JP2005337734A - Ion channel analytical method by cis-trans liquid current method and ion channel analyzer used for the same - Google Patents

Ion channel analytical method by cis-trans liquid current method and ion channel analyzer used for the same Download PDF

Info

Publication number
JP2005337734A
JP2005337734A JP2004153209A JP2004153209A JP2005337734A JP 2005337734 A JP2005337734 A JP 2005337734A JP 2004153209 A JP2004153209 A JP 2004153209A JP 2004153209 A JP2004153209 A JP 2004153209A JP 2005337734 A JP2005337734 A JP 2005337734A
Authority
JP
Japan
Prior art keywords
liquid
channel
cis
liquid flow
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004153209A
Other languages
Japanese (ja)
Other versions
JP4516356B2 (en
Inventor
Shigetoshi Oiki
成稔 老木
Norihiro Yamauchi
紀宏 山内
Keisuke Tsubota
圭介 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TODOROKI INDUSTRY CO Ltd
Original Assignee
TODOROKI INDUSTRY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TODOROKI INDUSTRY CO Ltd filed Critical TODOROKI INDUSTRY CO Ltd
Priority to JP2004153209A priority Critical patent/JP4516356B2/en
Publication of JP2005337734A publication Critical patent/JP2005337734A/en
Application granted granted Critical
Publication of JP4516356B2 publication Critical patent/JP4516356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a revolutional ion channel analytical method by a cis-trans liquid current method and an ion channel analyzer used for the same enabling to continue an intended ion channel analysis efficiently even when a membrane to be analyzed is damaged during an analyzing process by quickly repairing the membrane. <P>SOLUTION: The technical method adopts a coaxial tube-type cis-trans isomeric liquid tube comprising an insulating inner tube in which a micropore is formed at a predetermined position of the tube wall where a membrane to be analyzed is formed and a first liquid flow capillary channel is provided inside of the tube wall w, and an insulating outer tube which surrounds the insulating inner tube and in which a second liquid flow capillary channel is formed around the inner tube, an inner tube electrode which is provided near the micropore in the first liquid flow capillary channel, and an outer tube electrode which is provided near micropore in the second liquid flow capillary channel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオンチャネル(ion channel) 解析技術の改良、さらに詳しくは、絶縁性の内管および外管から成る同軸管構造のシス−トランス(cis-trans) 異性液管のフロー性能を巧みに利用することによって、解析対象膜が解析処理の最中に破損した場合でも、当該対象膜を速やかに修復して所期のイオンチャネル解析を能率的に継続することを可能にした画期的な“シス−トランス液流方式によるイオンチャネル解析方法と、その方法に使用するイオンチャネル解析装置”に関するものである。   The present invention improves the ion channel analysis technique, more specifically, the flow performance of a cis-trans isomer liquid pipe having a coaxial tube structure composed of an insulating inner tube and an outer tube. By using this system, even if the analysis target membrane breaks during the analysis process, it is possible to quickly repair the target membrane and efficiently continue the intended ion channel analysis. The present invention relates to an ion channel analysis method using a cis-trans liquid flow method and an ion channel analysis apparatus used for the method.

膜蛋白質の機能を解明する方法としては、電気生理学的手法が用いられ、他の方法では得られないダイナミックな医学的・生物学的情報や単一分子の情報を得ることができる。ところで、これまでの電気生理学的手法は、大別すると、パッチクランプ法(対象試料=培養細胞)と脂質平面膜法(対象試料=生化学的に抽出した膜蛋白質)とに区分される。ここに“パッチクランプ法”とは、細胞に先端開口部分を滑らかにしたガラス電極を押し当てながら電極内を吸引することにより細胞膜を千切り取って当該電極内に微小細胞膜を形成し、こうして形成された微小細胞膜にパルス電流を印加して前記電極内に形成されたイオンチャネルを流れる単一チャネル電流を測定する方法である(非特許文献1=19頁の図6、およびその説明文参照)。他方、“脂質平面膜法”というのは、容器内を仕切る隔壁に小孔を開け、ここに脂質平面膜を張り、cis 側へ膜ベシクルを加えて前記平面膜と融合させたうえ、cis 側の銀塩化銀電極からパルス電圧を印加し、このパルス電圧に起因してイオンチャネルから流れ出てくる単一チャネル電流を測定する方法である(非特許文献1=44頁の図3、およびその説明文参照)。これらの“パッチクランプ法”や“脂質平面膜法”は、いずれも生体膜に存在する蛋白質が特定の分子に対し低濃度で特異的に敏感に応答し、その応答を極度に高い精度で電気的に計測することができ、しかも、その感度は1分子のみならず1光子をも捕捉することができるほどに高精度であるところから、超高感・超高精度にして高速応答性能を備えた夢のセンサーの実現が見込まれるようになり、当該技術分野に関わる研究者の間では様々な研究開発が試みられるようになってきたのである。
曽我部正博・老木成稔氏ら編集(共立出版社)『イオンチャネル』 第19頁の図6とその説明文、および第44頁の図3とその説明文
As a method for elucidating the function of a membrane protein, an electrophysiological technique is used, and dynamic medical / biological information and single molecule information that cannot be obtained by other methods can be obtained. By the way, the conventional electrophysiological methods are roughly classified into a patch clamp method (target sample = cultured cells) and a lipid flat membrane method (target sample = membrane protein extracted biochemically). Here, the “patch clamp method” refers to the formation of a micro cell membrane in the electrode by stripping the cell membrane by sucking the inside of the electrode while pressing a glass electrode with a smooth opening at the tip of the cell. In this method, a single channel current flowing through an ion channel formed in the electrode is measured by applying a pulse current to the minute cell membrane (see Non-Patent Document 1 = FIG. 6 on page 19 and its explanatory text). On the other hand, the “lipid planar membrane method” is a method in which a small hole is made in the partition wall that partitions the inside of the container, a lipid planar membrane is stretched here, a membrane vesicle is added to the cis side, and the planar membrane is fused. This is a method in which a pulse voltage is applied from a silver-silver chloride electrode, and a single channel current flowing out from an ion channel due to the pulse voltage is measured (Non-patent Document 1 = FIG. 3 on page 44, and its description). See sentence). These “patch clamp method” and “lipid planar membrane method” both respond specifically and sensitively to a specific molecule at a low concentration of a protein present in a biological membrane, and the response can be performed with extremely high accuracy. It can be measured automatically, and the sensitivity is high enough to capture not only one molecule but also one photon. Realization of a dream sensor is expected, and various research and development have been attempted among researchers involved in the technical field.
Edited by Masahiro Sogabe, Narumi Ogiki, etc. (Kyoritsu Publishing Co., Ltd.) “AEON CHANNEL” on page 19, FIG. 6 and its description, and on page 44, FIG. 3 and its description

しかしながら、これら従来の方法には、共通の問題点があって適用範囲に限界と制約が存している。その原因として指摘される最大の隘路は、膜(パッチクランプ法にあってはガラス電極に形成した微小細胞膜、脂質平面膜法にあっては平面膜)の機械的脆弱性にあり、計測中に前記“膜”が周囲の物理的影響によって破損し易く、安定的に計測することができない点にある。   However, these conventional methods have common problems and have limitations and restrictions on the scope of application. The biggest bottleneck pointed out as the cause is the mechanical vulnerability of the membrane (microcell membrane formed on the glass electrode in the case of the patch clamp method, or planar membrane in the case of the lipid planar membrane method). The “film” is easily damaged by the surrounding physical influence and cannot be stably measured.

もっとも、このような“膜”の脆弱性を改善しようとする提案としては、膜分子の硬度や弾力性を改質する強化剤を使用して膜の機械的強度を高めようとする試みも為されてはいるけれども、“膜”そのものの生化学的性質が変化してしまって所期の目的たる医学的・生物学的情報や単一分子の情報を得ることが阻害されるという弊害が避けられないのであった。   However, as a proposal to improve the fragility of such a “film”, an attempt to increase the mechanical strength of the film by using a reinforcing agent that modifies the hardness and elasticity of the film molecule is also made. However, the adverse effect that the biochemical properties of the “membrane” itself change and obstructs the acquisition of the desired medical / biological information or single molecule information is avoided. It was not possible.

本発明は、イオンチャネルを電気生理学的に解析する従来の手段に前述のごとき問題点があったことに鑑みて為されたものであり、機械的強度が脆弱でデリケートな微小細胞膜やイオンチャネル分子組込み脂質平面膜が解析処理中に破損することを当然の前提とした発想の転回の下に、その破損した前記“膜(微小細胞膜・脂質平面膜など)”を直ちに修復して所期のイオンチャネル解析を能率的に継続することを可能にする画期的な方法と装置を提供することを目的とするものである。   The present invention has been made in view of the above-described problems in the conventional means for electrophysiologically analyzing ion channels, and has a weak mechanical strength and delicate micro cell membranes and ion channel molecules. Under the assumption of the assumption that the built-in lipid planar membrane is damaged during the analysis process, the damaged “membrane (microcellular membrane, lipid planar membrane, etc.)” is immediately repaired and the desired ion is repaired. It is an object of the present invention to provide an innovative method and apparatus that enables efficient channel analysis to be continued.

また、本発明の他の目的は、イオンチャネル分子組込み脂質平面膜を境界として両側に存する電解液の各々を急速かつ効率的に任意に個別的に置換して電気的測定を行うことが可能な頗る実用的な方法と装置を提供することにある。   In addition, another object of the present invention is to enable electrical measurement by rapidly and efficiently substituting each of the electrolyte solutions existing on both sides with the ion channel molecule-incorporated lipid planar membrane as a boundary. It is to provide a practical method and apparatus.

また、本発明の他の目的は、細胞膜表面に存在する膜蛋白質のみならず、細胞小器官や核などの膜蛋白質、さらには細菌やウィルスの膜蛋白質など従来のパッチクランプ法では処理できなかった膜蛋白分子の測定分析をも可能とする非常に利用範囲の広い電気生理学上有用な方法と装置を提供するにある。   Another object of the present invention is that not only membrane proteins existing on the cell membrane surface, but also membrane proteins such as organelles and nuclei, and bacteria and virus membrane proteins cannot be processed by conventional patch clamp methods. An object of the present invention is to provide an electrophysiologically useful method and apparatus that can be used for the measurement and analysis of membrane protein molecules.

さらに、本発明の他の目的は、脂質平面膜の表面積を極端に小さくすることができて、かつ、静電容量も大幅に少なくできると共に、回路内の浮遊容量が小さく、しかも、誘電損失も極端に少ない低ノイズで信頼性の高い医学的・生物学的情報を的確に得ることができる試験研究に有効なイオンチャネル解析方法とその装置を提供するにある。   Furthermore, another object of the present invention is that the surface area of the lipid planar membrane can be made extremely small, the capacitance can be greatly reduced, the stray capacitance in the circuit is small, and the dielectric loss is also low. It is an object of the present invention to provide an ion channel analysis method and apparatus effective for test research that can accurately obtain highly reliable medical and biological information with extremely low noise.

本発明者が上記目的を達成するために採用した方法的手段を、添附図面を参照して説明すれば、次のとおりである。即ち、本発明が提供する「脂質平面膜の潅流生成によるイオンチャネル解析方法」は、管壁wの所定位置に脂質平面膜の生成される微細孔11aが開設され、かつ、管壁w内部には毛細管状の第1液流路Tを有する絶縁性内管11と;この内管11を包囲して当該内管の周囲に第2液流路Cを形成せる絶縁性外管12とを含んで構成される同軸管構造のシス−トランス(cis-trans)異性液管1に対して、
前記内管11と外管12の各々には電解液を潅流させて前記第1・第2液流路T・Cの内部に電解液を充満させた後、前記外管12の第2液流路Cに脂質溶液を送り込むことによって前記内管の微細孔11aに脂質平面膜Mを生成させ、ついで、内管11の第1液流路Tへ解析対象のイオンチャネル分子を含有する試料液を潅流させて前記脂質平面膜Mに当該イオンチャネル分子を組み込ませ、こうして組込み形成されたイオンチャネル脂質平面膜Mb近くの第1・第2液流路T・Cに設置された一方の電極2にパルス電流を印加して当該イオンチャネル脂質平面膜Mbを通過して両電極2・3間に流れる単一チャネル電流を検出測定する点に特徴がある。
The method means adopted by the inventor to achieve the above object will be described with reference to the accompanying drawings. That is, in the “ion channel analysis method by perfusion generation of a lipid planar membrane” provided by the present invention, a micropore 11a in which a lipid planar membrane is generated is opened at a predetermined position of the tube wall w, and the tube wall w is provided inside. Includes an insulating inner tube 11 having a capillary-shaped first liquid flow path T; and an insulating outer tube 12 surrounding the inner pipe 11 to form a second liquid flow path C around the inner pipe. For a cis-trans isomer liquid pipe 1 having a coaxial pipe structure composed of
The inner pipe 11 and the outer pipe 12 are each perfused with an electrolytic solution so that the first and second liquid flow paths T and C are filled with the electrolytic solution, and then the second liquid flow in the outer pipe 12 is filled. By sending a lipid solution into the channel C, a planar lipid membrane M is formed in the micropore 11a of the inner tube, and then a sample solution containing the ion channel molecule to be analyzed is fed to the first liquid channel T of the inner tube 11. The ion channel molecules are incorporated into the lipid planar membrane M by perfusion, and the one electrode 2 installed in the first and second liquid flow paths T and C in the vicinity of the ion channel lipid planar membrane Mb thus incorporated is formed. It is characterized in that a single channel current flowing between the electrodes 2 and 3 passing through the ion channel lipid planar membrane Mb is detected and measured by applying a pulse current.

また、本発明者が上記目的を達成するために採用した他の方法的手段は、管壁wの所定位置に解析対象となる細胞を受止可能なサイズの微細孔11aが開設され、かつ、管壁wに囲われる内部には毛細管状の第1液流路Tを有する絶縁性内管11と;この内管11を包囲して当該内管の周囲に第2液流路Cを形成せる絶縁性外管12とを含んで構成される同軸管構造のシス−トランス異性液管1に対して、
前記内管11と外管12の各々には電解液を潅流させて両内外管の内部に電解液を充満させた後、前記第2液流路又は第1液流路に解析対象の細胞を含有する試料液を送り込むことにより前記内管の微細孔11aに当該細胞Mbを受止せしめる一方、ついで、前記試料液を送り込んだ流路とは反対側の第1液流路又は第2液流路側には瞬間的に陰圧を与えて微細孔11aに受止された細胞Mbの陰圧側の膜パッチを裂開させ、こうして膜パッチの裂開された微細孔11aの前記細胞Mbに対し、微細孔11aに近接して第1・第2液流路T・C内に設置された一方の電極にパルス電圧を印加することにより、当該細胞膜上のチャネル分子を通過して両電極間に流れる単一チャネル電流を検出測定して所要のデータを取得する点に特徴がある。
In addition, another method means adopted by the inventor to achieve the above object is that a micropore 11a having a size capable of receiving a cell to be analyzed is established at a predetermined position on the tube wall w, and An insulating inner tube 11 having a capillary-shaped first liquid flow channel T inside the tube wall w; surrounding the inner tube 11 and forming a second liquid flow channel C around the inner tube For a cis-trans isomer liquid pipe 1 having a coaxial pipe structure including an insulating outer pipe 12,
Each of the inner tube 11 and the outer tube 12 is perfused with an electrolytic solution so that both the inner and outer tubes are filled with the electrolytic solution, and then the cell to be analyzed is placed in the second liquid channel or the first liquid channel. The cell Mb is received in the fine hole 11a of the inner tube by feeding the contained sample liquid, and then the first liquid flow path or the second liquid flow opposite to the flow path into which the sample liquid is fed. A negative pressure is instantaneously applied to the roadside to cleave the membrane patch on the negative pressure side of the cell Mb received in the micropore 11a, and thus the cell Mb of the micropore 11a in which the membrane patch is cleaved, By applying a pulse voltage to one of the electrodes installed in the first and second liquid flow paths T and C in the vicinity of the micropore 11a, it flows through the channel molecules on the cell membrane and flows between the two electrodes. It is characterized in that required data is obtained by detecting and measuring a single channel current.

他方、本発明者が上記目的を達成するために採用した装置的手段は、これを添附図面を参照して説明すると、次のとおりである。
即ち、本発明の「イオンチャネル解析装置」は、管壁wの所定位置に脂質平面膜の生成される微細孔11aが開設され、かつ、管壁w内部には毛細管状の第1液流路Tを有する絶縁性内管11、およびこの内管11を包囲して当該内管の周囲に第2液流路Cを形成せる絶縁性外管12とを含んで構成される同軸管構造のシス−トランス異性液管1と;このシス−トランス異性液管1における第1液流路Tの中に、前記微細孔11aに近接して配設された内管電極2と;前記第2液流路Cの中に,前記微細孔11aに近接して配設された外管電極3といった技術手段を採用して、前記内外管11・12の形成する第1・第2液流路T・Cに電解液を潅流して充満し、かつ、前記微細孔11aに解析対象のイオンチャネル分子の組込まれた脂質平面膜Mbが生成された状態において、前記内外の両電極2・3の何れか一方に一定波高値のパルス電流を印加し、前記脂質平面膜Mbを通過する単一チャネル電流を検出測定可能に構成した点に特徴がある。
On the other hand, the apparatus means adopted by the present inventor for achieving the above object will be described as follows with reference to the accompanying drawings.
That is, in the “ion channel analyzer” of the present invention, a micropore 11a in which a lipid planar membrane is formed is opened at a predetermined position on the tube wall w, and a capillary-shaped first liquid channel is formed inside the tube wall w. A cis in a coaxial tube structure including an insulating inner tube 11 having T and an insulating outer tube 12 surrounding the inner tube 11 and forming a second liquid flow path C around the inner tube 11 A trans isomer liquid pipe 1; an inner pipe electrode 2 disposed in the first liquid flow path T in the cis-trans isomer liquid pipe 1 in the vicinity of the fine hole 11a; and the second liquid flow The first and second liquid flow paths T and C formed by the inner and outer pipes 11 and 12 are adopted in the path C by adopting technical means such as the outer pipe electrode 3 disposed in the vicinity of the fine hole 11a. A state in which a lipid flat membrane Mb in which the ion channel molecules to be analyzed are incorporated is formed in the micropores 11a by being perfused with electrolyte However, it is characterized in that a single channel current passing through the lipid planar membrane Mb can be detected and measured by applying a pulse current having a constant peak value to either one of the inner and outer electrodes 2 and 3. .

そこで、本発明の方法と装置とについて若干の注釈を加えれば、次のとおりである。
(1) 本発明において採用する同軸管構造のシス−トランス異性液管1は電気的に絶縁性が あることが必要であるから、ガラス、セラミック、合成樹脂を素材として用いるのが 普通であり、また外側から視認したり光線の照射をしたりすることもあるから、透明 であることが望ましく、しかも耐衝撃性もあることが望まれるから、フレキシブルで あるのが好ましい。
(2) しかして、本発明に用いるシス−トランス異性液管1は、内管11と外管12とから構成 されるが、内管11もこの内管11を包囲する外管12も電解液や試料液(イオンチャネル 分子含有液や細胞含有液)等の流動を阻害しない限度でなるべく細いことが望ましい ことから、内管11の外径は2〜0.5mm 、内径は1.7 〜 0.5mm(管壁wの厚さ= 0.2〜 0.5mm)、外管12の外径は8〜3mm、内径は4〜2.5 mm(管壁w'の厚さ=4〜0.5mm)程 度のものが採択される。ちなみに、内管11の内部は、毛細管状の第1液流路Tとなる 一方、内管11と外管12との間の空隙は環状の第2液流路Cとなる。
(3) また、内管11の管壁wにはシス−トランス異性液管1を構成した際に測定し易い箇所 に微細孔11aを開設するが、この微細孔11aの貫通孔径は小さいほど好ましく、一般 的には、中心を貫通する孔径は50〜10μm、更に細胞膜を対象とする場合には1個の 細胞を通過させずに当該微細孔壁に受止することが必要であるから1μm程度である ことが必要である。また、当該貫通する孔の周囲は当該管壁wの外面に至るほど孔径 が逓増的に拡大する円錐面としておくと脂質平面膜の形成に有利である。ちなみに、 内管11に形成される微細孔11aの貫通孔部分は、周知のYAGガスレーザを照射して 穿設することができ、その周囲に円錐面を形成する加工法としては円錐面を形成すべ き箇所以外の部分にはマスキング(例えば、ポリエチレン樹脂塗布)を施し、稀フッ 酸、フッ化水素酸、2フッ化キセノンなど周知のガラス腐蝕剤によってエッチングす る方法があり、かゝる加工法は従来周知である。
(4) 上記のように構成されるシス−トランス異性液管1においては、少なくとも脂質平面 膜の生成される内管11の微細孔11aに疎水処理を施しておくことが必要である。この 場合に適用される疎水処理法としては、シリコーン系撥水剤、フッ素系撥水剤などの ごとき周知の疎水処理液中に当該シス−トランス異性液管を浸漬したうえで、適宜、 加熱してヒートセットするといった方法が採られる。かくして、内管11における管壁 wの内外面と外管12の内面は疎水化されることになる(この浸漬法による場合には、 外管12の外周面も同時に疎水化されるが、本発明では特に必要でない)。
(5) 上記微細孔11aに近接して第1液流路T内に配設する内管電極2と、同微細孔11aに 近接して第2液流路C内に配設する外管電極3としては、導電性の良好な金属材料を 用いるのが良く、通常は銀塩化銀電極を採用する。
(6) 上記の内管電極2又は外管電極3にパルス電圧を印加する手段としては必要な波高値 のパルス電圧を任意に設定して出力可能な周知のインパルス発生器4を採用すること ができ、またイオンチャネル脂質平面膜Mbを通過して内管電極2又は外管電極3へ 流れる単一チャネル電流の検出測定手段としては、パッチクランプアンプを内蔵した チャネル電流測定器5を採用することができるのであり、これらインパルス発生器4 と電流測定器5の何れも従来周知のパッチクランプ法や脂質平面膜法に一般的に採用 されているものをそのまゝ採択可能である。
(7) そして、本発明の「イオンチャネル解析装置」においては、上記シス−トランス異性 液管1の第1液流路Tおよび第2液流路Cに対し、所定の電解液や解析対象のイオン チャネル試料液・細胞含有の試料液などを供給して送り込むための手段として、第1 液流路Tには第1シリンジ・ポンプ6、第2液流路Cには第2シリンジ・ポンプ7を 連結し、任意の圧力で当該液を間歇的又は連続的に射出して第1・第2の液流路T・ Cに対し各々潅流させることが可能である。
(8) さらに、本発明においては、シス−トランス異性液管1における第1液流路Tと第2 液流路Cを潅流する液体の圧力に相対的な圧力差を起こし得る給液手段を配設して、 内管11の管壁における微細孔11aに液圧の高い流路から低い流路へ吸引力を発生させ ることができるようにしておくと、イオンチャネル脂質平面膜Mbを生成し、または 再生修復する際に迅速かつ的確に行える。
Accordingly, the following is a brief description of the method and apparatus of the present invention.
(1) Since the cis-trans isomer liquid pipe 1 having a coaxial pipe structure used in the present invention needs to be electrically insulating, it is common to use glass, ceramic, or synthetic resin as a material. Moreover, since it may be visually recognized from outside or irradiated with light, it is desirable to be transparent, and it is also desirable to have impact resistance, so that it is preferably flexible.
(2) The cis-trans isomer liquid pipe 1 used in the present invention is composed of an inner pipe 11 and an outer pipe 12. The inner pipe 11 and the outer pipe 12 surrounding the inner pipe 11 are both electrolytes. The inner tube 11 has an outer diameter of 2 to 0.5 mm and an inner diameter of 1.7 to 0.5 mm (pipe). Thickness of wall w = 0.2 ~ 0.5mm), outer diameter of outer pipe 12 is 8 ~ 3mm, inner diameter is 4 ~ 2.5mm (thickness of pipe wall w '= 4 ~ 0.5mm) is adopted The Incidentally, the inside of the inner tube 11 becomes a capillary-shaped first liquid channel T, while the gap between the inner tube 11 and the outer tube 12 becomes an annular second liquid channel C.
(3) In addition, a fine hole 11a is formed in the tube wall w of the inner pipe 11 at a place where it is easy to measure when the cis-trans isomer liquid pipe 1 is constructed. The smaller the through-hole diameter of the fine hole 11a, the better. In general, the diameter of the hole penetrating the center is 50 to 10 μm, and when the cell membrane is targeted, it is necessary to receive it on the micropore wall without passing one cell, and about 1 μm. It is necessary to be. In addition, it is advantageous for the formation of a planar lipid membrane if the periphery of the through-hole is a conical surface whose pore diameter gradually increases as it reaches the outer surface of the tube wall w. Incidentally, the through hole portion of the micro hole 11a formed in the inner tube 11 can be drilled by irradiating a well-known YAG gas laser, and as a processing method for forming a conical surface around it, the conical surface should be formed. There is a method in which masking (for example, polyethylene resin coating) is applied to other parts, and etching is performed with a known glass corrosive agent such as dilute hydrofluoric acid, hydrofluoric acid, xenon fluoride, etc. Is well known in the art.
(4) In the cis-trans isomer liquid pipe 1 configured as described above, it is necessary to perform hydrophobic treatment on at least the micropores 11a of the inner pipe 11 in which the lipid planar membrane is formed. As a hydrophobic treatment method applied in this case, the cis-trans isomer liquid tube is immersed in a well-known hydrophobic treatment solution such as a silicone-based water repellent or a fluorine-based water repellent, and then heated appropriately. The method of heat setting is taken. Thus, the inner and outer surfaces of the tube wall w in the inner tube 11 and the inner surface of the outer tube 12 are hydrophobized (in the case of this immersion method, the outer peripheral surface of the outer tube 12 is simultaneously hydrophobized. Not particularly necessary in the invention).
(5) An inner tube electrode 2 disposed in the first liquid channel T adjacent to the fine hole 11a, and an outer tube electrode disposed in the second liquid channel C adjacent to the minute hole 11a. As for 3, a metal material having good conductivity is preferably used, and a silver-silver chloride electrode is usually adopted.
(6) As a means for applying a pulse voltage to the inner tube electrode 2 or the outer tube electrode 3 described above, a known impulse generator 4 capable of arbitrarily setting and outputting a pulse voltage having a required peak value is adopted. As a means for detecting and measuring a single channel current flowing through the ion channel lipid planar membrane Mb to the inner tube electrode 2 or the outer tube electrode 3, a channel current measuring device 5 incorporating a patch clamp amplifier should be employed. Any of these impulse generators 4 and current measuring devices 5 can be used as they are generally used in the well-known patch clamp method and lipid planar membrane method.
(7) Then, in the “ion channel analyzer” of the present invention, a predetermined electrolyte or analysis target is provided to the first liquid channel T and the second liquid channel C of the cis-trans isomer liquid tube 1. As means for supplying and feeding ion channel sample liquid, cell-containing sample liquid, etc., the first syringe pump 6 is provided in the first liquid flow path T, and the second syringe pump 7 is provided in the second liquid flow path C. And the liquid can be ejected intermittently or continuously at an arbitrary pressure to perfuse the first and second liquid flow paths T and C, respectively.
(8) Further, in the present invention, there is provided a liquid supply means capable of causing a relative pressure difference to the pressure of the liquid perfused through the first liquid flow path T and the second liquid flow path C in the cis-trans isomer liquid pipe 1. If the arrangement is made so that a suction force can be generated from the flow path with high hydraulic pressure to the low flow path in the micropores 11a in the tube wall of the inner tube 11, the ion channel lipid planar membrane Mb is generated. Or can be done quickly and accurately when regenerating and repairing.

本発明の方法と装置にあっては、管壁の所定位置に脂質平面膜を生成さすべき微細孔が開設され、かつ、管壁内部には毛細管状の第1液流路を有する絶縁性内管と;この内管を包囲して当該内管の周囲に第2液流路を形成せる絶縁性外管とを含んで構成される同軸管構造のシス−トランス異性電解液管を採用しているので、かゝるシス−トランス異性電解液管の内管と外管との中に必要とする電解液、イオンチャネル試料液、細胞含有の試料液を適時選択的に送給して第1液流路および第2液流路の中へ潅流させることにより、前記微細孔に解析対象のイオンチャネル脂質平面膜を迅速に形成したり、膜パッチ裂開の細胞を迅速に受止させたりすることができから、イオンチャネル解析の途中に微細孔の前記脂質平面膜や受止細胞が何らかの原因で破損した場合においても直ちに修復して所期のイオンチャネル解析を能率的に継続することが可能である。   In the method and apparatus of the present invention, a micropore for generating a lipid planar membrane is formed at a predetermined position on the tube wall, and an insulating inner wall having a capillary-shaped first liquid channel is formed inside the tube wall. A coaxial cis-trans isomerization electrolyte tube comprising a tube; and an insulating outer tube surrounding the inner tube and forming a second liquid flow path around the inner tube. Therefore, the necessary electrolyte solution, ion channel sample solution, and cell-containing sample solution are selectively delivered to the inner tube and the outer tube of the cis-trans isomerized electrolyte tube. By perfusing into the liquid flow path and the second liquid flow path, the ion channel lipid planar membrane to be analyzed is rapidly formed in the micropores, or the cells of the membrane patch dehiscence are rapidly received. In the course of ion channel analysis, the lipid planar membrane and the recipient cells of the micropores It is possible to continue the desired ion channel analysis efficiently immediately repaired even when damaged by factors.

また、本発明の方法と装置にあっては、上記同軸管構造のシス−トランス異性電解液管を採用しているので、イオンチャネル脂質平面膜やパッチ裂開細胞を境界として両側に存する電解液の各々を急速かつ効率的に任意に個別的に交換して電気的測定が可能であり、特定のイオンチャネル脂質平面膜や解析対象の細胞について医学的・生物学的情報や単一分子の情報を非常にダイナミックに収集ことができるうえに、内管の管壁に開設した微細孔には細胞膜表面に有する膜蛋白質だけでなく、細胞小器官や核などの膜蛋白質、さらには細菌やウィルスの膜蛋白質などに由来するイオンチャネル脂質平面膜を自由自在に作れるため、従来のパッチクランプ法では処理できなかった膜蛋白分子の測定分析が可能となり、例えば白血病や癌の早期発見など電気生理学上の利用範囲が頗る広いものである。   In the method and apparatus of the present invention, since the cis-trans isomerized electrolyte tube having the coaxial tube structure is employed, the electrolyte solution existing on both sides with the ion channel lipid planar membrane or the patch-dehiscent cell as a boundary. Each can be quickly and efficiently exchanged individually and electrically, and electrical measurements are possible. Medical / biological information and single molecule information about specific ion channel lipid planar membranes and cells to be analyzed In addition to membrane proteins on the cell membrane surface, micropores established on the inner wall of the inner tube, membrane proteins such as organelles and nuclei, and bacteria and viruses Since ion channel lipid planar membranes derived from membrane proteins can be made freely, membrane protein molecules that could not be processed by the conventional patch clamp method can be measured and analyzed, for example, early onset of leukemia and cancer. It is intended range of use on the electrophysiological is extremely wide, such as.

さらに、本発明の方法と装置にあっては、毛細管状の同軸シス−トランス異性電解液管を採用し内管に開設した微細孔の孔径サイズを極端に小さくできることから、当該微細孔に生成させるイオンチャネル脂質平面膜の表面積も従来パッチクランプ法や脂質平面膜法よりも格段にできて静電容量を大幅に減少させることができると共に、絶縁性の高い材料で内管・外管を使用しているので、当該電気回路内の浮遊容量と誘電損失も大幅に減少でき、低ノイズで信頼性の高い医学的・生物学的情報を的確に得ることができる。   Furthermore, in the method and apparatus of the present invention, a capillary coaxial cis-trans isomerization electrolyte tube is adopted, and the pore size of the micropores established in the inner tube can be extremely reduced, so that the micropores are generated. The surface area of the ion channel lipid planar membrane can also be markedly reduced compared to the conventional patch clamp method and lipid planar membrane method, and the capacitance can be greatly reduced, and inner and outer tubes are used with highly insulating materials. Therefore, stray capacitance and dielectric loss in the electric circuit can be greatly reduced, and highly reliable medical / biological information can be obtained accurately with low noise.

以下、本発明に係るイオンチャネル解析の方法と装置を、添附図面に示される実施例に基いて、さらに詳しく説明する。   Hereinafter, the ion channel analysis method and apparatus according to the present invention will be described in more detail based on embodiments shown in the accompanying drawings.

図1および図2は、本発明のイオンチャネル解析装置(実施例)の概略を表わした断面説明図である。図中の符号1で指示するものは、同軸管構造のシス−トランス異性液管であって、中心部には透明な石英ガラスから成るフレキシブルな絶縁性内管11が内装されており、この内管11の周囲は当該内管と同材質の透明でフレキシブルな石英ガラスの絶縁性外管12によって囲われ、前記内管11の管壁外周と外管12の内壁面との間には第2液流路Cが形成されている。ちなみに、前記内管11の管壁wの内部は、毛細管状の第1液流路Tを構成し、かつ、その管壁wの所定位置(図1では、内管11における中央右寄りの箇所)に脂質平面膜の形成されるべき微細孔11aが開設されている。   FIG. 1 and FIG. 2 are cross-sectional explanatory views showing the outline of an ion channel analyzer (Example) according to the present invention. What is indicated by reference numeral 1 in the figure is a cis-trans isomer liquid tube having a coaxial tube structure, and a flexible insulating inner tube 11 made of transparent quartz glass is provided in the center, and of these, The periphery of the tube 11 is surrounded by a transparent flexible quartz glass insulating outer tube 12 made of the same material as the inner tube, and a second wall is formed between the outer periphery of the inner wall of the inner tube 11 and the inner wall surface of the outer tube 12. A liquid flow path C is formed. Incidentally, the inside of the tube wall w of the inner tube 11 constitutes a capillary-shaped first liquid flow path T, and a predetermined position of the tube wall w (in FIG. 1, a position on the right side of the center of the inner tube 11). A micropore 11a in which a lipid planar membrane is to be formed is opened.

本実施例における内管11は、外径が1mm、内径が 0.7mm、管壁wの厚さが 0.3mmに作製されており、微細孔11aにおいて中心を貫通する最小孔径は直径が30μm、管壁wの外面側の最大孔径は86μmであり、この最大孔径から前記最小孔径に至る孔径は逓次的に変化してコーン形状を成している。この場合、本実施例においては、少なくともコーン形状をなす微細孔11aの孔壁面には生成される脂質平面膜の付着安定性を確保する必要上、疎水処理を必要とするから、使用にあたっては、シス−トランス異性液管1全体を疎水処理液(trioctylsylane=10% ベンジン希釈液)に浸漬して脱泡し引き上げた後、赤外線ヒーターにて15秒ほど加熱してヒットセットに処するものとする。   The inner tube 11 in this embodiment has an outer diameter of 1 mm, an inner diameter of 0.7 mm, and a thickness of the tube wall w of 0.3 mm. The minimum hole diameter that penetrates the center of the microhole 11a is 30 μm in diameter. The maximum hole diameter on the outer surface side of the wall w is 86 μm, and the hole diameter from the maximum hole diameter to the minimum hole diameter gradually changes to form a cone shape. In this case, in this example, it is necessary to ensure adhesion stability of the generated lipid planar membrane on the pore wall surface of at least the cone-shaped micropores 11a, and since hydrophobic treatment is required, in use, The entire cis-trans isomer liquid tube 1 is immersed in a hydrophobic processing solution (trioctylsylane = 10% benzine diluent), defoamed and pulled up, and then heated with an infrared heater for about 15 seconds to be processed into a hit set.

つぎに、図中の符号2は、上記シス−トランス異性液管1における内管11の微細孔11aに近接するごとく第1液流路Tの中に装入配設された内管電極を示し、また符号3は前記微細孔11aに近接するごとく外管12と内管11との間の第2液流路Cの中に装入配設された外管電極を示す。これら内外の電極2・3は何れも高導電性が要求されるので、本実施例では銀−塩化銀が用いられている。これら内管電極2および内管電極3は、各々、高導電性金属からなる導線21および23に接続されて後述のインパルス発生器、およびチャネル電流測定器に連繋されている。   Next, reference numeral 2 in the figure denotes an inner tube electrode that is inserted and disposed in the first liquid flow channel T so as to be close to the fine hole 11a of the inner tube 11 in the cis-trans isomer liquid tube 1. Reference numeral 3 denotes an outer tube electrode inserted and disposed in the second liquid flow path C between the outer tube 12 and the inner tube 11 as close to the fine hole 11a. Since both the inner and outer electrodes 2 and 3 are required to have high conductivity, silver-silver chloride is used in this embodiment. The inner tube electrode 2 and the inner tube electrode 3 are respectively connected to conducting wires 21 and 23 made of a highly conductive metal, and are connected to an impulse generator and a channel current measuring device described later.

他方、図1において符号4で指示するものは、上記内管電極2へ導線21を介して必要な波高値のパルス電圧を任意に設定して出力可能なインパルス発生器であり、符号5はパッチクランプアンプを内蔵したチャネル電流測定器である。このチャネル電流測定器5は、微細孔11aのイオンチャネル脂質平面膜Mbによって電気的に絶縁された第1液流路Tと第2液流路C内の両電解液間において、前記インパルス発生器4の出力するパルス電圧が当該イオンチャネル脂質平面膜固有のイオン透過・開閉機構の作用により変形されて特有の単一チャネル電流として出力されてくるところを、外管電極3が集電し導線31を介して受信入力する回路機構である。本実施例においては、前記インパルス発生器4とチャネル電流測定器5は、ケースEに収納されて一体化され、シス−トランス異性液管1の下流側に連結されている。   On the other hand, what is indicated by reference numeral 4 in FIG. 1 is an impulse generator capable of arbitrarily setting and outputting a pulse voltage having a required peak value to the inner tube electrode 2 via the lead wire 21, and reference numeral 5 is a patch. This is a channel current measuring instrument with a built-in clamp amplifier. The channel current measuring device 5 is configured such that the impulse generator is interposed between the two electrolytes in the first liquid channel T and the second liquid channel C electrically insulated by the ion channel lipid planar membrane Mb of the micropore 11a. 4, the outer tube electrode 3 collects the current when the pulse voltage output by 4 is deformed by the action of the ion permeation / opening / closing mechanism unique to the ion channel lipid planar membrane and output as a unique single channel current. This is a circuit mechanism for receiving and inputting via the. In the present embodiment, the impulse generator 4 and the channel current measuring device 5 are housed and integrated in a case E, and are connected to the downstream side of the cis-trans isomer liquid pipe 1.

つぎに、図1のシス−トランス異性液管1の上流側において、符号6で指示するものは内管11内の第1液流路Tに接続された第1シリンジ・ポンプであり、符号7にて指示するものは外管12と内管11との間の第2液流路Cに接続された第2シリンジ・ポンプである。しかして、前記第1シリンジ・ポンプ6は、第1液流路Tに所要の電解液又は解析対象のイオンチャネル試料液若しくは解析対象の細胞を含有した試料液を射出して第1液流路T内に潅流せしめるための機構である一方、第2シリンジ・ポンプ7は所要の電解液又は資質溶液を射出して第2液流路C内に潅流せしめるための機構である。   Next, what is indicated by reference numeral 6 on the upstream side of the cis-trans isomer liquid pipe 1 in FIG. 1 is a first syringe pump connected to the first liquid flow path T in the inner pipe 11. The second syringe pump connected to the second liquid flow path C between the outer tube 12 and the inner tube 11 is designated by. Thus, the first syringe pump 6 injects the required electrolyte solution, the ion channel sample solution to be analyzed, or the sample solution containing the cells to be analyzed into the first solution channel T, and the first solution channel. On the other hand, the second syringe pump 7 is a mechanism for injecting a required electrolytic solution or qualitative solution and allowing it to perfuse into the second liquid flow path C.

また、シス−トランス異性液管1の下流側において、符号8で指示するものは上記第1液流路Tを潅流して流下してくる電解液およびイオンチャネル試料液を受け入れて収容する第1集液器であり、符号9で指示するものは上記第2液流路Cを潅流して流下してくる電解液および脂質溶液を受け入れて収容する第2集液器である。これら第1・第2の集液器8・9によってシス−トランス異性液管1を潅流する電解液・イオンチャネル試料液・・細胞含有試料液・脂質溶液は漏らすことなく全て回収することができる。   Further, on the downstream side of the cis-trans isomer liquid pipe 1, what is indicated by reference numeral 8 is a first for receiving and storing the electrolytic solution and the ion channel sample liquid flowing down through the first liquid flow path T. A liquid collector, indicated by reference numeral 9, is a second liquid collector that receives and accommodates the electrolytic solution and lipid solution flowing down through the second liquid flow path C. The electrolyte solution, the ion channel sample solution, the cell-containing sample solution, and the lipid solution perfused through the cis-trans isomer liquid tube 1 can be collected without leakage by the first and second collectors 8 and 9. .

さらに、図1において符号10で指示するものはワークステーション(富士通:CelsiusV 810)であって、上記インパルス発生器4とチャネル電流測定器5、および上記第1シリンジ・ポンプ6と第2シリンジ・ポンプ7に接続されている。   Further, in FIG. 1, what is indicated by reference numeral 10 is a workstation (Fujitsu: Celsius V 810), which is the impulse generator 4 and the channel current measuring device 5, and the first syringe pump 6 and the second syringe pump. 7 is connected.

そして、ワークステーション10は、インパルス発生器4の出力すべき電位、波高値、パルス波形、ヘルツ数などを任意に又は所定のプログラムに基づいてコントロール信号をインパルス発生器4に送信して当該インパルス発生器が出力するパルス電圧を制御する。また、微細孔11aの各イオンチャネル脂質平面膜Mbに応じて出力されてくる各膜Mbに特有の単一チャネル電流はパッチクランプアンプを内蔵したチャネル電流測定器5に入力されるが、こうして入力された各々の単一チャネル電流はワークステーション10に送られることになる。そして、ワークステーション10では、入力された前記各単一チャネル電流を記録媒体(図示せず)に記録する一方、ディスプレー10aに映出してモニターすることも可能である。   Then, the workstation 10 generates the impulse by transmitting a control signal to the impulse generator 4 arbitrarily or based on a predetermined program, such as the potential, peak value, pulse waveform, hertz number, etc. to be output from the impulse generator 4. Controls the pulse voltage output by the instrument. Further, a single channel current peculiar to each membrane Mb outputted according to each ion channel lipid planar membrane Mb of the micropore 11a is inputted to the channel current measuring device 5 incorporating the patch clamp amplifier. Each single channel current that is done will be sent to the workstation 10. The workstation 10 can record each of the input single channel currents on a recording medium (not shown), and can also display and monitor them on the display 10a.

〔実施例装置の使用例〕
本発明の上記実施例装置を使用してイオンチャネル解析を行う具体的手順について説明すると、以下のとおりである。たゞし、内管11における微細孔11aの中心を貫通する最小孔径は直径が1μm、管壁wの外面側の最大孔径は30μmのものを採用している。
[Example of use of the embodiment apparatus]
A specific procedure for performing ion channel analysis using the above-described embodiment apparatus of the present invention is as follows. In addition, the minimum hole diameter penetrating the center of the fine hole 11a in the inner tube 11 is 1 μm, and the maximum hole diameter on the outer surface side of the tube wall w is 30 μm.

(1) 洗浄・殺菌消毒処理
本実施例装置の使用にあたっては十分な洗浄と殺菌処理が必要であり、シス−トランス異性液管1については当該液管部分を取り外し、内外管11・12の中の空気を抜いた状態で強酸(濃硝酸:濃硫酸=1:3)に数日間浸漬しておく。ついで、強酸洗浄を終えたシス−トランス異性液管1は内外を清水にて十分に洗浄して乾燥させ、クロロフォルム−メタノール液(1:1)を内外管11・12の中に導入して殺菌消毒する。
(1) Cleaning and sterilizing treatment Sufficient cleaning and sterilizing treatment is required to use the apparatus of this embodiment. For the cis-trans isomer liquid pipe 1, the liquid pipe portion is removed and the inner and outer pipes 11 and 12 are placed inside. In a state where the air is removed, it is immersed in strong acid (concentrated nitric acid: concentrated sulfuric acid = 1: 3) for several days. Next, the cis-trans isomer liquid pipe 1 after the strong acid washing is thoroughly washed with fresh water and dried, and chloroform-methanol liquid (1: 1) is introduced into the inner and outer pipes 11 and 12 to sterilize. disinfect.

(2) 微細孔11a周辺の疎水化処理
シス−トランス異性液管1を trioctylsylane(10% ベンジン希釈液)に浸漬して内外管11・12の液流路T・Cの壁面に trioctylsylane を付着させ、約 0.1mm程離れた位置から遠赤外線ヒーターで加熱乾燥させて流路T・C内全体を疎水化せしめる。このとき同時に微細孔11aの孔壁面も疎水化される。
(2) Hydrophobization treatment around the micropores 11a The cis-trans isomer liquid tube 1 is immersed in trioctylsylane (10% benzine diluent) to attach the trioctylsylane to the walls of the liquid channels T and C of the inner and outer tubes 11 and 12. Then, heat and dry with a far-infrared heater from a position about 0.1 mm away to make the entire flow path T / C hydrophobic. At the same time, the hole wall surface of the fine hole 11a is also hydrophobized.

(3) 実施例装置の組立
シス−トランス異性液管1の内管11の下流端部から微細孔11aの近傍位置まで内管電極2を装入して当該内管をプラスチック・ホルダーに固定する。ついで、外管12の下流側からも微細孔11aの近くまで外管電極3を装入して当該外管部分も前記プラスチック・ホルダーに固定させる。そして、前記内管電極2は導線21を介してケースEに内蔵されたインパルス発生器4に接続し、また内観電極3は導線31を介してケースE内に内蔵されたチャネル電流測定器5に接続させる。なお、この際、内管11および外管の下流端部には第1集液器8および第2集液器9に連結して、第1液流路Tは第1集液器8、第2液流路Cは第2集液器9に各々連通させる。
(3) Assembling of Example Apparatus The inner tube electrode 2 is inserted from the downstream end portion of the inner tube 11 of the cis-trans isomer liquid tube 1 to a position near the fine hole 11a, and the inner tube is fixed to the plastic holder. . Next, the outer tube electrode 3 is inserted from the downstream side of the outer tube 12 to the vicinity of the fine hole 11a, and the outer tube portion is also fixed to the plastic holder. The inner tube electrode 2 is connected to an impulse generator 4 built in the case E through a conducting wire 21, and the inner electrode 3 is connected to a channel current measuring device 5 built in the case E through a conducting wire 31. Connect. At this time, the downstream ends of the inner pipe 11 and the outer pipe are connected to the first liquid collector 8 and the second liquid collector 9, and the first liquid flow path T is connected to the first liquid collector 8 and the second liquid collector 9. The two-liquid channel C is communicated with the second liquid collector 9.

また、シス−トランス異性液管1の内管11の上流端部には上流側用のプラスチック・ホルダーを介して第1シリンジ・ポンプ6、外管12の上流端部にも前記上流側用プラスチック・ホルダーを介して第2シリンジ・ポンプ7を連結する。   In addition, the upstream plastic part is connected to the upstream end of the inner pipe 11 of the cis-trans isomerate liquid pipe 1 via the upstream plastic holder and the upstream end part of the first syringe pump 6 and the outer pipe 12. Connect the second syringe pump 7 through the holder.

そして、上記インパルス発生器4とチャネル電流測定器5、および第1シリンジ・ポンプ6と第2シリンジ・ポンプ7をワークステーション10のインターフェース・アダプタに接続する。   Then, the impulse generator 4, the channel current measuring device 5, the first syringe pump 6, and the second syringe pump 7 are connected to the interface adapter of the workstation 10.

しかして、ワークステーション10にインストールしてある制御プログラムに基いて、内管電極2と外管電極3との間に既定のパルス電圧・コマンドを印加してチャネル電流測定器5に入力される単一チャネル電流を検出測定し、ワークステーション10の記録媒体上に記録してゆく。この場合において、第1液流路Tと第2液流路Cに対してイオンチャネル脂質平面膜Mbを境界として両側に存する電解液の各々を種々個別的に交換して測定することにより、有用な医学的・生物学的情報や単一分子の情報を非常にダイナミックに収集ことが可能である。   Thus, based on a control program installed in the workstation 10, a predetermined pulse voltage / command is applied between the inner tube electrode 2 and the outer tube electrode 3 and is input to the channel current measuring device 5. One channel current is detected and measured and recorded on the recording medium of the workstation 10. In this case, it is useful to measure each of the electrolyte solutions existing on both sides of the first liquid flow channel T and the second liquid flow channel C with the ion channel lipid planar membrane Mb as a boundary. Medical and biological information and single molecule information can be collected very dynamically.

(4) イオンチャネル解析プロセス
まず、ワークステーション10を操作して第1シリンジ・ポンプ6と第2シリンジ・ポンプ7とを駆動させ、シス−トランス異性液管1における内管11と外管12とに電解質溶液(1M NaCl 溶液) を流し込んで(流量:0.5ml/min)、第1液流路Tおよび第2液流路Cの中に当該電解液を充満させる。
(4) Ion channel analysis process First, the workstation 10 is operated to drive the first syringe pump 6 and the second syringe pump 7, and the inner tube 11 and the outer tube 12 in the cis-trans isomer liquid tube 1 An electrolyte solution (1M NaCl solution) is poured into the first liquid channel T and the second liquid channel C to be filled with the electrolyte solution (flow rate: 0.5 ml / min).

つぎに、ワークステーション10によりインパルス発生器4を電圧固定モードに設定して内管電極2と外管電極3との間に一定波高値のパルス電圧を反復して印加し、電気抵抗と電気容量とをディスプレー10aにより連続的にモニターする。この場合における電気抵抗の目安は 500Ω、電気容量の目安は1pF(浮遊容量)である。   Next, the impulse generator 4 is set to a voltage fixing mode by the workstation 10 and a pulse voltage having a constant peak value is repeatedly applied between the inner tube electrode 2 and the outer tube electrode 3 to thereby obtain electric resistance and electric capacity. Are continuously monitored on the display 10a. In this case, the standard of electric resistance is 500Ω, and the standard of electric capacity is 1 pF (stray capacity).

ついで、第2シリンジ・ポンプ7にリン脂質溶液(フォスファチジルコリン 20mg/ml ヘキサデカン)を供給して、ワークステーション10を操作して前記シリンジ・ポンプ7を駆動して、外管12と内管11との間の第2液流路C中に同液を50μl 流し込む。この場合において第2液流路Cの前記リン脂質溶液の液圧は、第1液流路Tの液圧よりも相対的に少し高目にしておくと、微細孔11aに吸引力が生じて脂質平面膜Mが生成され易くなる。この状態において、ディスプレー10aによって電気抵抗と電気容量の増大量を目安に監視し微細孔11aに脂質平面膜Mが生成しているか否かを確認する。この場合における脂質平面膜Mの生成の目安は、電気抵抗が300GΩ、電気容量が10pFである。脂質平面膜が生成されていても十分な特性を示さないときには、ワークステーション10を操作して第1・第2シリンジ・ポンプ6・7を駆動させ、第1液流路Tと第2液流路Cとの間に大きな圧力差を発生させることによって不十分な前記脂質平面膜を破って、再度、前述の操作を行って十分かつ適正な脂質平面膜Mが生成するまで同操作を繰り返す。   Subsequently, a phospholipid solution (phosphatidylcholine 20 mg / ml hexadecane) is supplied to the second syringe pump 7, the workstation 10 is operated to drive the syringe pump 7, and the outer tube 12 and the inner tube are driven. 50 μl of the same solution is poured into the second fluid channel C between In this case, if the fluid pressure of the phospholipid solution in the second fluid channel C is set slightly higher than the fluid pressure in the first fluid channel T, a suction force is generated in the fine holes 11a. The flat lipid membrane M is easily generated. In this state, the display 10a monitors the amount of increase in electric resistance and electric capacity as a guide to check whether or not the lipid planar membrane M is formed in the micropores 11a. In this case, the standard for the formation of the lipid planar membrane M is an electric resistance of 300 GΩ and an electric capacity of 10 pF. If sufficient characteristics are not exhibited even when a lipid flat membrane is formed, the workstation 10 is operated to drive the first and second syringe pumps 6 and 7, and the first liquid channel T and the second liquid flow are driven. The insufficient lipid planar membrane is broken by generating a large pressure difference with the path C, and the same operation is repeated until a sufficient and appropriate lipid planar membrane M is formed by performing the above-described operation again.

微細孔11aに必要な脂質平面膜Mが生成されたところで、この脂質平面膜Mにチャネル分子を組み込むことになる。本発明において組込み対象にできるチャネル分子としては、細胞膜表面に有する膜蛋白質だけでなく、細胞小器官や核などの膜蛋白質、さらには細菌やウィルスの膜蛋白質などに由来するイオンチャネル分子のすべてが含まれるのである。   When the lipid planar membrane M necessary for the micropores 11a is generated, channel molecules are incorporated into the lipid planar membrane M. The channel molecules that can be incorporated in the present invention include not only membrane proteins on the cell membrane surface, but also membrane proteins such as organelles and nuclei, and all ion channel molecules derived from bacterial and viral membrane proteins. It is included.

本解析においては、次のような手順によって解析処理が行われる。
(1) まず、白血病が疑われる患者の血管から注射器を用いて血液を採取し、この採取血液 を遠心分離して白血球細胞だけを含有する試料液を調製する。
(2) つぎに、調製された上記試料液を第2シリンジ・ポンプ7を介し、外管12と内管11と の間の第2液流路Cに流し込む。このとき、第2液流路Cの試料液の液圧を第1液流
路Tより相対的にやゝ高目にしておくと、解析対象の白血球細胞Mbは微細孔11aの コーン状壁面に沿って吸引され受止され易くなる。
(3) こうして、白血球細胞Mbが微細孔11aに受止されたところで、第1シリンジポンプ 6に吸引駆動させて第1液流路T側に露出する当該白血球細胞に陰圧(1mH20)を
瞬間的に(0.1sec) 作用させて陰圧を受けた膜パッチ部分だけを裂開せしめ、ワーク ステーション10に対し全細胞記録状態にする。
(4) ついで、インパルス発生器4により内管電極2にパルス電圧(200mV )を印加する。 白血病に罹患した白血球細胞は、カリウムイオンK+ に反応して膜電位が脱分極する ので、外管電極3に検出される単一チャネル電流を測定する。この単一チャネル電流 はチャネル電流測定器5を介してワークステーション10で記録されることになる。(5) 本発明者が長年にわたる臨床検査を通じて独自に知見した研究成果によれば、チャネ ル電流のパターンがHERGカリウムチャネルを示す場合には白血病診断することが できる。ちなみに、本発明者は、白血球細胞に負荷した電圧を−80mVから+50mV に変化させ、500 msの時間レベルを維持して、再び、−80mVに戻してから10ms 後の電流値を測定して、その値が大きい場合に白血病と診断する。
In this analysis, analysis processing is performed according to the following procedure.
(1) First, blood is collected from a blood vessel of a patient suspected of having leukemia using a syringe, and the collected blood is centrifuged to prepare a sample solution containing only white blood cells.
(2) Next, the prepared sample solution is poured into the second liquid channel C between the outer tube 12 and the inner tube 11 via the second syringe pump 7. At this time, if the liquid pressure of the sample liquid in the second liquid flow path C is set to be slightly higher than the first liquid flow path T, the white blood cell Mb to be analyzed is placed on the cone-shaped wall of the micropore 11a. It is easily sucked along and received.
(3) Thus, when the white blood cell Mb is received in the fine hole 11a, the negative pressure (1 mH 2 0) is applied to the white blood cell exposed to the first fluid channel T by the suction drive of the first syringe pump 6. Is applied instantaneously (0.1 sec) to cleave only the membrane patch portion subjected to negative pressure, and the whole cell recording state is set to the workstation 10.
(4) Next, a pulse voltage (200 mV) is applied to the inner tube electrode 2 by the impulse generator 4. Since leukocytes affected with leukemia depolarize the membrane potential in response to potassium ions K + , the single channel current detected at the outer tube electrode 3 is measured. This single channel current will be recorded at the workstation 10 via the channel current meter 5. (5) According to research results that the inventor has independently discovered through many years of clinical examination, leukemia can be diagnosed when the channel current pattern indicates a HERG potassium channel. Incidentally, the present inventor changed the voltage applied to the white blood cells from −80 mV to +50 mV, maintained the time level of 500 ms, and again measured the current value after 10 ms after returning to −80 mV. If the value is large, leukemia is diagnosed.

しかして、上記した本発明方法による白血病の診断方法は、血液と白血球の遠心分離に10分、シス−トランス液流処理によるイオンチャネル解析に要する時間が5分の合計15分にて診断を行うことができるのであって、解析対象の白血球細胞も普通採血法にて得ることができるので、被験者の苦痛も極めて軽いものである。これに対し、現在一般に行われている白血病診断は、白血球細胞を抹消血ではなく、骨髄から採取せねばならないために、被験者には大変な苦痛を与えるうえに、その診断の全経過に少なくとも1時間は必要とされている。このように本発明は白血病の診断に適用される場合だけ例にとっても、従来類例をみないほど画期的な効用をもたらす。   Thus, the above-described method for diagnosing leukemia by the method of the present invention performs diagnosis in 15 minutes in total, 10 minutes for centrifugation of blood and leukocytes, and 5 minutes for ion channel analysis by cis-trans liquid flow treatment. In addition, since the white blood cells to be analyzed can be obtained by a normal blood sampling method, the pain of the subject is extremely light. On the other hand, the diagnosis of leukemia that is generally performed at present is very painful for the test subject because the white blood cells must be collected from the bone marrow rather than from peripheral blood, and at least 1 in the entire course of the diagnosis. Time is needed. As described above, the present invention brings about an epoch-making utility that is unprecedented even when it is applied only to the diagnosis of leukemia.

本明細書に具体的に開示する本発明の実施例は上記のとおりであるが、本発明は前述の実施例に限定されるものでは決してなく、「特許請求の範囲」の記載内で種々の設計変更が可能であって、例えば図3に図示するごとく、シス−トランス液管1を複数列設して、一挙に多種類のイオンチャネル脂質平面膜を並行的に解析可能に構成することは本発明の技術的範囲に属することは明らかである。   The embodiments of the present invention specifically disclosed in the present specification are as described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, as shown in FIG. 3, it is possible to design a plurality of cis-trans liquid tubes 1 to be arranged in parallel so that many types of ion channel lipid planar membranes can be analyzed in parallel. It is clear that it belongs to the technical scope of the present invention.

以上の説明からも明らかなとおり、本発明の提供するイオンチャネル解析方法と装置は構造的に頗る簡素であるにも拘わらず、細胞そのもの、また細胞膜表面の膜蛋白質、細胞小器官や核などの膜蛋白質、さらには細菌やウィルスの膜蛋白質等に由来するイオンチャネル分子を用いて高精度の解析データを獲得できるのであって、医学および生物学上の研究開発に大いに寄与し得ることはもとより、さらにバイオセンサー技術としても活用することができることから、その産業上の利用価値は極めて大きい。   As is clear from the above description, the ion channel analysis method and apparatus provided by the present invention are structurally simple, but the cell itself, membrane proteins on the cell membrane surface, organelles, nuclei, etc. Highly accurate analysis data can be acquired using ion channel molecules derived from membrane proteins, and even membrane proteins of bacteria and viruses, and it can contribute greatly to medical and biological research and development, Furthermore, since it can also be utilized as a biosensor technology, its industrial utility value is extremely large.

図1は、本発明のイオンチャネル解析装置(実施例)の概略を表わした断面説明図である。FIG. 1 is an explanatory cross-sectional view showing an outline of an ion channel analyzer (Example) according to the present invention. 図2は、本実施例装置におけるシス−トランス異性液管の構造および微細孔の形態が理解できるように図1のA−A部分を拡大して示した一部拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view showing the AA portion of FIG. 1 in an enlarged manner so that the structure of the cis-trans isomer liquid pipe and the form of micropores in the apparatus of this embodiment can be understood. 図3は、本発明の装置をマルチプル・タイプ構成した変形実施例を示す概念図である。FIG. 3 is a conceptual diagram showing a modified embodiment in which the apparatus of the present invention is configured in multiple types.

符号の説明Explanation of symbols

1 シス−トランス液管
11 絶縁性内管
11a 微細孔
12 絶縁性外管
2 内管電極
3 外管電極
4 インパルス発生器
5 チャネル電流測定器
6 第1シリンジ・ポンプ
7 第2シリンジ・ポンプ
8 第1集液器
9 第2集液器
10 ワークステーション
10a ディスプレー
C 第2液流路
M 脂質平面膜
Mb イオンチャネル脂質平面膜
T 第1液流路
w 内管の管壁
1 cis-trans liquid tube
11 Insulating inner pipe
11a Micropore
12 Insulating outer tube 2 Inner tube electrode 3 Outer tube electrode 4 Impulse generator 5 Channel current measuring device 6 First syringe pump 7 Second syringe pump 8 First collector 9 Second collector 10 Workstation
10a Display C Second liquid flow path M Lipid flat film Mb Ion channel lipid flat film T First liquid flow path w Inner tube wall

Claims (13)

管壁の所定位置に脂質平面膜の生成される微細孔が開設され、かつ、管壁内部には毛細管状の第1液流路を有する絶縁性内管と;この内管を包囲して当該内管の周囲に第2液流路を形成せる絶縁性外管とを含んで構成される同軸管構造のシス−トランス異性液管に対して、
前記内管と外管の各々には電解液を潅流させて両内外管の内部に電解液を充満させた後、前記外管の第2液流路に脂質溶液を送り込むことによって前記内管の微細孔に脂質平面膜を生成させ、ついで、内管の第1液流路へ解析対象のイオンチャネル分子を含有する試料液を潅流させて前記脂質平面膜に当該イオンチャネル分子を組み込ませ、こうして組込み形成されたイオンチャネル脂質平面膜近傍の第1・第2液流路に設置された一方の電極にパルス電圧を印加して当該イオンチャネル脂質平面膜を通過して両電極間に流れる単一チャネル電流を検出測定することを特徴とするシス−トランス液流方式によるイオンチャネル解析方法。
A micropore in which a lipid planar membrane is formed at a predetermined position of the tube wall, and an insulating inner tube having a capillary-shaped first liquid channel inside the tube wall; For a cis-trans isomer liquid pipe having a coaxial pipe structure including an insulating outer pipe that forms a second liquid flow path around the inner pipe,
Each of the inner tube and the outer tube is perfused with an electrolyte solution so that both the inner and outer tubes are filled with the electrolyte solution, and then a lipid solution is fed into the second liquid channel of the outer tube to thereby supply the inner tube. A lipid flat membrane is generated in the micropores, and then the sample liquid containing the ion channel molecule to be analyzed is perfused into the first liquid flow path of the inner tube to incorporate the ion channel molecule into the lipid flat membrane, thus A single voltage that flows between the two electrodes through the ion channel lipid planar membrane by applying a pulse voltage to one of the electrodes installed in the first and second liquid flow paths in the vicinity of the ion channel lipid planar membrane formed in an integrated manner. An ion channel analysis method using a cis-trans liquid flow system, characterized in that a channel current is detected and measured.
内管の微細孔に生成した脂質平面膜が破損したときには、再び外管の第2液流路に脂質溶液を送り込んで前記内管の微細孔に脂質平面膜を生成させてから、内管の第1液流路に解析対象とするイオンチャネル分子を含有する試料液を潅流させて前記脂質平面膜に当該イオンチャネル分子を組み込むことを特徴とする請求項1記載の、シス−トランス液流方式によるイオンチャネル解析方法。   When the planar lipid membrane formed in the micropores of the inner tube is broken, the lipid solution is again fed into the second liquid channel of the outer tube to generate the lipid planar membrane in the micropores of the inner tube, The cis-trans liquid flow system according to claim 1, wherein a sample liquid containing an ion channel molecule to be analyzed is perfused into the first liquid flow path, and the ion channel molecule is incorporated into the lipid planar membrane. Ion channel analysis method. 絶縁性内管および絶縁性外管として、フレキシブルで紫外線の透過可能な透明ガラスにて作製された同軸ガラス管構造のシス−トランス異性液管を使用する方法であって、内管の微細孔に脂質平面膜を生成せしめ、この脂質平面膜に解析対象のイオンチャネル分子として膜蛋白質を組み込んだ後、この膜蛋白組込み脂質平面膜に対し紫外線を照射して当該膜平面を2次元重合させることを特徴とする請求項1又は2に記載の、シス−トランス液流方式によるイオンチャネル解析方法。   A method of using a cis-trans isomer liquid tube having a coaxial glass tube structure made of a transparent glass capable of transmitting ultraviolet rays as an insulating inner tube and an insulating outer tube. After forming a lipid planar membrane and incorporating a membrane protein into the lipid planar membrane as an ion channel molecule to be analyzed, the membrane plane incorporating the membrane protein is irradiated with ultraviolet rays to polymerize the membrane plane in two dimensions. The ion channel analysis method according to the cis-trans liquid flow method according to claim 1 or 2. 管壁の所定位置に解析対象となる細胞を受止可能なサイズの微細孔が開設され、かつ、管壁内部には毛細管状の第1液流路を有する絶縁性内管と;この内管を包囲して当該内管の周囲に第2液流路を形成せる絶縁性外管とを含んで構成される同軸管構造のシス−トランス異性液管に対して、
前記内管と外管の各々には電解液を潅流させて両内外管の内部に電解液を充満させた後、前記第2液流路又は第1液流路に解析対象の細胞を含有する試料液を送り込むことにより前記内管の微細孔に当該細胞を受止せしめる一方、ついで、前記試料液を送り込んだ流路とは反対側の第1液流路又は第2液流路側には瞬間的に陰圧を与えて微細孔に受止された細胞の陰圧側の膜パッチを裂開させ、こうして膜パッチの裂開された微細孔の前記細胞に対し、微細孔に近接して第1・第2液流路内に設置された一方の電極にパルス電圧を印加することにより、当該細胞膜上のチャネル分子を通過して両電極間に流れる単一チャネル電流を検出測定することを特徴とするシス−トランス液流方式によるイオンチャネル解析方法。
An insulative inner tube having a microscopic hole of a size capable of receiving a cell to be analyzed at a predetermined position on the tube wall and having a capillary-shaped first liquid flow path inside the tube wall; A cis-trans isomer liquid pipe having a coaxial pipe structure including an insulating outer pipe that surrounds the inner pipe and forms a second liquid flow path around the inner pipe.
Each of the inner tube and the outer tube is perfused with an electrolytic solution so that both the inner and outer tubes are filled with the electrolytic solution, and then the analysis target cell is contained in the second liquid channel or the first liquid channel. By feeding the sample liquid, the cells are received in the micropores of the inner tube, and then, on the side of the first liquid channel or the second liquid channel on the side opposite to the channel through which the sample liquid is fed, The membrane patch on the negative pressure side of the cells received in the micropores is cleaved by applying negative pressure, and the cells in the micropores thus cleaved by the membrane patch are in close proximity to the micropores. A feature of detecting and measuring a single channel current flowing between both electrodes through a channel molecule on the cell membrane by applying a pulse voltage to one electrode installed in the second liquid flow path An ion channel analysis method using a cis-trans liquid flow method.
内管の管壁の微細孔が約1μmの孔径サイズに穿孔されており、シス−トランス異性液管の第2液流路又は第1液流路に白血球細胞を含有する試料液を送り込むことにより前記内管の微細孔に当該白血球細胞を受止せしめ、ついで、前記試料液を送り込んだ流路とは反対側の第1液流路又は第2液流路側には瞬間的に陰圧を与えて微細孔に受止された当該白血球細胞における陰圧側の膜パッチを裂開させ、こうして膜パッチの裂開された微細孔の白血球細胞に対し、第1・第2液流路内に設置した一方の電極にパルス電圧を印加することにより、当該細胞膜上のチャネル分子を通過して両電極間に流れる単一チャネル電流を検出測定して白血病罹患の表徴に関する電気的データを取得することを特徴とする請求項4記載の、シス−トランス液流方式によるイオンチャネル解析方法。   The micropores in the inner wall of the inner tube are perforated to a pore size of about 1 μm, and the sample liquid containing white blood cells is fed into the second liquid channel or the first liquid channel of the cis-trans isomer liquid tube The white blood cells are received in the micropores of the inner tube, and then a negative pressure is instantaneously applied to the first liquid channel or the second liquid channel side opposite to the channel through which the sample solution is sent. The membrane patch on the negative pressure side in the white blood cells received in the micropores was cleaved, and thus the white blood cells in the micropores in which the membrane patch was cleaved were placed in the first and second liquid flow paths. By applying a pulse voltage to one of the electrodes, a single channel current that passes through the channel molecules on the cell membrane and flows between the two electrodes is detected and measured, and electrical data relating to the signs of leukemia are obtained. A cis-trans solution according to claim 4 Ion channel analysis method by the system. 内管の第1液流路と外管の第2電解液流路に潅流させる電解液として、各々組成を異にした複数種の電解液を用いることを特徴とする請求項1〜5の何れか一つに記載の、シス−トランス液流方式によるイオンチャネル解析方法。   The electrolyte solution to be perfused into the first liquid flow path of the inner tube and the second electrolyte flow path of the outer tube uses a plurality of types of electrolyte solutions having different compositions. The ion channel analysis method by a cis-trans liquid flow system according to any one of the above. 第1液流路と第2液流路との間に相対的な液圧差を設け、内管の管壁における微細孔に液圧の高い流路から低い流路へ吸引力を生ぜしめることを特徴とする請求項1〜6の何れか一つに記載の、シス−トランス液流方式によるイオンチャネル解析方法。   A relative hydraulic pressure difference is provided between the first liquid channel and the second liquid channel, and a fine hole in the tube wall of the inner tube is caused to generate a suction force from a high fluid pressure channel to a low fluid channel. The ion channel analysis method according to any one of claims 1 to 6, characterized by a cis-trans liquid flow method. 管壁の所定位置に脂質膜の生成される微細孔が開設され、かつ、管壁内部には毛細管状の第1液流路を有する絶縁性内管,およびこの内管を包囲して当該内管の周囲に第2液流路を形成せる絶縁性外管とを含んで構成される同軸管構造のシス−トランス異性液管と;このシス−トランス異性液管における第1液流路の中に、前記微細孔に近接して配設された内管電極と;前記第2液流路の中に、前記微細孔に近接して配設された外管電極と;前記内管と外管とが形成する第1・第2液流路の中に電解液が潅流充満し、かつ、前記微細孔に解析対象のイオンチャネル分子の組み込まれた脂質平面膜が生成され、又は同微細孔に解析対象の細胞が膜パッチが裂開された状態で受止されている状態において、前記内外の両電極の何れか一方に一定波高値のパルス電圧を印加して、前記脂質平面膜を通過する単一チャネル電流を検出測定可能に構成したことを特徴とするシス−トランス液流方式のイオンチャネル解析装置。   A micropore in which a lipid membrane is formed is opened at a predetermined position on the tube wall, and an inner tube having a capillary-shaped first liquid flow path is enclosed in the tube wall, and the inner tube is surrounded by the inner tube. A cis-trans isomer liquid pipe having a coaxial pipe structure including an insulating outer pipe that forms a second liquid flow path around the pipe; and in the first liquid flow path in the cis-trans isomer liquid pipe An inner tube electrode disposed in the vicinity of the micropore; an outer tube electrode disposed in the second liquid channel in the vicinity of the microhole; the inner tube and the outer tube The electrolyte solution is perfused and filled into the first and second liquid flow paths formed by the above and a planar lipid membrane incorporating the ion channel molecules to be analyzed is generated in the micropores, or in the micropores. In a state where the cell to be analyzed is received with the membrane patch being cleaved, a constant wave is applied to one of the inner and outer electrodes. By applying a pulse voltage value, cis and wherein the detection of measurable constructed of a single channel current through the planar lipid bilayer - ion channel analyzer of the transformer liquid flow method. 絶縁性内管の管壁に開設された微細孔が、第1液流路側においては直径が小さく,第2液流路側に至るほど直径が逓増するコーン形状を成していることを特徴とする請求項8記載の、シス−トランス液流方式のイオンチャネル解析装置。   The fine hole formed in the tube wall of the insulating inner tube has a cone shape in which the diameter is small on the first liquid channel side and the diameter gradually increases toward the second liquid channel side. 9. A cis-trans liquid flow type ion channel analyzer according to claim 8. 同軸管構造のシス−トランス異性液管の少なくとも内管における微細孔のコーン形状の孔壁面に疎水処理が施されていることを特徴とする請求項8又は9記載の、シス−トランス液流方式のイオンチャネル解析装置。   10. The cis-trans liquid flow system according to claim 8 or 9, wherein at least an inner tube of a cis-trans isomer liquid pipe having a coaxial tube structure is subjected to a hydrophobic treatment on a cone-shaped hole wall surface of a fine hole. Ion channel analyzer. シス−トランス異性液管の流入側には、内管の第1液流路に所要液を射出して第1液流路に潅流させる第1シリンジ・ポンプと、外管の第2液流路に所要液を射出して潅流させる第2シリンジ・ポンプとを接続する一方、当該シス−トランス異性液管の流出側には、前記第1液流路を潅流してくる前記液を受け入れて収容する第1集液器と、前記第2液流路を潅流してくる前記液を収容する第2集液器とを接続し、さらに第1液流路に配設された内管電極はパルス電圧を発生するインパルス発生器に接続すると共に第2液流路に配設された外管電極はチャネル電流測定器に接続されていることを特徴とする請求項8〜10の何れか一つに記載の、シス−トランス液流方式のイオンチャネル解析装置。   On the inflow side of the cis-trans isomerary liquid pipe, a first syringe pump for injecting a required liquid into the first liquid flow path of the inner pipe and perfusing the first liquid flow path, and a second liquid flow path of the outer pipe A second syringe pump for injecting and perfusing the required liquid to the cis-trans isomer liquid pipe, while receiving the liquid perfusing the first liquid flow path and receiving it. The first liquid collector connected to the second liquid collector containing the liquid perfused through the second liquid flow path, and the inner tube electrode disposed in the first liquid flow path is a pulse. 11. An outer tube electrode connected to an impulse generator for generating a voltage and disposed in the second liquid flow path is connected to a channel current measuring device. A cis-trans liquid flow type ion channel analyzer as described. シス−トランス異性液管の内管および外管が、透明でフレキシブルな石英ガラスにより作製されている請求項8〜11の何れか一つに記載の、シス−トランス液流方式のイオンチャネル解析装置。   The cis-trans liquid flow type ion channel analyzer according to any one of claims 8 to 11, wherein the inner and outer tubes of the cis-trans isomer liquid tube are made of transparent and flexible quartz glass. . 絶縁性内管および絶縁性外管から成るシス−トランス異性液管を、少なくとも2本以上具備している請求項8〜12の何れか一つに記載の、シス−トランス液流方式のイオンチャネル解析装置。   The ion channel of the cis-trans liquid flow system according to any one of claims 8 to 12, comprising at least two cis-trans isomer liquid pipes comprising an insulating inner pipe and an insulating outer pipe. Analysis device.
JP2004153209A 2004-05-24 2004-05-24 Ion channel analysis method using cis-trans liquid flow method and ion channel analyzer used for the method Expired - Fee Related JP4516356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153209A JP4516356B2 (en) 2004-05-24 2004-05-24 Ion channel analysis method using cis-trans liquid flow method and ion channel analyzer used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153209A JP4516356B2 (en) 2004-05-24 2004-05-24 Ion channel analysis method using cis-trans liquid flow method and ion channel analyzer used for the method

Publications (2)

Publication Number Publication Date
JP2005337734A true JP2005337734A (en) 2005-12-08
JP4516356B2 JP4516356B2 (en) 2010-08-04

Family

ID=35491488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153209A Expired - Fee Related JP4516356B2 (en) 2004-05-24 2004-05-24 Ion channel analysis method using cis-trans liquid flow method and ion channel analyzer used for the method

Country Status (1)

Country Link
JP (1) JP4516356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241453A1 (en) * 2019-05-27 2020-12-03 国立大学法人山形大学 Lipid bilayer membrane channel evaluation chip, method for producing same and evaluation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505072A (en) * 1999-07-21 2003-02-12 ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Cell / tissue analysis by controlled electroporation
WO2003071140A2 (en) * 2002-02-19 2003-08-28 The Regents Of The University Of California Cell viability detection using electrical measurements
JP2004132981A (en) * 2002-09-20 2004-04-30 Japan Science & Technology Agency Integrated biosensor and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505072A (en) * 1999-07-21 2003-02-12 ザ・レジェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Cell / tissue analysis by controlled electroporation
WO2003071140A2 (en) * 2002-02-19 2003-08-28 The Regents Of The University Of California Cell viability detection using electrical measurements
JP2004132981A (en) * 2002-09-20 2004-04-30 Japan Science & Technology Agency Integrated biosensor and method of forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241453A1 (en) * 2019-05-27 2020-12-03 国立大学法人山形大学 Lipid bilayer membrane channel evaluation chip, method for producing same and evaluation apparatus

Also Published As

Publication number Publication date
JP4516356B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
Feng et al. A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement
JP4353582B2 (en) Method and apparatus for measuring state quantities
CA2378147C (en) Electrical impedance tomography to control electroporation
EP2047250B1 (en) Photo-acoustic detection device and method
JP2005528081A (en) Pipette configurations and arrays for measuring cellular electrical properties
JP2004502936A (en) Apparatus and method for making electrical contact with biological cells suspended in a liquid
JP3570715B2 (en) Signal detection sensor with multiple electrodes
WO2001007583A1 (en) Cell/tissue analysis via controlled electroporation
WO2002055653A1 (en) Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
JP2013533040A5 (en)
US9201058B2 (en) Apparatus and method for sensing a time varying ionic current in an electrolytic system
JP5948355B2 (en) Handheld device for electrophysiological analysis
JP2001500252A (en) Apparatus and method for testing particles using dielectrophoresis
JP2001258868A5 (en)
JP2008194573A (en) Lipid double film forming method
JP2001183329A (en) Apparatus and method for electrophysiological automatic measurement
CN111141801A (en) Integrated ultramicroelectrode and preparation method and application thereof
CN205517823U (en) Improve micro -fluidic chip device of resistance impulse method particle detection precision
CN113702268B (en) Multispectral multiparameter light-stimulated in-vitro cell membrane potential detection system and method
CA2810529C (en) Multiple phase flow system for detecting and isolating substances
JP4516356B2 (en) Ion channel analysis method using cis-trans liquid flow method and ion channel analyzer used for the method
CN110514719B (en) Circulating tumor DNA identification device and method adopting serial nanopore structure
CN205556678U (en) Single cell sorting device based on micro -fluidic chip
Luan et al. Discovery of the correlation between the suspended membrane capacitance and adherent morphology of single cells enriching from clinical pleural effusion revealed by a microfluidic impedance flow cytometry
JPH11299496A (en) Vessel for oocyte and measuring device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Ref document number: 4516356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees