JP2005336548A - Hot rolled steel and its production method - Google Patents

Hot rolled steel and its production method Download PDF

Info

Publication number
JP2005336548A
JP2005336548A JP2004157111A JP2004157111A JP2005336548A JP 2005336548 A JP2005336548 A JP 2005336548A JP 2004157111 A JP2004157111 A JP 2004157111A JP 2004157111 A JP2004157111 A JP 2004157111A JP 2005336548 A JP2005336548 A JP 2005336548A
Authority
JP
Japan
Prior art keywords
tib
steel
hot
particles
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004157111A
Other languages
Japanese (ja)
Other versions
JP4172424B2 (en
Inventor
Yoshiori Kono
佳織 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004157111A priority Critical patent/JP4172424B2/en
Publication of JP2005336548A publication Critical patent/JP2005336548A/en
Application granted granted Critical
Publication of JP4172424B2 publication Critical patent/JP4172424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide hot rolled steel having excellent strength, excellent toughness and an excellent balance of strength-ductility and suitable as the stock for a high strength structural member for automobiles and various industrial machineries. <P>SOLUTION: The hot rolled steel has a chemical composition comprising 0.05 to 0.20% C, 0.01 to 2% Ti and 0.001 to 0.5% B, and satisfying the inequality of 2ä(Ti/48)-(N/14)}>(B/11) with each atomic symbol in the inequality as the content in the steel by mass% of the element, and comprises TiB grains with a prismatic structure and TiC grains with a cubic structure. Alternatively, the hot rolled steel has a chemical composition comprising 0.01 to 2.0% Si, 0.5 to 2.0% Mn, 0.002 to 0.05% sol.Al, 0 to 0.1% Nb and 0 to 0.3% V in addition to the above prescription, and the balance Fe with impurities; wherein, the content of N in the impurities is ≤0.01%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱延鋼材及びその製造方法に関し、詳しくは、自動車や各種の産業機械に用いられる高強度部材の素材として好適な熱延鋼材及びその製造方法に関する。   The present invention relates to a hot-rolled steel material and a manufacturing method thereof, and more particularly to a hot-rolled steel material suitable as a material for a high-strength member used for automobiles and various industrial machines and a manufacturing method thereof.

熱延鋼材の高強度化手法として、微細析出物による析出強化及び結晶粒の微細化による強化がよく知られている。そして、熱延過程ではTi系の炭化物や炭窒化物が微細析出して結晶粒の粗大化抑制に寄与する、換言すれば、結晶粒の微細化に寄与することから、Tiを適量含有する高強度熱延鋼板が種々開発されている。   As a technique for increasing the strength of hot-rolled steel, precipitation strengthening by fine precipitates and strengthening by refining crystal grains are well known. In the hot rolling process, Ti-based carbides and carbonitrides precipitate finely and contribute to the suppression of coarsening of crystal grains, in other words, contribute to the refinement of crystal grains. Various hot-rolled steel sheets have been developed.

しかしながら、TiCを多量に含有する場合には靱性や加工性が劣化するという問題がある。このため、靱性や加工性を高めた熱延鋼板が特許文献1及び特許文献2に開示されている。   However, when TiC is contained in a large amount, there is a problem that toughness and workability deteriorate. For this reason, Patent Document 1 and Patent Document 2 disclose hot-rolled steel sheets with improved toughness and workability.

特許文献1には、TiCの微細析出により高強度化を実現し、フェライト結晶粒の微細化により靱性を改善する技術が提案されている。具体的には、Ti及びC含有量の制御によりTiCの析出量を調整し、更に、熱間圧延後の高速冷却によりTiCの粗大化を抑制するとともに、微量Bの添加と熱間圧延後の高速冷却によって、引張強さが950MPa以上で、結晶粒の粒径が10μm以下のフェライトを得る技術である。   Patent Document 1 proposes a technique for realizing high strength by fine precipitation of TiC and improving toughness by making fine ferrite grains. Specifically, the amount of TiC deposited is adjusted by controlling the Ti and C content, and further, the high-speed cooling after hot rolling suppresses the coarsening of TiC, and the addition of a small amount of B and after hot rolling This is a technique for obtaining ferrite having a tensile strength of 950 MPa or more and a crystal grain size of 10 μm or less by high-speed cooling.

なお、B添加鋼の場合には、BNの析出を抑えるために、過剰なNをTiと結合させる必要がある。しかし、TiNは液相から晶出するか高温で析出するので、粗大化して靱性及び延性に悪影響を及ぼすことがある。したがって、B添加鋼において安定した靱性及び延性を確保するためには、TiNを粗大化させないことが不可欠である。しかし、上記の特許文献1においてはTiNの粗大化を抑制することは全く考慮されていない。   In the case of B-added steel, it is necessary to combine excess N with Ti in order to suppress the precipitation of BN. However, since TiN crystallizes from the liquid phase or precipitates at high temperature, it may coarsen and adversely affect toughness and ductility. Therefore, in order to ensure stable toughness and ductility in the B-added steel, it is essential not to coarsen TiN. However, in Patent Document 1 described above, suppressing the coarsening of TiN is not considered at all.

特許文献2には、特定量のTiを含む化学組成、主相であるフェライトと第2相の平均粒径、及び、第2相の硬さとフェライト相の硬さの比を規定し、熱延鋼板の加工性を高める技術が提案されている。   In Patent Document 2, a chemical composition containing a specific amount of Ti, an average particle diameter of ferrite as the main phase and the second phase, and a ratio between the hardness of the second phase and the hardness of the ferrite phase are defined. Techniques for improving the workability of steel sheets have been proposed.

しかしながら、上記の特許文献2の場合、TiはTiCとして存在して、熱間圧延加熱段階での初期オーステナイト粒を微細化し、更に、以降の熱間圧延過程での動的再結晶を誘起させて細粒組織を得るという目的のためにだけ含有させるものであり、析出強化作用を意図したものではない。このため、上記の特許文献2で提案された技術によって得られる熱延鋼板のTS(引張強さ)は、その実施例に示されているように高々740MPa程度でしかない場合もあり、必ずしも、750MPa以上の高強度を安定して確保できるという技術ではない。   However, in the case of the above-mentioned Patent Document 2, Ti exists as TiC, refines the initial austenite grains in the hot rolling heating stage, and further induces dynamic recrystallization in the subsequent hot rolling process. It is included only for the purpose of obtaining a fine grain structure and is not intended for precipitation strengthening action. For this reason, the TS (tensile strength) of the hot-rolled steel sheet obtained by the technique proposed in Patent Document 2 described above may be only about 740 MPa at most as shown in the examples, This is not a technique that can stably secure a high strength of 750 MPa or more.

特開平5−271865号公報JP-A-5-271865

特開2000−192191号公報JP 2000-192191 A

本発明は、上記現状に鑑みてなされたもので、その目的は、自動車や各種の産業機械に用いられる高強度部材の素材として好適な、JIS Z 2201(1998)に記載の5号板状引張試験片を用いた場合の引張強さ(以下「TS」ともいう。)が750MPa以上、引張強さ(MPa)と伸び(以下「EL」ともいう。)(%)の積である「TS×EL」の値が15500MPa・%以上で、しかも、JIS Z 2202(1998)に記載の幅が5mmのサブサイズVノッチ試験片を用いた場合の破面遷移温度、つまり延性破面率が50%となる温度(以下「vTrs」ともいう。)が−15℃以下である熱延鋼材及びその製造方法を提供することである。   The present invention has been made in view of the above-mentioned present situation, and its purpose is the No. 5 plate tension described in JIS Z 2201 (1998), which is suitable as a material for high-strength members used in automobiles and various industrial machines. When the test piece is used, the tensile strength (hereinafter also referred to as “TS”) is 750 MPa or more, and the product of tensile strength (MPa) and elongation (hereinafter also referred to as “EL”) (%) is “TS × The value of “EL” is 15500 MPa ·% or more, and the fracture surface transition temperature when using a sub-size V-notch test piece with a width of 5 mm described in JIS Z 2202 (1998), that is, the ductile fracture surface ratio is 50%. It is to provide a hot-rolled steel material having a temperature (hereinafter also referred to as “vTrs”) of −15 ° C. or less and a manufacturing method thereof.

本発明の要旨は、下記(1)〜(2)に示す熱延鋼材及び(3)に示す熱延鋼材の製造方法にある。   The gist of the present invention resides in a hot-rolled steel material shown in the following (1) to (2) and a method for producing a hot-rolled steel material shown in (3).

(1)質量%で、C:0.05〜0.20%、Ti:0.01〜2%及びB:0.001〜0.5%を含み、且つ下記の(1)式を満たす化学組成を有する熱延鋼材であって、鋼中に斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含むことを特徴とする熱延鋼材。   (1) By mass%, C: 0.05 to 0.20%, Ti: 0.01 to 2% and B: 0.001 to 0.5%, and satisfying the following formula (1) A hot-rolled steel material having a composition, wherein the steel contains TiB particles having an orthorhombic structure and TiC particles having a cubic structure.

2{(Ti/48)−(N/14)}>(B/11)・・・・(1)、
ここで、(1)式中の元素記号は、その元素の質量%での鋼中含有量を示す。
2 {(Ti / 48)-(N / 14)}> (B / 11) (1),
Here, the element symbol in the formula (1) indicates the content in steel in mass% of the element.

(2)質量%で、C:0.05〜0.20%、Ti:0.01〜2%、B:0.001〜0.5%、Si:0.01〜2.0%、Mn:0.5〜2.0%、sol.Al:0.002〜0.05%、Nb:0〜0.1%及びV:0〜0.3%を含み、残部はFe及び不純物からなり、不純物中のNは0.01%以下、且つ、下記の(1)式を満たす化学組成を有する熱延鋼材であって、鋼中に斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含むことを特徴とする熱延鋼材。   (2) By mass%, C: 0.05-0.20%, Ti: 0.01-2%, B: 0.001-0.5%, Si: 0.01-2.0%, Mn : 0.5-2.0%, sol. Al: 0.002 to 0.05%, Nb: 0 to 0.1% and V: 0 to 0.3%, the balance consists of Fe and impurities, N in the impurities is 0.01% or less, A hot rolled steel material having a chemical composition satisfying the following formula (1), wherein the steel contains TiB particles having an orthorhombic structure and TiC particles having a cubic structure.

2{(Ti/48)−(N/14)}>(B/11)・・・・(1)、
ここで、(1)式中の元素記号は、その元素の質量%での鋼中含有量を示す。
2 {(Ti / 48)-(N / 14)}> (B / 11) (1),
Here, the element symbol in the formula (1) indicates the content in steel in mass% of the element.

(3)質量%で、C:0.05〜0.20%、Ti:0.01〜2%、B:0.001〜0.5%、Si:0.01〜2.0%、Mn:0.5〜2.0%、sol.Al:0.002〜0.05%、Nb:0〜0.1%及びV:0〜0.3%を含み、残部はFe及び不純物からなり、不純物中のNは0.01%以下、且つ、下記の(1)式を満たす化学組成を有する鋼塊又は鋼片から熱延鋼材を製造する方法であって、1200℃以上の温度を有する前記の鋼塊又は鋼片の熱間での加工工程に、20℃/s以上の冷却速度で1100〜900℃の温度範囲の温度T℃まで冷却して100s-1以下の歪速度で圧下率10%以上の加工を施す工程を含むことを特徴とする、鋼中に斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含む熱延鋼材の製造方法。 (3) By mass%, C: 0.05-0.20%, Ti: 0.01-2%, B: 0.001-0.5%, Si: 0.01-2.0%, Mn : 0.5-2.0%, sol. Al: 0.002 to 0.05%, Nb: 0 to 0.1% and V: 0 to 0.3%, the balance consists of Fe and impurities, N in the impurities is 0.01% or less, And it is a method of manufacturing a hot-rolled steel material from a steel ingot or steel slab having a chemical composition satisfying the following formula (1), wherein the steel ingot or steel slab having a temperature of 1200 ° C. or higher is hot. The processing step includes a step of cooling to a temperature T ° C. in a temperature range of 1100 to 900 ° C. at a cooling rate of 20 ° C./s or more and performing a processing with a reduction rate of 10% or more at a strain rate of 100 s −1 or less. A method for producing a hot-rolled steel material characterized by including orthorhombic TiB particles and cubic TiC particles in steel.

2{(Ti/48)−(N/14)}>(B/11)・・・・(1)、
ここで、(1)式中の元素記号は、その元素の質量%での鋼中含有量を示す。
2 {(Ti / 48)-(N / 14)}> (B / 11) (1),
Here, the element symbol in the formula (1) indicates the content in steel in mass% of the element.

なお、本発明でいう「鋼塊」は、JIS G 0203(1984)に規定されているとおり、「鋳片」を含むものをいう。   The “steel ingot” as used in the present invention refers to one containing “slab” as defined in JIS G 0203 (1984).

また、上記の温度及び冷却速度はいずれも、鋼塊又は鋼片の表面におけるものを指す。更に、「圧下率」とは、「板厚減少率」を指し、加工前の板厚をA0、加工後の板厚をA1として下記(2)式で表される値をいう。 Moreover, both said temperature and cooling rate point out the thing in the surface of a steel ingot or a steel piece. Further, the “rolling rate” refers to a “plate thickness reduction rate”, which is a value represented by the following equation (2), where A 0 is the plate thickness before processing and A 1 is the plate thickness after processing.

圧下率(%)={(A0−A1)/A0}×100・・・・(2)。 Reduction ratio (%) = {(A 0 −A 1 ) / A 0 } × 100 (2).

以下、上記(1)〜(2)の熱延鋼材に係る発明及び(3)の熱延鋼材の製造方法に係る発明を、それぞれ、本発明(1)〜本発明(3)という。本発明(1)〜本発明(3)を総称して、本発明ということがある。   Hereinafter, the invention related to the hot-rolled steel material of the above (1) to (2) and the invention related to the manufacturing method of the hot-rolled steel material of (3) are referred to as the present invention (1) to the present invention (3), respectively. The present invention (1) to the present invention (3) may be collectively referred to as the present invention.

本発明の熱延鋼材は、(1)TiCによる析出強化、及び、(2)斜方晶構造のTiB粒子を含むことによる細粒化とTiNの微細分散化を達成することができるので、JIS Z 2201(1998)に記載の5号板状引張試験片を用いた場合のTSが750MPa以上で「TS×EL」の値が15500MPa・%以上、JIS Z 2202(1998)に記載の幅が5mmのサブサイズVノッチ試験片を用いた場合のvTrsが−15℃以下という良好な強度、靱性及び「強度−延性バランス」が得られる。このため、自動車や各種の産業機械用の高強度構造部材の素材として利用することができる。この熱延鋼材は本発明の方法によって比較的容易に製造することができる。   The hot-rolled steel material of the present invention can achieve (1) precipitation strengthening by TiC and (2) fine graining and TiN fine dispersion by containing TiB particles having an orthorhombic structure. When using the No. 5 plate-like tensile test piece described in Z 2201 (1998), TS is 750 MPa or more, “TS × EL” value is 15500 MPa ·% or more, and width described in JIS Z 2202 (1998) is 5 mm. Good strength, toughness and “strength-ductility balance” of vTrs of −15 ° C. or lower are obtained when sub-size V-notch test pieces are used. For this reason, it can utilize as a raw material of the high strength structural member for motor vehicles and various industrial machines. This hot-rolled steel material can be manufactured relatively easily by the method of the present invention.

本発明者らは、前記した課題を解決するために、Ti添加鋼における晶出物や析出物の形態、更には、その安定性等について種々検討を重ねた。その結果、下記(a)〜(j)の知見を得た。   In order to solve the above-described problems, the present inventors have made various studies on the form of crystallized products and precipitates in Ti-added steel, as well as the stability thereof. As a result, the following findings (a) to (j) were obtained.

(a)Bを添加しないTi添加鋼の場合には、液相から晶出又は高温で析出するTiNが粗大化し、靱性及び延性に悪影響を及ぼすことがある。しかし、TiとBを複合添加した鋼においては、高温でTi−B系のTiB2とTiNが複合して晶出又は析出することがある。そして、TiB2が晶出又は析出すると、TiNの粗大化が抑制される。 (A) In the case of Ti-added steel to which B is not added, TiN that crystallizes from the liquid phase or precipitates at a high temperature becomes coarse, which may adversely affect toughness and ductility. However, in steel to which Ti and B are added in combination, Ti—B-based TiB 2 and TiN may be combined and crystallized or precipitated at a high temperature. When TiB 2 crystallizes or precipitates, TiN coarsening is suppressed.

(b)しかしながら、高温で晶出又は析出するTiB2は六方晶構造を有する粗大な粒子であり、靱性及び延性の劣化の原因となる。したがって、良好な靱性及び延性を確保するためには、TiNの粗大化が抑制された後に鋼中の粗大なTiB2を消失させるようにする必要がある。 (B) However, TiB 2 that crystallizes or precipitates at a high temperature is coarse particles having a hexagonal crystal structure, and causes deterioration of toughness and ductility. Therefore, in order to ensure good toughness and ductility, it is necessary to eliminate coarse TiB 2 in the steel after TiN coarsening is suppressed.

(c)Ti−B系の粒子のうちで斜方晶構造を有するTiBは、平均粒径2μm以下の球状粒子であり、オーステナイト領域で微細且つ均一に分散するので、再結晶オーステナイト粒の微細化に有効である。   (C) Among the Ti-B-based particles, TiB having an orthorhombic structure is a spherical particle having an average particle diameter of 2 μm or less, and is finely and uniformly dispersed in the austenite region, so that recrystallized austenite grains are refined. It is effective for.

(d)TiとBを複合添加した鋼で安定に存在するTi−B系の粒子は六方晶構造を有するTiB2であり、従来の一般的な熱処理や熱延で製造された鋼においては、TiBは安定に存在し得ない。しかし、TiB2を含む鋼塊又は鋼片に特定の条件で熱間加工を施せば、「TiB2→TiB+B」の反応が生じてTiB2粒子がTiB粒子に変化し、TiB粒子が鋼中に均一分散するとともにTiB2粒子は消失するため、粗大なTiB2粒子の存在に起因する靱性及び延性の低下を防ぐことができる。 (D) Ti-B-based particles that are stably present in a steel to which Ti and B are added in combination are TiB 2 having a hexagonal crystal structure. In steels manufactured by conventional general heat treatment or hot rolling, TiB cannot exist stably. However, if hot working is performed on a steel ingot or steel slab containing TiB 2 under specific conditions, a reaction of “TiB 2 → TiB + B” occurs to change TiB 2 particles into TiB particles, and TiB particles are contained in the steel. Since the TiB 2 particles disappear while being uniformly dispersed, it is possible to prevent a decrease in toughness and ductility due to the presence of coarse TiB 2 particles.

(e)「TiB2→TiB+B」の反応で生成するBは、鋼中に固溶したままであり、前記反応の逆反応が起こってTiB2粒子が再び形成されたり、新たなTi−B粒子が形成されることはないので、Cと結びついてTiCを形成するTiが確保される。 (E) B produced by the reaction of “TiB 2 → TiB + B” remains in solid solution in the steel, and the reverse reaction of the reaction takes place to form TiB 2 particles again, or new Ti—B particles Since Ti is not formed, Ti that forms TiC in combination with C is secured.

(f)TiB粒子は熱間圧延過程での動的再結晶を誘起して、オーステナイト粒を微細化する効果を有するため、TiB2粒子がTiB粒子に形態変化する反応が起これば、靱性及び延性が格段に向上する。 (F) Since TiB particles have the effect of inducing dynamic recrystallization in the hot rolling process and refining austenite grains, if a reaction that changes the shape of TiB 2 particles to TiB particles occurs, toughness and Ductility is significantly improved.

(g)熱間圧延過程及びその後の冷却過程で立方晶構造を有するTiCを微細に分散させることにより、鋼の強度が大きく増加する。   (G) The strength of steel is greatly increased by finely dispersing TiC having a cubic structure in the hot rolling process and the subsequent cooling process.

(h)鋼中にBN粒子が含まれると靱性及び延性が低下する。   (H) When BN particles are contained in steel, toughness and ductility are lowered.

(i)鋳造の過程又は高温での加熱時に、鋼塊又は鋼片にTiNの粗大化を抑制する作用を有するTiB2を積極的に晶出又は析出させるためには、鋼中のTi、N及びBの含有量について特定の条件を満足させる必要がある。 (I) In order to positively crystallize or precipitate TiB 2 having an action of suppressing the coarsening of TiN on a steel ingot or steel slab during casting or heating at high temperature, Ti, N in steel It is necessary to satisfy specific conditions for the contents of B and B.

(j)鋼中のTi、N及びBの含有量が上記(i)の特定の条件を満たせば、前記(d)の熱間加工における「TiB2→TiB+B」の反応によってTiBへの形態変化が生じてTiB2粒子が消失するだけでなく、BNも生じないので良好な靱性及び延性が確保でき、更に、適正量の立方晶構造を有するTiCが析出して高強度も確保できる。なお、BNが生成する温度はTiNやTiB2が生成する温度と一部重なるが、BNは固溶度が大きいため、鋼中のTi、N及びBの含有量が上記(i)の特定の条件を満たす場合にはBNが生成することはない。 (J) If the content of Ti, N and B in the steel satisfies the specific condition of (i) above, the shape change to TiB by the reaction of “TiB 2 → TiB + B” in the hot working of (d) above Not only disappears and TiB 2 particles disappear, but also BN does not occur, so that good toughness and ductility can be secured, and furthermore, TiC having an appropriate amount of cubic structure is precipitated, and high strength can be secured. Incidentally, BN although temperatures to produce the partially overlap the temperature generated by the TiN and TiB 2, because BN has a high solid solubility, in the steel Ti, the content of N and B is the identification of (i) If the condition is satisfied, BN is not generated.

本発明は、上記の知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

以下、本発明の各要件について詳しく説明する。なお、以下の説明において、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In the following description, “%” display of the content of each element means “mass%”.

(A)鋼中の粒子
熱延鋼材は良好な靱性と延性の確保のために、その鋼中に、鋼塊や鋼片におけるTiNの粗大化抑制作用を有する六方晶構造のTiB2粒子から、「TiB2→TiB+B」の反応によって形態変化した斜方晶構造のTiB粒子を含んでいる必要がある。なお、次の「(B)鋼の化学組成」の項でも述べるように、鋼中のTi、N及びBの含有量が前記した(1)式を満たす場合、「TiB2→TiB+B」の反応によってTiBへの形態変化が生じるとTiB2粒子が消失するので、粗大なTiB2粒子の存在に起因した靱性及び延性の低下が生じない。更に、BNも生成しないので、BN粒子の存在に基づく靱性及び延性の低下も生じない。
(A) Particles in steel In order to ensure good toughness and ductility, the hot rolled steel material contains, in the steel, TiB 2 particles having a hexagonal structure that has a TiN coarsening suppressing action in steel ingots and steel pieces, It is necessary to include TiB particles having an orthorhombic structure whose shape has been changed by the reaction of “TiB 2 → TiB + B”. As described in the next section “(B) Chemical composition of steel”, when the contents of Ti, N and B in the steel satisfy the above-mentioned formula (1), the reaction of “TiB 2 → TiB + B”. When the shape change to TiB occurs, TiB 2 particles disappear, so that the toughness and ductility are not lowered due to the presence of coarse TiB 2 particles. Further, since BN is not generated, the toughness and ductility are not lowered due to the presence of BN particles.

上記斜方晶構造のTiB粒子に加えて、熱延鋼材がその鋼中に、立方晶構造のTiC粒子を含んでおれば、所望の高強度が得られる。   In addition to the orthorhombic TiB particles, if the hot-rolled steel material contains cubic TiC particles in the steel, a desired high strength can be obtained.

したがって、前記本発明(1)及び本発明(2)においては、熱延鋼材が鋼中に斜方晶構造であるTiB粒子及び立方晶構造であるTiC粒子を含む必要がある。   Accordingly, in the present invention (1) and the present invention (2), it is necessary that the hot-rolled steel material contains TiB particles having an orthorhombic structure and TiC particles having a cubic structure in the steel.

なお、上記のTiB粒子及びTiC粒子が鋼中に含まれる量は、質量%で、それぞれ、0.03〜2.2%と0.08〜0.65%であることが好ましい。
(B)鋼の化学組成
熱延鋼材がその鋼中に前記した斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含むためには、鋼がその化学組成にC、Ti及びBを含んでいる必要がある。
In addition, it is preferable that the quantity which said TiB particle | grains and TiC particle | grains are contained in steel is the mass%, and is 0.03-2.2% and 0.08-0.65%, respectively.
(B) Chemical composition of steel In order for the hot-rolled steel to contain the orthorhombic TiB particles and the cubic TiC particles in the steel, the steel contains C, Ti and B in its chemical composition. It is necessary to be out.

C:0.05〜0.20%
Cは、固溶強化及びTiと結合して立方晶構造を有するTiCを形成することによる析出強化の2つの作用によって、熱延鋼材の強度を高めるのに有効な元素である。また、Cは「オーステナイト/フェライト」変態を支配する重要な元素でもある。しかし、その含有量が0.05%未満では、TSで750MPa以上という所望の大きな強度が確保できない。一方、0.20%を超えると、TiCが粗大化するので、靱性及び延性が低下する。したがって、Cの含有量を0.05〜0.20%とした。なお、Cの含有量は0.072〜0.15%とすることが好ましい。
C: 0.05-0.20%
C is an element effective for increasing the strength of the hot-rolled steel material by two actions of solid solution strengthening and precipitation strengthening by forming TiC having a cubic structure by combining with Ti. C is also an important element governing the “austenite / ferrite” transformation. However, if the content is less than 0.05%, a desired large strength of 750 MPa or more cannot be secured with TS. On the other hand, if it exceeds 0.20%, TiC coarsens, so that toughness and ductility are reduced. Therefore, the content of C is set to 0.05 to 0.20%. The C content is preferably 0.072 to 0.15%.

Ti:0.01〜2%
Tiは、Ti−B系の粒子、つまり、Tiの硼化物であるTiB2及びTiB、並びに、TiCを形成して熱延鋼材の強度、靱性及び延性を高める作用を有する。すなわち、TiNの粗大化を抑制する作用のある六方晶構造を有するTiB2を形成することによって、粗大なTiN粒子の存在に起因した靱性及び延性の低下を防止することができる。また、その後、「TiB2→TiB+B」の反応を起こさせることによって、TiB2を消失させるとともに、平均粒径が2μm以下の球状粒子でオーステナイト領域において微細且つ均一に分散する斜方晶構造を有するTiBを形成することによって、靱性及び延性を高めることができる。更に、析出強化作用を有する立方晶構造のTiCによって、強度を高めることができる。しかしながら、Tiの含有量が0.01%未満の場合には、前記のTi−B系の粒子やTiC粒子による効果が確保できない。一方、Tiの含有量が2%を超えると、却って靱性及び延性の低下をきたす。したがって、Tiの含有量を0.01〜2%とした。なお、Tiの含有量は0.01〜1.5%とすることが望ましい。
Ti: 0.01-2%
Ti has the effect of increasing the strength, toughness and ductility of hot-rolled steel by forming Ti-B-based particles, that is, TiB 2 and TiB, which are borides of Ti, and TiC. That is, by forming TiB 2 having a hexagonal crystal structure that has the effect of suppressing the coarsening of TiN, it is possible to prevent a decrease in toughness and ductility due to the presence of coarse TiN particles. Further, after that, by causing a reaction of “TiB 2 → TiB + B”, TiB 2 is disappeared and has an orthorhombic structure in which spherical particles having an average particle diameter of 2 μm or less are dispersed finely and uniformly in the austenite region. By forming TiB, toughness and ductility can be increased. Further, the strength can be increased by the cubic structure TiC having a precipitation strengthening action. However, when the Ti content is less than 0.01%, the effect of the Ti-B-based particles and TiC particles cannot be ensured. On the other hand, if the Ti content exceeds 2%, the toughness and ductility are reduced. Therefore, the Ti content is set to 0.01 to 2%. The Ti content is preferably 0.01 to 1.5%.

B:0.001〜0.5%
Bは、本発明において最も重要な元素の1つである。すなわち、Bは鋳造の過程又は高温での加熱時にTiと結合して六方晶構造を有するTiB2を形成し、TiNの粗大化を抑制するので、粗大なTiNの存在に起因した靱性及び延性の低下が防止される。更に、TiB2を含む鋼塊又は鋼片に特定の条件で熱間加工を施せば、「TiB2→TiB+B」の反応が生じてTiB2粒子が斜方晶構造を有するTiB粒子に変化し、TiB粒子が鋼中に均一分散するとともにTiB2粒子が消失するため、粗大なTiB2粒子の存在に起因する靱性及び延性の低下も防止される。そして、TiB粒子によって再結晶オーステナイト粒が微細化するので、靱性及び延性が向上する。しかしながら、Bの含有量が0.001%未満では前記のTiB2粒子やTiB粒子による効果が得られない。一方、Bの含有量が0.5%を超えると、却って靱性及び延性の低下を招く。したがって、Bの含有量を0.001〜0.5%とした。なお、Bの含有量は0.003〜0.40%とすることが好ましい。
B: 0.001 to 0.5%
B is one of the most important elements in the present invention. That is, B combines with Ti during the casting process or when heated at a high temperature to form TiB 2 having a hexagonal crystal structure and suppresses the coarsening of TiN, so that the toughness and ductility due to the presence of coarse TiN are reduced. Reduction is prevented. Furthermore, if hot working is performed on the steel ingot or steel slab containing TiB 2 under specific conditions, a reaction of “TiB 2 → TiB + B” occurs, and the TiB 2 particles change into TiB particles having an orthorhombic structure, Since the TiB particles are uniformly dispersed in the steel and the TiB 2 particles disappear, deterioration of toughness and ductility due to the presence of coarse TiB 2 particles is also prevented. And since a recrystallized austenite grain refines | miniaturizes by TiB particle | grains, toughness and ductility improve. However, if the B content is less than 0.001%, the effect of the TiB 2 particles and TiB particles cannot be obtained. On the other hand, if the B content exceeds 0.5%, the toughness and ductility are reduced. Therefore, the content of B is set to 0.001 to 0.5%. The B content is preferably 0.003 to 0.40%.

Ti、B及びNの含有量に関する前記の(1)式:
鋼中のTi、N及びBの含有量が前記(1)式を満たせば、鋳造の過程又は高温での加熱時に、鋼塊や鋼片にTiNの粗大化を抑制する作用を有する六方晶構造のTiB2を晶出又は析出させることができ、また、TiB2が含まれる上記の鋼塊又は鋼片に特定の条件で熱間加工を施し、「TiB2→TiB+B」の反応を生じさせて、TiB2粒子を斜方晶構造であるTiB粒子に変化させ、そのTiB粒子を鋼中に均一分散させるとともにTiB2粒子を消失させることができ、しかも、靱性及び延性を低下させるBNを生じることがないようにでき、更に、適正量の立方晶構造を有するTiCを生成させることもできる。
Formula (1) above for the contents of Ti, B and N:
If the content of Ti, N and B in the steel satisfies the above formula (1), the hexagonal crystal structure has the effect of suppressing the coarsening of TiN in the steel ingot and steel slab during the casting process or during heating at a high temperature. TiB 2 can be crystallized or precipitated, and the above steel ingot or steel slab containing TiB 2 is subjected to hot working under specific conditions to cause a reaction of “TiB 2 → TiB + B”. , TiB 2 particles can be changed to orthorhombic TiB particles, the TiB particles can be uniformly dispersed in the steel, and the TiB 2 particles can be lost, and BN that reduces toughness and ductility can be produced. In addition, TiC having an appropriate amount of cubic structure can be generated.

したがって、前記本発明(1)に係る熱延鋼材は、質量%で、C:0.05〜0.20%、Ti:0.01〜2%及びB:0.001〜0.5%を含み、且つ前記の(1)式を満たす化学組成を有するものとした。なお、前記(1)式におけるNは、不純物として鋼に含まれる元素である。   Therefore, the hot-rolled steel material according to the present invention (1) is in mass%, C: 0.05-0.20%, Ti: 0.01-2%, and B: 0.001-0.5%. And having a chemical composition satisfying the formula (1). Note that N in the formula (1) is an element contained in steel as an impurity.

前記本発明(2)に係る熱延鋼材の化学組成は、上記(1)の発明に係る熱延鋼材の化学組成規定に加えて更に、下記の量のSiからVまでの元素を含み、残部はFe及び不純物からなり、不純物中のNが下記の量を満たすものである。   The chemical composition of the hot-rolled steel material according to the present invention (2) includes the following amounts of elements from Si to V in addition to the chemical composition rule of the hot-rolled steel material according to the invention of the above (1), and the balance Consists of Fe and impurities, and N in the impurities satisfies the following amount.

以下、前記本発明(2)において、上記のSiからNまでの各元素の含有量を規定した理由について詳述する。   Hereinafter, the reason why the contents of the respective elements from Si to N are defined in the present invention (2) will be described in detail.

Si:0.01〜2.0%
Siは、フェライトを強化するとともにフェライトの延性を高める作用を有する。しかし、Siの含有量が0.01%未満では添加効果に乏しく、一方、2.0%を超えると、却って延性が低下し、また、靱性も低下する。したがって、Siの含有量を0.01〜2.0%とした。Siの望ましい含有量は0.01〜1.0%である。
Si: 0.01 to 2.0%
Si has the effect of strengthening ferrite and increasing the ductility of ferrite. However, if the Si content is less than 0.01%, the effect of addition is poor. On the other hand, if it exceeds 2.0%, the ductility decreases and the toughness also decreases. Therefore, the Si content is set to 0.01 to 2.0%. A desirable content of Si is 0.01 to 1.0%.

Mn:0.5〜2.0%
Mnは、固溶強化によってフェライトを強化する作用を有する。また、Mnは「オーステナイト/フェライト」変態を支配する重要な元素である。しかし、その含有量が0.5%未満では十分な効果が得られない。一方、Mnの含有量が2.0%を超えると、靱性及び延性の低下を招く。したがって、Mnの含有量を0.5〜2.0%とした。望ましいMnの含有量は0.8〜1.5%である。
Mn: 0.5 to 2.0%
Mn has an effect of strengthening ferrite by solid solution strengthening. Mn is an important element governing the “austenite / ferrite” transformation. However, if the content is less than 0.5%, a sufficient effect cannot be obtained. On the other hand, if the Mn content exceeds 2.0%, the toughness and ductility are reduced. Therefore, the Mn content is set to 0.5 to 2.0%. A desirable Mn content is 0.8 to 1.5%.

sol.Al:0.002〜0.05%
Alは脱酸作用を有し、Ti酸化物の形成を抑える効果がある。しかし、Alの含有量がsol.Alで0.002%未満では、十分な効果が得られない。一方、Alの含有量がsol.Alで0.05%を超えても前記の効果は飽和し、コストが嵩むばかりである。したがって、Alの含有量をsol.Alで0.002〜0.05%とした。好ましいsol.Alの量は0.01〜0.04%である。なお、sol.Alとは、いわゆる「酸可溶Al」を指す。
sol. Al: 0.002 to 0.05%
Al has a deoxidizing action and has an effect of suppressing the formation of Ti oxide. However, the content of Al is sol. If it is less than 0.002% with Al, sufficient effects cannot be obtained. On the other hand, the content of Al is sol. Even if it exceeds 0.05% with Al, the above effect is saturated and the cost is increased. Therefore, the content of Al is sol. The content of Al was 0.002 to 0.05%. Preferred sol. The amount of Al is 0.01 to 0.04%. Note that sol. Al refers to so-called “acid-soluble Al”.

Nb:0〜0.1%
Nbは、添加しなくてもよい。添加すれば、Cと結合して微細NbCを形成し、鋼の強度を向上させるとともに、TiBの粗大化を抑える作用がある。この効果を確実に得るには、Nbの含有量は0.005%以上とすることが望ましい。一方、Nbの含有量が0.1%を超えても、前記の効果は飽和し、コストが嵩むばかりである。したがって、Nbの含有量を0〜0.1%とした。
Nb: 0 to 0.1%
Nb may not be added. If added, it combines with C to form fine NbC, thereby improving the strength of the steel and suppressing the coarsening of TiB. In order to reliably obtain this effect, the Nb content is preferably 0.005% or more. On the other hand, even if the Nb content exceeds 0.1%, the above effects are saturated and the cost is increased. Therefore, the Nb content is set to 0 to 0.1%.

V:0〜0.3%
Vは、添加しなくてもよい。添加すれば、Cと結合して微細VCを形成し、鋼の強度を向上させるとともに、TiBの粗大化を抑える作用がある。この効果を確実に得るには、Vの含有量は0.1%以上とすることが望ましい。一方、Vの含有量が0.3%を超えても、前記の効果は飽和し、コストが嵩むばかりである。したがって、Vの含有量を0〜0.3%とした。
V: 0 to 0.3%
V may not be added. If added, it combines with C to form fine VC, improving the strength of the steel, and suppressing the coarsening of TiB. In order to reliably obtain this effect, the V content is preferably 0.1% or more. On the other hand, even if the content of V exceeds 0.3%, the above effect is saturated and the cost is increased. Therefore, the content of V is set to 0 to 0.3%.

N:0.01%以下
Nは、不純物として鋼に含まれる元素であり、Tiと結合して粗大なTiNを形成することに加えて、Bと結合してBNを形成する場合もある。上記の粗大なTiN、及びBNはいずれも靱性及び延性を低下させるため、不純物としてのNの含有量は少ない方が望ましく、前記本発明(2)においてはその上限の含有量を0.01%とした。より望ましいN含有量の上限は0.005%である。
N: 0.01% or less N is an element contained in steel as an impurity, and may combine with Ti to form coarse TiN, and may combine with B to form BN. Since both the above coarse TiN and BN lower the toughness and ductility, it is desirable that the content of N as an impurity is small. In the present invention (2), the upper limit content is 0.01%. It was. A more desirable upper limit of the N content is 0.005%.

前記本発明(1)に係る熱延鋼材は、質量%で、C:0.05〜0.20%、Ti:0.01〜2%及びB:0.001〜0.5%を含み、且つ、前記の(1)式を満たす化学組成を有する鋼塊又は鋼片に、例えば次のような熱間加工を施すことによって製造することができる。すなわち、1200℃以上の温度を有する上記の鋼塊又は鋼片の熱間での加工工程に、20℃/s以上の冷却速度で1100〜900℃の温度範囲の温度T℃まで冷却して100s-1以下の歪速度で圧下率10%以上の加工を施す工程を含ませることによって、比較的容易に製造することができる。 The hot-rolled steel material according to the present invention (1) includes, in mass%, C: 0.05 to 0.20%, Ti: 0.01 to 2%, and B: 0.001 to 0.5%. And it can manufacture by giving the following hot working to the steel ingot or steel piece which has a chemical composition which satisfy | fills said (1) Formula, for example. That is, in the hot working process of the above steel ingot or steel slab having a temperature of 1200 ° C. or higher, it is cooled to a temperature T ° C. in the temperature range of 1100 to 900 ° C. at a cooling rate of 20 ° C./s or more and 100 s. By including a step of processing at a reduction rate of 10% or more at a strain rate of −1 or less, it can be produced relatively easily.

前記本発明(2)に係る熱延鋼材は、例えば、前記本発明(3)の方法によって、比較的容易に製造することができる。   The hot-rolled steel material according to the present invention (2) can be manufactured relatively easily, for example, by the method of the present invention (3).

以下、本発明(2)に係る熱延鋼材の製造方法の一例である本発明(3)について説明する。   Hereinafter, the present invention (3) which is an example of the method for producing a hot-rolled steel material according to the present invention (2) will be described.

(C)鋼塊又は鋼片の熱間加工
(C−1)熱間加工における鋼塊又は鋼片の温度
熱延鋼材の素材は、鋼塊でも鋼片でもよく、その鋼塊や鋼片が1200℃以上の温度を有しておりさえすれば、鋳造のままや熱間加工のままでもよいし、一旦1200℃未満になってから再加熱したものでもよい。鋼塊又は鋼片の温度が1200℃未満であれば、熱間加工で「TiB2→TiB+B」の反応が生じないので、六方晶構造のTiB2が存在したままとなる。したがって、粗大なTiB2粒子の存在に起因する靱性及び延性の低下が生じる。また、前記の反応が生じずTiBが存在しないので、既に述べた斜方晶構造のTiBによる効果も得られない。
(C) Hot working of steel ingot or billet (C-1) Temperature of steel ingot or billet in hot working
The material of the hot-rolled steel material may be a steel ingot or a steel slab. As long as the steel ingot or steel slab has a temperature of 1200 ° C. or higher, it may be cast or hot worked, It may be reheated after the temperature becomes less than 1200 ° C. If the temperature of the steel ingot or slab is less than 1200 ° C., the reaction “TiB 2 → TiB + B” does not occur during hot working, and therefore TiB 2 having a hexagonal crystal structure still exists. Therefore, the toughness and ductility are reduced due to the presence of coarse TiB 2 particles. Further, since the reaction does not occur and TiB does not exist, the effect of TiB having the orthorhombic structure described above cannot be obtained.

なお、上記の温度が、鋼塊や鋼片の表面における温度を指すことは、既に述べたとおりである。そして、前記1200℃以上の温度を確保させるために鋼塊や鋼片を再加熱する場合には、加熱温度の上限はコスト面から1350℃とすることが好ましい。   In addition, as above-mentioned that the said temperature points out the temperature in the surface of a steel ingot or a steel piece. And in order to reheat a steel ingot or a steel piece in order to ensure the said 1200 degreeC or more temperature, it is preferable that the upper limit of heating temperature shall be 1350 degreeC from a cost surface.

(C−2)TiB誘起のための熱間加工温度T(℃)とその温度への冷却速度
熱間加工で「TiB2→TiB+B」の反応を生じさせることによって、つまり、TiB2からTiBへの形態変化を生じさせ、TiB2を消失させることによって、粗大なTiB2粒子の存在による靱性及び延性の低下を防止するとともに、既に述べたTiBによる効果を得るためには、1100〜900℃の温度範囲にある温度T(℃)で熱間加工を行う必要があり、しかも、1200℃以上の温度を有する前記の鋼塊又は鋼片を上記の温度T(℃)まで20℃/s以上の冷却速度で冷却する必要がある。上記冷却における冷却速度は20℃/s以上であれば、冷却設備で実現可能な上限の値としてもよいので、特に、上限は設けない。なお、上記の温度及び冷却速度が、鋼塊や鋼片の表面におけるものを指すことは既に述べたとおりである。
(C-2) Hot working temperature T (° C.) for inducing TiB and cooling rate to that temperature By causing a reaction of “TiB 2 → TiB + B” by hot working, that is, from TiB 2 to TiB In order to prevent the deterioration of toughness and ductility due to the presence of coarse TiB 2 particles by causing TiB 2 to disappear, and to obtain the effect of TiB already described, 1100 to 900 ° C. It is necessary to perform hot working at a temperature T (° C.) in the temperature range, and the steel ingot or steel slab having a temperature of 1200 ° C. or higher is 20 ° C./s or higher up to the temperature T (° C.). It is necessary to cool at a cooling rate. If the cooling rate in the said cooling is 20 degrees C / s or more, since it is good also as a value of the upper limit which can be implement | achieved with cooling equipment, there is no upper limit in particular. As described above, the above temperature and cooling rate refer to those on the surface of a steel ingot or steel slab.

(C−3)TiB誘起のための歪速度と圧下率
熱間加工で「TiB2→TiB+B」の反応を生じさせることによって、つまり、TiB2からTiBへの形態変化を生じさせ、TiB2を消失させることによって、既に述べたTiBの効果を得るためには、先の(C−2)項で述べた1100〜900℃の温度範囲の温度T(℃)において、100s-1以下に抑えた歪速度で、圧下率10%以上の圧下を加える必要がある。なお、歪速度は低ければ低いほど好ましいが、生産性の観点から、その下限は5s-1とするのが望ましい。一方、圧下率は10%以上であればよく、熱間加工設備の上限の圧下率としてもよいので、特に、上限は設けない。
By causing the reaction of "TiB 2 → TiB + B" (C-3) TiB at a strain rate and rolling reduction thermal processing for inducing, i.e., cause morphological change from TiB 2 to TiB, the TiB 2 In order to obtain the effect of TiB already described by eliminating, the temperature was suppressed to 100 s −1 or less at the temperature T (° C.) in the temperature range of 1100 to 900 ° C. described in the previous section (C-2). It is necessary to apply a reduction with a reduction rate of 10% or more at the strain rate. The lower the strain rate, the better. However, from the viewpoint of productivity, the lower limit is desirably 5 s −1 . On the other hand, the rolling reduction may be 10% or more, and may be the upper rolling reduction of the hot working equipment.

なお、既に述べたように、「圧下率」とは「板厚減少率」を指し、加工前の板厚をA0、加工後の板厚をA1として前記(2)式で表される値をいう。但し、上記温度T(℃)で100s-1以下に抑えた歪速度で行う加工の圧下率が10%以上とは、例えば1パス熱延のように1回の加工における圧下率が10%以上であることを指し、多パス圧延する場合の全圧下率を指すものではない。 As already described, the “rolling rate” refers to the “plate thickness reduction rate”, and is expressed by the above equation (2), where A 0 is the thickness before processing and A 1 is the thickness after processing. Value. However, the reduction ratio of the processing performed at the temperature T (° C.) at a strain rate suppressed to 100 s −1 or less is 10% or more. For example, the reduction ratio in one processing such as one-pass hot rolling is 10% or more. It does not indicate the total reduction ratio in the case of multipass rolling.

熱間での加工工程に上記(C−1)項から(C−3)項において述べた工程が含まれておれば、その前後の工程に拘わらず「TiB2→TiB+B」の反応が生じ、TiB2を消失させるので、粗大なTiB2による靱性及び延性の低下を防止できるとともに、既に述べたTiBによる効果が得られる。 If the steps described in the above items (C-1) to (C-3) are included in the hot processing step, a reaction of “TiB 2 → TiB + B” occurs regardless of the steps before and after that, Since TiB 2 disappears, the deterioration of toughness and ductility due to coarse TiB 2 can be prevented, and the effect of TiB already described can be obtained.

したがって、前記本発明(3)においては、1200℃以上の温度を有する鋼塊又は鋼片の熱間での加工工程に、20℃/s以上の冷却速度で1100〜900℃の温度範囲の温度T℃まで冷却して100s-1以下の歪速度で圧下率10%以上の加工を施す工程を含むこととした。 Therefore, in the said invention (3), the temperature of the temperature range of 1100-900 degreeC with the cooling rate of 20 degrees C / s or more in the hot processing process of the steel ingot or steel piece which has a temperature of 1200 degreeC or more. It was decided to include a step of cooling to T ° C. and performing processing with a reduction rate of 10% or more at a strain rate of 100 s −1 or less.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示す化学組成を有する鋼のスラブに、実験圧延設備を使用して、表2に詳細を示す1パスの低速圧延を行った、すなわち、スラブを1000℃に加熱した後その温度で10s-1の歪速度で圧下率15%の1パス圧延を行うか、或いは、スラブを1250℃に加熱した後、5〜50℃/sの冷却速度で850〜1000℃まで冷却し、10〜200s-1の歪速度で圧下率15〜30%の1パス圧延を行った。いずれの条件のものについても、上記1パスの低速圧延の後、通常の方法で5パスの熱間圧延を行い、冷却および巻き取りをして、板厚が5.2mmの熱延鋼板を得た。 The steel slab having the chemical composition shown in Table 1 was subjected to low-speed rolling of one pass as shown in detail in Table 2 using an experimental rolling facility, that is, the slab was heated to 1000 ° C. and then at that temperature for 10 s. 1-pass rolling at a strain rate of -1 and a rolling reduction of 15%, or after heating the slab to 1250 ° C, it is cooled to 850-1000 ° C at a cooling rate of 5-50 ° C / s, and 10-200 s 1-pass rolling was performed at a strain rate of −1 and a rolling reduction of 15 to 30%. For any of the above conditions, after the one-pass low-speed rolling, 5-pass hot rolling is performed by a normal method, and cooling and winding are performed to obtain a hot-rolled steel sheet having a thickness of 5.2 mm. It was.

Figure 2005336548
Figure 2005336548

Figure 2005336548
Figure 2005336548

このようにして得た厚さが5.2mmの鋼板から各種の試験片を採取し、鋼中の粒子(析出物や介在物)の同定と量の測定、引張特性及びシャルピー衝撃特性を調査した。   Various test pieces were collected from the steel sheet having a thickness of 5.2 mm obtained in this way, and the identification and measurement of the particles (precipitates and inclusions) in the steel, the tensile properties and the Charpy impact properties were investigated. .

鋼中の粒子の同定は、熱延鋼板の板厚中央部を研磨後、ナイタール腐食及びカーボン蒸着を経て得られた抽出レプリカ試料を用い、透過型電子顕微鏡で観察して行った。   The particles in the steel were identified by observing with a transmission electron microscope using an extracted replica sample obtained by polishing the central part of the thickness of the hot-rolled steel sheet, followed by nital corrosion and carbon deposition.

また、熱延鋼板を「10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール系電解液」で電解し、得られた残渣を定量分析して求めた量を「鋼中の粒子の総量」とした。   Further, the amount obtained by electrolyzing the hot rolled steel sheet with “10% acetylacetone-1% tetramethylammonium chloride-methanol electrolyte” and quantitatively analyzing the obtained residue was defined as “total amount of particles in steel”. .

鋼中の粒子のうちTiBの量とTiCの量は次のようにして求めた。   Of the particles in the steel, the amount of TiB and the amount of TiC were determined as follows.

すなわち、先ず、抽出残渣のX線回折実験を行ってTiB、TiB2、TiC、TiN及びBNの生成状況について調査した。その結果、下記の4グループに分類できることがわかった。 That is, first, an X-ray diffraction experiment of the extraction residue was performed to investigate the generation status of TiB, TiB 2 , TiC, TiN, and BN. As a result, it was found that it can be classified into the following 4 groups.

グループ(1):TiB、TiC及びTiNが全て存在するが、TiB2及びBNはその双方とも存在しない。 Group (1): TiB, TiC and TiN are all present, but TiB 2 and BN are both absent.

グループ(2):TiB2、TiC及びTiNが全て存在するが、TiB及びBNはその双方とも存在しない。 Group (2): TiB 2 , TiC and TiN are all present, but TiB and BN are both absent.

グループ(3):TiB、TiC、TiN及びBNが全て存在するが、TiB2は存在しない。 Group (3): TiB, TiC, TiN and BN are all present, but TiB 2 is not present.

グループ(4):TiC及びTiNがいずれも存在するが、TiB、TiB2及びBNはそのいずれもが存在しない。 Group (4): TiC and TiN are all present, but none of TiB, TiB 2 and BN are present.

次に、抽出残渣の化学分析を行い、上記の各グループについて、抽出残渣中でのTi、C、N及びBの量(以下、これらをそれぞれ。「Ti」、「C」、「N」及び「B」と表記する。)を求めた。   Next, chemical analysis of the extraction residue was performed, and for each of the above groups, the amounts of Ti, C, N and B in the extraction residue (hereinafter referred to as “Ti”, “C”, “N” and ("B").

最後に、上記の各グループについて、次に示す(連立)方程式を解いて、TiBの量とTiCの量を求めた。なお(連立)方程式におけるa、b、c、d及びeは、それぞれ、TiBの量、TiB2の量、TiCの量、TiNの量及びBNの量を意味する。ここで、グループ(2)及びグループ(4)におけるa(つまり、TiBの量)は、いずれも0(零)である。
・グループ(1):
a×{11/(48+11)}=「B」
c×{12/(48+12)}=「C」、
・グループ(2):
c×{12/(48+12)}=「C」、
・グループ(3):
a×{11/(48+11)}+e×{11/(14+11)}=「B」
c×{12/(48+12)}=「C」、
d×{14/(48+14)}+e×{14/(14+11)}=「N」
a×{48/(48+11)}+c×{48/(48+12)}+d×{48/(48+14)}=「Ti」
・グループ(4):
c×{12/(48+12)}=「C」。
Finally, for each of the above groups, the following (simultaneous) equations were solved to determine the amount of TiB and the amount of TiC. Note a in (simultaneous) equations, b, c, d and e, respectively, it means the amount of TiB, the amount of TiB 2, the amount of TiC, the amount of amount and BN of TiN. Here, a (that is, the amount of TiB) in group (2) and group (4) is 0 (zero).
・ Group (1):
a × {11 / (48 + 11)} = “B”
c × {12 / (48 + 12)} = “C”,
・ Group (2):
c × {12 / (48 + 12)} = “C”,
・ Group (3):
a × {11 / (48 + 11)} + e × {11 / (14 + 11)} = “B”
c × {12 / (48 + 12)} = “C”,
d × {14 / (48 + 14)} + e × {14 / (14 + 11)} = “N”
a × {48 / (48 + 11)} + c × {48 / (48 + 12)} + d × {48 / (48 + 14)} = “Ti”
・ Group (4):
c × {12 / (48 + 12)} = “C”.

引張特性は、JIS Z 2201(1998)に記載の5号板状引張試験片を用いて調査した。   Tensile properties were investigated using No. 5 plate-like tensile test pieces described in JIS Z 2201 (1998).

更に、シャルピー衝撃特性は、JIS Z 2202(1998)に記載の幅が5mmのサブサイズVノッチ試験片を用いた場合の破面遷移温度(vTrs)で評価した。   Further, the Charpy impact characteristics were evaluated by the fracture surface transition temperature (vTrs) when a sub-size V-notch test piece having a width of 5 mm described in JIS Z 2202 (1998) was used.

表3に、上記の各種調査結果を示す。なお、表3において「#」マークの付いた粒子、すなわち、TiB2(#)及びTiN(#)は粗大な粒子であることを示す。 Table 3 shows the results of the above various investigations. In Table 3, particles marked with “#”, that is, TiB 2 (#) and TiN (#) are coarse particles.

また、図1及び図2にそれぞれ、「鋼中の粒子の総量」と「vTrs」との関係、及び「鋼中の粒子の総量」と「TS×EL」との関係を整理して示す。   FIGS. 1 and 2 respectively show the relationship between “total amount of particles in steel” and “vTrs” and the relationship between “total amount of particles in steel” and “TS × EL”.

Figure 2005336548
Figure 2005336548

表3から明らかなように、本発明で定める化学組成と鋼中の粒子を有する試験番号1〜11の熱延鋼板は、750MPaを超える高いTSを有している。しかも、鋼中に粒子を総量で0.20質量%以上含有するにも拘わらず、vTrsは−15℃以下と靱性に優れ、また、「TS×EL」の値は15500MPa・%を超えており、「強度−延性バランス」にも優れている。   As is apparent from Table 3, the hot rolled steel sheets of Test Nos. 1 to 11 having the chemical composition defined in the present invention and the particles in steel have a high TS exceeding 750 MPa. Moreover, despite the fact that the total amount of particles in the steel is 0.20% by mass or more, vTrs has an excellent toughness of −15 ° C. or less, and the value of “TS × EL” exceeds 15500 MPa ·%. The “strength-ductility balance” is also excellent.

これに対して、化学組成は本発明で定める条件を満たすものの、鋼中の粒子が本発明で定める規定から外れた試験番号12〜15の場合には、所望の靱性(vTrs)と「強度−延性バランス」(「TS×EL」)が得られていない。   On the other hand, although the chemical composition satisfies the conditions defined by the present invention, when the test particles 12 to 15 have a particle number in the steel that deviates from the regulations defined by the present invention, the desired toughness (vTrs) and “strength— The “ductility balance” (“TS × EL”) is not obtained.

すなわち、試験番号12は、スラブ加熱温度が1000℃と低温である。このため、スラブの温度は当然に1200℃を下回るので、熱間加工しても「TiB2→TiB+B」の反応による六方晶構造のTiB2から斜方晶構造のTiBへの形態変化を生じず、熱延鋼板に粗大なTiB2粒子が残留することになって、靱性及び延性が低下し、所望の靱性(vTrs)と「強度−延性バランス」(「TS×EL」)が得られていない。 That is, in test number 12, the slab heating temperature is as low as 1000 ° C. For this reason, the temperature of the slab is naturally below 1200 ° C., so that even when hot-worked, the morphology change from hexagonal structure TiB 2 to orthorhombic structure TiB due to the reaction of “TiB 2 → TiB + B” does not occur. Coarse TiB 2 particles remain in the hot-rolled steel sheet, and the toughness and ductility are lowered, and the desired toughness (vTrs) and “strength-ductility balance” (“TS × EL”) are not obtained. .

試験番号13は、1250℃から1パス圧延した1000℃への冷却速度が5℃/sと小さいため、熱間加工しても「TiB2→TiB+B」の反応によるTiB2からTiBへの形態変化を生じず、熱延鋼板に粗大なTiB2粒子が残留することになって、靱性及び延性が低下し、所望の靱性(vTrs)と「強度−延性バランス」(「TS×EL」)が得られていない。 Test No. 13 has a low cooling rate of 5 ° C / s from 1250 ° C to 1000 ° C rolled in one pass, so the morphology change from TiB 2 to TiB due to the reaction of "TiB 2 → TiB + B" even after hot working And coarse TiB 2 particles remain in the hot-rolled steel sheet, toughness and ductility are reduced, and the desired toughness (vTrs) and “strength-ductility balance” (“TS × EL”) are obtained. It is not done.

試験番号14は、1パス圧延した温度が850℃と低い。このため、「TiB2→TiB+B」の反応による六方晶構造のTiB2から斜方晶構造のTiBへの形態変化を生じず、熱延鋼板に粗大なTiB2粒子が残留することになって、靱性及び延性が低下し、所望の靱性(vTrs)と「強度−延性バランス」(「TS×EL」)が得られていない。 Test No. 14 has a low one-pass rolling temperature of 850 ° C. For this reason, there is no morphological change from TiB 2 having a hexagonal structure to TiB having an orthorhombic structure due to the reaction of “TiB 2 → TiB + B”, and coarse TiB 2 particles remain on the hot-rolled steel sheet. The toughness and ductility are reduced, and the desired toughness (vTrs) and “strength-ductility balance” (“TS × EL”) are not obtained.

試験番号15は、1パス圧延時の歪速度が200s-1と大きい。このため、「TiB2→TiB+B」の反応によるTiB2からTiBへの形態変化を生じず、熱延鋼板に粗大なTiB2粒子が残留することになって、靱性及び延性が低下し、所望の靱性(vTrs)と「強度−延性バランス」(「TS×EL」)が得られていない。 In test number 15, the strain rate during one-pass rolling is as large as 200 s −1 . For this reason, the shape change from TiB 2 to TiB due to the reaction of “TiB 2 → TiB + B” does not occur, coarse TiB 2 particles remain in the hot-rolled steel sheet, the toughness and ductility are lowered, and the desired Toughness (vTrs) and “strength-ductility balance” (“TS × EL”) are not obtained.

試験番号16及び試験番号17は、鋼がBを含まず、本発明で規定する化学組成条件から外れるため、所望の靱性(vTrs)と「強度−延性バランス」(「TS×EL」)が得られていない。   In Test No. 16 and Test No. 17, the steel does not contain B and deviates from the chemical composition conditions defined in the present invention, so that the desired toughness (vTrs) and “strength-ductility balance” (“TS × EL”) are obtained. It is not done.

すなわち、試験番号16及び試験番号17の場合には鋼がBを含有していないので、TiB2によるTiNの粗大化を抑制作用が得られない。このためTiNが粗大化して靱性及び延性が低下し、それぞれ、vTrsは−8℃及び15℃で高く、また、「TS×EL」は14552MPa・%及び11089MPa・%で小さく、いずれも目標に達していない。 That is, in the case of the test number 16 and the test number 17, since the steel does not contain B, the effect of suppressing the coarsening of TiN by TiB 2 cannot be obtained. For this reason, TiN coarsens and toughness and ductility decrease, vTrs is high at −8 ° C. and 15 ° C., respectively, and “TS × EL” is small at 14552 MPa ·% and 11089 MPa ·%, both of which reach the target. Not.

試験番号18〜21は、鋼が前記(1)式の規定から外れるものであるため、vTrsが−5〜30℃で靱性は低く、しかも、TSが552〜573MPaと低い。そして、TSが低いので「TS×EL」も7449〜14985MPa・%と低い。   In Test Nos. 18 to 21, since the steel deviates from the definition of the formula (1), the vTrs is −5 to 30 ° C., the toughness is low, and the TS is as low as 552 to 573 MPa. And since TS is low, "TS * EL" is also as low as 7449-14985MPa%.

すなわち、試験番号18〜21の場合には、鋼の化学組成が前記(1)式を満たさないので、過剰なBがNと結合してBNを形成することになって、靱性及び延性が低下する。更に、粗大なTiCのみが存在して微細なTiCが存在していないので強度が低く、TS、vTrs及び「TS×EL」のすべてが目標に達していない。   That is, in the case of test numbers 18 to 21, since the chemical composition of the steel does not satisfy the above formula (1), excessive B is combined with N to form BN, resulting in decreased toughness and ductility. To do. Further, since only coarse TiC exists and fine TiC does not exist, the strength is low, and all of TS, vTrs, and “TS × EL” have not reached the target.

なお、図1に示すように、「鋼中の粒子の総量」の増加に伴い靱性が低下する(つまり、vTrsが上昇する)傾向にある。しかし、「鋼中の粒子の総量」が同じレベルの場合には、本発明例に係る試験番号1〜11のvTrsは、比較例に係る試験番号12〜21のvTrsに比べて40℃以上低く、靱性に優れることが明らかである。   As shown in FIG. 1, the toughness tends to decrease (that is, vTrs increases) as the “total amount of particles in steel” increases. However, when the “total amount of particles in the steel” is at the same level, the vTrs of the test numbers 1 to 11 according to the present invention example is 40 ° C. or more lower than the vTrs of the test numbers 12 to 21 according to the comparative example. It is clear that the toughness is excellent.

また、図2に示すように、「鋼中の粒子の総量」の増加に伴い「強度−延性バランス」(「TS×EL」)は劣化する傾向にあるが、本発明例に係る試験番号1〜11の場合には劣化が抑えられており、「強度−延性バランス」に優れることが明らかである。   Further, as shown in FIG. 2, “strength-ductility balance” (“TS × EL”) tends to deteriorate with an increase in “total amount of particles in steel”, but test number 1 according to the present invention example. In the case of ˜11, deterioration is suppressed, and it is clear that “strength-ductility balance” is excellent.

本発明の熱延鋼材は、JIS Z 2201(1998)に記載の5号板状引張試験片を用いた場合のTSが750MPa以上で「TS×EL」の値が15500MPa・%以上、JIS Z 2202(1998)に記載の幅が5mmのサブサイズVノッチ試験片を用いた場合のvTrsが−15℃以下という良好な強度、靱性及び「強度−延性バランス」を有するので、自動車や各種の産業機械用の高強度構造部材の素材として利用することができる。   The hot-rolled steel material of the present invention has a TS of 750 MPa or more and a value of “TS × EL” of 15500 MPa ·% or more when using the No. 5 plate-like tensile test piece described in JIS Z 2201 (1998), JIS Z 2202 (1998) has a good strength, toughness and "strength-ductility balance" of v-15 when the sub-size V-notch test piece having a width of 5 mm described in (1998) is used. It can be used as a raw material for high strength structural members.

実施例における各種熱延鋼板の「鋼中の粒子の総量」と「vTrs」(靱性)との関係を整理して示す図である。It is a figure which rearranges and shows the relationship between "the total amount of the particle | grains in steel" and "vTrs" (toughness) of the various hot-rolled steel plates in an Example. 実施例における各種熱延鋼板の「鋼中の粒子の総量」と「TS×EL」(「強度−延性バランス」)との関係を整理して示す図である。It is a figure which rearranges and shows the relationship between "the total amount of the particle | grains in steel" of various hot-rolled steel plates in an Example, and "TSxEL" ("strength-ductility balance").

Claims (3)

質量%で、C:0.05〜0.20%、Ti:0.01〜2%及びB:0.001〜0.5%を含み、且つ下記の(1)式を満たす化学組成を有する熱延鋼材であって、鋼中に斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含むことを特徴とする熱延鋼材。
2{(Ti/48)−(N/14)}>(B/11)・・・・(1)
ここで、(1)式中の元素記号は、その元素の質量%での鋼中含有量を示す。
It has a chemical composition that includes C: 0.05 to 0.20%, Ti: 0.01 to 2%, and B: 0.001 to 0.5% and satisfies the following formula (1) by mass%: A hot-rolled steel material comprising a TiB particle having an orthorhombic structure and a TiC particle having a cubic structure in the steel.
2 {(Ti / 48)-(N / 14)}> (B / 11) (1)
Here, the element symbol in the formula (1) indicates the content in steel in mass% of the element.
質量%で、C:0.05〜0.20%、Ti:0.01〜2%、B:0.001〜0.5%、Si:0.01〜2.0%、Mn:0.5〜2.0%、sol.Al:0.002〜0.05%、Nb:0〜0.1%及びV:0〜0.3%を含み、残部はFe及び不純物からなり、不純物中のNは0.01%以下、且つ、下記の(1)式を満たす化学組成を有する熱延鋼材であって、鋼中に斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含むことを特徴とする熱延鋼材。
2{(Ti/48)−(N/14)}>(B/11)・・・・(1)
ここで、(1)式中の元素記号は、その元素の質量%での鋼中含有量を示す。
By mass%, C: 0.05 to 0.20%, Ti: 0.01 to 2%, B: 0.001 to 0.5%, Si: 0.01 to 2.0%, Mn: 0.00. 5 to 2.0%, sol. Al: 0.002 to 0.05%, Nb: 0 to 0.1% and V: 0 to 0.3%, the balance consists of Fe and impurities, N in the impurities is 0.01% or less, A hot rolled steel material having a chemical composition satisfying the following formula (1), wherein the steel contains TiB particles having an orthorhombic structure and TiC particles having a cubic structure.
2 {(Ti / 48)-(N / 14)}> (B / 11) (1)
Here, the element symbol in the formula (1) indicates the content in steel in mass% of the element.
質量%で、C:0.05〜0.20%、Ti:0.01〜2%、B:0.001〜0.5%、Si:0.01〜2.0%、Mn:0.5〜2.0%、sol.Al:0.002〜0.05%、Nb:0〜0.1%及びV:0〜0.3%を含み、残部はFe及び不純物からなり、不純物中のNは0.01%以下、且つ、下記の(1)式を満たす化学組成を有する鋼塊又は鋼片から熱延鋼材を製造する方法であって、1200℃以上の温度を有する前記の鋼塊又は鋼片の熱間での加工工程に、20℃/s以上の冷却速度で1100〜900℃の温度範囲の温度T℃まで冷却して100s-1以下の歪速度で圧下率10%以上の加工を施す工程を含むことを特徴とする、鋼中に斜方晶構造のTiB粒子及び立方晶構造のTiC粒子を含む熱延鋼材の製造方法。
2{(Ti/48)−(N/14)}>(B/11)・・・・(1)
ここで、(1)式中の元素記号は、その元素の質量%での鋼中含有量を示す。
By mass%, C: 0.05 to 0.20%, Ti: 0.01 to 2%, B: 0.001 to 0.5%, Si: 0.01 to 2.0%, Mn: 0.00. 5 to 2.0%, sol. Al: 0.002 to 0.05%, Nb: 0 to 0.1% and V: 0 to 0.3%, the balance consists of Fe and impurities, N in the impurities is 0.01% or less, And it is a method of manufacturing a hot-rolled steel material from a steel ingot or steel slab having a chemical composition satisfying the following formula (1), wherein the steel ingot or steel slab having a temperature of 1200 ° C. or higher is hot. The processing step includes a step of cooling to a temperature T ° C. in a temperature range of 1100 to 900 ° C. at a cooling rate of 20 ° C./s or more and performing a processing with a reduction rate of 10% or more at a strain rate of 100 s −1 or less. A method for producing a hot-rolled steel material characterized by including orthorhombic TiB particles and cubic TiC particles in steel.
2 {(Ti / 48)-(N / 14)}> (B / 11) (1)
Here, the element symbol in the formula (1) indicates the content in steel in mass% of the element.
JP2004157111A 2004-05-27 2004-05-27 Hot-rolled steel material and manufacturing method thereof Expired - Fee Related JP4172424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157111A JP4172424B2 (en) 2004-05-27 2004-05-27 Hot-rolled steel material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157111A JP4172424B2 (en) 2004-05-27 2004-05-27 Hot-rolled steel material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005336548A true JP2005336548A (en) 2005-12-08
JP4172424B2 JP4172424B2 (en) 2008-10-29

Family

ID=35490435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157111A Expired - Fee Related JP4172424B2 (en) 2004-05-27 2004-05-27 Hot-rolled steel material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4172424B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029011A2 (en) * 2006-09-06 2008-03-13 Arcelormittal France Steel plate for producing light structures and method for producing said plate
CN102363859A (en) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 Method for producing wear-resisting steel plate
CN102618867A (en) * 2012-03-19 2012-08-01 湖南三泰新材料股份有限公司 Composite reinforcement method for TiC/TiB2 base metal ceramic on surface of roller
WO2014019352A1 (en) * 2012-07-31 2014-02-06 宝山钢铁股份有限公司 Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
US9067260B2 (en) 2006-09-06 2015-06-30 Arcelormittal France Steel plate for producing light structures and method for producing said plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029011A2 (en) * 2006-09-06 2008-03-13 Arcelormittal France Steel plate for producing light structures and method for producing said plate
WO2008029011A3 (en) * 2006-09-06 2008-05-02 Arcelor France Steel plate for producing light structures and method for producing said plate
US9067260B2 (en) 2006-09-06 2015-06-30 Arcelormittal France Steel plate for producing light structures and method for producing said plate
US9718125B2 (en) 2006-09-06 2017-08-01 Arcelormittal France Steel plate for producing light structures and method for producing said plate
US10702916B2 (en) 2006-09-06 2020-07-07 Arcelormittal France Steel plate for producing light structures and method for producing said plate
CN102363859A (en) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 Method for producing wear-resisting steel plate
CN102618867A (en) * 2012-03-19 2012-08-01 湖南三泰新材料股份有限公司 Composite reinforcement method for TiC/TiB2 base metal ceramic on surface of roller
WO2014019352A1 (en) * 2012-07-31 2014-02-06 宝山钢铁股份有限公司 Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
US9797033B2 (en) 2012-07-31 2017-10-24 Baoshan Iron & Steele Co., Ltd. High-strength, high-toughness, wear-resistant steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP4172424B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP5838796B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP2006176843A (en) High-strength and low-density steel sheet superior in ductility and manufacturing method therefor
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2005015909A (en) High-strength low-specific-gravity steel sheet and method for manufacturing the same
WO2015060223A1 (en) Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent cold workability
JP2010285657A (en) Precipitation strengthening type dual phase cold rolled steel sheet, and method for producing the same
JP4699342B2 (en) High strength non-tempered steel for cold forging with excellent fatigue limit ratio
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2005213595A (en) Method for manufacturing super-fine grain hot-rolled steel plate
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5821810B2 (en) Manufacturing method of fine-grained steel sheet
CN111094612A (en) Hot-rolled steel sheet and method for producing same
JP2006348353A (en) High-tensile-strength hot-rolled steel sheet and manufacturing method therefor
WO2019031583A1 (en) Hot rolled steel sheet and method for manufacturing same
JP5896183B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP2009120962A (en) High-strength low-specific gravity steel sheet excellent in ductility, and its production method
JP6509187B2 (en) High strength cold rolled steel sheet excellent in bending workability and manufacturing method thereof
JP4712842B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP4172424B2 (en) Hot-rolled steel material and manufacturing method thereof
JP6390573B2 (en) Cold rolled steel sheet and method for producing the same
JP2005029889A (en) High strength low specific gravity steel sheet excellent in ductility, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Ref document number: 4172424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees