JP2005337712A - Following distance detector - Google Patents

Following distance detector Download PDF

Info

Publication number
JP2005337712A
JP2005337712A JP2004152667A JP2004152667A JP2005337712A JP 2005337712 A JP2005337712 A JP 2005337712A JP 2004152667 A JP2004152667 A JP 2004152667A JP 2004152667 A JP2004152667 A JP 2004152667A JP 2005337712 A JP2005337712 A JP 2005337712A
Authority
JP
Japan
Prior art keywords
vehicle
light
distance
inter
preceding vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004152667A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sato
康浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Original Assignee
Murakami Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp filed Critical Murakami Corp
Priority to JP2004152667A priority Critical patent/JP2005337712A/en
Publication of JP2005337712A publication Critical patent/JP2005337712A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a following distance detector which is free from constraints from car design and can be produced economically. <P>SOLUTION: Beside a rear view mirror 2 of a car 1, a light transmitter 3 is provided, and light receivers 6, 7 are provided in door mirrors 4, 5 projecting both the left and right of the car 1. The light projected by the light transmitter 3 is reflected at a rear bumper 8A of a preceding car 8 and received by the light receivers 6, 7. Thereby, the length L1 of the base line length between the light transmitter 3 and the light receivers 6, 7 is made longer than before. Consequently, the precision of measurement for measuring the following distance from the car 1 to the preceding car 8 measured by the method of triangular distance measurement is enhanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば車両と前記車両の前方を走行する先行車との間の距離を検出するための車間距離検出装置に関する。   The present invention relates to an inter-vehicle distance detection device for detecting a distance between, for example, a vehicle and a preceding vehicle traveling in front of the vehicle.

従来よりイメージセンサを用いた光学式の車間距離検出装置は例えば特許文献1により開示されている。この特許文献1に記載の車間距離検出装置は図7に示すように、左右二つの光学系を有しており、この左右の光学系は基線長Lだけ離れて配置したレンズ100,200で構成されている。レンズ100,200の焦点距離fの位置にはそれぞれ別々のイメージセンサ101,201を設け、信号処理装置300においてイメージセンサ101,201の画像信号を順次シフトしながら電気的に重ね合わせ、前記二つの画像信号が最もよく一致したときのシフト量nから三角測量の原理により対象物700までの距離RをR=f×L/nの式で求めるようにしている(以下、この検出方法を三角測距方式という)。   Conventionally, an optical inter-vehicle distance detection device using an image sensor is disclosed in, for example, Patent Document 1. As shown in FIG. 7, the inter-vehicle distance detection device described in Patent Document 1 has two left and right optical systems, and the left and right optical systems are configured by lenses 100 and 200 arranged apart from each other by a base line length L. Has been. Separate image sensors 101 and 201 are provided at the focal lengths f of the lenses 100 and 200, and the signal processing device 300 electrically superimposes the image signals of the image sensors 101 and 201 while sequentially shifting them. Based on the principle of triangulation from the shift amount n when the image signals are best matched, the distance R to the object 700 is obtained by the formula R = f × L / n (hereinafter, this detection method is referred to as triangulation). This is called the distance method).

また、赤外線パルス照射による車間距離測定方法が例えば特許文献2により開示されている。この車間距離測定方法は被測定物に複数方向に可変しながら近赤外線を照射し、近赤外線の照射から被測定物からの反射光を受光するまでの時間より車両と被測定物までの距離を求めるものである。   Further, for example, Patent Document 2 discloses a method for measuring a distance between vehicles by infrared pulse irradiation. This inter-vehicle distance measurement method irradiates the object to be measured with near-infrared rays while changing in multiple directions, and determines the distance between the vehicle and the object to be measured from the time from when the near-infrared light is received to the reflected light from the object to be measured. It is what you want.

また、超音波パルス照射による車間距離測定方法が例えば特許文献3により開示されている。この車間距離測定方法は車両の前方に例えば電波やレーザ等のパルス信号を送出したときから、先行車から反射されるパルス信号を受信するまでの時間の計測結果に基いて車間距離を演算するものである。   Further, for example, Patent Literature 3 discloses a method for measuring a distance between vehicles by ultrasonic pulse irradiation. This inter-vehicle distance measurement method calculates the inter-vehicle distance based on the measurement result of the time from when a pulse signal such as a radio wave or a laser is sent to the front of the vehicle until the pulse signal reflected from the preceding vehicle is received. It is.

さらに、レーザーレーダーによる車間距離測定方法が例えば特許文献4により開示されている。この車間距離測定方法によると、レーザーレーダーは、送信側のレーザーダイオードからレーザーパルス光を発生し、このレーザーパルス光を透光レンズを介して発射させる。発射されたパルス光の発射方向に障害物、車両等の物標がある場合には、発射されたパルス光が物標によって反射されて反射パルス光となる。この反射パルス光は、受信側の光学フィルタを介してフォトダイオードにより検出される。そして、レーザーレーダーは、レーザーパルスの発射に伴うリファレンス信号と受光信号との時間差を求め、この時間差に基いて車間距離を求めるようにしている。
特開平5−52561号公報(段落0002、0003、図1) 特開平8−67223号公報(段落0048、図6) 特開平8−105973号公報(段落0004、図13) 特開平9−243749号公報(段落0002)
Furthermore, a method for measuring the distance between vehicles using a laser radar is disclosed in Patent Document 4, for example. According to this inter-vehicle distance measurement method, the laser radar generates laser pulse light from the laser diode on the transmission side, and emits the laser pulse light through the translucent lens. When there is an object such as an obstacle or a vehicle in the emission direction of the emitted pulsed light, the emitted pulsed light is reflected by the target and becomes reflected pulsed light. This reflected pulse light is detected by a photodiode through an optical filter on the receiving side. Then, the laser radar obtains a time difference between the reference signal and the light reception signal accompanying the emission of the laser pulse, and obtains the inter-vehicle distance based on this time difference.
JP-A-5-52561 (paragraphs 0002 and 0003, FIG. 1) JP-A-8-67223 (paragraph 0048, FIG. 6) JP-A-8-105973 (paragraph 0004, FIG. 13) Japanese Patent Laid-Open No. 9-243749 (paragraph 0002)

