / mm < 2 > as a result of measuring the radical generation amount of the resin test substance E by the method of Example 1. FIG. As a result of comparing this radical generation amount with the calibration curve obtained in Example 1, the evaluation predicted value of the yellowing degree after the 240-hour weathering resistance promotion test predicted from the radical generation amount was ΔYI = 48.4.

[比較例1]
実施例2で得られた樹脂検体Aと同じロットのメタクロレインを含有する成型体を、実施例1に記載した方法で促進耐侯試験を240時間実施した結果、黄変度はΔYI=42.8であり、実施例2の評価予測値とのΔYIの差は2.3であった。
[Comparative Example 1]
The molded body containing methacrolein in the same lot as the resin specimen A obtained in Example 2 was subjected to an accelerated weathering resistance test for 240 hours by the method described in Example 1. As a result, the yellowing degree was ΔYI = 42.8. The difference in ΔYI from the estimated evaluation value in Example 2 was 2.3.

[比較例2]
実施例3で得られた樹脂検体Bと同じロットのフェニルビニルケトンを含有する成型体を実施例1に記載した方法で促進耐侯試験を240時間実施した結果、黄変度はΔYI=45.0であり、実施例3の評価予測値とのΔYIの差は0.5であった。
[Comparative Example 2]
As a result of conducting an accelerated weathering resistance test for 240 hours for the molded body containing phenyl vinyl ketone of the same lot as the resin specimen B obtained in Example 3, the yellowing degree was ΔYI = 45.0. The difference in ΔYI from the estimated evaluation value in Example 3 was 0.5.

[比較例3]
実施例4で得られた樹脂検体Cと同じロットのメチルイソプロピルケトンを含有する成型体を実施例1に記載した方法で促進耐侯試験を240時間実施した結果、黄変度はΔYI=47.5であり、実施例4の評価予測値とのΔYIの差は0.3であった。
[Comparative Example 3]
The molded body containing methyl isopropyl ketone of the same lot as the resin specimen C obtained in Example 4 was subjected to an accelerated weathering test for 240 hours by the method described in Example 1. As a result, the yellowing degree was ΔYI = 47.5. The difference in ΔYI from the estimated evaluation value in Example 4 was 0.3.

[比較例4]
実施例5で得られた樹脂検体Dと同じロットのα−メチルスチレンを含有する成型体を実施例1に記載した方法で促進耐侯試験を240時間実施した結果、黄変度はΔYI=48.5であり、実施例5の評価予測値との差は1.7であった。
[Comparative Example 4]
As a result of conducting an accelerated weathering resistance test for 240 hours by the method described in Example 1 on the molded body containing α-methylstyrene of the same lot as the resin specimen D obtained in Example 5, the yellowing degree was ΔYI = 48. 5 and the difference from the estimated evaluation value of Example 5 was 1.7.

[比較例5]
実施例6で得られた樹脂検体Eと同じロットのベンゾフェノンを含有する成型体を実施例1に記載した方法で促進耐侯試験を240時間実施した結果、黄変度はΔYI=49.1であり、実施例6の評価予測値とのΔYIの差は0.7であった。
実施例、比較例の結果を表2にまとめる。
[Comparative Example 5]
As a result of conducting an accelerated weathering resistance test for 240 hours for the molded body containing the same lot of benzophenone as the resin specimen E obtained in Example 6 by the method described in Example 1, the yellowing degree was ΔYI = 49.1. The difference in ΔYI from the estimated evaluation value in Example 6 was 0.7.
The results of Examples and Comparative Examples are summarized in Table 2.

Figure 2005337783
Figure 2005337783

Figure 2005337783
Figure 2005337783

本発明の方法は、これまで樹脂の耐侯試験を必要としていた分野で好適に利用できる。   The method of the present invention can be suitably used in fields that have so far required a resin weather resistance test.

実施例1で得られたESRスペクトル(Mnマーカーなし)ESR spectrum obtained in Example 1 (no Mn marker)

Claims (7)

樹脂の耐候性を予測する方法であって、同一形態、サイズに成型した樹脂の平面に紫外線を一定の角度から照射し、発生するラジカル量から耐候性を比較評価する耐候性の予測評価方法。 A method for predicting the weather resistance of a resin, which irradiates a flat surface of a resin molded in the same form and size with ultraviolet rays from a certain angle, and compares and evaluates the weather resistance from the amount of generated radicals. 紫外線が200nmから390nmの波長を含む紫外線である請求項1に記載の方法。 The method according to claim 1, wherein the ultraviolet ray is an ultraviolet ray comprising a wavelength of 200 nm to 390 nm. 発生するラジカル量がESRを用いて測定したラジカル発生量である請求項1〜2に記載の方法。 The method according to claim 1, wherein the amount of radicals generated is a radical generation amount measured using ESR. 耐候性が黄変度を用いて評価した耐候性である請求項1〜3いずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the weather resistance is a weather resistance evaluated using a degree of yellowing. 樹脂がアクリル系樹脂である請求項1〜4いずれかに記載の方法。 The method according to claim 1, wherein the resin is an acrylic resin. 樹脂がポリメタクリル酸メチルを含む樹脂である請求項1〜5いずれかに記載の方法。 The method according to claim 1, wherein the resin is a resin containing polymethyl methacrylate. ラジカル量がメタクリレートラジカルおよびまたはメチルラジカル量である請求項6に記載の方法。 The method according to claim 6, wherein the radical amount is a methacrylate radical and / or a methyl radical amount.
JP2004154364A 2004-05-25 2004-05-25 Method for evaluating yellowing degree of resin Expired - Fee Related JP4429803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154364A JP4429803B2 (en) 2004-05-25 2004-05-25 Method for evaluating yellowing degree of resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154364A JP4429803B2 (en) 2004-05-25 2004-05-25 Method for evaluating yellowing degree of resin

Publications (2)

Publication Number Publication Date
JP2005337783A true JP2005337783A (en) 2005-12-08
JP4429803B2 JP4429803B2 (en) 2010-03-10

Family

ID=35491534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154364A Expired - Fee Related JP4429803B2 (en) 2004-05-25 2004-05-25 Method for evaluating yellowing degree of resin

Country Status (1)

Country Link
JP (1) JP4429803B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096300A (en) * 2006-10-12 2008-04-24 Hoya Corp Test condition determination method of adhesive capacity to titanium type hard coat lens base material, and testing method
JP2008180607A (en) * 2007-01-25 2008-08-07 Railway Technical Res Inst Deterioration-evaluating system for article consisting of polymeric material
JP2015206603A (en) * 2014-04-17 2015-11-19 鹿島建設株式会社 Coated film weather-resistance prediction method
JP2016161536A (en) * 2015-03-05 2016-09-05 鹿島建設株式会社 Coating-film weather-resistance evaluation system and coating-film weather-resistance evaluation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096300A (en) * 2006-10-12 2008-04-24 Hoya Corp Test condition determination method of adhesive capacity to titanium type hard coat lens base material, and testing method
JP4700587B2 (en) * 2006-10-12 2011-06-15 Hoya株式会社 Test condition determination method and test method for adhesion performance of titanium-based hard coat with lens base material
JP2008180607A (en) * 2007-01-25 2008-08-07 Railway Technical Res Inst Deterioration-evaluating system for article consisting of polymeric material
JP2015206603A (en) * 2014-04-17 2015-11-19 鹿島建設株式会社 Coated film weather-resistance prediction method
JP2016161536A (en) * 2015-03-05 2016-09-05 鹿島建設株式会社 Coating-film weather-resistance evaluation system and coating-film weather-resistance evaluation method

Also Published As

Publication number Publication date
JP4429803B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Shanti et al. Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation
Hutchinson et al. Determination of free-radical propagation rate coefficients for cycloalkyl and functional methacrylates by pulsed-laser polymerization
Shimizu et al. Weatherability of polypropylene by accelerated weathering tests and outdoor exposure tests in Japan
Anghelone et al. Influence of phthalocyanine pigments on the photo-degradation of alkyd artists' paints under different conditions of artificial solar radiation
KR101804361B1 (en) Simulated weathering test method using the world&#39;s regional climate factor realistic simulalating of region
JP3237810B2 (en) Stress detection method
Pickett et al. Accelerated weathering parameters for some aromatic engineering thermoplastics
Hiroki et al. Volume phase transitions of poly (acryloyl-l-proline methyl ester) gels in response to water–alcohol composition
JP4429803B2 (en) Method for evaluating yellowing degree of resin
Shi et al. Analysis of aged microplastics: a review
Bubev et al. ATR-FTIR spectroscopy study of the photodegradation protective properties of BP-4 and 4HBP in polyvinyl acetate thin films
Yuzawa et al. Application of a pyrolysis-GC/MS system incorporating with micro-UV irradiation to rapid evaluation of the weatherability of acrylic coating paints for house exterior walls
Barth et al. Termination kinetics of free-radical polymerization in ionic liquids
US20080073511A1 (en) Structured Copolymer Supports for Use in Mass Spectrometry
Hemmerich et al. Durability of the optical plastic polycarbonate under modulated blue LED irradiation at different duty cycles
Chen et al. Effect of UV-irradiation on poly (vinyl chloride) modified by methyl methacrylate–butadiene–styrene copolymer
Bardajee et al. Synthesis, characterization, and energy transfer studies of dye-labeled poly (butyl methacrylate) latex particles prepared by miniemulsion polymerization
JP2010002339A (en) Method of evaluating deterioration degree of coating film
Davis et al. Rapid assessment of weathering stability from exposure of polymer films. I. Real and simulated weathering of commercial ABS terpolymers
Jia et al. Effect of artificial weathering on surface properties of unsaturated polyester (UP) resin
Zouari et al. Influence of in situ photo-induced silver nanoparticles on the ageing of acrylate materials
Mallon et al. Durability of polymeric coatings: effects of natural and artificial weathering
Ladasiu Ciolacu et al. MALDI− TOF MS and DIOS− MS Investigation of the Degradation and Discoloration of Poly (ethylene terephthalate)
Bai et al. The reciprocity principle in mulch film deterioration and microplastic generation
JPH09178727A (en) Method and equipment for testing organic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees