JP2005337385A - Device for supporting adjustment of rotary shaft connecting joint, and method of adjusting rotary shaft connecting joint - Google Patents

Device for supporting adjustment of rotary shaft connecting joint, and method of adjusting rotary shaft connecting joint Download PDF

Info

Publication number
JP2005337385A
JP2005337385A JP2004157317A JP2004157317A JP2005337385A JP 2005337385 A JP2005337385 A JP 2005337385A JP 2004157317 A JP2004157317 A JP 2004157317A JP 2004157317 A JP2004157317 A JP 2004157317A JP 2005337385 A JP2005337385 A JP 2005337385A
Authority
JP
Japan
Prior art keywords
shaft
rotating shaft
coupling joint
circumferential position
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004157317A
Other languages
Japanese (ja)
Other versions
JP4761730B2 (en
Inventor
Kenji Ozaki
健司 尾崎
Yukio Watabe
幸夫 渡部
Shinya Kato
信也 加藤
Koji Hikuma
幸治 日隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004157317A priority Critical patent/JP4761730B2/en
Publication of JP2005337385A publication Critical patent/JP2005337385A/en
Application granted granted Critical
Publication of JP4761730B2 publication Critical patent/JP4761730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and efficiently adjust a rotary shaft connecting joint by measuring deviation and angle of deviation of a connection part by manually rotating the rotary shaft without requiring to rotate a rotating machine at constant speed. <P>SOLUTION: This device has shaft vibration measuring means 5a-5d arranged at a plurality of positions in the axial direction of the rotary shafts 1 and 2, a plurality of circumferential position detecting means 21 arranged with an equal interval in the circumferential direction on the rotary shafts 1 and 2, a circumferential position measuring means 20 for measuring circumferential position on the basis of a signal obtained from the circumferential position detecting means 21, a shaft vibration processing means 14 for computing quantity of shaft vibration at each of positions in the circumferential direction of the rotary shafts 1 and 2 on the basis of a signal measured by the circumferential position measuring means 20 and signals of the shaft vibration quantity measured by the shaft vibration measuring means 5a-5d, and a deviation and angle of deviation computing means 15 for computing direction and quantity of deviation and angle of deviation on the basis of the information about installation position of the shaft vibration measuring means 5a-5d and the circumferential position measuring means 21 and the shaft vibration quantity computed by the shaft vibration processing means 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は回転軸を連結する連結継手(カップリング)の調整支援装置および連結継手の調整方法に関し、特に、モータ軸とポンプ軸の連結部の調整に好適な回転軸連結継手調整支援装置および回転軸連結継手調整方法に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adjustment support device for a coupling joint (coupling) for connecting a rotation shaft and a method for adjusting the coupling joint, and more particularly to a rotation shaft connection joint adjustment support device and a rotation suitable for adjusting a connection portion between a motor shaft and a pump shaft. The present invention relates to a method for adjusting a shaft coupling joint.

一般に、モータ軸とポンプ軸のように連結継手で結合される回転機においては、運転時の軸振動を低減させるように連結部の偏芯や偏角の方向と量の調整が必要である。連結部の偏芯や偏角の方向と量の調整が不十分な場合、回転時に偏芯や偏角により過大な軸振動値となり、再度、連結部の調整を行なう必要がある。   In general, in a rotating machine coupled by a coupling joint such as a motor shaft and a pump shaft, it is necessary to adjust the direction and amount of the eccentricity and declination of the coupling portion so as to reduce shaft vibration during operation. When the adjustment of the direction and amount of the eccentricity or declination of the connecting portion is insufficient, the shaft vibration value becomes excessive due to the eccentricity or declination during rotation, and it is necessary to adjust the connecting portion again.

この調整方法としては、計測器にダイヤルゲージを用い、連結部の軸振れ量の計測を行ない、軸振れ量の許容値以内に収まるよう、連結部を調整する方法がある。この方法は、回転軸にダイヤルゲージを設置し、手回し等により回転軸を回転させ、周方向に数箇所から軸振れ量を計測する方法である。   As this adjustment method, there is a method in which a dial gauge is used as a measuring instrument, the amount of axial runout of the connecting portion is measured, and the connecting portion is adjusted so as to be within an allowable value of the axial runout amount. In this method, a dial gauge is installed on the rotating shaft, the rotating shaft is rotated by hand turning or the like, and the amount of shaft runout is measured from several locations in the circumferential direction.

また、計測器として軸方向あるいは周方向に複数の非接触変位計を用いて、連結部の偏芯や偏角の方向と量を計測する方法がある。(たとえば特許文献1および特許文献2参照)。この方法は、非接触変位計により軸振れ量を計測するとともに、位相差を計測することにより、回転軸の偏芯や偏角を計測する方法である。特許文献1は、一定回転時における軸振れ量計測値と位相差から、振動ベクトルを算出し、回転軸の偏芯や偏角の方向および量を算出するものである。特許文献2は、一定回転時における軸振れ量計測値と位相差から、振動ベクトルを算出し、回転軸の偏角の方向および量を算出するものである。   Further, there is a method of measuring the direction and amount of eccentricity and declination of a connecting portion using a plurality of non-contact displacement meters in the axial direction or circumferential direction as a measuring instrument. (For example, refer to Patent Document 1 and Patent Document 2). This method is a method of measuring the eccentricity and the declination of the rotating shaft by measuring the amount of shaft runout with a non-contact displacement meter and measuring the phase difference. Patent Document 1 calculates a vibration vector from a measured value and a phase difference of a shaft runout during a constant rotation, and calculates the direction and amount of the eccentricity and declination of the rotating shaft. Patent Document 2 calculates a vibration vector from a measured value of a shaft shake at a constant rotation and a phase difference, and calculates the direction and amount of a declination of the rotation axis.

また、偏角を防止するためにはモータ軸端面の偏角を極力小さくする必要がある。このために行なわれている作業について以下に説明する。図21に、発電プラント等で用いられる縦型ポンプにおける軸連結継手のモータ軸の一例を示す。この種のポンプは、モータ軸とポンプ軸とをスペーサ連結継手で連結される構造である。運転中は、運転条件の違いにより、ポンプ軸をモータ軸側に押し上げる軸方向荷重が変化し、モータ軸端面とスペーサ連結継手が接触する場合と離反する場合がある。接触する場合は、モータ軸端面の偏角がそのままポンプ軸の偏角となるため、回転軸の振動増加の原因となる。そこで従来では、図21に示すようにモータ軸108の外径に端面当たり治具141をモータ軸108に装着して、光明丹などで当たり状態を確認して、軸端面の偏角度および平面度を計測している。当たり状況が悪い場合は、軸偏角度を極力零とするよう軸端面を研削する。端面当たり治具141はモータ軸108の外形に精度良く装着され、軸端面が当たる底面の偏角がなく精度良く平面を保っている。
特許第2848720号公報 特開2001−153757号公報
In order to prevent the deflection angle, it is necessary to make the deflection angle of the end face of the motor shaft as small as possible. The work performed for this purpose will be described below. FIG. 21 shows an example of a motor shaft of a shaft coupling joint in a vertical pump used in a power plant or the like. This type of pump has a structure in which a motor shaft and a pump shaft are coupled by a spacer coupling joint. During operation, the axial load that pushes the pump shaft toward the motor shaft changes depending on the operating conditions, and the motor shaft end face and the spacer coupling joint may come in contact with each other. In the case of contact, the deviation angle of the end face of the motor shaft directly becomes the deviation angle of the pump shaft, which causes an increase in vibration of the rotary shaft. Therefore, conventionally, as shown in FIG. 21, a jig 141 is attached to the motor shaft 108 to the outer diameter of the motor shaft 108, the contact state is confirmed by Komyotan etc., and the eccentric angle and flatness of the shaft end surface are confirmed. Is measured. If the contact situation is bad, the shaft end face is ground so that the shaft deflection angle is zero as much as possible. The end face contact jig 141 is mounted on the outer shape of the motor shaft 108 with high accuracy, and maintains a flat surface with no deviation of the bottom surface against which the shaft end surface hits.
Japanese Patent No. 2848720 JP 2001-153757 A

上述した回転軸の連結継手調整方法および装置おいて、まず、ダイヤルゲージを用いた測定の場合、一般的に周方向に直交する2方向、軸方向に数箇所の計測が行なわれ、軸振れ量の最大値と最小値を計測し許容値以内になるよう連結部を調整されている。この場合、計測位置の軸振れの方向と量は明らかとなるが、ポンプ軸とモータ軸がどちらの方向にどの程度の量、偏芯あるいは偏角しているかを把握することが難しいため、精度良く調整することが困難である。また、計測点を増やすことにより、軸振れの方向と量の計測精度を向上することも可能であるが、計測する方向に回転軸を固定し、軸振れ量を読み取り、次の方向に回転、固定して軸振れ量を読み取り、といった作業を繰り返す必要がある。この場合、作業時間が増加してしまう問題と、計測する周方向位置を精度良く設定することが難しいという課題がある。   In the method and apparatus for adjusting the coupling joint of the rotary shaft described above, first, in the case of measurement using a dial gauge, measurement is generally made at several points in two directions and in the axial direction perpendicular to the circumferential direction. The connecting part is adjusted so that the maximum value and the minimum value can be measured and within the allowable value. In this case, the direction and amount of shaft runout at the measurement position will be clear, but it is difficult to know how much, eccentricity, or angle in which direction the pump shaft and motor shaft are It is difficult to adjust well. In addition, by increasing the number of measurement points, it is possible to improve the measurement accuracy of the direction and amount of shaft runout, but the rotation axis is fixed in the direction of measurement, the shaft runout amount is read, and the rotation is performed in the next direction. It is necessary to repeat operations such as fixing and reading the shaft runout. In this case, there are a problem that the working time increases and a problem that it is difficult to accurately set the circumferential position to be measured.

特許文献1および特許文献2の方法では、計測した軸振動値と位相情報から、連結部の偏芯あるいは偏角の方向および量を算出しているが、位相情報から偏芯あるいは偏角の方位を算出するためには、回転機が一定速度の回転状態にある必要がある。この場合、調整作業を行なった後、回転機を運転し、そして計測作業、良否確認を行ない、否の場合は再度調整作業という流れとなる。しかしこの場合、回転機を運転状態とする必要があるため、調整作業を連続して行なうことができず、作業効率が悪くなるという課題がある。   In the methods of Patent Document 1 and Patent Document 2, the direction and amount of the eccentricity or declination of the connecting portion are calculated from the measured shaft vibration value and phase information. In order to calculate the value, the rotating machine needs to be in a rotating state at a constant speed. In this case, after the adjustment work is performed, the rotating machine is operated, and the measurement work and pass / fail confirmation are performed. However, in this case, since it is necessary to put the rotating machine into an operating state, there is a problem that adjustment work cannot be performed continuously and work efficiency deteriorates.

モータ軸端面の偏角状態の計測および修正作業は、端面当たり治具141の重量が約30Kgと重く、軸とのはめあい公差が約20μmと小さいので、取り外し作業が困難であり、作業時間も1日以上かかるという課題がある。   The measurement and correction work of the declination state of the motor shaft end face is difficult because the weight of the jig 141 per end face is as heavy as about 30 kg and the fit tolerance with the shaft is as small as about 20 μm, and the work for removing is difficult and the work time is also 1 There is a problem that it takes more than a day.

また、偏角状態を定量的に把握することが困難であり、偏角状態の改善のための研削量を把握することが困難である。このため、計測および修正作業を繰り返す必要がある場合がある。   Moreover, it is difficult to quantitatively grasp the declination state, and it is difficult to grasp the grinding amount for improving the declination state. For this reason, it may be necessary to repeat measurement and correction operations.

本発明は上述した課題を解決するためになされたものであり、回転機を一定速度の回転状態にする必要がなく、回転軸の手回しにより回転軸連結部の偏芯および偏角状態を計測し、精度良くまた効率良く調整することを可能とするとともに、回転軸端面の偏角状態の調整作業を精度良くかつ効率良く実施することを可能とする回転軸連結継手調整方法およびそのための回転軸連結継手調整支援装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and does not require the rotating machine to be in a rotating state at a constant speed, and measures the eccentricity and declination state of the rotating shaft connecting portion by manually rotating the rotating shaft. Rotating shaft coupling joint adjusting method and rotating shaft coupling for the same, which can be adjusted accurately and efficiently, and can be performed accurately and efficiently for adjusting the deflection angle state of the rotating shaft end face An object of the present invention is to provide a joint adjustment support device.

この発明は上記目的を達成するものであって、本発明は、二つの回転軸を結合する連結継手の結合状態を調整するための回転軸連結継手調整支援装置において、回転軸の軸方向複数箇所に配置した軸振動計測手段と、回転軸の周方向に等間隔に複数配置した周方向位置検出手段と、周方向位置検出手段から得られる信号により周方向位置を計測する周方向位置計測手段と、周方向位置計測手段により計測された信号と軸振動計測手段により計測された軸振れ量の信号とに基づいて、回転軸の周方向の各位置での軸振れ量の算出を行なう軸振動処理手段と、軸振動計測手段および周方向位置計測手段の設置位置の情報と軸振動処理手段により算出された軸振れ量に基づいて偏芯および偏角の方向および量を算出する偏芯偏角算出手段と、を有することを特徴とする。   The present invention achieves the above-mentioned object, and the present invention provides a rotary shaft coupling joint adjustment support device for adjusting a coupling state of coupling couplings that couple two rotary shafts. A plurality of axial position measuring means arranged at equal intervals in the circumferential direction of the rotating shaft, and a circumferential position measuring means for measuring the circumferential position by a signal obtained from the circumferential position detecting means. A shaft vibration process for calculating the amount of shaft runout at each position in the circumferential direction of the rotating shaft based on the signal measured by the circumferential position measuring unit and the shaft runout amount signal measured by the shaft vibration measuring unit. The eccentric declination calculation calculates the direction and amount of decentering and declination based on the information on the installation position of the means, the axial vibration measuring means and the circumferential position measuring means and the axial runout amount calculated by the axial vibration processing means And means It is characterized in.

また、本発明は、二つの回転軸を結合する連結継手の結合状態を調整するための回転軸連結継手調整方法において、前記回転軸を回転させながら、軸方向の複数箇所で軸振動を計測するとともに、回転軸上周方向に等間隔に複数配置した周方向位置検出器から得られる信号により周方向位置を計測する計測ステップと、周方向位置と軸振動に関する情報に基づいて、前記回転軸の周方向の各位置での軸振れ量の算出を行なう軸振動処理ステップと、前記計測ステップによって得られた周方向位置の情報と軸振動処理ステップで算出された軸振れ量とに基づいて前記回転軸の偏芯および偏角の方向および量を算出する偏芯偏角算出ステップと、を有することを特徴とする。   The present invention also relates to a rotating shaft coupling joint adjusting method for adjusting a coupling state of a coupling joint that couples two rotating shafts, and measuring shaft vibration at a plurality of axial positions while rotating the rotating shaft. And a measurement step for measuring the circumferential position by a signal obtained from circumferential position detectors arranged at equal intervals in the circumferential direction on the rotational axis, and information on the rotational axis based on information on the circumferential position and axial vibration. Based on the axial vibration processing step for calculating the axial vibration amount at each position in the circumferential direction, the rotation based on the information on the circumferential position obtained by the measurement step and the axial vibration amount calculated in the axial vibration processing step. An eccentric declination calculating step for calculating the direction and amount of decentering and declination of the shaft.

また、本発明は、二つの回転軸を結合する連結継手の結合状態を調整するための回転軸連結継手調整支援装置において、回転軸に取り付けてその回転軸の端面に対向させて配置されて当該端面の対向部分との距離を計測できる変位計と、前記変位計を前記端面に対向させながら前記端面に対してほぼ平行に移動させる移動機構とを有し、これら変位計と移動機構とにより、前記端面の直角度および形状を計測できるように構成されていること、を特徴とする。   Further, the present invention provides a rotary shaft coupling joint adjustment support device for adjusting a coupling state of a coupling joint that couples two rotary shafts, and is disposed on the rotary shaft so as to face the end surface of the rotary shaft. A displacement meter that can measure the distance to the opposing portion of the end surface, and a moving mechanism that moves the displacement meter substantially parallel to the end surface while facing the end surface, with these displacement meter and moving mechanism, It is comprised so that the squareness and shape of the said end surface can be measured.

また、本発明は、二つの回転軸を結合する連結継手の結合状態を調整する回転軸連結継手調整方法において、回転軸の端面の一部に変位計を対向させて、前記端面の部分と変位計の距離を計測する計測ステップと、前記変位計を前記端面の他の部分に対向させるように前記変位計を端面に対してほぼ平行に移動させる移動ステップと、を繰り返して、前記端面の直角度および形状を計測すること、を特徴とする。   According to another aspect of the present invention, there is provided a rotary shaft coupling joint adjustment method for adjusting a coupling state of a coupling joint that couples two rotary shafts. A measuring step for measuring the distance of the meter, and a moving step for moving the displacement meter substantially parallel to the end surface so that the displacement meter faces the other part of the end surface. It measures the angle and shape.

本発明によれば、回転機を一定速度の回転状態にする必要がなく、たとえば回転軸の手回しにより回転軸連結部の偏芯および偏角状態を計測し、精度良くまた効率良く調整することができる。また、偏角状態を改善するため、軸端面の偏角状態を効率よく精度良く計測することができる。   According to the present invention, there is no need to set the rotating machine to a rotating state at a constant speed, and for example, the eccentricity and the declination state of the rotating shaft connecting portion can be measured and adjusted accurately and efficiently by turning the rotating shaft. it can. In addition, since the declination state is improved, the declination state of the shaft end face can be efficiently and accurately measured.

以下、本発明に係る回転軸連結継手調整方法およびそのための回転軸連結継手調整支援装置の実施の形態について、図面を参照して説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a rotating shaft coupling joint adjusting method and a rotating shaft coupling joint adjusting support device therefor according to the present invention will be described below with reference to the drawings.

[第1の実施の形態]
まず、図1〜図10を用いて第1の実施の形態を説明する。本実施の形態は、図1に示すように、連結部を持つ回転体の例として、モータ軸1とポンプ軸2を、モータ側連結継手3とポンプ側連結継手4とよって連結する構造を示している。軸振れ量を計測する軸振動計測手段として、非接触変位計5a〜5eを軸方向に配置し、センサ治具6、7により固定する。センサ治具6,7は、たとえばマグネットにより、モータ下部面50やポンプ上部面51に固定する。また、マグネットによる固定では、接触による位置ずれや取り付け位置の再現性の確保が難しいこともあるので、モータ下部面50やポンプ上部面51に回転機本体あるいは部品取り付け用のボルト穴やはめあい構造を利用して、強固に固定することが望ましい。
[First Embodiment]
First, the first embodiment will be described with reference to FIGS. As shown in FIG. 1, this embodiment shows a structure in which a motor shaft 1 and a pump shaft 2 are connected by a motor side coupling joint 3 and a pump side coupling joint 4 as an example of a rotating body having a coupling portion. ing. Non-contact displacement meters 5 a to 5 e are arranged in the axial direction as shaft vibration measuring means for measuring the amount of shaft deflection, and are fixed by sensor jigs 6 and 7. The sensor jigs 6 and 7 are fixed to the motor lower surface 50 and the pump upper surface 51 by, for example, magnets. In addition, when fixing with a magnet, it may be difficult to ensure positional deviation due to contact and reproducibility of the mounting position. It is desirable to use and fix firmly.

モータ軸1のセンタリング等の調整作業においては、図2に示すようにモータ軸固定治具36とモータ軸固定ボルト38を使用してモータ軸1を移動あるいは固定する。モータ軸固定治具36は、固定ボルト37によりモータ下部面に強固に固定されている。   In adjustment work such as centering of the motor shaft 1, the motor shaft 1 is moved or fixed using a motor shaft fixing jig 36 and a motor shaft fixing bolt 38 as shown in FIG. The motor shaft fixing jig 36 is firmly fixed to the lower surface of the motor with fixing bolts 37.

図3は、モータ下部面50にあるボルト穴を利用してセンサ治具6を取り付けた例を示している。センサ治具6を取り付け板39に固定し、取り付け板39は、固定ボルト37によりモータ下部面50に固定する。このような構造とすることにより、センサ治具6を強固に固定できる。また、回転機に予め設置されているボルト穴等構造やモータ軸固定治具36およびモータ軸固定ボルト38等の通常の調整作業で使用する治具を利用できるため、新たな加工や治具製作が必要ないという効果がある。   FIG. 3 shows an example in which the sensor jig 6 is attached using a bolt hole in the motor lower surface 50. The sensor jig 6 is fixed to the mounting plate 39, and the mounting plate 39 is fixed to the motor lower surface 50 by the fixing bolt 37. With such a structure, the sensor jig 6 can be firmly fixed. In addition, the bolt holes and other structures installed in advance in the rotating machine and the jigs used for normal adjustment work such as the motor shaft fixing jig 36 and the motor shaft fixing bolt 38 can be used. There is an effect that is not necessary.

非接触変位計5をモータ軸1に2ヶ所、ポンプ側連結継手4に2ヶ所設置することにより、モータ軸1とポンプ軸2の偏芯および偏角をそれぞれ計測することが可能となる。なお、ここで示す連結部の構造は、ポンプ軸2とポンプ側連結継手4の間では偏芯および偏角が生じない構造であり、このポンプ軸2とポンプ側連結継手4の間で偏芯および偏角が生じる構造の場合は、ポンプ軸2の軸方向2ヶ所に非接触変位計5を配置する。ここで、非接触変位計5として、たとえば渦電流式変位計やレーザ変位計を使用するが、軸の磁化特性の影響を受けにくいレーザ変位計を使用するのが望ましい。   By installing two non-contact displacement meters 5 on the motor shaft 1 and two locations on the pump side coupling joint 4, it is possible to measure the eccentricity and declination of the motor shaft 1 and the pump shaft 2, respectively. The structure of the connecting portion shown here is a structure in which no eccentricity or declination occurs between the pump shaft 2 and the pump side coupling joint 4. In the case of a structure in which a declination occurs, the non-contact displacement gauges 5 are arranged at two locations in the axial direction of the pump shaft 2. Here, as the non-contact displacement meter 5, for example, an eddy current displacement meter or a laser displacement meter is used, but it is desirable to use a laser displacement meter which is not easily influenced by the magnetization characteristics of the shaft.

図1に示すように、モータ側連結継手3には、回転軸の軸方向位置検出するための反射箔21を設置し、光電式パルス計20により反射箔21位置において、パルス状の電圧信号を計測する。反射箔21は、モータ側連結継手3の周方向に複数箇所均等に配置することにより、周方向等間隔の位置でパルス信号が発生する。   As shown in FIG. 1, the motor side coupling joint 3 is provided with a reflective foil 21 for detecting the axial position of the rotating shaft, and a pulse voltage signal is received at the reflective foil 21 position by the photoelectric pulse meter 20. measure. By arranging the reflecting foils 21 uniformly at a plurality of locations in the circumferential direction of the motor side coupling joint 3, pulse signals are generated at equally spaced positions in the circumferential direction.

非接触変位計5およびパルス計20は、それぞれ変位計信号線8およびパルス計信号線9と増幅器10と増幅器11に接続され電圧信号を出力する。さらにAD変換器12によりディジタル信号に変換され、処理部分40に取り込まれる。処理部分40は、連続した軸振動信号から回転軸の周方向位置での軸振れ量を算出する軸振動処理手段14と、各軸振れ量からモータ軸1とポンプ軸2の偏芯および偏角の方向および量を算出する偏芯偏角算出手段15と、偏芯偏角量が許容値異常の場合、連結継手の調整方向と調整量を指示する調整指示手段16からなる。処理部分40には、偏芯偏角算出手段15に必要な非接触変位計5やパルス計20の設置位置に関する情報を入力する入力手段17と、入力画面や調整支援の画面を表示する表示手段18と、入力情報や測定データや算出結果を記録する記録手段19が接続されている。   The non-contact displacement meter 5 and the pulse meter 20 are connected to the displacement meter signal line 8, the pulse meter signal line 9, the amplifier 10 and the amplifier 11, respectively, and output voltage signals. Further, the signal is converted into a digital signal by the AD converter 12 and taken into the processing portion 40. The processing portion 40 includes shaft vibration processing means 14 for calculating the shaft runout amount at the circumferential position of the rotating shaft from the continuous shaft vibration signal, and the eccentricity and declination of the motor shaft 1 and the pump shaft 2 from each shaft runout amount. The eccentric declination calculating means 15 for calculating the direction and the amount of the detent, and the adjustment instructing means 16 for instructing the adjusting direction and the adjusting amount of the coupling joint when the decentering declination amount is an allowable value abnormality. The processing portion 40 includes an input means 17 for inputting information related to the installation positions of the non-contact displacement meter 5 and the pulse meter 20 necessary for the eccentricity declination calculating means 15, and a display means for displaying an input screen and an adjustment support screen. 18 is connected to recording means 19 for recording input information, measurement data, and calculation results.

ここで、図4に示すフローにより処理の概要を説明する。すなわち、まず、センサ位置情報を入力する(ステップS1)。次に、軸振動収録を開始する(ステップS2)。次に、回転軸を手回しする(ステップS3)。次に、軸振動収録を終了する(ステップS4)。次に、軸振動収録の結果からパルス位置を抜き出す(ステップS5)。次に、偏芯偏角を計算する(ステップS6)。ここで良否判定を行ない(ステップS7)、偏芯偏角が許容値以下の場合は終了する。偏芯偏角が許容値を越えている場合は、調整方向を指示し(ステップS8)、調整作業を行なって(ステップS9)、再び、軸振動収録開始(ステップS2)からの作業を繰り返す。   Here, the outline of the processing will be described with reference to the flow shown in FIG. That is, first, sensor position information is input (step S1). Next, shaft vibration recording is started (step S2). Next, the rotating shaft is turned manually (step S3). Next, axial vibration recording is terminated (step S4). Next, a pulse position is extracted from the result of axial vibration recording (step S5). Next, the eccentric angle is calculated (step S6). Here, a pass / fail determination is made (step S7), and if the decentering angle is equal to or smaller than an allowable value, the process ends. When the eccentric angle exceeds the allowable value, the adjustment direction is instructed (step S8), the adjustment operation is performed (step S9), and the operation from the start of shaft vibration recording (step S2) is repeated again.

図5および図6を参照して軸振動処理手段14の処理方法について説明する。図5は、第1の反射箔21を周方向に30°刻みでモータ軸の外周上に配置した例である。回転軸を手回しにより回転させる場合、第1のパルス計20aにより回転軸が30°回転するごとに第1のパルス信号22を計測することが可能である。このときの軸振動データ23も計測されており、第1のパルス信号22が発生している位置での軸振動データ23が周方向30°ごとの軸振れ量となる。このとき、周方向の基準となる点は、回転軸を回し始める位置としてもよいし、前述の第1の反射箔21とは別に回転軸の周方向に一つの第2の反射箔21bを配置し、第2のパルス計20bにより、回転軸の1回転ごとに1回発生する第2のパルス信号25を計測することにより、基準位置を決定する方法もある。   A processing method of the shaft vibration processing means 14 will be described with reference to FIGS. FIG. 5 shows an example in which the first reflecting foil 21 is arranged on the outer periphery of the motor shaft in 30 ° increments in the circumferential direction. When the rotating shaft is rotated manually, the first pulse signal 22 can be measured every time the rotating shaft rotates 30 ° by the first pulse meter 20a. The axial vibration data 23 at this time is also measured, and the axial vibration data 23 at the position where the first pulse signal 22 is generated becomes the axial vibration amount for every 30 ° in the circumferential direction. At this time, the reference point in the circumferential direction may be a position at which the rotation axis starts to be rotated, and one second reflection foil 21b is arranged in the circumferential direction of the rotation axis separately from the first reflection foil 21 described above. There is also a method of determining the reference position by measuring the second pulse signal 25 generated once for each rotation of the rotating shaft by the second pulse meter 20b.

抽出された軸振れ抽出点24の軸振れ量の1回転分を平面的に表示した結果を図7に示す。基準円26は、軸振れが0の状態を示しているものであり、抽出された軸振れ量を30°ごとに表示すると、この軸振動データについては、偏芯ベクトル27で表される方向および量だけ軸振れが生じていることとなる。   FIG. 7 shows a result of planarly displaying one rotation of the shaft runout amount of the extracted shaft runout extraction point 24. The reference circle 26 indicates a state in which the shaft runout is zero, and when the extracted shaft runout amount is displayed every 30 °, the shaft vibration data has the direction represented by the eccentricity vector 27 and The shaft runout is caused by the amount.

ダイヤルゲージの計測では、計測する方向に回転軸を固定し、軸振れ量を読み取り、次の方向に回転、固定して軸振れ量を読み取りといった作業が必要であったが、この構成により、回転軸を手回しで1回転することで回転軸の周方向30°ごとの軸振れ量を計測することが可能となり、計測時間の短縮とともに偏芯偏角方向の計測精度を向上させることができる。また、軸振れ量の計測において、モータを一定回転にすることなく回転軸を手回しすることで可能なため、モータの起動準備等が必要なく、調整作業をしながらの計測が可能となり、調整作業全体の時間を短縮することが可能となる。   In the dial gauge measurement, it was necessary to fix the rotating shaft in the measuring direction, read the shaft runout, rotate and fix in the next direction, and read the shaft runout. By rotating the shaft by one turn, it is possible to measure the amount of shaft runout every 30 ° in the circumferential direction of the rotating shaft, and it is possible to shorten the measurement time and improve the measurement accuracy in the eccentric declination direction. In addition, since the shaft runout can be measured by manually rotating the rotating shaft without making the motor rotate at a constant speed, there is no need for motor start-up preparation, etc., and adjustment can be performed while making adjustments. The overall time can be shortened.

非接触変位計5a,5b、5d、5eの四つの軸振動データについて、前述の軸振動処理を行ない、四つの偏芯ベクトル27を算出する。   With respect to the four shaft vibration data of the non-contact displacement meters 5a, 5b, 5d, and 5e, the above-described shaft vibration processing is performed, and four eccentric vectors 27 are calculated.

図8により、モータ軸1とポンプ軸2の偏芯および偏角の方向および量の算出方法について説明する。計測位置の情報は図9に示す入力画面により入力する。偏芯および偏角を算出するために必要な寸法情報を入力するものである。図8は四つの偏芯ベクトル27a、27b、27c,27dを基準線28に対して3次元的に表示したものである。モータ軸1はABを結ぶ向きに、ポンプ軸2はCDの向きに傾いていることを意味する。モータ軸1とポンプ軸2の偏芯方向と偏芯量は、モータ側連結継手とポンプ側連結継手が接触する接触面42での値とすると、点Aと点Bを接触面42に外挿した点B’と、点Cと点Dを接触面42に外挿した点C’から算出される。このとき、入力された軸方向の寸法情報が使用される。モータ軸1を基準に考えると、偏芯方向および偏芯量はベクトル29で表されることとなる。次に偏角方向および量は、線分ABと線分CDのなす角度および方向から算出することができる。   A method for calculating the direction and amount of eccentricity and declination of the motor shaft 1 and the pump shaft 2 will be described with reference to FIG. Information on the measurement position is input on the input screen shown in FIG. The dimensional information necessary for calculating the eccentricity and the deflection angle is input. FIG. 8 shows four eccentric vectors 27 a, 27 b, 27 c, and 27 d displayed three-dimensionally with respect to the reference line 28. It means that the motor shaft 1 is inclined in the direction connecting AB and the pump shaft 2 is inclined in the CD direction. When the eccentric direction and the eccentric amount of the motor shaft 1 and the pump shaft 2 are values at the contact surface 42 where the motor side coupling joint and the pump side coupling joint are in contact, the points A and B are extrapolated to the contact surface 42. It is calculated from the point B ′ and the point C ′ obtained by extrapolating the point C and the point D to the contact surface 42. At this time, the inputted dimension information in the axial direction is used. Considering the motor shaft 1 as a reference, the direction of eccentricity and the amount of eccentricity are represented by a vector 29. Next, the declination direction and amount can be calculated from the angle and direction formed by the line segment AB and the line segment CD.

算出された偏芯および偏角の方向および量から、調整の良否判定に使用する軸方向位置での軸振れ量が、許容値以内である場合は、調整作業は終了となる。また、許容値以上である場合は、再度調整作業が必要となるため、調整指示手段16により偏芯および偏角を低減する方向および量を作業員に指示する画面を表示する。画面の例を図10に示す。現状の位置30を調整ベクトル31の方向および量を調整し、目標位置32に調整する画面の例である。   From the calculated direction and amount of eccentricity and declination, when the amount of axial runout at the axial position used for determining the quality of the adjustment is within an allowable value, the adjustment operation ends. If the value is equal to or greater than the allowable value, the adjustment work is required again, and the adjustment instruction means 16 displays a screen for instructing the worker on the direction and amount for reducing the eccentricity and declination. An example of the screen is shown in FIG. It is an example of a screen for adjusting the current position 30 to the target position 32 by adjusting the direction and amount of the adjustment vector 31.

図11および図12には、軸周方向位置を検出する他の方法として、一つの非接触変位計5により検出する例を示す。モータ側連結継手に凹凸構造を30°刻みに配置した例である。ここでは、基準位置を検出する凹部35を1箇所、周方向位置を検出する凸部34を11箇所とし、非接触変位計5により計測される第2のパルス信号25を元にして、軸振動データ23から軸振れ量を抽出するものである。   FIG. 11 and FIG. 12 show an example of detecting by one non-contact displacement meter 5 as another method of detecting the axial circumferential position. This is an example in which a concavo-convex structure is arranged in increments of 30 ° on the motor side coupling joint. Here, there are one recess 35 for detecting the reference position and 11 protrusions 34 for detecting the circumferential position, and the shaft vibration is determined based on the second pulse signal 25 measured by the non-contact displacement meter 5. A shaft runout amount is extracted from the data 23.

なお、軸周方向検出手段の設置場所は、モータ側連結継手以外の場所でもよい。また、パルス信号22,25の発生間隔も等間隔であれば良く、より精度を必要とする場合、刻みを小さくしてもよい。   The installation location of the axial circumferential direction detection means may be a location other than the motor side coupling joint. Further, the generation intervals of the pulse signals 22 and 25 may be equal intervals, and the step may be reduced when more accuracy is required.

このように構成された本実施の形態において、回転機を一定速度の回転状態にすることなく、回転軸の手回しにより連結部の偏芯および偏角状態を計測し、精度良くまた効率良く調整することが可能となる。   In the present embodiment configured as described above, the eccentricity and the declination state of the connecting portion are measured by turning the rotating shaft without adjusting the rotating machine at a constant speed, and adjusted accurately and efficiently. It becomes possible.

[第2の実施の形態]
図13は、本発明による第2の実施の形態の装置を縦型ポンプモータのモータ107のモータ軸108に装着した場合を示している。レーザ変位計102を用いてレーザ光101により、モータ軸端面までの距離を変位として精度良く計測する。このレーザ変位計102は、X−Yステージ103に搭載され、計測対象の軸端面領域を移動する。X−Yステージコントローラ106とレーザ変位計信号変換器104の出力をパーソナルコンピュータ105に入力して、図14に示すような、端面の3次元形状を出力する。
[Second Embodiment]
FIG. 13 shows a case where the apparatus according to the second embodiment of the present invention is mounted on the motor shaft 108 of the motor 107 of the vertical pump motor. The distance to the motor shaft end face is accurately measured as a displacement by the laser beam 101 using the laser displacement meter 102. The laser displacement meter 102 is mounted on the XY stage 103 and moves on the shaft end face region to be measured. The outputs of the XY stage controller 106 and the laser displacement meter signal converter 104 are input to the personal computer 105 to output a three-dimensional shape of the end face as shown in FIG.

図15は、本装置のレーザ変位計102の上面位置から下方を見た図である。X−Yステージ103はXステージ113とYステージ112とからなり、Xステージ113の上にYステージ112が搭載され、その上にレーザ変位計102が搭載されている。   FIG. 15 is a view of the lower side of the laser displacement meter 102 of this apparatus as viewed from below. The XY stage 103 includes an X stage 113 and a Y stage 112. A Y stage 112 is mounted on the X stage 113, and a laser displacement meter 102 is mounted thereon.

図16は立断面を示し、図17は、図16のA−A断面を示す。レーザ変位計102は、取付け治具117によりYステージ112に取り付けられ、Xステージ113は、偏角調整用プレート114を介して、下部プレート116に取り付けられている。下部プレート116は、タイロッド111を介して上部プレート115を取り付けている。上部プレート115には、測定対象となる回転軸のスペーサリング設置面が設けられている。偏角調整用プレート114は、調整ねじ(図示せず)などにより、スペーサリング設置面に対して平行となるよう偏角調整を行なう。   16 shows an upright section, and FIG. 17 shows an AA section of FIG. The laser displacement meter 102 is attached to the Y stage 112 by an attachment jig 117, and the X stage 113 is attached to the lower plate 116 via the deflection angle adjusting plate 114. The lower plate 116 is attached with an upper plate 115 via a tie rod 111. The upper plate 115 is provided with a spacer ring installation surface of a rotating shaft to be measured. The deflection angle adjusting plate 114 adjusts the deflection angle so as to be parallel to the spacer ring installation surface with an adjusting screw (not shown).

図18にタイロッド111の形状の例を示す。上部プレート115および下部プレート116の接合部分のみ精度良く仕上げたロッドにすれば、上下部プレートを精度良く平行に組立てできる装置にすることができる。   FIG. 18 shows an example of the shape of the tie rod 111. By using a rod that is precisely finished only at the joint between the upper plate 115 and the lower plate 116, it is possible to provide a device that allows the upper and lower plates to be assembled in parallel with high precision.

図19に、実際に装置を取り付けて計測しているときの状態の例の立断面図を示している。ポンプ軸126端面の端面保護カバー125に装置昇降機構124を設置して、本発明の装置をその上に搭載して、モータ軸108に挿入して、その後スプリットリング122、スペーサリング121をモータ軸に装着し、装置を装置昇降機構124で降下させて、スペーサリング121上面に設置する。このようにすれば、装置を精度良く容易に設置できる。また、端面修正作業時には、装置昇降機構124を用いて、装置を取り外して、その空いた空間を使って端面修正作業が可能である。このときリングおよび装置の設置方位は、装置据付け精度を向上させるためには、決まった方位に設置するとよい。   FIG. 19 shows an elevational sectional view of an example of a state in which an apparatus is actually attached and measured. The device lifting mechanism 124 is installed on the end surface protective cover 125 on the end surface of the pump shaft 126, and the device of the present invention is mounted thereon and inserted into the motor shaft 108. Thereafter, the split ring 122 and the spacer ring 121 are attached to the motor shaft. The apparatus is lowered by the apparatus lifting mechanism 124 and installed on the upper surface of the spacer ring 121. In this way, the apparatus can be easily and accurately installed. Further, at the time of end face correction work, the apparatus lifting mechanism 124 can be used to remove the apparatus, and the end face correction work can be performed using the vacant space. At this time, in order to improve the apparatus installation accuracy, the ring and the apparatus should be installed in a fixed direction.

このように構成された本実施の形態によれば、軸端面の形状を3次元に定量的に表示できるので、端面の修正作業が容易となる。軸に取り付けた装置を人が動かさなくて済むので、測定精度が向上する。スプリットリング溝あるいはスプリットリング122の端面あるいはスプリットリング122に支えられているスペーサリング121の端面の上面に測定装置を置くだけであるので、設置作業が容易であり、スペーサリング121の端面の上面は、精度良く製作されており、面が傷むこともないので、その面を基準とすることにより精度良く計測できる。   According to the present embodiment configured as described above, the shape of the shaft end face can be quantitatively displayed in three dimensions, so that the end face can be easily corrected. Measurement accuracy is improved because the device attached to the shaft does not need to be moved by a person. Since the measuring device is merely placed on the split ring groove or the end face of the split ring 122 or the upper face of the end face of the spacer ring 121 supported by the split ring 122, the installation work is easy, and the upper face of the end face of the spacer ring 121 is Since it is manufactured with high accuracy and the surface is not damaged, it can be measured with high accuracy by using the surface as a reference.

また、ポンプの運転が大気圧の場合、スペーサリング121端面の上面にモータ連結継手が設置され、スペーサ連結継手が連結されるので、上記の面を基準にすると大気圧の場合と圧力が高い運転時が、同じ軸偏角度となるので運転条件により振動値が変化しない調整ができる。   In addition, when the pump is operated at atmospheric pressure, a motor coupling joint is installed on the upper surface of the end surface of the spacer ring 121, and the spacer coupling joint is coupled. Since the time has the same shaft deflection angle, adjustment can be made so that the vibration value does not change depending on the operating conditions.

さらに、軸端面にあるスプリットリング122に支えられているスペーサリング121端面に設置する上部プレート115とX−Yステージ103などが搭載されている偏角調整用プレート114を取り付けている下部プレート116をタイロッド111で連結するとよい。この実施の形態によれば、上部プレート115と下部プレート116を3本以上のタイロッド111で連結したことにより、装置重量を軽くすることができる。また、X−Yステージ103が搭載されている偏角調整用プレート114を用いることにより、精度良く設置面に平行にX−Yステージ103を調整ねじなどを用いて調整設置できる。   Further, an upper plate 115 installed on the end face of the spacer ring 121 supported by the split ring 122 on the shaft end face and a lower plate 116 to which the deflection angle adjusting plate 114 on which the XY stage 103 and the like are mounted are attached. It is good to connect with a tie rod 111. According to this embodiment, the upper plate 115 and the lower plate 116 are connected by three or more tie rods 111, so that the weight of the apparatus can be reduced. Further, by using the deflection angle adjusting plate 114 on which the XY stage 103 is mounted, the XY stage 103 can be adjusted and installed with accuracy using an adjustment screw or the like in parallel with the installation surface.

図20に示すように、加えて設置台に上下逆に設置して計測対象の軸端面にあるスプリットリング122とスペーサリング121を装着して上下2平面の平行度が精度良く製作されている偏角検査用プレート131をその上に載せて、その偏角検査用プレート131の偏角を計測し、その偏角が零になるようX−Yステージ103などが搭載されている偏角調整用プレート114を調整ねじ(図示せず)などを用いて調整することができる。このようにすれば、計測対象の軸端面にあるスプリットリング122とスペーサリング121を装着して計測しているので、スプリットリング122に対するスペーサリング121の設置方位を同じにして、偏角調整用プレート114を調整ねじなどを用いて調整すれば、精度良く設置面に平行にX−Yステージを設置できる。   In addition, as shown in FIG. 20, the installation is made upside down on the installation table, and the split ring 122 and the spacer ring 121 on the shaft end surface to be measured are attached, so that the parallelism of the two upper and lower planes is accurately manufactured. A declination adjusting plate on which an XY stage 103 and the like are mounted so that the declination of the declination inspection plate 131 is measured by measuring the declination of the declination inspection plate 131. 114 can be adjusted using an adjustment screw (not shown) or the like. In this way, since the split ring 122 and the spacer ring 121 on the shaft end surface to be measured are mounted and measured, the installation direction of the spacer ring 121 with respect to the split ring 122 is made the same, and the deflection angle adjusting plate If 114 is adjusted using an adjustment screw or the like, the XY stage can be installed in parallel with the installation surface with high accuracy.

また、スペーサリングの設置方位を記録しておけば、大気圧の場合の偏角度が計測されるので、圧力が高い運転時の偏角度を修正したい場合には、前記の設置方位を考慮して軸端面の偏角度を修正すれば可能となる。この方法を用いれば、計測装置の校正を現場で実施できるので、運搬時の計測装置のゆがみなどを心配する必要がなく、上下2平面の平行度が精度良く製作されている偏角検査用プレート131を用意するだけであるので、校正費用がかからず、校正も容易である。以上のように、回転軸の軸端面の偏角度およびその形状を3次元で、数μmの精度で測定でき、修正量が表示できるので、修正作業をする上で作業が容易となり、偏角度を零に近くすることができ、回転機の軸偏角による振動を低減することが可能となる。   Also, if the installation direction of the spacer ring is recorded, the deviation angle at atmospheric pressure is measured, so if you want to correct the deviation angle during high pressure operation, consider the installation orientation This can be done by correcting the deviation angle of the shaft end face. If this method is used, calibration of the measuring device can be performed on-site, so there is no need to worry about distortion of the measuring device during transportation, and the parallelism of the upper and lower two planes is accurately manufactured. Since only 131 is prepared, calibration costs are not required and calibration is easy. As described above, the deviation angle and the shape of the shaft end surface of the rotating shaft can be measured in three dimensions with an accuracy of several μm, and the correction amount can be displayed. It can be close to zero, and vibration due to the shaft deflection angle of the rotating machine can be reduced.

本発明に係る回転軸連結継手調整支援装置の第1の実施の形態を示す模式的立面図を含むブロック図。1 is a block diagram including a schematic elevation view showing a first embodiment of a rotary shaft coupling joint adjustment support device according to the present invention. 本発明の第1の実施の形態におけるモータ軸固定治具を取り付けた状態を示す図であって、(a)は正面図、(b)は側面図。It is a figure which shows the state which attached the motor shaft fixing jig in the 1st Embodiment of this invention, Comprising: (a) is a front view, (b) is a side view. 本発明の第1の実施の形態におけるモータ軸固定治具にセンサ治具を取り付けた状態を示す図であって、(a)は正面図、(b)は側面図。It is a figure which shows the state which attached the sensor jig to the motor shaft fixing jig in the 1st Embodiment of this invention, (a) is a front view, (b) is a side view. 本発明の第1の実施の形態における連結継手調整の処理手順を示すフロー図。The flowchart which shows the process sequence of the connection coupling adjustment in the 1st Embodiment of this invention. 本発明の第1の実施の形態における軸周方向位置検出手段の構造を示す図であって、(a)は平断面図、(b)は正面図。It is a figure which shows the structure of the axial circumferential direction position detection means in the 1st Embodiment of this invention, Comprising: (a) is a plane sectional view, (b) is a front view. 本発明の第1の実施の形態における軸振れ量の抽出方法を示す図であって、(a)は軸振動データのタイムチャート、(b)は第1のパルス信号のタイムチャート、(c)は第2のパルス信号のタイムチャート。It is a figure which shows the extraction method of the axial run-out amount in the 1st Embodiment of this invention, Comprising: (a) is a time chart of axial vibration data, (b) is a time chart of a 1st pulse signal, (c). Is a time chart of the second pulse signal. 本発明の第1の実施の形態における軸振れ量の抽出結果を示す図。The figure which shows the extraction result of the axial run-out amount in the 1st Embodiment of this invention. 本発明の第1の実施の形態における偏芯および偏角の方向および量の算出方法を示す斜視図。The perspective view which shows the calculation method of the direction and quantity of decentration and declination in the 1st Embodiment of this invention. 本発明の第1の実施の形態における位置情報入力画面の一例を示す図。The figure which shows an example of the positional information input screen in the 1st Embodiment of this invention. 本発明の第1の実施の形態における調整支援画面の一例を示す図。The figure which shows an example of the adjustment assistance screen in the 1st Embodiment of this invention. 本発明の第1の実施の形態における軸周方向位置検出手段の構造の図5とは異なる例を示す図であって、(a)は平断面図、(b)は正面図、(c)は凹凸構造の模式的拡大展開断面図。It is a figure which shows the example different from FIG. 5 of the structure of the axial circumferential direction position detection means in the 1st Embodiment of this invention, (a) is a plane sectional view, (b) is a front view, (c) Is a schematic enlarged cross-sectional view of an uneven structure. 図11の軸周方向位置検出手段を用いた軸振れ量の抽出方法を示す図であって、(a)は軸振動データのタイムチャート、(b)は第1のパルス信号のタイムチャート。It is a figure which shows the extraction method of the axial run-out amount using the axial periphery direction position detection means of FIG. 11, Comprising: (a) is a time chart of axial vibration data, (b) is a time chart of a 1st pulse signal. 本発明に係る回転軸連結継手調整支援装置の第2の実施の形態を示す立面図を含む模式的ブロック図。The typical block diagram containing the elevation which shows 2nd Embodiment of the rotating shaft coupling joint adjustment assistance apparatus which concerns on this invention. 本発明の第2の実施の形態によって測定された回転軸端面の3次元形状図の例。The example of the three-dimensional shape figure of the rotating shaft end surface measured by the 2nd Embodiment of this invention. 本発明の第2の実施の形態の回転軸連結継手調整支援装置の平面図を含む模式的ブロック図。The typical block diagram containing the top view of the rotating shaft coupling joint adjustment assistance apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の回転軸連結継手調整支援装置の立断面図。The elevation sectional view of the rotating shaft coupling joint adjustment support device of a 2nd embodiment of the present invention. 図16のA−A線矢視平断面図。FIG. 17 is a cross-sectional plan view taken along line AA in FIG. 16. 本発明の第2の実施の形態の回転軸連結継手調整支援装置におけるタイロッドを1本取り出して示す立面図。The elevation view which takes out and shows one tie rod in the rotating shaft coupling joint adjustment assistance apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の回転軸連結継手調整支援装置を実際に装置を取り付けて計測している状態を示す立断面図。The elevation sectional view showing the state where the rotating shaft coupling joint adjustment support device of the 2nd embodiment of the present invention is actually attached and measured. 本発明の第2の実施の形態の回転軸連結継手調整方法における偏角校正時の装置の立断面図。The elevation sectional view of the device at the time of declination calibration in the rotating shaft coupling joint adjustment method of a 2nd embodiment of the present invention. 従来の回転軸連結継手調整方法における模式的立断面図。The typical elevation sectional view in the conventional rotating shaft coupling joint adjustment method.

符号の説明Explanation of symbols

1…モータ軸(回転軸)、2…ポンプ軸(回転軸)、3…モータ側連結継手、4…ポンプ側連結継手、5,5a〜5e…非接触変位計(軸振動計測手段)、6,7…センサ治具、8…変位計信号線、9…パルス計信号線、10,11…増幅器、12…AD変換器、14…軸振動処理手段、15…偏芯偏角算出手段、16…調整指示手段、17…入力手段、18…表示手段、19…記録手段、20,20a,20b…パルス計(周方向位置計測手段)、21,21b…反射箔(周方向位置検出手段)、22,25…パルス信号、23…軸振動データ、24…軸振れ量、26…基準円、27,27a〜27d…偏芯ベクトル、29…ベクトル、31…調整ベクトル、32…目標位置、34…凸部、35…凹部、36…モータ軸固定治具、37…固定ボルト、38…モータ軸固定ボルト、39…取り付け板、40…処理部分、42…接触面、101…レーザ光、102…レーザ変位計、103…X−Yステージ、104…レーザ変位計信号変換器、105…パーソナルコンピュータ、106…X−Yステージコントローラ、107…モータ、108…モータ軸、111…タイロッド、112…Yステージ、113…Xステージ、114…偏角調整用プレート、115…上部プレート、116…下部プレート、121…スペーサリング、122…スプリットリング、124…装置昇降機構、125…端面保護カバー、126…ポンプ軸、131…偏角検査用プレート

DESCRIPTION OF SYMBOLS 1 ... Motor shaft (rotary shaft), 2 ... Pump shaft (rotary shaft), 3 ... Motor side coupling joint, 4 ... Pump side coupling joint, 5, 5a-5e ... Non-contact displacement meter (shaft vibration measuring means), 6 , 7 ... Sensor jig, 8 ... Displacement meter signal line, 9 ... Pulse meter signal line, 10, 11 ... Amplifier, 12 ... AD converter, 14 ... Axial vibration processing means, 15 ... Eccentric deviation calculation means, 16 ... adjustment instruction means, 17 ... input means, 18 ... display means, 19 ... recording means, 20, 20a, 20b ... pulse meter (circumferential position measurement means), 21,21b ... reflective foil (circumferential position detection means), 22, 25 ... Pulse signal, 23 ... Shaft vibration data, 24 ... Shaft deflection, 26 ... Reference circle, 27, 27a to 27d ... Eccentric vector, 29 ... Vector, 31 ... Adjustment vector, 32 ... Target position, 34 ... Convex part, 35 ... concave part, 36 ... motor shaft fixing jig, 37 ... solid Bolt 38 ... Motor shaft fixing bolt 39 ... Mounting plate 40 ... Processing part 42 ... Contact surface 101 ... Laser light 102 ... Laser displacement meter 103 ... XY stage 104 ... Laser displacement meter signal converter 105 ... Personal computer, 106 ... XY stage controller, 107 ... Motor, 108 ... Motor shaft, 111 ... Tie rod, 112 ... Y stage, 113 ... X stage, 114 ... Deviation adjustment plate, 115 ... Upper plate, 116 ... Lower plate, 121 ... Spacer ring, 122 ... Split ring, 124 ... Device lifting mechanism, 125 ... End face protective cover, 126 ... Pump shaft, 131 ... Declination inspection plate

Claims (10)

二つの回転軸を結合する連結継手の結合状態を調整するための回転軸連結継手調整支援装置において、
回転軸の軸方向複数箇所に配置した軸振動計測手段と、
回転軸の周方向に等間隔に複数配置した周方向位置検出手段と、
周方向位置検出手段から得られる信号により周方向位置を計測する周方向位置計測手段と、
周方向位置計測手段により計測された信号と軸振動計測手段により計測された軸振れ量の信号とに基づいて、回転軸の周方向の各位置での軸振れ量の算出を行なう軸振動処理手段と、
軸振動計測手段および周方向位置計測手段の設置位置の情報と軸振動処理手段により算出された軸振れ量に基づいて偏芯および偏角の方向および量を算出する偏芯偏角算出手段と、
を有することを特徴とする回転軸連結継手調整支援装置。
In the rotary shaft coupling joint adjustment support device for adjusting the coupling state of the coupling joint that couples the two rotary shafts,
Shaft vibration measuring means disposed at a plurality of locations in the axial direction of the rotating shaft;
A plurality of circumferential position detectors arranged at equal intervals in the circumferential direction of the rotating shaft;
A circumferential position measuring means for measuring the circumferential position by a signal obtained from the circumferential position detecting means;
Axial vibration processing means for calculating the amount of axial vibration at each position in the circumferential direction of the rotating shaft based on the signal measured by the circumferential position measuring means and the axial vibration amount signal measured by the axial vibration measuring means. When,
Eccentric declination calculating means for calculating the direction and amount of decentering and declination based on the information on the installation positions of the axial vibration measuring means and the circumferential position measuring means and the axial runout amount calculated by the axial vibration processing means;
A rotary shaft coupling joint adjustment support device comprising:
前記偏芯偏角算出手段によって算出された偏芯および偏角の方向および量に基づいて、回転軸の連結継手の調整方向および調整量を作業員に指示する調整指示手段をさらに有すること、を特徴とする請求項1記載の回転軸連結継手調整支援装置。   An adjustment instructing means for instructing an operator on an adjustment direction and an adjustment amount of the coupling joint of the rotating shaft based on the eccentricity and the direction and amount of the eccentricity calculated by the eccentricity deviation angle calculating means; The rotary shaft coupling joint adjustment support device according to claim 1, wherein: 前記回転軸を回した際に、前記周方向位置計測手段により周方向位置を電圧信号として計測するように構成されていること、を特徴とする請求項1記載の回転軸連結継手調整支援装置。   2. The rotary shaft coupling joint adjustment support device according to claim 1, wherein when the rotary shaft is rotated, the circumferential position measurement unit measures the circumferential position as a voltage signal. 前記軸振動計測手段および周方向位置計測手段の少なくとも一方が、回転機にあるボルト穴またははめあい構造を利用して固定あるいは位置決めされるものであること、を特徴とする請求項1記載の回転軸連結継手調整支援装置。   2. The rotating shaft according to claim 1, wherein at least one of the shaft vibration measuring means and the circumferential position measuring means is fixed or positioned by using a bolt hole or a fitting structure in the rotating machine. Connecting joint adjustment support device. 二つの回転軸を結合する連結継手の結合状態を調整するための回転軸連結継手調整方法において、
前記回転軸を回転させながら、軸方向の複数箇所で軸振動を計測するとともに、回転軸の周方向に等間隔に複数配置した周方向位置検出器から得られる信号により周方向位置を計測する計測ステップと、
周方向位置と軸振動に関する情報に基づいて、前記回転軸の周方向の各位置での軸振れ量の算出を行なう軸振動処理ステップと、
前記計測ステップによって得られた周方向位置の情報と軸振動処理ステップで算出された軸振れ量とに基づいて前記回転軸の偏芯および偏角の方向および量を算出する偏芯偏角算出ステップと、
を有することを特徴とする回転軸連結継手調整方法。
In the rotating shaft coupling joint adjusting method for adjusting the coupling state of the coupling joint that couples two rotating shafts,
While rotating the rotating shaft, the shaft vibration is measured at a plurality of positions in the axial direction, and the circumferential position is measured by a signal obtained from a circumferential position detector arranged at equal intervals in the circumferential direction of the rotating shaft. Steps,
A shaft vibration processing step for calculating an amount of shaft runout at each position in the circumferential direction of the rotating shaft based on information on the circumferential position and shaft vibration;
Eccentric declination calculating step for calculating the direction and amount of the eccentricity and declination of the rotating shaft based on the information on the circumferential position obtained by the measurement step and the axial runout amount calculated by the axial vibration processing step. When,
A rotating shaft coupling joint adjustment method comprising:
二つの回転軸を結合する連結継手の結合状態を調整するための回転軸連結継手調整支援装置において、
回転軸に取り付けてその回転軸の端面に対向させて配置されて当該端面の対向部分との距離を計測できる変位計と、
前記変位計を前記端面に対向させながら前記端面に対してほぼ平行に移動させる移動機構と
を有し、これら変位計と移動機構とにより、前記端面の直角度あるいは形状を計測できるように構成されていること、を特徴とする回転軸連結継手調整支援装置。
In the rotary shaft coupling joint adjustment support device for adjusting the coupling state of the coupling joint that couples the two rotary shafts,
A displacement meter attached to the rotating shaft and arranged to face the end surface of the rotating shaft and capable of measuring the distance to the facing portion of the end surface;
A displacement mechanism that moves the displacement meter substantially parallel to the end surface while facing the end surface, and is configured to measure the perpendicularity or shape of the end surface by the displacement meter and the movement mechanism. A rotating shaft coupling joint adjustment support device.
前記移動機構は、前記回転軸の側面外周、回転軸の側面にある溝、前記溝に取り付けられた治具の端面のうちのいずれかに取り付けられていること、を特徴とする請求項6記載の回転軸連結継手調整支援装置。   The said moving mechanism is attached to either the outer periphery of the side surface of the said rotating shaft, the groove | channel on the side surface of a rotating shaft, or the end surface of the jig | tool attached to the said groove | channel. Rotation shaft coupling joint adjustment support device. 前記回転軸の側面にある溝に取り付けられた治具の端面に設置された上部プレートと、この上部プレートに連結された偏角調整用プレートが取り付けられた下部プレートと、をさらに有し、
前記移動機構が前記偏角調整用プレートに取り付けられていること、
を特徴とする請求項6記載の回転軸連結継手調整支援装置。
An upper plate installed on an end face of a jig attached to a groove on a side surface of the rotating shaft, and a lower plate to which a deflection angle adjusting plate connected to the upper plate is attached;
The moving mechanism is attached to the deflection angle adjusting plate;
The rotary shaft coupling joint adjustment support device according to claim 6.
二つの回転軸を結合する連結継手の結合状態を調整する回転軸連結継手調整方法において、
回転軸の端面の一部に変位計を対向させて、前記端面の部分と変位計の距離を計測する計測ステップと、
前記変位計を前記端面の他の部分に対向させるように前記変位計を端面に対してほぼ平行に移動させる移動ステップと、
を繰り返して、前記端面の直角度あるいは形状を計測すること、を特徴とする回転軸連結継手調整方法。
In the rotating shaft coupling joint adjusting method for adjusting the coupling state of the coupling joint that couples the two rotating shafts,
A measurement step of measuring a distance between the portion of the end surface and the displacement meter by causing a displacement meter to face a part of the end surface of the rotation shaft;
A moving step of moving the displacement meter substantially parallel to the end surface so that the displacement meter faces the other part of the end surface;
To measure the squareness or shape of the end face, and adjust the rotating shaft coupling joint.
前記端面の直角度あるいは形状を計測する前に、
前記端面の直角度あるいは形状を計測する状態と上下を反転させた状態で、前記回転軸の側面にある溝に取り付けられた治具を上部プレートに装着し、前記上部プレートを下部プレートに結合し、偏角調整用プレートを介して前記下部プレートに対して移動機構を取り付け、この移動機構に対して前記変位計を固定し、前記治具の上に、上下表面が相互に平行な偏角検査用プレートを配置し、前記移動機構および前記変位計を用いて前記偏角検査用プレートの偏角を計測し、その偏角が十分に小さくなるように前記偏角調整プレートの傾きを調整すること、
を特徴とする請求項9記載の回転軸連結継手調整方法。

Before measuring the squareness or shape of the end face,
In a state in which the perpendicularity or shape of the end face is measured and in an upside down state, a jig attached to the groove on the side surface of the rotating shaft is attached to the upper plate, and the upper plate is coupled to the lower plate. The displacement mechanism is attached to the lower plate via the deflection angle adjusting plate, the displacement meter is fixed to the displacement mechanism, and the deflection angle inspection with the upper and lower surfaces parallel to each other on the jig. A measuring plate is used to measure the deflection angle of the deflection angle inspection plate using the moving mechanism and the displacement meter, and the inclination of the deflection angle adjusting plate is adjusted so that the deflection angle becomes sufficiently small. ,
The rotating shaft coupling joint adjusting method according to claim 9.

JP2004157317A 2004-05-27 2004-05-27 Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method Active JP4761730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157317A JP4761730B2 (en) 2004-05-27 2004-05-27 Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157317A JP4761730B2 (en) 2004-05-27 2004-05-27 Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010171455A Division JP5106594B2 (en) 2010-07-30 2010-07-30 Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method

Publications (2)

Publication Number Publication Date
JP2005337385A true JP2005337385A (en) 2005-12-08
JP4761730B2 JP4761730B2 (en) 2011-08-31

Family

ID=35491179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157317A Active JP4761730B2 (en) 2004-05-27 2004-05-27 Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method

Country Status (1)

Country Link
JP (1) JP4761730B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309861A (en) * 2006-05-22 2007-11-29 Hitachi Ltd Method of acquiring shaft inclination data for reactor coolant recirculation pump, and shaft vibration suppression method
JP2010066238A (en) * 2008-09-12 2010-03-25 Tlv Co Ltd Performance state detection device of rotating machine
DE102017011889A1 (en) 2017-01-23 2018-07-26 Fanuc Corporation System for determining the cause of vibration of a motor
CN111157107A (en) * 2020-02-05 2020-05-15 胡令江 High-stability generator swing measuring device
CN114623751A (en) * 2022-03-30 2022-06-14 西安华誉精密机械有限公司 Device and method for measuring angular deviation of drill rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150114A (en) * 1985-12-25 1987-07-04 Fuji Electric Co Ltd Apparatus for inspecting bending and twist of object
JPH06317460A (en) * 1993-05-07 1994-11-15 Toshiba Corp Vibration measuring equipment for rotary body
JPH09113525A (en) * 1995-10-19 1997-05-02 Toshiba Corp Rotary pulse signal analyzer for rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150114A (en) * 1985-12-25 1987-07-04 Fuji Electric Co Ltd Apparatus for inspecting bending and twist of object
JPH06317460A (en) * 1993-05-07 1994-11-15 Toshiba Corp Vibration measuring equipment for rotary body
JPH09113525A (en) * 1995-10-19 1997-05-02 Toshiba Corp Rotary pulse signal analyzer for rotor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309861A (en) * 2006-05-22 2007-11-29 Hitachi Ltd Method of acquiring shaft inclination data for reactor coolant recirculation pump, and shaft vibration suppression method
JP4491432B2 (en) * 2006-05-22 2010-06-30 日立Geニュークリア・エナジー株式会社 Axis inclination information acquisition method and axial vibration suppression method for nuclear reactor coolant recirculation pump
JP2010066238A (en) * 2008-09-12 2010-03-25 Tlv Co Ltd Performance state detection device of rotating machine
DE102017011889A1 (en) 2017-01-23 2018-07-26 Fanuc Corporation System for determining the cause of vibration of a motor
US10240996B2 (en) 2017-01-23 2019-03-26 Fanuc Corporation Motor vibration cause determination system
DE102017011889B4 (en) 2017-01-23 2019-09-26 Fanuc Corporation System for determining the cause of vibration of a motor
CN111157107A (en) * 2020-02-05 2020-05-15 胡令江 High-stability generator swing measuring device
CN114623751A (en) * 2022-03-30 2022-06-14 西安华誉精密机械有限公司 Device and method for measuring angular deviation of drill rod

Also Published As

Publication number Publication date
JP4761730B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
KR101023997B1 (en) Simultaneous double-side grinding of semiconductor wafers
CN102312927A (en) Aligning method of concentricity of coupling
JP2007071852A (en) Apparatus and method for measuring deep hole
JPH07227723A (en) Method for holding different diameter cylindrical material
JPH11351857A (en) Method and apparatus for measurement of surface shape of thin plate
JP2007333712A (en) Apparatus for measuring angle of inclination, machine tool having apparatus mounted, and method of calibrating angle of inclination of machine tool
US5526282A (en) Alignment analyzer with graphical alignment tolerance display
JP4761730B2 (en) Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method
CN100424540C (en) Large-bore optical periscope type radar 3-D Scanner
JP4781239B2 (en) Shaft coupling centering method and shaft coupling centering device
CN112833787B (en) Repeated positioning precision measuring device and repeated positioning precision measuring method
JP4085616B2 (en) Inner surface shape measuring method and apparatus
CN110793488B (en) Hydroelectric generating set rotor circle measuring device and circle measuring adjustment calculation method thereof
JP5106594B2 (en) Rotating shaft coupling joint adjustment support device and rotating shaft coupling joint adjustment method
CN112798015A (en) Dynamic angle calibration device
JP2003254742A (en) Motor core inside diameter measurement device and its method
JP5170517B2 (en) Apparatus and method for correcting rotation balance of rotating body
WO2023103276A1 (en) Testing and calibration device and testing and calibration method for wire cord fabric
JPH07178689A (en) Getting-out-of position measuring method for robot arm, and getting-out-of position correcting method and system for this robot arm
CN116086356A (en) Device and method for measuring chip patch parallelism of quartz resonance beam
JP3127103B2 (en) Orientation measurement method for single crystal ingot
JP2008238196A (en) Centering device of press die, and centering method of press die using it
JP4634481B2 (en) Turbine rotor shaft bending calculation system
CN113237405A (en) Rotor circle measuring frame and using method thereof
CN108120401B (en) Centering adjustment method and connection method of shaft mechanical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4761730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3