ところで、前記特許文献2〜4に記載された赤外線パルス式や超音波パルス式、レーザーパルス式では装置の小型化を図ることができるものの、これらの方式では装置全体が高価なものとなり、ひいては車両全体の価格上昇を招くという問題がある。   By the way, the infrared pulse type, the ultrasonic pulse type, and the laser pulse type described in Patent Documents 2 to 4 can reduce the size of the apparatus. However, in these types, the entire apparatus becomes expensive, and as a result, the vehicle There is a problem that the overall price rises.

一方、従来から低価格カメラ等に使われている三角測距方式を利用した特許文献1に記載の車間距離検出装置では、あまりに装置を小型化すると測定精度に影響する基線長が短くなり、検出精度が低下するという問題がある。   On the other hand, in the inter-vehicle distance detection device described in Patent Document 1 that uses the triangulation method that has been used in low-price cameras and the like, if the device is made too small, the baseline length that affects the measurement accuracy is shortened and the detection is performed. There is a problem that accuracy decreases.

また、三角測距方式では、近距離側での測定精度が高いものの、遠距離側での測定精度は低下する傾向にあり、これは基線長と距離分解能との間に反比例関係があることによる。幸い、車間距離検出の目的としては追突防止装置やその警告装置等がその主なものであり、遠距離での用途よりは近距離における検出精度が必要なことから、三角測距方式のメリットが最大限に生かせる。従って、コストの安い車間距離検出装置としては、この三角測距方式が適していると考えられるが、基線長を大きくとる必要があり、この点が車両のデザイン上の障害になるという問題がある。   In addition, in the triangulation system, the measurement accuracy on the short distance side is high, but the measurement accuracy on the long distance side tends to decrease, and this is because there is an inversely proportional relationship between the baseline length and the distance resolution. . Fortunately, the main purpose of detecting the distance between vehicles is a rear-end collision prevention device and its warning device, etc., and the detection accuracy at a short distance is required rather than the use at a long distance. Make the most of it. Therefore, although it is considered that this triangulation method is suitable as a low-cost inter-vehicle distance detection device, it is necessary to increase the base line length, which has a problem that this is an obstacle to the design of the vehicle. .

本発明は、前記問題を解決すべく、基線長を長く設定することができ、三角測距方式による車間距離の検出精度を高めることができ、安価に製作することのできる車間距離検出装置を提供することを課題とする。   In order to solve the above problems, the present invention provides an inter-vehicle distance detection device that can set a long base line length, can improve the detection accuracy of inter-vehicle distance by a triangulation method, and can be manufactured at low cost. The task is to do.

本発明は、前記課題を解決すべく構成されるものであり、請求項1に記載の発明は、車両の左右両側に設けられた左右のドアミラーと、前記車両のルームミラーまたはその近傍に設けられ、前記車両の前方を走行する先行車に向けて光を発射する発光機と、前記左右のドアミラーにそれぞれ設けられ、前記先行車に当たって反射した前記発光機からの光を受光する左右の受光機と、前記左右の受光機からの光信号を用いて三角測量の原理により前記車両から前記先行車までの距離を測定する信号処理装置とを備えたことを特徴とする車間距離検出装置である。   The present invention is configured to solve the above-mentioned problems, and the invention according to claim 1 is provided on the left and right door mirrors provided on the left and right sides of the vehicle, and on or near the room mirror of the vehicle. A light emitter that emits light toward a preceding vehicle that travels in front of the vehicle, and a left and right light receiver that is provided on each of the left and right door mirrors and that receives light from the light emitter reflected by the preceding vehicle, and An inter-vehicle distance detection device comprising: a signal processing device that measures a distance from the vehicle to the preceding vehicle based on a triangulation principle using optical signals from the left and right light receivers.

請求項1に記載の発明によれば、車両のルームミラーまたはその近傍に設けられた発光機から発射される光が先行車に当たって反射し、この反射した光が左右のドアミラーに設けられた受光機で受光される。そして、受光機からの光信号を用いて三角測量の原理により車両から先行車までの距離を信号処理装置で測定することができる。ここで、受光機は、車両の左右両側から突出したドアミラーに設ける構成としたので、受光機を例えば車両のバンパ等に設けた場合と比較して、発光機と左側の受光機との間の基線長、および発光機と右側の受光機との間の基線長を長めに設定することができ、前記三角測量の原理により測定した車間距離の検出精度を高めることができる。しかも、2個の受光機を用いて測距データをそれぞれ別々に得ることができるため、これら2つの測距データを演算することで、測距精度の向上をより一層図ることができる。   According to the first aspect of the present invention, the light emitted from the light emitting device provided in the vehicle rearview mirror or the vicinity thereof is reflected by the preceding vehicle and reflected, and the reflected light is provided in the left and right door mirrors. Is received. Then, the distance from the vehicle to the preceding vehicle can be measured by the signal processing device by the principle of triangulation using the optical signal from the light receiver. Here, since the light receiver is configured to be provided on the door mirror protruding from both the left and right sides of the vehicle, the light receiver is disposed between the light emitter and the left light receiver as compared with the case where the light receiver is provided, for example, in a vehicle bumper. The base line length and the base line length between the light emitter and the right light receiver can be set longer, and the detection accuracy of the inter-vehicle distance measured by the principle of triangulation can be improved. In addition, since the distance measurement data can be obtained separately using two light receivers, the distance measurement accuracy can be further improved by calculating these two distance measurement data.

請求項2に記載の発明は、車両の左右両側に設けられた左右のドアミラーと、前記左右のドアミラーのうちいずれか一方のドアミラー側に設けられ、前記車両の前方を走行する先行車に向けて光を発射する発光機と、前記左右のドアミラーのうち他方のドアミラー側に設けられ、前記先行車に当たって反射した前記発光機からの光を受光する受光機と、前記受光機からの光信号を用いて三角測量の原理により前記車両から前記先行車までの距離を測定する信号処理装置とを備えたことを特徴とする車間距離検出装置である。   The invention according to claim 2 is directed to a preceding vehicle that is provided on either side of the left and right door mirrors provided on the left and right sides of the vehicle and one of the left and right door mirrors and travels in front of the vehicle. A light emitting device that emits light, a light receiving device that is provided on the other door mirror side of the left and right door mirrors and that receives light from the light emitting device reflected by the preceding vehicle, and an optical signal from the light receiving device is used. And a signal processing device for measuring the distance from the vehicle to the preceding vehicle based on the principle of triangulation.

請求項2に記載の発明によれば、車両の一方のドアミラーに設けられた発光機から発射される光が先行車に当たって反射し、この反射した光が他方のドアミラーに設けられた受光機で受光される。そして、受光機からの光信号を用いて三角測量の原理により車両から先行車までの距離を信号処理装置で測定することができる。ここで、発光機および受光機は、車両の左右両側から突出したドアミラーに設ける構成としたので、発光機と受光機を例えば車両のバンパ等に設けた場合と比較して、発光機と受光機との間の基線長を長めに設定することができ、前記三角測量の原理により測定した車間距離の検出精度を高めることができる。   According to the invention described in claim 2, the light emitted from the light emitter provided on one door mirror of the vehicle is reflected by the preceding vehicle and reflected, and the reflected light is received by the light receiver provided on the other door mirror. Is done. Then, the distance from the vehicle to the preceding vehicle can be measured by the signal processing device by the principle of triangulation using the optical signal from the light receiver. Here, since the light emitter and the light receiver are provided on door mirrors protruding from the left and right sides of the vehicle, the light emitter and the light receiver are compared with the case where the light emitter and the light receiver are provided, for example, on a bumper of the vehicle. Can be set longer, and the detection accuracy of the inter-vehicle distance measured by the principle of triangulation can be increased.

請求項3に記載の発明は、車両の左右両側に設けられた左右のドアミラーと、前記車両のボンネット先端のフロントグリル中央部またはその近傍に設けられ、前記車両の前方を走行する先行車に向けて光を発射する発光機と、前記左右のドアミラーにそれぞれ設けられ、前記先行車に当たって反射した前記発光機からの光を受光する左右の受光機と、前記左右の受光機からの光信号を用いて三角測量の原理により前記車両から前記先行車までの距離を測定する信号処理装置とを備えたことを特徴とする車間距離検出装置である。   According to a third aspect of the present invention, the left and right door mirrors provided on the left and right sides of the vehicle and the front grille center of the bonnet tip of the vehicle or in the vicinity thereof are directed toward a preceding vehicle traveling in front of the vehicle. Light emitters that emit light, left and right door mirrors that are provided on the left and right door mirrors, respectively, that receive light from the light emitters reflected by the preceding vehicle, and light signals from the left and right light receivers are used. And a signal processing device for measuring the distance from the vehicle to the preceding vehicle based on the principle of triangulation.

請求項3に記載の発明によれば、車両のフロンドグリル中央部またはその近傍に設けられた発光機から発射される光が先行車に当たって反射し、この反射した光が左右のドアミラーに設けられた受光機で受光される。そして、受光機からの光信号を用いて三角測量の原理により車両から先行車までの距離を信号処理装置で測定することができる。ここで、受光機は、車両の左右両側から突出したドアミラーに設ける構成としたので、受光機を例えば車両のバンパ等に設けた場合と比較して、発光機と左側の受光機との間の基線長、および発光機と右側の受光機との間の基線長を長めに設定することができ、前記三角測量の原理により測定した車間距離の検出精度を高めることができる。しかも、2個の受光機を用いて測距データをそれぞれ別々に得ることができるため、これら2つの測距データを演算することで、測距精度の向上をより一層図ることができる。   According to the third aspect of the present invention, the light emitted from the light emitting device provided at or near the center of the front grille of the vehicle hits and reflects the preceding vehicle, and the reflected light is provided on the left and right door mirrors. Light is received by the receiver. Then, the distance from the vehicle to the preceding vehicle can be measured by the signal processing device by the principle of triangulation using the optical signal from the light receiver. Here, since the light receiver is configured to be provided on the door mirror protruding from both the left and right sides of the vehicle, the light receiver is disposed between the light emitter and the left light receiver as compared with the case where the light receiver is provided, for example, in a vehicle bumper. The base line length and the base line length between the light emitter and the right light receiver can be set longer, and the detection accuracy of the inter-vehicle distance measured by the principle of triangulation can be improved. In addition, since the distance measurement data can be obtained separately using two light receivers, the distance measurement accuracy can be further improved by calculating these two distance measurement data.

受光機をドアミラーに配設する構成としたので、基線長を長く設定することができ、三角測距方式による車間距離の検出精度を高めることができる。また、車両のフロントグリルまわりのデザインに影響を与えることなく、設計することができる。また、エンジン、ヘッドランプ等の発熱部から受光機を離して配置できるので、車両の熱対策を簡略化することができる。また、三角測距方式を用いた車間距離測定装置を採用しているため、赤外線パルス式や超音波パルス式、レーザーパルス式を用いた車間距離測定装置よりも安価に製作することができる。   Since the light receiver is arranged on the door mirror, the base length can be set long, and the detection accuracy of the inter-vehicle distance by the triangulation method can be enhanced. Further, the design can be made without affecting the design around the front grille of the vehicle. Further, since the light receiver can be arranged away from the heat generating parts such as the engine and the headlamp, it is possible to simplify the heat countermeasure of the vehicle. Further, since the inter-vehicle distance measuring device using the triangulation method is employed, it can be manufactured at a lower cost than the inter-vehicle distance measuring device using the infrared pulse type, ultrasonic pulse type, or laser pulse type.

(第1の実施の形態)
以下、添付図面を参照して、本発明の第1の実施の形態を詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本実施の形態に係る車間距離検出装置が搭載された車両とその前を走行する先行車を示す平面図であり、図2は、図1中の車両を示す斜視図である。図3は、図1中の車両のドアミラーを示す斜視図であり、図4は、車間距離と測距精度との関係を示す説明図である。   FIG. 1 is a plan view showing a vehicle on which the inter-vehicle distance detection device according to the present embodiment is mounted and a preceding vehicle traveling in front of the vehicle, and FIG. 2 is a perspective view showing the vehicle in FIG. FIG. 3 is a perspective view showing the door mirror of the vehicle in FIG. 1, and FIG. 4 is an explanatory view showing the relationship between the inter-vehicle distance and the distance measurement accuracy.

図1に示すように、本実施の形態に用いる車間距離検出装置は、車両1のルームミラー2近傍に設けられた赤外LED(Light Emitting Diode)等からなる発光機3(図2参照)と、車両1の左右のドアミラー4,5の内部にそれぞれ設けられたCCD(Charge Coupled Device)等からなる左右の受光機6,7と、車両1に搭載されて左右の受光機6,7と接続された信号処理装置(図示せず)とを備えている。なお、発光機3はルームミラー2に直接設けてもよい。また、発光機3は車両1の中心線上に設置することが好ましい。   As shown in FIG. 1, the inter-vehicle distance detection device used in the present embodiment includes a light emitter 3 (see FIG. 2) composed of an infrared LED (Light Emitting Diode) provided near a room mirror 2 of a vehicle 1. The left and right light receivers 6 and 7 comprising CCDs (Charge Coupled Devices) provided in the left and right door mirrors 4 and 5 of the vehicle 1 and the left and right light receivers 6 and 7 mounted on the vehicle 1 are connected. And a signal processing device (not shown). The light emitter 3 may be provided directly on the room mirror 2. Further, the light emitter 3 is preferably installed on the center line of the vehicle 1.

ここで、図1に示すように、発光機3は赤外線等の光を車両1の前方を走行する先行車8のリヤバンパ8Aに向けて発射するものである。また、左側の受光機6は、図3に示すように、ドアミラー4のミラー(図示せず)を取り付けるための箱状をなすミラーハウジング4Aの内部に組み込まれている。そして、ミラーハウジング4Aには、貫通孔4Bが穿設され、先行車8のリヤバンパ8Aに当たって反射した発光機3からの光が貫通孔4Bを通過して受光機6で受光されるようになっている。また、右側の受光機7についても、左側の受光機6と同様にドアミラー5のミラーハウジング5Aの内部に組み込まれ、先行車8のリヤバンパ8Aに当たって反射した発光機3からの光を受光するようになっている。なお、前記貫通孔4Bには、光をCCDに案内するレンズを設けてもよいし、このレンズをターンランプ用のレンズと一体成形して同一意匠面にしてもよい。   Here, as shown in FIG. 1, the light emitter 3 emits light such as infrared rays toward the rear bumper 8 </ b> A of the preceding vehicle 8 that travels in front of the vehicle 1. Further, as shown in FIG. 3, the left light receiver 6 is incorporated in a box-shaped mirror housing 4 </ b> A for mounting a mirror (not shown) of the door mirror 4. The mirror housing 4A is provided with a through hole 4B so that the light from the light emitter 3 reflected by the rear bumper 8A of the preceding vehicle 8 passes through the through hole 4B and is received by the light receiver 6. Yes. Similarly to the left light receiver 6, the right light receiver 7 is incorporated in the mirror housing 5 </ b> A of the door mirror 5, and receives light from the light emitter 3 reflected by the rear bumper 8 </ b> A of the preceding vehicle 8. It has become. The through-hole 4B may be provided with a lens for guiding light to the CCD, or this lens may be integrally formed with a turn lamp lens to have the same design surface.

また、前記信号処理装置は、受光機6からの光信号と、発光機3と受光機6との間の基線長L1とを用いて特許文献1で開示された三角測量の原理により車両1から先行車8までの距離を測定するものである。さらに、この信号処理装置は、受光機7からの光信号と、発光機3と受光機7との間の基線長L1とを用いて前記三角測量の原理により車両1から先行車8までの車間距離を測定するものである。   Further, the signal processing device uses the optical signal from the light receiver 6 and the base line length L1 between the light emitter 3 and the light receiver 6 from the vehicle 1 according to the principle of triangulation disclosed in Patent Document 1. The distance to the preceding vehicle 8 is measured. Further, this signal processing device uses the optical signal from the light receiver 7 and the base line length L1 between the light emitter 3 and the light receiver 7 to determine the distance between the vehicle 1 and the preceding vehicle 8 according to the principle of triangulation. It measures distance.

次に、このように構成される本実施の形態に用いる車間距離検出装置の作用について、図4を参照して説明する。図4において、符号400は従来の受光機、符号Y1は発光機3から遠距離にある車両、符号Y2は発光機3から近距離にある車両、符号d1は発光機3と受光機7との間の基線長、符号d2は発光機3と受光機400との間の基線長である。ドアミラーに設けられる本実施の形態に用いる受光機7は、バンパ等に設けられる従来の受光機400よりも発光機3から車両の幅方向に離れた位置に配置されるため、d1>d2の関係にある。符号ΔYは車間距離の変化量、符号ΔX1は車両Y1,Y2から受光機7を通ってラインセンサ面上に照射される光のX方向の幅寸法、符号ΔX2は車両Y1,Y2から受光機400を通ってラインセンサ面上に照射される光のX方向の幅寸法を示している。基線長d1の方が基線長d2よりも長いため、ΔX1>ΔX2の関係にある。   Next, the operation of the inter-vehicle distance detection device used in this embodiment configured as described above will be described with reference to FIG. In FIG. 4, reference numeral 400 denotes a conventional light receiver, reference numeral Y1 denotes a vehicle at a long distance from the light emitter 3, reference numeral Y2 denotes a vehicle at a short distance from the light emitter 3, and reference numeral d1 denotes the light emitter 3 and the light receiver 7. The base line length between them, the symbol d2, is the base line length between the light emitter 3 and the light receiver 400. Since the light receiver 7 used in the present embodiment provided on the door mirror is disposed at a position farther in the vehicle width direction from the light emitter 3 than the conventional light receiver 400 provided in a bumper or the like, the relationship of d1> d2 is established. It is in. Reference sign ΔY is the amount of change in the inter-vehicle distance, reference sign ΔX1 is the width dimension in the X direction of the light irradiated from the vehicles Y1, Y2 through the light receiver 7 onto the line sensor surface, and reference sign ΔX2 is the light receiver 400 from the vehicles Y1, Y2. The width dimension of the X direction of the light irradiated on a line sensor surface through is shown. Since the baseline length d1 is longer than the baseline length d2, there is a relationship of ΔX1> ΔX2.

そして、図4からも分かるように、
d1:d2≒ΔX1:ΔX2…(式1)
の関係が成り立つ。従って、基線長がd2からd1へと大きくなるに従って、測距精度が
ΔY/ΔX2からΔY/ΔX1となって小さくなり、高精度の測定を行なうことができる。また、車両Y1近傍より車両Y2近傍の方が受光機7への光の入射角を大きくでき、車両Y2の近距離側の精度を良好にできる。
And as you can see from Figure 4,
d1: d2≈ΔX1: ΔX2 (Formula 1)
The relationship holds. Therefore, as the baseline length increases from d2 to d1, the distance measurement accuracy decreases from ΔY / ΔX2 to ΔY / ΔX1, and high-accuracy measurement can be performed. Moreover, the incident angle of the light to the light receiver 7 can be made larger in the vicinity of the vehicle Y2 than in the vicinity of the vehicle Y1, and the accuracy on the short distance side of the vehicle Y2 can be improved.

このように本実施の形態では、車両1の左右両側から幅方向に突出した左右のドアミラー4,5に受光機6,7を組み込む構成としたので、車両1のバンパ等に設けられる従来の受光機400よりも基線長を長く設定することができ、これにより車両1と先行車8との間の車間距離の測距精度の向上を図ることができる。従って、車両1のフロントグリルまわりのデザインに影響を与えることなく、設計することができる。また、エンジン、ヘッドランプ等の発熱部から受光機6,7を離して配置できるので、車両1の熱対策を簡略化することができる。また、発光機3を車両1のセンタに配置し、受光機6,7を左右対称位置に配置することにより、2つの受光機6,7からの測距データをそれぞれ同一の基線長Lを用いて測定することができ、2つの測距データを演算することで、測距精度の向上をより一層図ることができる。さらに、三角測距方式を用いた車間距離測定装置を採用しているため、赤外線パルス式や超音波パルス式、レーザーパルス式を用いた車間距離測定装置よりも安価に製作することができる。また、受光機6,7のうち例えば一方の受光機6と先行車8との間にバイク等の障害物が侵入して車間距離を検出できない場合でも、他方の受光機7を用いて車間距離を高精度に検出することが可能となる。   As described above, in the present embodiment, since the light receivers 6 and 7 are incorporated in the left and right door mirrors 4 and 5 protruding in the width direction from the left and right sides of the vehicle 1, conventional light reception provided in a bumper or the like of the vehicle 1 is performed. The base line length can be set to be longer than that of the machine 400, whereby the distance measurement accuracy of the inter-vehicle distance between the vehicle 1 and the preceding vehicle 8 can be improved. Therefore, the design can be made without affecting the design around the front grille of the vehicle 1. Further, since the light receivers 6 and 7 can be arranged away from the heat generating parts such as the engine and the headlamp, the heat countermeasure of the vehicle 1 can be simplified. Further, by arranging the light emitter 3 at the center of the vehicle 1 and the light receivers 6 and 7 at symmetrical positions, the distance measurement data from the two light receivers 6 and 7 use the same baseline length L. The distance measurement accuracy can be further improved by calculating two distance measurement data. Furthermore, since the inter-vehicle distance measuring device using the triangulation method is employed, the inter-vehicle distance measuring device using the infrared pulse method, the ultrasonic pulse method, or the laser pulse method can be manufactured at a lower cost. Even if an obstacle such as a motorcycle enters between the light receiver 6 and the preceding vehicle 8 among the light receivers 6 and 7 and the inter-vehicle distance cannot be detected, the inter-vehicle distance is detected using the other light receiver 7. Can be detected with high accuracy.

(第2の実施の形態)
次に、図5は、本発明の第2の実施の形態を示している。なお、本実施の形態では、前記第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
(Second Embodiment)
Next, FIG. 5 shows a second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図5は、本実施の形態に係る車間距離検出装置が搭載された車両とその前を走行する先行車を示す平面図である。図5に示すように、本実施の形態に用いる車間距離検出装置は、車両21の左右のドアミラー22,23のうち左側のドアミラー22の内部に設けられた発光機24と、右側のドアミラー23の内部に設けられた受光機25と、車両21に搭載されて受光機25に接続された信号処理装置(図示せず)とを備えている。   FIG. 5 is a plan view showing a vehicle on which the inter-vehicle distance detection device according to the present embodiment is mounted and a preceding vehicle that travels in front of the vehicle. As shown in FIG. 5, the inter-vehicle distance detection device used in the present embodiment includes a light emitter 24 provided in the left door mirror 22 of the left and right door mirrors 22, 23 of the vehicle 21, and a right door mirror 23. A light receiver 25 provided inside, and a signal processing device (not shown) mounted on the vehicle 21 and connected to the light receiver 25 are provided.

ここで、受光機25は、先行車8のリヤバンパ8Aに当たって反射した発光機24からの光を受光するものである。そして、前記信号処理装置は、受光機25からの光信号と、発光機24と受光機25との間の基線長L2とを用いて特許文献1で開示された三角測量の原理により車両21から先行車8までの車間距離を測定するものである。   Here, the light receiver 25 receives light from the light emitter 24 reflected by the rear bumper 8A of the preceding vehicle 8 and reflected. And the said signal processing apparatus is based on the principle of the triangulation disclosed by patent document 1 using the optical signal from the light receiver 25, and the base line length L2 between the light emitter 24 and the light receiver 25 from the vehicle 21. The inter-vehicle distance to the preceding vehicle 8 is measured.

次に、このように構成される本実施の形態に用いる車間距離検出装置の作用について、図6を参照して説明する。図6において、符号500は従来の発光機、符号600は従来の受光機、符号Y1は発光機24から遠距離にある車両、符号Y2は発光機24から近距離にある車両、符号d1′は発光機24と受光機25との間の基線長、符号d2′は発光機500と受光機600との間の基線長である。ドアミラー22,23に設けられる本実施の形態に用いる発光機24および受光機25は、バンパ等に設けられる従来の発光機500および受光機600よりも車両の幅方向に離れた位置に配置されるため、d1′>d2′の関係にある。符号ΔYは車間距離の変化量、符号ΔX1′は車両Y1,Y2から発光機24(受光機25)を通ってラインセンサ面上に照射される光のX方向の幅寸法、符号ΔX2′は車両Y1,Y2から発光機500(受光機600)を通ってラインセンサ面上に照射される光のX方向の幅寸法を示している。基線長d1′の方が基線長d2′よりも長いため、ΔX1′>ΔX2′の関係にある。   Next, the operation of the inter-vehicle distance detection device used in the present embodiment configured as described above will be described with reference to FIG. In FIG. 6, reference numeral 500 represents a conventional light emitter, reference numeral 600 represents a conventional light receiver, reference numeral Y1 represents a vehicle at a distance from the light emitter 24, reference numeral Y2 represents a vehicle at a short distance from the light emitter 24, and reference numeral d1 ' The base line length between the light emitter 24 and the light receiver 25, the symbol d <b> 2 ′, is the base line length between the light emitter 500 and the light receiver 600. The light emitter 24 and the light receiver 25 used in the present embodiment provided in the door mirrors 22 and 23 are arranged at positions farther in the vehicle width direction than the conventional light emitter 500 and the light receiver 600 provided in a bumper or the like. Therefore, the relationship is d1 ′> d2 ′. Reference sign ΔY is the amount of change in the inter-vehicle distance, reference sign ΔX1 ′ is the width dimension in the X direction of the light irradiated on the line sensor surface from the vehicles Y1 and Y2 through the light emitter 24 (light receiver 25), and reference sign ΔX2 ′ is the vehicle. The width dimension of the X direction of the light irradiated on the line sensor surface through the light-emitting device 500 (light-receiving device 600) from Y1, Y2 is shown. Since the base line length d1 ′ is longer than the base line length d2 ′, there is a relationship of ΔX1 ′> ΔX2 ′.

そして、図6からも分かるように、
d1′:d2′≒ΔX1′:ΔX2′…(式2)
の関係が成り立つ。従って、基線長がd2′からd1′へと大きくなるに従って、測距精度がΔY/ΔX2′からΔY/ΔX1′となって小さくなり、高精度の測定を行なうことができる。また、車両Y1近傍より車両Y2近傍の方が受光機25への光の入射角を大きくでき、車両Y2の近距離側の精度を高めることができる。
And as you can see from Figure 6,
d1 ′: d2′≈ΔX1 ′: ΔX2 ′ (Expression 2)
The relationship holds. Therefore, as the baseline length increases from d2 ′ to d1 ′, the distance measurement accuracy decreases from ΔY / ΔX2 ′ to ΔY / ΔX1 ′, and high-accuracy measurement can be performed. Moreover, the incident angle of the light to the light receiver 25 can be larger in the vicinity of the vehicle Y2 than in the vicinity of the vehicle Y1, and the accuracy on the short distance side of the vehicle Y2 can be increased.

このように構成される本実施の形態でも、車両21から左右両側に突出したドアミラー22,23にそれぞれ発光機24および受光機25を設ける構成としたので、発光機24と受光機25との間の基線長L2を従来のものに比較して長く設定でき、車間距離の測距精度の向上を図ることができ、第1の実施の形態とほぼ同様の効果を得ることができる。   Also in this embodiment configured as described above, since the light emitter 24 and the light receiver 25 are provided on the door mirrors 22 and 23 protruding from the vehicle 21 on the left and right sides, respectively, the space between the light emitter 24 and the light receiver 25 is provided. The base line length L2 can be set longer than the conventional one, the distance measurement accuracy of the inter-vehicle distance can be improved, and substantially the same effect as in the first embodiment can be obtained.

なお、第1の実施の形態では、発光機24をドアミラー22側に配置する構成とした場合を例に挙げて説明したが、本発明はこれに限ることなく、例えば図5に示すように、車両1のフロントグリルのセンタ近傍に発光機24′を配置する構成としてもよい。   In the first embodiment, the case where the light emitter 24 is arranged on the side of the door mirror 22 has been described as an example. However, the present invention is not limited to this, for example, as shown in FIG. The light emitter 24 ′ may be arranged near the center of the front grill of the vehicle 1.

また、第2の実施の形態では、左側のドアミラー22に発光機24を設け、右側のドアミラー23に受光機25を設ける構成とした場合を例に挙げて説明したが、本発明はこれに限ることなく、例えば左側のドアミラー22に受光機25を設け、右側のドアミラー23に発光機24を設ける構成としてもよい。
また、第1および第2の実施の形態のドアミラー4,5,22,23は、車体の左右両側から突出した位置に設置されているものであればよく、例えば、ボンネットに設置されるフェンダーミラーでもよい。
In the second embodiment, the case where the light emitter 24 is provided in the left door mirror 22 and the light receiver 25 is provided in the right door mirror 23 has been described as an example. However, the present invention is not limited thereto. For example, the light receiving device 25 may be provided on the left door mirror 22 and the light emitting device 24 may be provided on the right door mirror 23.
Further, the door mirrors 4, 5, 22, and 23 of the first and second embodiments may be installed at positions protruding from the left and right sides of the vehicle body, for example, a fender mirror installed on a hood. But you can.

第1の実施の形態に係る車間距離検出装置が搭載された車両とその前を走行する先行車を示す平面図である。It is a top view which shows the vehicle by which the inter-vehicle distance detection apparatus which concerns on 1st Embodiment is mounted, and the preceding vehicle which drive | works before it. 図1中の車両を示す斜視図である。It is a perspective view which shows the vehicle in FIG. 図1中の車両のドアミラーを示す斜視図である。It is a perspective view which shows the door mirror of the vehicle in FIG. 第1の実施の形態に係る車間距離と測距精度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the inter-vehicle distance which concerns on 1st Embodiment, and ranging accuracy. 第2の実施の形態に係る車間距離検出装置が搭載された車両とその前を走行する先行車を示す平面図である。It is a top view which shows the vehicle by which the inter-vehicle distance detection apparatus which concerns on 2nd Embodiment is mounted, and the preceding vehicle which drive | works before it. 第2の実施の形態に係る車間距離と測距精度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the inter-vehicle distance which concerns on 2nd Embodiment, and ranging accuracy. 従来技術による車間距離検出装置を示す模式図である。It is a schematic diagram which shows the inter-vehicle distance detection apparatus by a prior art.

符号の説明Explanation of symbols

1 車両
2 ルームミラー
3,24,24′ 発光機
4,5,22,23 ドアミラー
6,7,25 受光機
8 先行車
L1,L2 基線長
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Room mirror 3, 24, 24 'Light emitter 4, 5, 22, 23 Door mirror 6, 7, 25 Light receiver 8 Leading vehicle L1, L2 Baseline length

Claims (3)

車両の左右両側に設けられた左右のドアミラーと、
前記車両のルームミラーまたはその近傍に設けられ、前記車両の前方を走行する先行車に向けて光を発射する発光機と、
前記左右のドアミラーにそれぞれ設けられ、前記先行車に当たって反射した前記発光機からの光を受光する左右の受光機と、
前記左右の受光機からの光信号を用いて三角測量の原理により前記車両から前記先行車までの距離を測定する信号処理装置とを備えたことを特徴とする車間距離検出装置。
Left and right door mirrors on the left and right sides of the vehicle,
A light emitting device that is provided in or near the vehicle rearview mirror and emits light toward a preceding vehicle that travels in front of the vehicle;
Left and right light receivers that are respectively provided on the left and right door mirrors and receive light from the light emitters that have been reflected by the preceding vehicle, and
An inter-vehicle distance detection device comprising: a signal processing device that measures a distance from the vehicle to the preceding vehicle by using a triangulation principle using optical signals from the left and right light receivers.
車両の左右両側に設けられた左右のドアミラーと、
前記左右のドアミラーのうちいずれか一方のドアミラー側に設けられ、前記車両の前方を走行する先行車に向けて光を発射する発光機と、
前記左右のドアミラーのうち他方のドアミラー側に設けられ、前記先行車に当たって反射した前記発光機からの光を受光する受光機と、
前記受光機からの光信号を用いて三角測量の原理により前記車両から前記先行車までの距離を測定する信号処理装置とを備えたことを特徴とする車間距離検出装置。
Left and right door mirrors on the left and right sides of the vehicle,
A light emitting device that is provided on one of the left and right door mirrors and emits light toward a preceding vehicle that travels in front of the vehicle;
A light receiver that is provided on the other door mirror side of the left and right door mirrors and that receives light from the light emitter reflected by the preceding vehicle;
An inter-vehicle distance detection device comprising: a signal processing device that measures a distance from the vehicle to the preceding vehicle based on a principle of triangulation using an optical signal from the light receiver.
車両の左右両側に設けられた左右のドアミラーと、
前記車両のボンネット先端のフロントグリル中央部またはその近傍に設けられ、前記車両の前方を走行する先行車に向けて光を発射する発光機と、
前記左右のドアミラーにそれぞれ設けられ、前記先行車に当たって反射した前記発光機からの光を受光する左右の受光機と、
前記左右の受光機からの光信号を用いて三角測量の原理により前記車両から前記先行車までの距離を測定する信号処理装置とを備えたことを特徴とする車間距離検出装置。
Left and right door mirrors on the left and right sides of the vehicle,
A light emitting device that is provided at or near the front grill center of the bonnet tip of the vehicle and emits light toward a preceding vehicle that travels in front of the vehicle;
Left and right light receivers that are respectively provided on the left and right door mirrors and receive light from the light emitters that have been reflected by the preceding vehicle, and
An inter-vehicle distance detection device comprising: a signal processing device that measures a distance from the vehicle to the preceding vehicle by using a triangulation principle using optical signals from the left and right light receivers.
JP2004152667A 2004-05-24 2004-05-24 Following distance detector Pending JP2005337712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152667A JP2005337712A (en) 2004-05-24 2004-05-24 Following distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152667A JP2005337712A (en) 2004-05-24 2004-05-24 Following distance detector

Publications (1)

Publication Number Publication Date
JP2005337712A true JP2005337712A (en) 2005-12-08

Family

ID=35491469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152667A Pending JP2005337712A (en) 2004-05-24 2004-05-24 Following distance detector

Country Status (1)

Country Link
JP (1) JP2005337712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304490B1 (en) * 2012-01-09 2013-09-05 전북대학교산학협력단 Blade deflection monitoring system of wind turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304490B1 (en) * 2012-01-09 2013-09-05 전북대학교산학협력단 Blade deflection monitoring system of wind turbine

Similar Documents

Publication Publication Date Title
US9891432B2 (en) Object detection device and sensing apparatus
US9618622B2 (en) Optical object-detection device having a MEMS and motor vehicle having such a detection device
EP2708916B1 (en) Distance Measurement Apparatus
EP2808700B1 (en) Drive assist device, and vehicle using drive assist device
KR102020037B1 (en) Hybrid LiDAR scanner
JP3966301B2 (en) Radar equipment for vehicles
US20160096474A1 (en) Object detector and sensing apparatus
US11022691B2 (en) 3-D lidar sensor
JP2016206084A (en) Obstacle detection device for vehicle
EP4066016A1 (en) Fog detector for a vehicle with a specially shaped lens
US20060092004A1 (en) Optical sensor
US20210055406A1 (en) Object sensing device
JP2007132951A (en) Radar system for vehicle
JP6584370B2 (en) Optical radar device for vehicles
JP2018059847A (en) Laser radar device
EP0762140B1 (en) Position sensing system for vehicles
JP2020101471A (en) Distance image detection device and vehicle lamp fitting
JP2005257322A (en) Distance detector
JP2005337712A (en) Following distance detector
JP6676974B2 (en) Object detection device
JP2008286767A (en) Space measuring device for vehicle
JPH06289138A (en) Obstacle detecting device
WO2020022206A1 (en) Distance measurement device
JP2006038686A (en) Lamp apparatus with distance measuring function
JPH08313302A (en) Position detecting device and on-vehicle laser rader