JP2005337060A - Geothermal power generation-hydrogen manufacturing system - Google Patents

Geothermal power generation-hydrogen manufacturing system Download PDF

Info

Publication number
JP2005337060A
JP2005337060A JP2004154769A JP2004154769A JP2005337060A JP 2005337060 A JP2005337060 A JP 2005337060A JP 2004154769 A JP2004154769 A JP 2004154769A JP 2004154769 A JP2004154769 A JP 2004154769A JP 2005337060 A JP2005337060 A JP 2005337060A
Authority
JP
Japan
Prior art keywords
water
geothermal
cooling
turbine
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154769A
Other languages
Japanese (ja)
Other versions
JP4500105B2 (en
Inventor
Tsutomu Kiuchi
勉 木内
Daisei Tanaka
大生 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIO SERVICE KK
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
JIO SERVICE KK
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIO SERVICE KK, Shimizu Construction Co Ltd, Shimizu Corp filed Critical JIO SERVICE KK
Priority to JP2004154769A priority Critical patent/JP4500105B2/en
Publication of JP2005337060A publication Critical patent/JP2005337060A/en
Application granted granted Critical
Publication of JP4500105B2 publication Critical patent/JP4500105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture hydrogen for a fuel battery by geothermal power generation. <P>SOLUTION: Geothermal fluid from a geothermal production well 1 is separated to steam and hot water, a turbine 3 is driven by the separated steam and natural water such as sea water, river water and lake water is used as cooling water thereof to perform power generation. Electrolysis is performed making the temperature-raised natural water after cooling the turbine and/or the hot water separated from the geothermal fluid as original water by the thus obtained electric power to manufacture hydrogen. The hot water is mixed with the temperature-raised natural water after cooling the turbine to further raise the temperature and the electrolysis is preferably performed making the mixture water as original water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は地熱発電により水素を製造するシステムに関する。   The present invention relates to a system for producing hydrogen by geothermal power generation.

周知のように、燃料電池は水素と酸素を燃料としてそれらの化学反応により電気エネルギーを得る新エネルギー源であり、自動車(燃料電池車)用の電源やコジェネレーションシステムに利用して極めて有効と考えられている。その燃料電池の燃料としての酸素は空気中の酸素をそのまま利用できるが、水素は天然ガス等の化石燃料から製造するか、あるいは水を水素と酸素とに電気分解することで製造することが主流となると考えられており、たとえば特許文献1には発電プラントと水電解プラントとを組み合わせて水素を製造するシステムの提案がなされている。
特開2003−328172号公報
As is well known, fuel cells are a new energy source that uses hydrogen and oxygen as fuel to obtain electrical energy through their chemical reaction, and are considered extremely effective when used in power sources and cogeneration systems for automobiles (fuel cell vehicles). It has been. As the fuel for the fuel cell, oxygen in the air can be used as it is, but hydrogen is mainly produced from fossil fuels such as natural gas or by electrolyzing water into hydrogen and oxygen. For example, Patent Document 1 proposes a system for producing hydrogen by combining a power plant and a water electrolysis plant.
JP 2003-328172 A

特許文献1に示されるものはシステム全体が複雑かつ大がかりに過ぎるばかりでなく、発電プラントとしては地熱や温泉水、太陽熱等の自然エネルギーを利用することも想定してはいるが基本的には火力発電を想定していることから、炭酸ガス(温室効果ガス)の発生の要因となって好ましくなく、また電気分解するべき水としては単なる淡水あるいは海水を凍結して得た淡水を利用していることから必ずしも充分な電気分解効率が得られるものではない。   Although the system shown in Patent Document 1 is not only complicated and large in size as a whole, it is assumed that the power plant uses natural energy such as geothermal, hot spring water, solar heat, etc. As power generation is assumed, carbon dioxide (greenhouse gas) is not a cause of generation, and water to be electrolyzed is simply fresh water or fresh water obtained by freezing seawater. Therefore, sufficient electrolysis efficiency is not always obtained.

いずれにしても、現時点では燃料電池用の水素を工業的規模で効率的に製造し得る有効適切な手法は確立しておらず、燃料電池の実用化と普及を図るためには総合エネルギー効率に優れかつ環境適合性に優れた水素製造システムの開発が不可欠であり急務とされている。   In any case, at present, an effective and appropriate method for efficiently producing hydrogen for fuel cells on an industrial scale has not been established. The development of an excellent hydrogen production system with excellent environmental compatibility is indispensable and urgent.

上記事情に鑑み、本発明の地熱発電・水素製造システムは、地熱生産井からの地熱流体を蒸気と熱水に分離し、分離した蒸気によってタービンを駆動するとともにその冷却水として海水、河川水、湖沼水等の天然水を使用して発電を行い、それにより得た電力によって、タービン冷却後の昇温天然水および/または地熱流体から分離した熱水を原水として電気分解して水素を製造するようにしたことを特徴とするものである。本発明では、特にタービン冷却後の昇温天然水に熱水を混合してさらに昇温し、その混合水を原水として電気分解を行うことが好ましい。   In view of the above circumstances, the geothermal power generation and hydrogen production system of the present invention separates the geothermal fluid from the geothermal production well into steam and hot water, drives the turbine with the separated steam and uses seawater, river water, Electric power is generated using natural water such as lake water, and hydrogen is produced by electrolyzing the heated water separated from the heated natural water and / or geothermal fluid after cooling the turbine as raw water. It is characterized by doing so. In the present invention, it is particularly preferable to mix hot water with the heated natural water after cooling the turbine, further raise the temperature, and perform electrolysis using the mixed water as raw water.

本発明は、地熱発電システムと水を電気分解することによる水素製造システムとを有機的に組み合わせて、地熱発電システムで得た電力で電気分解を行うことにより、地熱という自然エネルギーのみで水素を製造するものであり、したがって化石燃料の燃焼による発電システムによる場合のように環境負荷増大の要因となることはない。特に、本発明における地熱発電システムでは地熱蒸気によりタービンを駆動するとともにその復水用の冷却水として無尽蔵の海水や河川水あるいは湖沼水等の天然水を使用することにより、通常のタービン発電システムにおいて必要となる大規模な冷却塔設備を不要とできてシステム全体の簡略化と設備費・運転費の削減を実現できる。しかも、その冷却に利用して昇温した天然水、あるいは地熱熱水、もしくはそれらの混合水を原水として電気分解して水素を製造することにより、常温の淡水を単に電気分解する場合に比べて電気分解効率が大幅に向上して優れた水素製造効率が得られ、以上のことから水素製造単価を充分に削減することができる。   The present invention organically combines a geothermal power generation system and a hydrogen production system by electrolyzing water, and produces hydrogen using only natural energy called geothermal by performing electrolysis with electric power obtained from the geothermal power generation system. Therefore, it does not cause an increase in environmental load as in the case of a power generation system based on the combustion of fossil fuel. In particular, in the geothermal power generation system according to the present invention, the turbine is driven by geothermal steam and natural water such as inexhaustible seawater, river water or lake water is used as cooling water for condensate. The required large-scale cooling tower equipment can be eliminated, simplifying the entire system and reducing equipment costs and operating costs. Moreover, natural water heated for cooling, geothermal hot water, or a mixture of them is electrolyzed as raw water to produce hydrogen, compared to simply electrolyzing normal temperature fresh water. The electrolysis efficiency is greatly improved and excellent hydrogen production efficiency is obtained. From the above, the hydrogen production unit price can be sufficiently reduced.

さらに、本発明によれば、タービン冷却後の昇温天然水に熱水を混合してさらに昇温し、その混合水を原水として電気分解を行うことにより、タービン冷却と電気分解の双方をいずれも最も効率的に行い得るようにそれぞれの水温設定を独立に行うことが可能であり、それにより一層の効率向上を実現することができる。   Furthermore, according to the present invention, hot water is mixed with the heated natural water after cooling the turbine, the temperature is further raised, and electrolysis is performed using the mixed water as raw water, so that both turbine cooling and electrolysis can be performed. However, it is possible to set each water temperature independently so that it can be performed most efficiently, thereby further improving the efficiency.

図1に本発明の地熱発電・水素製造システムの実施形態を示す。本実施形態のシステムは、地熱エネルギーの賦存地域である島嶼部や沿岸部に設けられるもので、地熱エネルギーによる地熱発電システムと、それにより得た電力で電気分解を行って水素を製造する水素製造システムとを有機的に組み合わせたものである。   FIG. 1 shows an embodiment of a geothermal power generation / hydrogen production system of the present invention. The system of the present embodiment is provided in islands and coastal areas where geothermal energy is present, and a geothermal power generation system using geothermal energy and hydrogen that is produced by electrolysis using the electric power obtained thereby. It is an organic combination of manufacturing systems.

すなわち、本実施形態のシステムは、地熱生産井1から得た地熱流体(蒸気および熱水)をセパレータ2(図示例では2段)において蒸気と熱水とに分離し、分離した蒸気をタービン3に送って減速機4を介して発電機5を駆動することにより発電を行う。タービン3からの排気蒸気は復水器6により冷却して復水するが、その冷却水としては天然水である海水を揚水ポンプ7により汲み上げて使用する。復水器6からは不凝縮性ガスをガス抽出真空ポンプ8により取り出すとともに、タービン3からの排気蒸気を冷却して水温が上昇した昇温海水(復水した排気蒸気を含む)を復水器6から封水ピット9に導いてそこに貯留する。   That is, the system of this embodiment separates the geothermal fluid (steam and hot water) obtained from the geothermal production well 1 into steam and hot water in the separator 2 (two stages in the illustrated example), and the separated steam is turbine 3. Is generated by driving the generator 5 via the speed reducer 4. Exhaust steam from the turbine 3 is cooled by the condenser 6 and condensed, and seawater, which is natural water, is pumped up by the pump 7 for use as the cooling water. A non-condensable gas is taken out from the condenser 6 by a gas extraction vacuum pump 8, and heated seawater (including condensed exhaust steam) whose water temperature has been increased by cooling the exhaust steam from the turbine 3 is recovered from the condenser. 6 leads to the sealed water pit 9 and is stored there.

そして、封水ピット9からの昇温海水に、セパレータ2によって分離された熱水の一部を適宜混合してさらに昇温し、その混合水を電気分解の原水として電気分解水槽10(図示例では3槽を並設している)に送り、ここで上記の発電機5により得られた電力によって電気分解を行い、得られた水素をガスホルダー11からボンベ12に充填し、余剰水は放流する。なお、熱水の残部は還元井から地中に還元するか、可能であれば適宜利用すれば良い。また、地熱生産井1からの余剰の地熱流体はサイレンサー13を介して適宜放出すれば良い。   Then, the heated seawater from the sealed water pit 9 is appropriately mixed with a part of the hot water separated by the separator 2 and further heated, and the electrolyzed water tank 10 (illustrated example) using the mixed water as raw water for electrolysis. 3 tanks are arranged side by side), where electrolysis is performed with the electric power obtained by the generator 5, and the obtained hydrogen is charged into the cylinder 12 from the gas holder 11, and the excess water is discharged. To do. In addition, what is necessary is just to utilize the remainder of hot water to reduce | subtract from a reduction well to the ground, or if possible. Moreover, what is necessary is just to discharge | emit the surplus geothermal fluid from the geothermal production well 1 suitably through the silencer 13. FIG.

本実施形態のシステムによれば、地熱発電システムにより得た電力のみで電気分解を行って水素を製造することから、化石燃料の燃焼による従来の火力発電システムによる場合のように炭酸ガスの発生による環境負荷を増大させる要因は全くない。そして、地熱エネルギーはたとえば太陽エネルギーや風力エネルギー等の他の自然エネルギーに比べて遙かに高密度であるし安定に得ることができるものであり、特に火山国である我が国では地熱エネルギーによる潜在的な発電能力は120万kWにも及ぶといわれており、本実施形態のシステムによりそのような地熱エネルギーを充分に有効利用することが可能となり、極めて合理的であり有効である。   According to the system of the present embodiment, hydrogen is produced by electrolysis only with the electric power obtained by the geothermal power generation system, and therefore, by the generation of carbon dioxide gas as in the case of the conventional thermal power generation system by fossil fuel combustion. There are no factors that increase the environmental impact. Geothermal energy is much denser and more stable than other natural energies such as solar energy and wind energy, and the potential for geothermal energy is particularly high in Japan, which is a volcanic country. It is said that the power generation capacity reaches 1.2 million kW, and the system according to this embodiment can sufficiently utilize such geothermal energy, which is extremely rational and effective.

また、本実施形態では地熱発電システムにおける冷却水として無尽蔵の海水を利用するので、通常のタービン発電システムにおいては不可欠である大規模な冷却塔設備は不要であり、システム全体の簡略化と設備費・運転費の削減を充分に図ることができる。   In addition, in this embodiment, inexhaustible seawater is used as cooling water in the geothermal power generation system, so a large-scale cooling tower facility that is indispensable in a normal turbine power generation system is unnecessary, and simplification of the entire system and equipment cost・ Operation costs can be reduced sufficiently.

しかも、タービン冷却に利用した冷却後の昇温海水に熱水を混合してさらに昇温し、それを電気分解の原水とすることから、常温の淡水を単に電気分解する場合に比べて電気分解効率が大幅に向上して優れた水素製造効率が得られ、水素製造単価を充分に削減することが可能である。この場合、タービン3による発電効率を高めるためには海水による冷却温度が充分に低い(たとえば25℃以下)ことが好ましく、逆に、電気分解水槽10での電気分解効率を高めるためにはそこでの原水の水温が充分に高い(たとえば60℃程度)ことが好ましいので、それら双方の条件を満足するように、海水によるタービン冷却温度や、昇温海水に対する熱水の混合量を最適に設定すれば良い。   Moreover, since hot water is mixed with the heated seawater after cooling used for turbine cooling and heated further, and used as the raw water for electrolysis, electrolysis is performed compared to the case of simply electrolyzing fresh water at room temperature. The efficiency is greatly improved and excellent hydrogen production efficiency is obtained, and the hydrogen production unit price can be sufficiently reduced. In this case, it is preferable that the cooling temperature by seawater is sufficiently low (for example, 25 ° C. or less) in order to increase the power generation efficiency by the turbine 3. Conversely, in order to increase the electrolysis efficiency in the electrolysis water tank 10, Since the temperature of the raw water is preferably sufficiently high (for example, about 60 ° C.), the turbine cooling temperature by seawater and the amount of hot water mixed with the temperature rising seawater should be optimally set so as to satisfy both conditions. good.

以上で本発明の実施形態を説明したが、上記実施形態はあくまで一例に過ぎず、本発明は上記実施形態に限定されることなく適宜の変形、応用が可能である。   Although the embodiment of the present invention has been described above, the above embodiment is merely an example, and the present invention is not limited to the above embodiment and can be appropriately modified and applied.

たとえば、上記実施形態では、タービン冷却後の昇温海水に熱水を混合してさらに昇温させ、それを電気分解の原水とすることによって、タービン冷却と電気分解の双方を効率的に行い得るような最適な設定が可能であるという効果が得られるのであるが、必ずしもそうすることはなく、熱水が充分に得られないような場合には冷却後の昇温海水のみをそのまま原水として電気分解することでも良い。この場合、海水による冷却と、その後の昇温海水のみを原水とする電気分解の双方が最も効率的に行われるためには、タービン冷却後の昇温海水の水温(電気分解の原水としての水温)を50〜60℃程度に設定することが好ましく、そのような水温を維持するように冷却水量を調節すると良い。   For example, in the above-described embodiment, both turbine cooling and electrolysis can be efficiently performed by mixing hot water with the heated seawater after turbine cooling and further raising the temperature to use it as raw water for electrolysis. However, this is not always the case, and in the case where sufficient hot water cannot be obtained, only the heated seawater after cooling can be used as raw water. It may be disassembled. In this case, in order for both the cooling by seawater and the subsequent electrolysis using only the heated seawater as raw water to be performed most efficiently, the temperature of the heated seawater after cooling the turbine (water temperature as the raw water for electrolysis) ) Is preferably set to about 50 to 60 ° C., and the amount of cooling water may be adjusted so as to maintain such a water temperature.

逆に、高温の熱水が充分に得られるような場合には、その熱水のみを原水として電気分解し、タービン冷却後の昇温海水はそのまま放流してしまうことでも良い。この場合は、タービン冷却後の昇温海水の水温は電気分解効率とは係わらないから、タービン冷却効率のみを考慮して冷却水温や冷却水量を最適に設定すれば良い。   On the contrary, when high-temperature hot water is sufficiently obtained, only the hot water may be electrolyzed as raw water, and the heated seawater after turbine cooling may be discharged as it is. In this case, since the water temperature of the heated seawater after the turbine cooling is not related to the electrolysis efficiency, the cooling water temperature and the cooling water amount may be set optimally considering only the turbine cooling efficiency.

また、上記実施形態では製造した水素をボンベ12に充填するものとしたが、水素吸蔵合金に吸着させてそれに貯蔵することでも良い。勿論、電気分解による副産物として酸素も得られるので、必要であればそれを回収して利用することも可能である。地熱発電システムにより得られる電力は所内電力としても使用すれば良いし、さらに余剰電力が発生する場合には適宜利用すれば良い。   In the above embodiment, the cylinder 12 is filled with the produced hydrogen, but it may be adsorbed by a hydrogen storage alloy and stored in it. Of course, oxygen can also be obtained as a by-product by electrolysis, so that it can be recovered and used if necessary. The electric power obtained by the geothermal power generation system may be used as in-house electric power, and may be appropriately used when surplus electric power is generated.

なお、上記実施形態ではタービン冷却および電気分解の原水として海水を採用したが、海水に代えて河川水や湖沼水の他の天然水も同様に採用可能である。いずれにしても、本発明においてはそれら天然水や地熱熱水、もしくはそれらの混合水を原水として電気分解することから、それらの水質によっては製造した水素に不純物が混入することも想定されるので、必要に応じて適宜の精製工程を最終段に付加して不純物を除去すれば良い。   In the above embodiment, seawater is adopted as the raw water for turbine cooling and electrolysis, but other natural waters such as river water and lake water can be used in the same manner instead of seawater. In any case, in the present invention, since natural water, geothermal hot water, or a mixed water thereof is electrolyzed as raw water, impurities may be mixed into the produced hydrogen depending on their water quality. If necessary, an appropriate purification step may be added to the final stage to remove impurities.

本発明の実施形態である地熱発電・水素製造システムの構成を示す系統図である。1 is a system diagram showing a configuration of a geothermal power generation / hydrogen production system according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 地熱生産井
2 セパレータ
3 タービン
4 減速機
5 発電機
6 復水器
7 揚水ポンプ
8 ガス抽出真空ポンプ
9 封水ピット
10 電気分解水槽
11 ガスホルダー
12 ボンベ
13 サイレンサー
DESCRIPTION OF SYMBOLS 1 Geothermal production well 2 Separator 3 Turbine 4 Reducer 5 Generator 6 Condenser 7 Pumping pump 8 Gas extraction vacuum pump 9 Sealed pit 10 Electrolysis water tank 11 Gas holder 12 Cylinder 13 Silencer

Claims (2)

地熱生産井からの地熱流体を蒸気と熱水に分離し、分離した蒸気によってタービンを駆動するとともにその冷却水として海水、河川水、湖沼水等の天然水を使用して発電を行い、それにより得た電力によって、タービン冷却後の昇温天然水および/または地熱流体から分離した熱水を原水として電気分解して水素を製造することを特徴とする地熱発電・水素製造システム。   The geothermal fluid from the geothermal well is separated into steam and hot water, and the turbine is driven by the separated steam, and power is generated using natural water such as seawater, river water, and lake water as its cooling water. A geothermal power generation / hydrogen production system characterized in that hydrogen is produced by electrolyzing hot water separated from a heated natural water and / or a geothermal fluid after cooling the turbine by using the obtained electric power. タービン冷却後の昇温天然水に熱水を混合してさらに昇温し、その混合水を原水として電気分解を行うことを特徴とする請求項1記載の地熱発電・水素製造システム。   The geothermal power generation / hydrogen production system according to claim 1, wherein hot water is mixed with heated natural water after turbine cooling, the temperature is further raised, and electrolysis is performed using the mixed water as raw water.
JP2004154769A 2004-05-25 2004-05-25 Geothermal power generation and hydrogen production system Expired - Fee Related JP4500105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154769A JP4500105B2 (en) 2004-05-25 2004-05-25 Geothermal power generation and hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154769A JP4500105B2 (en) 2004-05-25 2004-05-25 Geothermal power generation and hydrogen production system

Publications (2)

Publication Number Publication Date
JP2005337060A true JP2005337060A (en) 2005-12-08
JP4500105B2 JP4500105B2 (en) 2010-07-14

Family

ID=35490911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154769A Expired - Fee Related JP4500105B2 (en) 2004-05-25 2004-05-25 Geothermal power generation and hydrogen production system

Country Status (1)

Country Link
JP (1) JP4500105B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527639A (en) * 2006-02-20 2009-07-30 ヴァルター コーテ Water decomposition apparatus and method
JP2011027060A (en) * 2009-07-28 2011-02-10 Fuji Electric Systems Co Ltd Geothermal power plant and geothermal generation method
JP2011529052A (en) * 2008-07-24 2011-12-01 ユニバーシティ オブ サザン カリフォルニア Producing methanol and its products solely from geothermal sources and their energy
JP2013087302A (en) * 2011-10-14 2013-05-13 M Hikari Energy Kaihatsu Kenkyusho:Kk Method for utilizing seawater cooling water of nuclear power plant
JP2013241865A (en) * 2012-05-18 2013-12-05 Miyuki Tokida Geothermal power generation device
JP2015206060A (en) * 2014-04-17 2015-11-19 三菱日立パワーシステムズ株式会社 Hydrogen gas generating system
JP2017048076A (en) * 2015-08-31 2017-03-09 関西電力株式会社 Hydrogen production facility and hydrogen production method
JP2017178810A (en) * 2016-03-29 2017-10-05 東京瓦斯株式会社 Methanol synthesis system
CN112391641A (en) * 2019-08-02 2021-02-23 中国石油天然气股份有限公司 Device and method for producing hydrogen by electrolyzing water
WO2022170390A1 (en) * 2021-02-10 2022-08-18 Good Water Energy Ltd A geothermal hydrogen production system
WO2023091026A1 (en) * 2021-11-18 2023-05-25 Affin As System and method for production of green hydrogen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272308A (en) * 1992-03-26 1993-10-19 Toshiba Corp Organic medium applied motive power recovery plant
JPH0790646A (en) * 1993-09-28 1995-04-04 Hisaka Works Ltd Corrosion preventive device for electrical equipment and apparatus
JPH11257204A (en) * 1998-03-13 1999-09-21 Okuaizu Chinetsu Kk Returning method of geothermal hot water into ground
JP2000058097A (en) * 1998-08-11 2000-02-25 Masakatsu Takahashi Clean energy circulation system
JP2002147867A (en) * 2000-11-07 2002-05-22 Honda Motor Co Ltd Water-electrolyzing system
JP2003328172A (en) * 2002-05-13 2003-11-19 Toshiba Corp Hydrogen utilization system
JP2005197102A (en) * 2004-01-08 2005-07-21 Tatsuno Corp Supply device and supply system
JP2005330515A (en) * 2004-05-18 2005-12-02 Mitsubishi Heavy Ind Ltd Water electrolysis system using natural energy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272308A (en) * 1992-03-26 1993-10-19 Toshiba Corp Organic medium applied motive power recovery plant
JPH0790646A (en) * 1993-09-28 1995-04-04 Hisaka Works Ltd Corrosion preventive device for electrical equipment and apparatus
JPH11257204A (en) * 1998-03-13 1999-09-21 Okuaizu Chinetsu Kk Returning method of geothermal hot water into ground
JP2000058097A (en) * 1998-08-11 2000-02-25 Masakatsu Takahashi Clean energy circulation system
JP2002147867A (en) * 2000-11-07 2002-05-22 Honda Motor Co Ltd Water-electrolyzing system
JP2003328172A (en) * 2002-05-13 2003-11-19 Toshiba Corp Hydrogen utilization system
JP2005197102A (en) * 2004-01-08 2005-07-21 Tatsuno Corp Supply device and supply system
JP2005330515A (en) * 2004-05-18 2005-12-02 Mitsubishi Heavy Ind Ltd Water electrolysis system using natural energy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527639A (en) * 2006-02-20 2009-07-30 ヴァルター コーテ Water decomposition apparatus and method
JP2011529052A (en) * 2008-07-24 2011-12-01 ユニバーシティ オブ サザン カリフォルニア Producing methanol and its products solely from geothermal sources and their energy
JP2011027060A (en) * 2009-07-28 2011-02-10 Fuji Electric Systems Co Ltd Geothermal power plant and geothermal generation method
JP2013087302A (en) * 2011-10-14 2013-05-13 M Hikari Energy Kaihatsu Kenkyusho:Kk Method for utilizing seawater cooling water of nuclear power plant
JP2013241865A (en) * 2012-05-18 2013-12-05 Miyuki Tokida Geothermal power generation device
JP2015206060A (en) * 2014-04-17 2015-11-19 三菱日立パワーシステムズ株式会社 Hydrogen gas generating system
JP2017048076A (en) * 2015-08-31 2017-03-09 関西電力株式会社 Hydrogen production facility and hydrogen production method
JP2017178810A (en) * 2016-03-29 2017-10-05 東京瓦斯株式会社 Methanol synthesis system
CN112391641A (en) * 2019-08-02 2021-02-23 中国石油天然气股份有限公司 Device and method for producing hydrogen by electrolyzing water
CN112391641B (en) * 2019-08-02 2022-03-29 中国石油天然气股份有限公司 Device and method for producing hydrogen by electrolyzing water
WO2022170390A1 (en) * 2021-02-10 2022-08-18 Good Water Energy Ltd A geothermal hydrogen production system
WO2023091026A1 (en) * 2021-11-18 2023-05-25 Affin As System and method for production of green hydrogen

Also Published As

Publication number Publication date
JP4500105B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Mohammadi et al. A comprehensive review on coupling different types of electrolyzer to renewable energy sources
JP5229772B2 (en) Power generation equipment
US20140306645A1 (en) Renewal energy power generation system
JP4500105B2 (en) Geothermal power generation and hydrogen production system
CN112601881B (en) Hydrogen energy storage
JP2005145218A (en) Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
RU2013153197A (en) FUEL CELL AND HYBRID SYSTEM OF GAS PISTON / DIESEL ENGINE
KR101568067B1 (en) Fuel cell hybrid system
JP2015176675A (en) Distributed power supply system, and method of operating the same
JP2008287941A (en) Power generation equipment
US20060029893A1 (en) Process and system of power generation
CN103912452A (en) Cogeneration method and cogeneration system for electricity, heat and water
AU2022204009B2 (en) Hybrid power plant with CO2 capture
JP2009215608A (en) Hydrogen production plant
CN114032563A (en) Wave energy power supply-based maritime solid oxide electrolytic cell co-electrolysis system
ES2742623A1 (en) High efficiency energy production plant with renewable energy and storage using hydrogen technology (Machine-translation by Google Translate, not legally binding)
CN111532413B (en) Ship power system with waste heat recovery coupled with solar water-hydrogen circulation
CN218325037U (en) IGCC power generation system based on SOEC co-electrolysis
CN110937573B (en) Hydrogen mixed residual gas reforming method
JP3017499B1 (en) Methanol production equipment
KR101597287B1 (en) Solid oxide cell system and method for manufacturing the same
KR20230036396A (en) Hydrogen power generation system using renewable energy
CN118309529A (en) Combined power generation system with seawater desalination function
Lunghi et al. Analysis and optimization of a hybrid MCFC-steam turbine plant
CN117085601A (en) Methanol preparation system, peak regulation control method and device for thermal power plant and computer equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees