JP2005335371A - Surface treated steel sheet for fuel container - Google Patents

Surface treated steel sheet for fuel container Download PDF

Info

Publication number
JP2005335371A
JP2005335371A JP2005108708A JP2005108708A JP2005335371A JP 2005335371 A JP2005335371 A JP 2005335371A JP 2005108708 A JP2005108708 A JP 2005108708A JP 2005108708 A JP2005108708 A JP 2005108708A JP 2005335371 A JP2005335371 A JP 2005335371A
Authority
JP
Japan
Prior art keywords
layer
steel sheet
mass
parts
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005108708A
Other languages
Japanese (ja)
Other versions
JP4400499B2 (en
Inventor
Yoshiyuki Hosono
義行 細野
Katsuji Kawanishi
勝次 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005108708A priority Critical patent/JP4400499B2/en
Priority to KR1020050035477A priority patent/KR100712670B1/en
Publication of JP2005335371A publication Critical patent/JP2005335371A/en
Application granted granted Critical
Publication of JP4400499B2 publication Critical patent/JP4400499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treated steel sheet not containing lead and hexavalent chromium and improved in resistance to deteriorated gasoline, weldability and press working property and suitable for a fuel container such as a gasoline tank of a car or the like. <P>SOLUTION: A silicon-based coating film with an Si deposition of 10-300 mg/m<SP>2</SP>is formed as a first layer on both side faces of a zinc plated steel sheet. An epoxy resin layer of a film thickness of 0.6-2.0 μm containing 5-60 pts. mass of a metal powder selected from a Ni powder and a ferrosilicon powder with an average particle diameter of 0.1-6.0 μm to 100 pts. mass of a resin is formed on the above coating film on the inner surface of the container. This second layer may further contain one of or both silica and wax. On the outer surface of the container, a layer with a film thickness of 0.3-2.0 μm containing 1-40 pts. mass of the wax and 5-80 pts. mass of silica in 100 pts. mass of an epoxy type resin having a functional group selected from hydroxyl, isocyanate, carboxyl, glycidyl and amino group is formed on the first layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特にガソリンを燃料とする自動車の燃料タンクといった燃料容器に適した、亜鉛系めっき鋼板を素材とする表面処理鋼板に関する。本発明の表面処理鋼板は、鉛と6価クロムを含有せず、燃料タンクの内面側で問題となる、有機酸を含有する劣化したガソリンやアルコール含有ガソリン燃料(ガソホール)に対する高い耐食性(以下、アルコール含有ガソリン燃料に対する耐食性も含めて「耐劣化ガソリン性」と総称する)を有し、かつ抵抗溶接性、プレス成形性にも優れている。   The present invention relates to a surface-treated steel sheet made of a zinc-based plated steel sheet, which is particularly suitable for a fuel container such as an automobile fuel tank that uses gasoline as fuel. The surface-treated steel sheet of the present invention does not contain lead and hexavalent chromium, and has a high corrosion resistance (hereinafter referred to as “gasohol”), which is a problem on the inner surface side of the fuel tank, and deteriorated gasoline or alcohol-containing gasoline fuel containing organic acids. It is a collective term for “degradation gasoline resistance” including corrosion resistance against alcohol-containing gasoline fuel, and is excellent in resistance weldability and press formability.

普通のガソリンを燃料とする自動車や二輪車(以下、自動車と総称)用の燃料タンクの素材には、内外面の耐食性、特に容器内面側の燃料環境での耐食性、プレス成形性、および溶接性が要求される。   The fuel tank material for ordinary gasoline-powered automobiles and motorcycles (hereinafter referred to as automobiles) has corrosion resistance on the inner and outer surfaces, especially in the fuel environment on the inner surface of the container, press formability, and weldability. Required.

ガソリン燃料容器用材料として、従来はターンシートと呼ばれる、Pb−10〜25%Sn合金めっき鋼板が広く使用されてきた。しかし、近年の環境規制により、Pbを含有するターンシートの利用が難しくなり、これに代わる燃料容器用表面処理鋼板の開発が望まれている。また、燃料に対する耐食性については、ガソリン成分が酸化して生じた有機酸を含む劣化ガソリン環境での性能が求められるなど、より高度なレベルが要求されるようになっている。   As a material for gasoline fuel containers, a Pb-10 to 25% Sn alloy-plated steel sheet, conventionally called a turn sheet, has been widely used. However, due to recent environmental regulations, it becomes difficult to use a turnsheet containing Pb, and the development of a surface-treated steel sheet for a fuel container that replaces this is desired. Further, with respect to the corrosion resistance to fuel, a higher level is required, such as performance in a deteriorated gasoline environment containing an organic acid generated by oxidation of gasoline components.

この要求に対し、Alめっき鋼板、Sn−Znめっき鋼板などが代替品として開発されている。このうち、Alめっき鋼板は、溶接やハンダ付け等の接合性に問題がある。この点、Sn−約8%Zn合金めっき鋼板は、性能的なバランスがよいとされているが、めっきそのものの用途がほぼ燃料容器に限定されるため、市場規模が小さく、安定供給や価格面に問題がある。従って、一般に広く用いられている、比較的安価な亜鉛系めっき(「亜鉛系めっき」とは、亜鉛めっきと亜鉛合金めっきとを含む意味)鋼板を燃料容器用に適用できれば、経済的に有利である。   In response to this requirement, Al-plated steel plates, Sn—Zn-plated steel plates and the like have been developed as alternatives. Among these, the Al-plated steel sheet has a problem in joining properties such as welding and soldering. In this respect, Sn-approx. 8% Zn alloy-plated steel sheet is said to have a good balance of performance, but since the application of plating itself is almost limited to fuel containers, the market scale is small, stable supply and price There is a problem. Therefore, it is economically advantageous if a relatively inexpensive zinc-based plating (“zinc-based plating” means zinc plating and zinc alloy plating) steel plate, which is widely used in general, can be applied to a fuel container. is there.

Zn系めっき鋼板を自動車用燃料容器用途に適用する技術として、特開平10−137681号公報(特許文献1)がある。この公報には、クロメート処理した亜鉛系めっき鋼板に対して、内面側にはNiおよびAl金属粉を含有するアミン変性エポキシ樹脂層を被覆し、外面側にはワックスを含有するシリカ含有樹脂層を被覆した表面処理鋼板が提案されている。   Japanese Unexamined Patent Publication No. 10-137681 (Patent Document 1) is a technique for applying a Zn-based plated steel sheet to an automobile fuel container. In this publication, a chromate-treated galvanized steel sheet is coated with an amine-modified epoxy resin layer containing Ni and Al metal powder on the inner surface side, and a silica-containing resin layer containing wax on the outer surface side. Coated surface-treated steel sheets have been proposed.

特許文献1に記載された表面処理鋼板は、亜鉛系めっき鋼板をクロメート処理した上で、内面と外面に異なる樹脂層を形成するものである。しかし、最近になって、やはり環境問題から、前述したPbだけでなく、有害な6価クロムを含有するクロメート処理を利用しない材料、さらにはクロムを全く含有しないノンクロム材料の要望が強くなってきている。   The surface-treated steel sheet described in Patent Document 1 forms a different resin layer on the inner surface and the outer surface after the chromate treatment of a zinc-based plated steel sheet. However, recently, due to environmental problems, there is a growing demand for materials that do not use the chromate treatment containing harmful hexavalent chromium, as well as non-chromium materials that do not contain chromium at all, in addition to the aforementioned Pb. Yes.

特許第3328578号(特許文献2)には、亜鉛系めっき鋼板に対して、燃料容器の内面に当たる片面に、クロメート、リン酸亜鉛またはリン酸鉄といった化成処理を施し、さらにNi粉とAl粉を含有するアミン変性エポキシ樹脂層で被覆した表面処理鋼板が提案されている。特開2000−129461号公報(特許文献3)には、亜鉛系めっき鋼板の片面に、樹脂とシリカ源を主被膜形成成分とする第1層を形成し、その上に第2層としてNiとAlを含む金属粉を含有する樹脂層を有する表面処理鋼板が提案されている。
特開平10−137681号公報 特許第3328578号明細書 特開2000−1294611号公報
In Japanese Patent No. 3328578 (Patent Document 2), a zinc-plated steel sheet is subjected to a chemical conversion treatment such as chromate, zinc phosphate or iron phosphate on one side corresponding to the inner surface of the fuel container, and Ni powder and Al powder are further added. A surface-treated steel sheet coated with an amine-modified epoxy resin layer is proposed. In JP 2000-129461 A (Patent Document 3), a first layer containing a resin and a silica source as a main film forming component is formed on one side of a zinc-based plated steel sheet, and Ni is formed thereon as a second layer. A surface-treated steel sheet having a resin layer containing metal powder containing Al has been proposed.
Japanese Patent Application Laid-Open No. 10-137681 Japanese Patent No. 3328578 JP 2000-1294611 A

しかし、上述した従来技術では、金属粉を含有する樹脂層の厚みが2〜10μmと大きいため、実用上は安定した溶接性を得ることが難しく、燃料容器の製造に使用するには不十分なものであった。   However, in the above-described conventional technology, since the thickness of the resin layer containing the metal powder is as large as 2 to 10 μm, it is difficult to obtain stable weldability in practical use, which is insufficient for use in the manufacture of the fuel container. It was a thing.

また、燃料タンクの外面側は、プレス成形後に普通は塗装が施されるため、プレス成形中に表面処理鋼板の樹脂層が損傷しても、耐食性が問題となることは少ない。一方、内面側は、プレス成形後に塗装が施されないのが普通であるので、樹脂層がプレス成形により損傷しても、劣化ガソリン環境での耐食性が確保されることが望まれる。従来のノンクロム材料の場合、特に化成処理がリン酸亜鉛またはリン酸鉄であると、有機酸に対する耐食性が不十分で、プレス成形後の耐劣化ガソリン性が著しく低下する。また、内外両面とも、プレス成形中の樹脂層の損傷が最小限となるように、プレス成形性、従って、潤滑性が良好であることが望ましい。   In addition, since the outer surface side of the fuel tank is usually painted after press forming, even if the resin layer of the surface-treated steel sheet is damaged during press forming, corrosion resistance is rarely a problem. On the other hand, since it is normal that the inner surface side is not coated after press molding, it is desired that corrosion resistance in a deteriorated gasoline environment is secured even if the resin layer is damaged by press molding. In the case of a conventional non-chromium material, particularly when the chemical conversion treatment is zinc phosphate or iron phosphate, the corrosion resistance to organic acids is insufficient, and the deterioration gasoline resistance after press molding is remarkably lowered. Further, it is desirable that both the inner and outer surfaces have good press formability and therefore good lubricity so that damage to the resin layer during press forming is minimized.

本発明の課題は、亜鉛系めっき鋼板を母材とし、環境面で問題のある鉛および6価クロムを利用せずに、ガソリン環境での耐食性、特に耐劣化ガソリン性に優れ、かつ溶接性に優れ、さらに望ましくは、プレス成形性にも優れた、自動車ガソリン容器等の燃料容器用の表面処理鋼板を提供することである。   The object of the present invention is to use a zinc-based plated steel sheet as a base material, without using lead and hexavalent chromium which are environmentally problematic, and to be excellent in corrosion resistance in a gasoline environment, particularly in deterioration gasoline resistance and in weldability. An object of the present invention is to provide a surface-treated steel sheet for a fuel container such as an automobile gasoline container, which is excellent and further excellent in press formability.

本発明によれば、亜鉛系めっき鋼板のめっき表面に6価クロムを含まない下地処理を施し、片面側では、その上層に特定の粒子径のNi金属粉末および/またはフェロシリコン粉末を含有した適正範囲の膜厚の樹脂層を形成し、好ましくは他面側では、潤滑性に優れた樹脂層を形成することにより、耐劣化ガソリン性および溶接性が両立し、プレス成形性にも優れた表面処理鋼板が得られる。   According to the present invention, the plating surface of the zinc-based plated steel sheet is subjected to a base treatment that does not contain hexavalent chromium, and on one side, the upper layer contains Ni metal powder and / or ferrosilicon powder having a specific particle size. Forming a resin layer with a film thickness in the range, preferably on the other side, by forming a resin layer with excellent lubricity, the surface is compatible with deterioration gasoline resistance and weldability and has excellent press moldability A treated steel sheet is obtained.

本発明は、1態様において、亜鉛系めっき鋼板の少なくとも片面のめっき表面に、6価クロムを含まないケイ素質被膜からなる第1層と、その上の第2層とを備え、該第1層の付着量がSi量として10〜300mg/m2であり、該第2層は熱硬化型有機樹脂からなるバインダ100質量部中に、平均粒子径0.1〜6.0μmのNi粉およびフェロシリコン粉から選ばれた金属粉を1〜60質量部の量で含有する、膜厚0.6μm以上、2.0μm未満の金属粉含有樹脂層であることを特徴とする、燃料容器用表面処理鋼板である。 In one aspect, the present invention includes a first layer made of a silicon-based coating containing no hexavalent chromium on a plated surface of at least one surface of a zinc-based plated steel sheet, and a second layer thereon. The amount of Si is 10 to 300 mg / m 2 as the amount of Si, and the second layer is formed of 100 parts by mass of a binder made of a thermosetting organic resin, Ni powder having an average particle size of 0.1 to 6.0 μm and ferro A surface treatment for a fuel container, characterized in that it is a metal powder-containing resin layer having a film thickness of 0.6 μm or more and less than 2.0 μm, containing metal powder selected from silicon powder in an amount of 1 to 60 parts by mass. It is a steel plate.

別の態様において、本発明は、亜鉛系めっき鋼板の両面のめっき表面に、第1層として6価クロムを含まないケイ素質被膜と、その上の第2層とを備え、該第1層は、付着量がSi量として10〜300mg/m2であり、該第2層は、鋼板の一方の面では、熱硬化型樹脂からなるバインダ100質量部中に、平均粒子径0.1〜6.0μmのNi粉およびフェロシリコン粉から選ばれた金属粉を1〜60質量部の量で含有する、膜厚0.6μm以上、2.0μm未満の金属粉含有樹脂層であり、鋼板の反対側の面では、水酸基、イソシアネート基、カルボキシル基、グリシジル基およびアミノ基から選ばれた少なくとも1種の官能基を有する少なくとも1種の有機樹脂からなるバインダ100質量部中にワックス1〜40質量部とシリカ、チタニアおよびジルコニアから選ばれた少なくとも1種を5〜80質量部とを含有する、膜厚0.3〜2.0μmの層であることを特徴とする、燃料容器用表面処理鋼板である。 In another aspect, the present invention comprises, on the plated surfaces on both sides of a zinc-based plated steel sheet, a silicon film not containing hexavalent chromium as a first layer, and a second layer thereon, the first layer comprising: The adhesion amount is 10 to 300 mg / m 2 as the Si amount, and the second layer has an average particle diameter of 0.1 to 6 in 100 parts by mass of a thermosetting resin on one surface of the steel plate. A metal powder-containing resin layer having a film thickness of 0.6 μm or more and less than 2.0 μm, containing metal powder selected from Ni powder and ferrosilicon powder of 0.0 μm in an amount of 1 to 60 parts by mass, opposite to a steel plate On the side surface, 1 to 40 parts by mass of a wax in 100 parts by mass of a binder made of at least one organic resin having at least one functional group selected from a hydroxyl group, an isocyanate group, a carboxyl group, a glycidyl group and an amino group. And silica, titania At least one selected from zirconia and containing a 5-80 parts by weight, characterized in that it is a layer having a thickness of 0.3 to 2.0 .mu.m, a surface treated steel sheet for fuel containers.

前記第1層のケイ素質被膜は、水性シリカ、気相シリカ、アルカリ金属ケイ酸塩、アルコキシシラン、およびケイ酸アルキルエステルから選ばれた1種または2種以上のシリカ源(シリカまたはその前駆体)を主成分とする処理液の塗布・乾燥により形成されたものであることが好ましい。   The silicon coating of the first layer is composed of one or more silica sources (silica or a precursor thereof) selected from aqueous silica, gas phase silica, alkali metal silicate, alkoxysilane, and alkyl silicate ester. ) Is preferably formed by applying and drying a treatment liquid containing as a main component.

前記金属粉含有樹脂層は、バインダ100質量部に対して、(1)シリカ、チタニアおよびジルコニアから選ばれた少なくとも1種を5〜40質量部、(2)ワックス5〜20質量部、ならびに(3)金属Al粉1〜30質量部、から選ばれた1または2以上の成分をさらに含有していてもよい。また、この金属粉含有樹脂層のバインダである熱硬化性型樹脂は、好ましくはエポキシ系樹脂である。   The metal powder-containing resin layer is (1) 5 to 40 parts by mass of at least one selected from silica, titania and zirconia, (2) 5 to 20 parts by mass of wax, and 100 parts by mass of the binder. 3) It may further contain one or more components selected from 1 to 30 parts by mass of metal Al powder. The thermosetting resin that is the binder of the metal powder-containing resin layer is preferably an epoxy resin.

本発明において、バインダの質量は、バインダとして用いた樹脂成分の固形分としての質量であり、バインダとして用いる樹脂成分が架橋剤で熱硬化させるタイプの場合には、樹脂と架橋剤との合計量である。   In the present invention, the mass of the binder is the mass as a solid content of the resin component used as the binder, and in the case where the resin component used as the binder is a type that is thermally cured with a crosslinking agent, the total amount of the resin and the crosslinking agent It is.

本発明により、亜鉛系めっき鋼板を母材とし、かつ環境に有害な鉛や6価クロムを全く含有させずに、自動車ガソリン用燃料容器に要求される諸性能、特に、耐劣化ガソリン性、プレス成形性および溶接性に優れた、安価な表面処理鋼板を提供することができる。   According to the present invention, various performances required for a fuel container for automobile gasoline, in particular, deterioration gasoline resistance, press, using zinc-plated steel sheet as a base material and containing no harmful lead or hexavalent chromium at all. An inexpensive surface-treated steel sheet excellent in formability and weldability can be provided.

[母材めっき鋼板]
本発明の表面処理鋼板の母材は、亜鉛系めっき鋼板、即ち、亜鉛めっき鋼板または亜鉛合金めっき鋼板であり、両面めっき鋼板であることが好ましい。
[Base material plated steel sheet]
The base material of the surface-treated steel sheet of the present invention is a zinc-based plated steel sheet, that is, a galvanized steel sheet or a zinc alloy-plated steel sheet, and preferably a double-sided plated steel sheet.

めっき素材の鋼板は、通常用いられている一般的な冷延鋼板でよい。ただし、燃料容器用途では一般に厳しい成形加工を受けるため、例えば極低炭素鋼で、かつTi、Nb、Bの1種または2種以上が添加された成分系といった、プレス成形性に優れた鋼板であることが好ましい。   The plated steel sheet may be a general cold-rolled steel sheet that is usually used. However, since it is generally subjected to severe forming processing in fuel container applications, it is a steel sheet with excellent press formability, such as ultra low carbon steel and a component system to which one or more of Ti, Nb, and B are added. Preferably there is.

鋼板に施すめっきは、耐食性確保の目的で広く利用されている亜鉛または亜鉛合金めっきである。めっき種としては、これらに制限されるものではないが、例えば、Zn、Zn−Al、Zn−Al−Si、Zn−Ni、Zn−Fe、Zn−Cr、Zn−Mg、Zn−Sn、Zn−Coなどが挙げられる。好ましいのはZn−Ni合金めっきであり、性能と経済性のバランスが最も優れる。Zn−Ni合金めっきのNi含有量は11〜14質量%の範囲内が好ましい。   The plating applied to the steel sheet is zinc or zinc alloy plating widely used for the purpose of ensuring corrosion resistance. The plating type is not limited to these, but, for example, Zn, Zn-Al, Zn-Al-Si, Zn-Ni, Zn-Fe, Zn-Cr, Zn-Mg, Zn-Sn, Zn -Co etc. are mentioned. Preferred is Zn—Ni alloy plating, which has the best balance between performance and economy. The Ni content of the Zn—Ni alloy plating is preferably in the range of 11 to 14% by mass.

めっき方法は、溶融めっき法、電気めっき法、蒸着めっき法などのいずれでもよい。めっき層は、少量の有機インヒビター、デキストリン、デキストランなどの有機化合物を含有していてもよい。めっき付着量は、耐食性の観点から、片面あたり10g/m2以上が好ましい。しかし、付着量が多すぎると、コスト、加工性、溶接性の面で問題となる。より好ましい付着量は、片面当たり15〜50g/m2ある。 The plating method may be any of a hot dipping method, an electroplating method, a vapor deposition plating method, and the like. The plating layer may contain a small amount of an organic compound such as an organic inhibitor, dextrin, or dextran. The plating adhesion amount is preferably 10 g / m 2 or more per side from the viewpoint of corrosion resistance. However, if the adhesion amount is too large, there will be problems in terms of cost, workability, and weldability. A more preferable adhesion amount is 15 to 50 g / m 2 per side.

本発明の表面処理鋼板は、母材の亜鉛系めっき鋼板の少なくとも片面の表面(すなわち、めっき層の上)に、次に説明する第1層と第2層の被膜を順に形成したものである。この2層の被膜は、通常は、燃料容器の内面になる片面だけに形成され、反対側の面には別の表面処理が施される。   The surface-treated steel sheet according to the present invention is formed by sequentially forming a coating of a first layer and a second layer, which will be described below, on at least one surface (that is, on the plating layer) of a zinc-based plated steel sheet as a base material. . This two-layer coating is usually formed only on one side which becomes the inner surface of the fuel container, and another surface treatment is applied to the opposite side.

[第1層]
亜鉛系めっき層の上に形成される第1層は、6価クロムを含まないケイ素質の被膜である。ケイ素質の被膜は、シリカ源(コロイド状シリカまたはその前駆体)を含有する処理液を用い、常法に従って、母材めっき鋼板の表面に処理液を塗布し、引き続き乾燥(または焼付け)することにより形成することができる。
[First layer]
The first layer formed on the zinc-based plating layer is a silicon film that does not contain hexavalent chromium. For the silicon film, a treatment solution containing a silica source (colloidal silica or its precursor) is used, and the treatment solution is applied to the surface of the base plated steel sheet and then dried (or baked) according to a conventional method. Can be formed.

シリカ源としては、水性シリカ(シリカゾル、コロイダルシリカ等とも呼ばれる)、気相シリカ(ヒュームドシリカ、乾式シリカ等とも呼ばれる)、アルカリ金属ケイ酸塩、アルコキシシラン、およびケイ酸アルキルエステルから選んだ1種または2種以上を使用することができる。   The silica source is selected from aqueous silica (also called silica sol, colloidal silica, etc.), gas phase silica (also called fumed silica, dry silica, etc.), alkali metal silicate, alkoxysilane, and alkyl silicate ester 1 Species or two or more can be used.

アルコキシシランとは、ケイ素1原子にn個(n=2〜3)の加水分解性の基(代表的にはアルコキシ基、特にメトキシ基もしくはエトキシ基である)と(n−1)個の非加水分解性の有機基(例えば、エチル、プロピルなどの低級アルキル基、アミノ、エポキシ等の官能性置換基を含有する低級アルキル基、ビニル基等)とが結合した化合物である。本発明において第1層に用いるアルコキシシランとして好ましいのは、非加水分解性の有機基がアルキル基であるもの、例えば、エチルトリメトキシシラン、プロピルトリメトキシシラン、エチルトリエトキシシラン等であるが、非加水分解性有機基が官能基を有しているアルキルであるか、ビニル基である、一般にシランカップリング剤と呼ばれているアルコキシシランも使用可能である。   Alkoxysilane is an n (n = 2 to 3) hydrolyzable group (typically an alkoxy group, particularly a methoxy group or an ethoxy group) per silicon atom and (n-1) non-hydrocarbon groups. It is a compound in which a hydrolyzable organic group (for example, a lower alkyl group such as ethyl or propyl, a lower alkyl group containing a functional substituent such as amino or epoxy, a vinyl group, or the like) is bonded. Preferred as the alkoxysilane used in the first layer in the present invention is one in which the non-hydrolyzable organic group is an alkyl group, for example, ethyltrimethoxysilane, propyltrimethoxysilane, ethyltriethoxysilane, etc. Alkoxysilanes generally called silane coupling agents in which the non-hydrolyzable organic group is an alkyl having a functional group or a vinyl group can also be used.

ケイ酸アルキルエステルは、テトラアルコキシシラン(=アルキルシリケート)のことであり、具体例としてはエチルシリケートが挙げられる。
アルコキシシランは、処理液中または塗布・乾燥(焼付)中で加水分解と重縮合を受けて、最終的にポリシロキサン型の重合体になる。ケイ酸アルキルエステルも同様に加水分解と重縮合を受け、最終的にはシリカ質の成分になる。従って、上記のどのシリカ源を使用しても、それを塗布乾燥することにより、シリカからなるか、または一部有機分が残ったポリシロキサン構造を持つ、ケイ素質の被膜が第1層として形成される。
Silicic acid alkyl ester is tetraalkoxysilane (= alkyl silicate), and specific examples thereof include ethyl silicate.
The alkoxysilane undergoes hydrolysis and polycondensation in the treatment liquid or in coating and drying (baking), and finally becomes a polysiloxane type polymer. Silicic acid alkyl esters similarly undergo hydrolysis and polycondensation and eventually become siliceous components. Therefore, any silica source described above can be applied and dried to form a silicon-containing film as a first layer made of silica or having a polysiloxane structure in which some organic components remain. Is done.

第1層の付着量は、少なすぎると耐劣化ガソリン性に劣り、多すぎると溶接性に劣る。適正な付着量としては、第1層中に含まれるSiの付着量として、10mg/m2以上、300mg/m2以下程度であり、より好ましい範囲は20〜100mg/m2である。 If the adhesion amount of the first layer is too small, it is inferior in the resistance to deterioration gasoline, and if it is too much, the weldability is inferior. The proper adhesion amount, as the adhesion amount of Si contained in the first layer, 10 mg / m 2 or more, a degree 300 mg / m 2 or less, more preferably in the range of 20 to 100 mg / m 2.

第1層は、ケイ素化合物の他に、樹脂、リン酸化合物等を若干量含んでも良い。樹脂としては、第2層との密着性の点から、水酸基、カルボキシル基、アミノ基、グリシジル基、イソシアネート基等の1種または2種以上を有する熱可塑性樹脂が望ましく、樹脂系としては、たとえばウレタン、アクリル、ポリエステル、エポキシ、メラミン樹脂、アルキッド樹脂が挙げられる。このような樹脂を添加することにより、耐食性が向上する。また、リン酸化合物としては、リン酸、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩が挙げられ、その添加により耐食性が向上する。これらのケイ素化合物以外の成分を第1層に含有させる場合、その量は、被膜形成に用いる樹脂液中のシリカ源(シリカとしての量)100質量部に対して合計で20質量部以下とすることが好ましい。   The first layer may contain a slight amount of a resin, a phosphoric acid compound and the like in addition to the silicon compound. The resin is preferably a thermoplastic resin having one or more of hydroxyl group, carboxyl group, amino group, glycidyl group, isocyanate group and the like from the viewpoint of adhesion to the second layer. Examples include urethane, acrylic, polyester, epoxy, melamine resin, and alkyd resin. By adding such a resin, the corrosion resistance is improved. Moreover, as a phosphoric acid compound, phosphoric acid, phosphorous acid, hypophosphorous acid, and these alkali metal salts are mentioned, Corrosion resistance improves by the addition. When components other than these silicon compounds are contained in the first layer, the amount thereof is 20 parts by mass or less in total with respect to 100 parts by mass of the silica source (amount as silica) in the resin liquid used for film formation. It is preferable.

[第2層]
本発明の表面処理鋼板は、前記第1層の上に、最上層となる第2層として、金属粉を含有する樹脂層を備える。この第2層(金属粉含有樹脂層)は、熱硬化型樹脂をバインダ樹脂成分とし、それに所定粒径のNi粉とフェロシリコン粉の一方または両方を含有させたものである。この金属粉含有樹脂層は、特に耐劣化ガソリン性に優れているので、燃料容器の内面側に形成することが好ましい。以下では、この金属粉含有樹脂層を便宜上、内面側の第2層と言うことがある。
[Second layer]
The surface-treated steel sheet according to the present invention includes a resin layer containing metal powder as the second layer that is the uppermost layer on the first layer. The second layer (metal powder-containing resin layer) is obtained by using a thermosetting resin as a binder resin component and containing one or both of Ni powder and ferrosilicon powder having a predetermined particle size. Since this metal powder-containing resin layer is particularly excellent in resistance to deterioration gasoline, it is preferably formed on the inner surface side of the fuel container. Below, this metal powder containing resin layer may be called the 2nd layer of the inner surface side for convenience.

バインダ樹脂成分は、バインダとしての役割に加え、腐食環境に対してバリアとしての効果も発揮することが好ましい。それには、バインダ成分としての樹脂自体がガソリン環境で溶解、膨潤しにくい方がよい。この目的には、熱硬化性樹脂の方が熱可塑性樹脂より適している。熱硬化性樹脂としては、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、フェノール系樹脂等が挙げられるが、本発明ではエポキシ系樹脂が好ましい。エポキシ系樹脂は、アミノ基などの官能基で変性されている変性エポキシ系樹脂であってもよい。バインダ樹脂成分は、ベースとなると熱硬化性樹脂だけでなく、さらに架橋剤を含んでいてもよい。架橋剤しては、例えばフェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂等が挙げられる。熱硬化性樹脂は被膜の焼付け中に架橋して硬化し、緻密な樹脂被膜を形成する。   The binder resin component preferably exhibits an effect as a barrier against a corrosive environment in addition to the role as a binder. For that purpose, it is better that the resin itself as the binder component does not easily dissolve or swell in a gasoline environment. For this purpose, a thermosetting resin is more suitable than a thermoplastic resin. Examples of the thermosetting resin include an epoxy resin, an acrylic resin, a urethane resin, a polyester resin, and a phenol resin. In the present invention, an epoxy resin is preferable. The epoxy resin may be a modified epoxy resin modified with a functional group such as an amino group. The binder resin component may contain not only the thermosetting resin but also a cross-linking agent as a base. Examples of the crosslinking agent include phenol resin, melamine resin, benzoguanamine resin and the like. The thermosetting resin is crosslinked and cured during baking of the film to form a dense resin film.

内面側の第2層に、Ni粉およびフェロシリコン粉から選ばれた1種または2種の金属粉を含有させることで、表面処理鋼板の耐劣化ガソリン性および溶接性が改善される。これは、劣化ガソリン中に含まれる有機酸を中和する効果があるためと、溶接のために適当な通電サイトができるためであると考えられる。特に、Ni粉は、メタノール等のアルコールや、その酸化物である有機酸に対す耐食性が優れ、かつ固有抵抗が高いため溶接性向上にも有効であり添加金属粉として最もふさわしい。Ni粉の形状は、鱗片状でもよいが、球状粒子の方が好ましい。Ni粉およびフェロシリコン粉は、その平均粒子径が0.1〜6.0μmのものを使用するのがよい。粒径が小さすぎると、溶接性に劣る。一方、大きすぎると、樹脂層が多孔質になりやすく、耐劣化ガソリン性に劣るようになる上、塗工時に金属粉自体が沈降しやすくなり、均一な製品を製造することが難しくなる。より好ましい平均粒子径は0.6〜3.0μmである。なお、この球状粒子は、複数個が線状に連なった集合体の形態をとることができる。その場合には、その集合体の平均短径が前記範囲内になる。   By including one or two metal powders selected from Ni powder and ferrosilicon powder in the second layer on the inner surface side, the deterioration gasoline resistance and weldability of the surface-treated steel sheet are improved. This is considered to be because there is an effect of neutralizing the organic acid contained in the deteriorated gasoline, and because a suitable energization site is formed for welding. In particular, Ni powder is excellent in corrosion resistance to alcohols such as methanol and organic acids that are oxides thereof, and has high specific resistance, so that it is effective in improving weldability and is most suitable as an additive metal powder. The shape of the Ni powder may be scaly, but spherical particles are preferred. Ni powders and ferrosilicon powders having an average particle diameter of 0.1 to 6.0 μm are preferably used. If the particle size is too small, the weldability is poor. On the other hand, if it is too large, the resin layer tends to be porous and deteriorate in resistance to deterioration gasoline, and the metal powder itself tends to settle during coating, making it difficult to produce a uniform product. A more preferable average particle diameter is 0.6 to 3.0 μm. In addition, this spherical particle can take the form of the aggregate | assembly with which multiple pieces were connected in a linear form. In that case, the average minor axis of the aggregate falls within the above range.

Ni粉およびフェロシリコン粉から選んだ金属粉の配合量は、バインダ(これは、前述したように、樹脂+架橋剤)100質量部に対して、合計1〜60質量部の範囲内とする。金属粉の量が5質量部より少ないと、溶接性、耐食性に劣り、60質量部を超えると、被膜が多孔質になり、耐劣化ガソリン性する上、被膜形成後のプレス成形性時に金属粉の脱離を生じやすくなる。また、処理液の流動性も低下するため、均一に塗布することも非常に困難になる。より好ましい範囲は10〜40質量部である。   The blending amount of the metal powder selected from the Ni powder and the ferrosilicon powder is in the range of 1 to 60 parts by mass in total with respect to 100 parts by mass of the binder (which is resin + crosslinking agent as described above). When the amount of the metal powder is less than 5 parts by mass, the weldability and corrosion resistance are inferior. When the amount exceeds 60 parts by mass, the coating becomes porous and has resistance to deterioration gasoline. Is likely to occur. In addition, since the fluidity of the processing liquid is also reduced, it is very difficult to apply uniformly. A more preferable range is 10 to 40 parts by mass.

内面側の第2層は、前記Ni粉および/またはフェロシリコン粉に加えて、さらに金属Al粉を含有していてもよい。Al粉は、主に劣化ガソリン耐食性の改善を目的として添加する。Al粉の形状は、特許文献1に記載されているように、長径が10〜20μm程度の鱗片状であると、ガソリン透過に対する物理的な遮蔽効果が期待できるのでより好ましいと考えられる。金属Al粉を添加する場合、その量はバインダ100質量部に対して1〜30質量部の範囲とする。金属Al粉の含有量が多すぎると、被膜が多孔質になって、耐劣化ガソリン性が劣化する。   The second layer on the inner surface side may further contain metal Al powder in addition to the Ni powder and / or ferrosilicon powder. Al powder is added mainly for the purpose of improving the corrosion resistance of deteriorated gasoline. As described in Patent Document 1, it is considered that the Al powder is more preferably a scaly shape having a major axis of about 10 to 20 μm because a physical shielding effect against gasoline permeation can be expected. When adding metal Al powder, the quantity shall be the range of 1-30 mass parts with respect to 100 mass parts of binders. When there is too much content of metal Al powder, a coating film will become porous and deterioration gasoline resistance will deteriorate.

内面側の第2層は、必要に応じて、シリカ、チタニア、およびジルコニアから選んだ1種または2種以上、潤滑剤であるワックス、着色顔料、防錆顔料、導電顔料などの1種または2種以上をさらに含有していてもよい。   If necessary, the second layer on the inner surface side may be one or more selected from silica, titania, and zirconia, and one or two of lubricant wax, coloring pigment, rust preventive pigment, conductive pigment, and the like. It may further contain seeds or more.

このうち、シリカ、チタニア、およびジルコニア成分は、耐食性の向上に有効なため、バインダ100質量部に対して、合計で1〜40質量部を第1層中に含有させることが好ましい。より好ましくは、バインダ100質量部に対し5〜20質量部である。これらの成分は、第2層の被膜形成に用いる樹脂液に、前述したシリカ源(水性シリカ、気相シリカ、アルコキシシラン、ケイ酸アルキルエステルなど)、あるいはチタニア源であるチタネートカップリング剤、ならびに/またはジルコニア源であるジルコネートカップリング剤などを添加することにより、第2層中に導入することができる。   Among these, since silica, titania, and a zirconia component are effective in improving corrosion resistance, it is preferable that 1 to 40 parts by mass in total is contained in the first layer with respect to 100 parts by mass of the binder. More preferably, it is 5-20 mass parts with respect to 100 mass parts of binders. These components include the above-described silica source (aqueous silica, vapor phase silica, alkoxysilane, alkyl silicate ester, etc.) or titanate coupling agent that is a titania source, It can introduce | transduce in a 2nd layer by adding the zirconate coupling agent etc. which are / or a zirconia source.

第2層がワックスを含有すると、プレス成形性が高まる。この目的でワックスを第2層に含有させる場合、その量は、バインダ100質量部に対して5〜20質量部とすることが好ましい。ワックスとしては、ポリエチレン系、ポリプロピレン系、ポリブテン系などのポリオレフィンワックスやポリテトラフルオロエチレンなどが好ましい。ワックスは1種類でも、何種類かを混合して用いても良い。ワックスの平均粒径は1〜5μmが好ましい。   When the second layer contains wax, press formability is enhanced. When the wax is contained in the second layer for this purpose, the amount is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the binder. As the wax, polyolefin waxes such as polyethylene, polypropylene and polybutene, polytetrafluoroethylene and the like are preferable. One kind of wax may be used, or several kinds of waxes may be mixed and used. The average particle size of the wax is preferably 1 to 5 μm.

第2層は、バインダ樹脂成分の溶液または分散液に前記Ni粉および/またはフェロシリコン粉を十分懸濁させたものを処理液とし、これを塗布、乾燥(焼付け)することにより形成することができる。処理液中には、必要に応じ、前述したようなAl粉、シリカ、チタニア、ジルコニア成分の供給源、ワックス、さらには他の添加成分を含有させてもよい。ただし、6価クロム化合物は含有させない。処理液は、溶媒が水または水と水混和性有機溶媒との混合溶媒である水性処理液でも、溶剤が有機溶剤である溶剤系処理液でもよい。   The second layer can be formed by using a treatment liquid prepared by sufficiently suspending the Ni powder and / or ferrosilicon powder in a solution or dispersion of a binder resin component, and applying and drying (baking) this. it can. If necessary, the treatment liquid may contain Al powder, silica, titania, a source of zirconia components, wax, and other additive components as described above. However, a hexavalent chromium compound is not contained. The treatment liquid may be an aqueous treatment liquid in which the solvent is water or a mixed solvent of water and a water-miscible organic solvent, or a solvent-based treatment liquid in which the solvent is an organic solvent.

第2層の膜厚は、厚すぎると溶接性が低下し、薄すぎると耐劣化ガソリン性が低下するので、平均膜厚として、0.6μm以上、2.0μm未満とし、好ましくは0.8〜1.8μmとする。金属粉末やワックスの粒径によっては、金属粉末やワックスが第2層の表面から突出する場合もある。本発明における膜厚は、このような金属粉末やワックスが突出した部分は原則として無視した値で表している。   If the film thickness of the second layer is too thick, the weldability deteriorates, and if it is too thin, the deterioration gasoline resistance deteriorates. Therefore, the average film thickness is set to 0.6 μm or more and less than 2.0 μm, preferably 0.8. ˜1.8 μm. Depending on the particle size of the metal powder or wax, the metal powder or wax may protrude from the surface of the second layer. In the present invention, the film thickness is expressed as a value neglected in principle for such protruding portions of metal powder and wax.

[反対側の面]
本発明の表面処理鋼板は、前述したケイ素質の第1層および金属粉含有樹脂層からなる第2層を、亜鉛系めっき鋼板の片面または両面のめっき表面に備えることができる。両面に前記第1層および第2層を形成する場合、少なくとも燃料容器の外面側になる面の第2層には、ワックスならびに、シリカ、チタニアおよびジルコニアから選ばれた少なくとも1種を含有させて、外面側の耐食性と潤滑性を向上させることが好ましい。
[Opposite side]
The surface-treated steel sheet of the present invention can be provided with the above-described silicon first layer and the second layer comprising the metal powder-containing resin layer on one or both surfaces of the zinc-based plated steel sheet. When the first layer and the second layer are formed on both sides, at least the second layer on the outer side of the fuel container contains at least one selected from wax and silica, titania and zirconia. It is preferable to improve the corrosion resistance and lubricity on the outer surface side.

上記第1層および第2層を片面だけに形成する場合、耐劣化ガソリン性に優れた金属粉含有樹脂層からなる第2層は、燃料容器の内面側に形成することが好ましい。燃料容器の外面側になる亜鉛系めっき鋼板の反対側の面は、一般に塗装が施されるので、塗装下地としての化成処理(例、上記第1層と同じケイ素質被膜の形成)だけを施すのでもよい。しかし、その上にさらに何らかの被覆を形成して、内面側とは異なる腐食環境(大気、塩害環境)での耐食性を高めることが好ましい。   When the first layer and the second layer are formed only on one side, the second layer made of a metal powder-containing resin layer having excellent resistance to deterioration gasoline is preferably formed on the inner surface side of the fuel container. Since the surface opposite to the zinc-plated steel sheet, which is the outer surface of the fuel container, is generally coated, only chemical conversion treatment (for example, formation of the same silicon-based film as the first layer) is performed as a coating base. It's okay. However, it is preferable to further form some coating thereon to enhance the corrosion resistance in a corrosive environment (atmosphere, salt damage environment) different from the inner surface side.

例えば、亜鉛系めっき鋼板の反対側の面には、まず下地化成処理(前記第1層と同じでよい)を施し、その上に1層以上の耐食性に優れる塗装(樹脂層の形成)を施すことができる。その際の塗膜厚は、一般に厚すぎると溶接性を劣化させる可能性があるので、耐食性、溶接性、およびプレス成形性のバランスがとれるように決定する。また、溶接性改善のために、塗膜中に導電顔料を含有させる場合もある。   For example, the opposite surface of the galvanized steel sheet is first subjected to a base chemical conversion treatment (may be the same as the first layer), and then coated with one or more layers having excellent corrosion resistance (formation of a resin layer). be able to. The coating thickness at that time is generally determined to be balanced between corrosion resistance, weldability, and press formability since there is a possibility that the weldability is deteriorated if it is too thick. Moreover, in order to improve weldability, a conductive pigment may be contained in the coating film.

本発明の好適態様においては、亜鉛系めっき鋼板の反対側の面は、めっき表面に、上述したのと同じ第1層、すなわち、6価クロムを含有しないケイ素質被膜を形成した上に、ワックスとシリカとを含有させた特定の樹脂からなる潤滑性に優れた第2層(以下、便宜上、外面側の第2層という)を形成する。   In a preferred embodiment of the present invention, the opposite surface of the galvanized steel sheet is formed on the plating surface by forming the same first layer as described above, that is, a silicon film not containing hexavalent chromium, and wax. And a second layer made of a specific resin containing silica and having excellent lubricity (hereinafter referred to as the second layer on the outer surface side for convenience).

外面側の第2層は、塗装密着性の向上と同時に、プレス成形時に摺動性を付与する潤滑皮膜としての機能を果たすことが好ましい。そのため、バインダとなる有機樹脂としては、水酸基、イソシアネート基、カルボキシル基、グリシジル基およびアミノ基から選ばれた少なくとも1種の官能基を有する少なくとも1種の樹脂を用いることが好ましい。それにより、塗装密着性を高めることができる。具体的には、エポキシ樹脂、アルキッド樹脂、アクリル樹脂、ウレタン樹脂、ポリビニルブチラール樹脂、フェノール樹脂、メラミン樹脂等が挙げられる。これらのうち、密着性や後塗装工程との上塗り適性などの点から、エポキシ樹脂がバインダとして最も好ましい。エポキシ樹脂は、水酸基やグリシジル基を有するが、さらにアミノ基を導入するために、アミノ変性したエポキシ樹脂を用いてもよい。   It is preferable that the second layer on the outer surface side functions as a lubricating film that imparts slidability during press molding as well as improving paint adhesion. Therefore, it is preferable to use at least one resin having at least one functional group selected from a hydroxyl group, an isocyanate group, a carboxyl group, a glycidyl group, and an amino group as the organic resin serving as a binder. Thereby, paint adhesion can be improved. Specific examples include epoxy resins, alkyd resins, acrylic resins, urethane resins, polyvinyl butyral resins, phenol resins, melamine resins, and the like. Among these, an epoxy resin is most preferable as a binder from the viewpoints of adhesion and top coating suitability with a post-coating process. The epoxy resin has a hydroxyl group or a glycidyl group, but an amino-modified epoxy resin may be used in order to further introduce an amino group.

ワックスとしては、ポリエチレン系、ポリプロピレン系、ポリブテン系などのポリオレフィンワックスやポリテトラフルオロエチレンなどが好ましい。これらの1種または2種以上のワックスを使用できる。ワックスの平均粒径は1〜5μmが好ましく、添加量としては、バインダ(樹脂固形分)100質量部に対して5〜40質量部が好ましい。1質量部より少ない場合、潤滑性が不足し、プレス成形が困難になる。一方、40質量部を超えると、樹脂層の密着性やその後に施す塗装との密着性が低下する。   As the wax, polyolefin waxes such as polyethylene, polypropylene and polybutene, polytetrafluoroethylene and the like are preferable. One or more of these waxes can be used. The average particle diameter of the wax is preferably 1 to 5 μm, and the addition amount is preferably 5 to 40 parts by mass with respect to 100 parts by mass of the binder (resin solid content). When the amount is less than 1 part by mass, the lubricity is insufficient and press molding becomes difficult. On the other hand, when it exceeds 40 mass parts, the adhesiveness of a resin layer and the adhesiveness with the coating applied after that will fall.

シリカ、チタニアおよびジルコニアから選ばれた少なくとも1種は、耐食性を向上させるために添加する。シリカを添加する場合、シリカゾル(水性シリカ)とヒュームドシリカ(気相シリカ)のいずれでもよい。また、第1層に関して述べた、アルコキシシランやケイ酸アルキルエステルといった他のシリカ源も使用できる。シリカの添加量は、バインダ100質量部に対して、シリカとして5〜40質量部となる量が好ましく、より好ましくは10〜30質量部である。チタニア、ジルコニアを添加する場合はチタニア源であるチタネートカップリング剤、ならびに/またはジルコニア源であるジルコネートカップリング剤などを添加することにより、第2層中に導入することができる。   At least one selected from silica, titania and zirconia is added to improve corrosion resistance. When silica is added, either silica sol (aqueous silica) or fumed silica (vapor phase silica) may be used. Other silica sources such as alkoxysilanes and alkyl silicates described for the first layer can also be used. The amount of silica added is preferably 5 to 40 parts by mass, more preferably 10 to 30 parts by mass as silica with respect to 100 parts by mass of the binder. When titania or zirconia is added, it can be introduced into the second layer by adding a titanate coupling agent that is a titania source and / or a zirconia coupling agent that is a zirconia source.

外面側の第2層を形成するための有機樹脂塗料には、樹脂と上記成分に加えて、必要に応じて、塗装性を向上させるための消泡剤、レベリング剤等の添加剤や、着色を行うための酸化チタン、弁柄、カーボンブラックなどの各種顔料、顔料の分散安定性を向上させるための湿潤分散剤、シランカップリング剤などのカップリング剤、硬化反応を促進するための触媒や架橋剤などを公知の技術により添加することもできる。   In addition to the resin and the above components, the organic resin paint for forming the second layer on the outer surface side includes additives such as an antifoaming agent and a leveling agent for improving the paintability, and coloring, if necessary. Various pigments such as titanium oxide, petals, carbon black for carrying out, wetting and dispersing agents for improving the dispersion stability of pigments, coupling agents such as silane coupling agents, catalysts for accelerating the curing reaction, A crosslinking agent or the like can also be added by a known technique.

なお、外面側の第2層に、さらに前述した内面側の第2層と同様に金属粉、特にNi粉および/またはフェロシリコン粉、さらにはAl粉、を含有させることもできるが、その場合には、形成された樹脂層は上記内面側の第2層に相当するものとなる。   In addition, the second layer on the outer surface side may further contain metal powder, particularly Ni powder and / or ferrosilicon powder, and further Al powder, as in the second layer on the inner surface side. In this case, the formed resin layer corresponds to the second layer on the inner surface side.

外面側の第2層被膜の膜厚は、0.3〜2.0μmの範囲とする。膜厚が0.3μm未満では、第2層の潤滑性樹脂皮膜としての作用効果が十分に得られない。膜厚が2.0μmを超えると、この第2槽の絶縁性が大きくなって、溶接性が低下する。   The film thickness of the second layer coating on the outer surface side is in the range of 0.3 to 2.0 μm. When the film thickness is less than 0.3 μm, the effect of the second layer as the lubricating resin film cannot be sufficiently obtained. When the film thickness exceeds 2.0 μm, the insulating property of the second tank is increased and the weldability is deteriorated.

本発明に係る表面処理鋼板の表面に防錆油を塗布したり、成形加工時に潤滑油を塗布したりすることは、必ずしも必要ではないが、保管時の防錆や成形時の潤滑性の点からは望ましい。自動車のガソリン容器といった燃料容器は、深絞り成形を含む一段または多段のプレス成形とスポット溶接により一般に製造される。その際、第2層が前述した金属粉含有樹脂層である面が容器の内面側にくるようにする。   It is not always necessary to apply anti-rust oil to the surface of the surface-treated steel sheet according to the present invention or to apply lubricating oil at the time of forming, but it is necessary to prevent rust at storage and lubricity at the time of forming. Is desirable. Fuel containers, such as automobile gasoline containers, are generally manufactured by single or multi-stage press molding including spot drawing and spot welding. At that time, the surface where the second layer is the above-described metal powder-containing resin layer is set to the inner surface side of the container.

本実施例では、第1層のシリカ源の種類とその膜厚を変動させた場合の、表面処理鋼板の性能への影響を検討した。
[評価サンプルの作成方法」
第1層の形成:
極低炭素鋼で、かつTi、Nb、Bを含んだ、厚さ0.8mmの冷延鋼板を素材とする電気Zn−13%Ni合金めっき鋼板(両面めっき、めっき付着量:片面当たり20g/m2)を、200mm×300mmに切断したのち、その片面に、表1に示す各種シリカ源を溶解または分散させた処理液を塗布し、60℃で乾燥させることにより、第1層を形成した。塗布方法はバーコート法とし、所定の付着量となるようバーコートの番手および処理液濃度を調整した。付着量は蛍光X線装置を用いて第1層中のSiの強度を測定することにより求めた。
In this example, the effect on the performance of the surface-treated steel sheet when the type of the silica source of the first layer and its film thickness were varied was examined.
[How to create an evaluation sample]
Formation of the first layer:
An electro-Zn-13% Ni alloy-plated steel sheet made of cold-rolled steel sheet with a thickness of 0.8 mm and containing Ti, Nb, and B (double-sided plating, plating adhesion amount: 20 g / per side) m 2 ) was cut into 200 mm × 300 mm, and then a treatment liquid in which various silica sources shown in Table 1 were dissolved or dispersed was applied to one side thereof and dried at 60 ° C. to form a first layer. . The coating method was a bar coating method, and the number of the bar coating and the concentration of the treatment liquid were adjusted so that a predetermined adhesion amount was obtained. The amount of adhesion was determined by measuring the strength of Si in the first layer using a fluorescent X-ray apparatus.

第2層の形成:
熱硬化性エポキシ系樹脂(分子量20000)を含有する溶剤系樹脂液に、Ni金属粉(平均粒径0.6μm)を十分に懸濁させて調製した処理液を、前記第1層の上に、焼付け後の膜厚が1.0μmになるようにバーコート法により塗布し、その後220℃で焼付けを行った。樹脂とNi金属粉の質量比は100:10とした。
Formation of the second layer:
A treatment liquid prepared by sufficiently suspending Ni metal powder (average particle diameter 0.6 μm) in a solvent-based resin liquid containing a thermosetting epoxy resin (molecular weight 20000) is formed on the first layer. The film was baked at 220 ° C. after coating by a bar coating method so that the film thickness after baking was 1.0 μm. The mass ratio of the resin to the Ni metal powder was 100: 10.

[評価方法]
耐劣化ガソリン性:
下記の絞り条件で、第2層表面が内面となるようにカップ絞り成形を行った。得られたカップに、劣化ガソリンを模して、蟻酸濃度300ppmの水溶液3ccとガソリン27ccとを入れて密閉し、45℃に保持した。評価は、30日後の腐食生成物(液の濁り)状況で以下の通り判断した(○までが合格)。
[Evaluation methods]
Anti-degradation gasoline resistance:
Cup drawing was performed under the following drawing conditions so that the surface of the second layer was the inner surface. The obtained cup imitated deteriorated gasoline, 3 cc of an aqueous solution with a formic acid concentration of 300 ppm and 27 cc of gasoline were sealed and kept at 45 ° C. Evaluation was judged as follows in the state of the corrosion products (liquid turbidity) after 30 days (up to ○ passed).

絞り条件:ブランク径=100mm、ポンチ径=50mm、ポンチ肩=5R、ダイス径=52mm、ダイス肩=5R、BH圧=10kN、張出し高さ=25mm
評価基準
◎+:変化なし
◎:ほとんど変化なし
○:上から見て10〜40%程度のにごり発生、
△:上から見て40〜70%程度のにごり発生(底面の観察がかなり困難)、
×:ほぼ液全体に赤錆が浮遊している(底面、側面の観察がかなり困難)。
Drawing conditions: blank diameter = 100 mm, punch diameter = 50 mm, punch shoulder = 5 R, die diameter = 52 mm, die shoulder = 5 R, BH pressure = 10 kN, overhang height = 25 mm
Evaluation criteria ◎ +: No change ◎: Almost no change ○: Obstacles of about 10 to 40% seen from above,
Δ: Dust generation of about 40 to 70% when viewed from above (observation of the bottom surface is quite difficult),
X: Red rust is floating in almost the entire liquid (observation of the bottom and sides is quite difficult).

溶接性(電極間抵抗):
2枚の供試材を、第2層表面を内側にして重ねた後、加圧300kgf、通電15サイクル、電流8kAの条件でスポット溶接を行い、1サイクル目の電極間抵抗を測定して、次のように評価した(○までが合格)。
Weldability (resistance between electrodes):
After stacking the two test materials with the second layer surface inside, spot welding was performed under the conditions of pressure 300 kgf, energization 15 cycles, current 8 kA, and the inter-electrode resistance in the first cycle was measured. Evaluation was made as follows (up to ○ passed).

◎+:電極間抵抗が150μΩ以下、
◎:電極間抵抗が200μΩ以下、
○:電極間抵抗が200μΩ以上、もしくは軽度のチリ発生、
△:かなり大きなチリ発生、
×:通電しない(溶接不能)。
◎ +: Interelectrode resistance is 150 μΩ or less,
A: Interelectrode resistance is 200 μΩ or less,
○: Interelectrode resistance is 200 μΩ or more, or slight dust is generated,
△: considerably large dust generation,
X: Not energized (not weldable).

Figure 2005335371
Figure 2005335371

表1に試験結果を示すように、第1層としてSi付着量として10mg/m2以上のケイ素質被膜を形成したものは、耐劣化ガソリン性が良好であった。しかし、第1層の厚みがSi付着量として300mg/m2超のものは、溶接性に劣った。 As the test results are shown in Table 1, those having a silicon coating of 10 mg / m 2 or more as the Si adhesion amount as the first layer had good deterioration gasoline resistance. However, when the thickness of the first layer was more than 300 mg / m 2 as the Si adhesion amount, the weldability was poor.

本実施例では第2層のベース樹脂種の影響を調査した。
[第1層の形成]
実施例1と同じ冷延鋼板を素材とする電気Znめっき鋼板(両面めっき、めっき付着量:片面当たり30g/m2)を母材として使用し、実施例1と同様に切断したのち、その片面に同じくバーコート法により塗布し、60℃で乾燥させることにより第1層を形成した。使用したシリカ源は、水性シリカ(平均粒径7nm)であり、付着量は、Siとして30mg/m2とした。
In this example, the influence of the base resin type of the second layer was investigated.
[Formation of the first layer]
An electric Zn-plated steel sheet made of the same cold-rolled steel sheet as in Example 1 (double-sided plating, plating coverage: 30 g / m 2 per side) was used as a base material, and was cut in the same manner as in Example 1 and then one side thereof Similarly, the first layer was formed by coating by bar coating and drying at 60 ° C. The silica source used was aqueous silica (average particle size 7 nm), and the adhesion amount was 30 mg / m 2 as Si.

[第2層の形成]
数種の熱硬化性樹脂を含有する溶剤系樹脂液に、Ni金属粉(平均粒径0.6μm)を十分に懸濁させて調製した処理液を、前記第1層の上に、焼付け後の膜厚が1.0μmになるようにバーコート法により塗布し、その後220℃で焼付けを行った。樹脂とNi金属粉の質量比は100:10とした。
[Formation of second layer]
After baking a treatment liquid prepared by sufficiently suspending Ni metal powder (average particle size 0.6 μm) in a solvent-based resin liquid containing several thermosetting resins on the first layer The film was applied by a bar coating method so that the film thickness was 1.0 μm, and then baked at 220 ° C. The mass ratio of the resin to the Ni metal powder was 100: 10.

[評価方法]
耐劣化ガソリン性と溶接性を評価した。評価方法は、実施例1と同様である。結果を表2に示す。
[Evaluation methods]
Degradation gasoline resistance and weldability were evaluated. The evaluation method is the same as in Example 1. The results are shown in Table 2.

Figure 2005335371
Figure 2005335371

表2からわかるように、エポキシ系熱硬化性樹脂(分子量20000)、アクリル系熱硬化性樹脂(分子量15000)、ウレタン系熱硬化性樹脂(分子量20000)、ポリエステル系熱硬化性樹脂(分子量20000)、フェノール系熱硬化性樹脂(分子量20000)等、どの熱硬化型樹脂を用いても耐劣化ガソリン性を満足させることができたが、中でも、特にエポキシ系樹脂が優れていた。   As can be seen from Table 2, epoxy-based thermosetting resin (molecular weight 20000), acrylic-based thermosetting resin (molecular weight 15000), urethane-based thermosetting resin (molecular weight 20000), polyester-based thermosetting resin (molecular weight 20000). Although any thermosetting resin such as phenol thermosetting resin (molecular weight 20000) could be used, the deterioration-resistant gasoline resistance could be satisfied, and among them, the epoxy resin was particularly excellent.

本実施例では、第2層中に添加する金属粉やその他の成分の影響について検討した。
[第1層の形成]
第1層は実施例2と同様に形成した。母材も同じ電気Znめっき鋼板であった。
In this example, the influence of metal powder and other components added to the second layer was examined.
[Formation of the first layer]
The first layer was formed in the same manner as in Example 2. The base material was also the same electric Zn-plated steel sheet.

[第2層の形成]
熱硬化性エポキシ系樹脂(分子量20000)を含有する溶剤系樹脂液に、Ni粉及び/またはフェロシリコン粉を添加し、そのうちの一部ついては、さらに鱗片状Al粉(長径9μm)と場合によりさらに水性シリカを添加して、十分に懸濁したものを処理液とし
た。このようにして調製した処理液を、前記第1層の上に、焼付け後の膜厚が1.0μmになるようにバーコート法により塗布し、その後220℃で焼付けを行った。処理液の組成は、表3に示すとおりである。
[Formation of second layer]
Ni powder and / or ferrosilicon powder is added to a solvent-based resin liquid containing a thermosetting epoxy resin (molecular weight 20000), and a part of the powder is further flaky Al powder (major axis 9 μm) and, depending on circumstances. A suspension obtained by adding aqueous silica and sufficiently suspending it was used as a treatment liquid. The treatment liquid thus prepared was applied onto the first layer by a bar coating method so that the film thickness after baking was 1.0 μm, and then baked at 220 ° C. The composition of the treatment liquid is as shown in Table 3.

[評価方法]
耐劣化ガソリン性と溶接性を評価した。耐劣化ガソリン性の評価方法は実施例1と同様である。結果も表3に併せて示す。
[Evaluation methods]
Degradation gasoline resistance and weldability were evaluated. The evaluation method for the resistance to deterioration gasoline is the same as that in Example 1. The results are also shown in Table 3.

Figure 2005335371
Figure 2005335371

表3からわかるように、Ni粉とフェロシリコン粉のいずれか一方または両方を添加することにより、耐劣化ガソリン性及び溶接性が向上した。また、さらにAl粉や水性シリカを添加したものも、性能が良好であった。   As can be seen from Table 3, deterioration gasoline resistance and weldability were improved by adding either one or both of Ni powder and ferrosilicon powder. Moreover, the performance with the addition of Al powder and aqueous silica was also good.

本実施例では、第2層の膜厚の影響を検討した。
[第1層の形成]
第1層は実施例2と同様に形成した。母材も同じ電気Znめっき鋼板であった。
In this example, the influence of the film thickness of the second layer was examined.
[Formation of the first layer]
The first layer was formed in the same manner as in Example 2. The base material was also the same electric Zn-plated steel sheet.

[第2層の形成]
膜厚を種々変更したほかは、実施例2と同じように第2層を形成した。使用した熱硬化性樹脂はエポキシ樹脂であった。塗布後は220℃で焼付けを行った。処理液の組成と内面第2層の膜厚は表に示した通りである。
[Formation of second layer]
A second layer was formed in the same manner as in Example 2 except that the film thickness was changed variously. The thermosetting resin used was an epoxy resin. After application, baking was performed at 220 ° C. The composition of the treatment liquid and the film thickness of the inner surface second layer are as shown in the table.

[評価方法]
耐劣化ガソリン性と溶接性を評価した。評価方法は実施例1と同様であるが、溶接性は、実施例1と同様な電極間抵抗の測定ほか、以下に示すシーム溶接性試験でも評価した。試験結果は表4にまとめて示す。
[Evaluation methods]
Degradation gasoline resistance and weldability were evaluated. The evaluation method is the same as in Example 1, but the weldability was also evaluated by the seam weldability test shown below in addition to the measurement of interelectrode resistance similar to Example 1. The test results are summarized in Table 4.

溶接性(シーム溶接性):
2枚の供試材を、合わせ面に樹脂層がくるように重ね、下記条件で連続シーム溶接試験を400m行った後、400m溶接部の断面ミクロ観察を行い、下記基準で評価した。
Weldability (Seam Weldability):
Two specimens were stacked so that the resin layer was on the mating surface, and after performing a continuous seam welding test for 400 m under the following conditions, a cross-sectional micro observation of a 400 m welded portion was performed and evaluated according to the following criteria.

加圧力 :400kgf、
通電時間:2サイクル、
休止時間:2サイクル、
電流 :11000A、
速度 :2.7m/min。
Applied pressure: 400 kgf,
Energizing time: 2 cycles,
Rest time: 2 cycles,
Current: 11000A
Speed: 2.7 m / min.

評価基準:
○: 溶着良好、
△:ブローホール存在、
×:未溶着部あり。
Evaluation criteria:
○: Good welding,
Δ: presence of blowhole,
X: There is an unwelded part.

Figure 2005335371
Figure 2005335371

表4に示すように、第2層の膜厚が0.6μm以下の場合、耐劣化ガソリン性が劣った。他方、膜厚が2.0μm以上の場合、溶接性が低下した。   As shown in Table 4, when the film thickness of the second layer was 0.6 μm or less, the deterioration gasoline resistance was inferior. On the other hand, when the film thickness was 2.0 μm or more, the weldability deteriorated.

本実施例では、鋼板の両面に、同一の第1層のケイ素質被膜と、その上に互いに異なる第2層とを形成した表面処理鋼板を例示する。
[第1層]
b 実施例1に記載したのと同じ電気Zn−13%Ni合金めっき鋼板を用い、200mm×300mmに切断したのち、その両面に、水性シリカ(平均粒径7nm)を含有する処理液を塗布し、100℃で乾燥させることにより、第1層のケイ素質被膜を形成した。塗布方法は、バーコート法で、所定の付着量となるようバーコートの番手および処理液濃度を調整した。付着量は、蛍光X線装置によりSi強度を測定することにより求めた。この第1層の上に、次に述べるように、内面側と外面側とで互いに異なる第2層の樹脂層を形成した。
In the present embodiment, a surface-treated steel sheet in which the same first layer of silicon coating and different second layers are formed on both surfaces of the steel sheet is illustrated.
[First layer]
b After using the same electric Zn-13% Ni alloy-plated steel sheet as described in Example 1 and cutting it to 200 mm × 300 mm, a treatment liquid containing aqueous silica (average particle diameter 7 nm) was applied to both sides. By drying at 100 ° C., a silicon coating of the first layer was formed. The coating method was a bar coating method, and the count of the bar coating and the concentration of the treatment liquid were adjusted so that a predetermined adhesion amount was obtained. The amount of adhesion was determined by measuring the Si intensity with a fluorescent X-ray apparatus. On the first layer, second resin layers different from each other on the inner surface side and the outer surface side were formed as described below.

[内面側の第2層]
エポキシ樹脂(分子量10000)を含有する樹脂液に、ワックス(平均粒径1μm)シリカ(平均粒径7nm)、Ni粉(平均粒径0.6μm)、フェロシリコン粉(平均粒径3μm)から選ばれた成分と、膜厚測定用の成分としてTiO2(平均粒径0.3μm)と、架橋剤としてブロックイソシアネートとを、多様な量で添加して十分に懸濁させて、第2層形成用の処理液を調製した。この処理液を、鋼板の片面の前記だ1層の上に、焼付け後の膜厚が1.4μmになるようにバーコート法により塗布し、その後220℃で焼付けを行った。膜厚は蛍光X線でTiの強度を測ることにより求めた。
[Second layer on the inner side]
A resin liquid containing an epoxy resin (molecular weight 10,000) is selected from wax (average particle size 1 μm) silica (average particle size 7 nm), Ni powder (average particle size 0.6 μm), and ferrosilicon powder (average particle size 3 μm). The second layer is formed by adding various amounts of the obtained components, TiO 2 (average particle size 0.3 μm) as a film thickness measurement component, and blocked isocyanate as a cross-linking agent, and suspending them sufficiently. A treatment solution was prepared. This treatment solution was applied onto the first layer on one side of the steel plate by a bar coating method so that the film thickness after baking was 1.4 μm, and then baked at 220 ° C. The film thickness was determined by measuring the intensity of Ti with fluorescent X-rays.

[外面側の第2層]
ウレタン変性エポキシ樹脂を主成分とし、架橋剤としてブロックイソシアネートを含有する塗布液をバーコータで膜厚を0.6μmとなるように塗布し、板温度が220℃となるように60秒間加熱して塗膜の乾燥と樹脂の架橋を行い、第2層の樹脂層を形成した。
[Second layer on the outer surface]
A coating solution containing a urethane-modified epoxy resin as a main component and a blocked isocyanate as a crosslinking agent is applied with a bar coater to a film thickness of 0.6 μm, and heated for 60 seconds so that the plate temperature is 220 ° C. The membrane was dried and the resin was crosslinked to form a second resin layer.

使用した塗布液には、上記樹脂と架橋剤以外に、ポリエチレンワックスとコロイダルシリカを多様な量で添加し、使用前に十分に攪拌して分散させた。膜厚は、蛍光X線でSiの強度を測ることにより求めた。   In addition to the resin and the crosslinking agent, polyethylene wax and colloidal silica were added in various amounts to the coating solution used, and the mixture was sufficiently stirred and dispersed before use. The film thickness was determined by measuring the Si intensity with fluorescent X-rays.

こうして作成された、内面側と外面側とで異なる被膜構成を有する表面処理鋼板を、耐劣化ガソリン性および溶接性について、実施例1と同様の方法および評価基準で調査した。また、成形後の樹脂層(第2層)の密着性、成形性、外面側の塗装後耐食性についても、下記の要領で調べた。   The surface-treated steel sheets having different coating structures on the inner surface side and the outer surface side thus prepared were examined for deterioration gasoline resistance and weldability by the same method and evaluation criteria as in Example 1. Moreover, the adhesiveness of the resin layer (2nd layer) after a shaping | molding, a moldability, and the corrosion resistance after the coating of the outer surface side were investigated in the following way.

[成形後の樹脂層の密着性]
耐劣化ガソリン性試験と同様の条件で評価面が外面になるようにカップ成形を行ない、加工部分の内面側と外面側に粘着テープを貼付け、その後テープを剥離し、テープに顔料が付着しているかどうかを目視で観察し、次のように評価した(○までが合格)。
[Adhesion of resin layer after molding]
Cup molding is performed so that the evaluation surface becomes the outer surface under the same conditions as the deterioration gasoline resistance test. Adhesive tape is applied to the inner and outer surfaces of the processed part, then the tape is peeled off, and the pigment adheres to the tape. Whether or not it was visually observed was evaluated as follows (up to ○ passed).

◎:剥離が認められない、
○:わずかに剥離が認められる、
×:明らかに剥離が認められる。
(Double-circle): Peeling is not recognized,
○: Slight peeling is observed,
X: Peeling is clearly observed.

[成形性]
無塗油、荷重1kgfの条件でバウデン試験を行い、初期動摩擦係数により^次のように評価した(○までが合格):
○:初期動摩擦係数が0.20以下。
[Formability]
A Bowden test was conducted under the conditions of no oil coating and a load of 1 kgf, and the following evaluation was made based on the initial dynamic friction coefficient (up to ○ passed):
○: Initial dynamic friction coefficient is 0.20 or less.

×:初期動摩擦係数が0.20以上。
[外面側の塗装後耐食性]
外面側をの樹脂層(第2層)上に、アルキッドメラミン系樹脂系塗料(日本ペイント製、溶剤型)を乾燥膜厚が15μmとなるようにバーコートし、120℃で焼付けた。その後、市販のカッターでクロスカットを入れ、塩水噴霧(SST)試験を行い、錆の脹れ幅を測定し、次のように評価しした(○までが合格)
◎:錆幅2.5mm以下、
○:錆幅3.0mm以下、
×:錆幅3.0mm以上。
X: Initial dynamic friction coefficient is 0.20 or more.
[Corrosion resistance after painting on the outer surface]
On the resin layer (second layer) on the outer surface side, an alkyd melamine resin-based paint (manufactured by Nippon Paint, solvent type) was bar-coated so that the dry film thickness was 15 μm, and baked at 120 ° C. After that, a cross-cut was made with a commercially available cutter, a salt spray (SST) test was performed, the rust expansion width was measured, and the following evaluation was performed (up to ○ passed).
A: Rust width 2.5 mm or less,
○: Rust width 3.0 mm or less,
X: Rust width of 3.0 mm or more.

(試験A)
本試験では、第1層のケイ素質被膜の付着量と諸性能との関係を示す。試験結果を表5に示す。
(Test A)
In this test, the relationship between the adhesion amount of the silicon coating of the first layer and various performances is shown. The test results are shown in Table 5.

内面側の第2層樹脂層は、膜厚が1.4μmであって、バインダ100質量部に対して、ワックス10質量部、シリカ15質量部、Ni粉10質量部を含有していた。
外面側の第2層樹脂層は、膜厚が0.6μmで、バインダ100質量部に対して、ワックス10質量部とシリカ15質量部とを含有していた。
The second layer resin layer on the inner surface side had a thickness of 1.4 μm and contained 10 parts by mass of wax, 15 parts by mass of silica, and 10 parts by mass of Ni powder with respect to 100 parts by mass of the binder.
The second resin layer on the outer surface side had a thickness of 0.6 μm and contained 10 parts by mass of wax and 15 parts by mass of silica with respect to 100 parts by mass of the binder.

Figure 2005335371
Figure 2005335371

表5より第1層のSiの付着量は10〜300mg/m2の範囲が好ましく、より好ましい範囲は20〜100mg/m2であった。 Adhesion amount of from Table 5 of the first layer Si is preferably in the range of 10-300 mg / m 2, more preferably in the range was 20 to 100 mg / m 2.

(試験B)
本試験は、内面側の第2層樹脂層のシリカ、ワックス、金属粉の含有量と諸性能との関係を示す。外面側の第2層樹脂層の膜厚および組成は試験Aと同様であった。試験結果を表6に示す。
(Test B)
This test shows the relationship between the content of silica, wax, and metal powder in the second resin layer on the inner surface side and various performances. The film thickness and composition of the second resin layer on the outer surface side were the same as in Test A. The test results are shown in Table 6.

Figure 2005335371
Figure 2005335371

表6に示すように、内面側の第2層樹脂層にワックスを添加することにより成形性が向上し、Ni粉を添加することで、内面耐食性と溶接性が向上し、フェシリコン粉を添加することで、溶接性が向上した。   As shown in Table 6, the moldability is improved by adding wax to the second resin layer on the inner surface side, and the inner surface corrosion resistance and weldability are improved by adding Ni powder. By doing so, the weldability was improved.

(試験C)
本試験は、外面側の各成分の添加量と諸性能との関係を示す。内面側の第2層樹脂層の膜厚および組成は試験Aと同様であった。試験結果を表7に示す。
(Test C)
This test shows the relationship between the amount of each component added on the outer surface side and various performances. The film thickness and composition of the second resin layer on the inner surface side were the same as in Test A. The test results are shown in Table 7.

Figure 2005335371
Figure 2005335371

表7に示すように、外面側の第2層樹脂層にシリカを添加することにより耐食性が向上するが、添加量としてはバインダ100質量部当たり10〜30質量部が最も好ましかった。   As shown in Table 7, the corrosion resistance is improved by adding silica to the second resin layer on the outer surface side, but the addition amount is most preferably 10 to 30 parts by mass per 100 parts by mass of the binder.

Claims (7)

亜鉛系めっき鋼板の少なくとも片面のめっき表面に、6価クロムを含まないケイ素質被膜からなる第1層と、その上の第2層とを備え、該第1層の付着量がSi量として10〜300mg/m2であり、該第2層は、熱硬化型有機樹脂からなるバインダ100質量部中に、平均粒子径0.1〜6.0μmのNi粉およびフェロシリコン粉から選ばれた金属粉を1〜60質量部の量で含有する、膜厚0.6μm以上、2.0μm未満の金属粉含有樹脂層であることを特徴とする、燃料容器用表面処理鋼板。 At least one surface of the zinc-based plated steel sheet is provided with a first layer made of a silicon coating containing no hexavalent chromium and a second layer thereon, and the amount of adhesion of the first layer is 10 as the amount of Si. a to 300 mg / m 2, the second layer, the binder in 100 parts by weight of a thermally curable organic resin, selected from Ni powder and ferrosilicon powder having an average particle diameter 0.1~6.0μm metal A surface-treated steel sheet for a fuel container, which is a metal powder-containing resin layer having a film thickness of 0.6 μm or more and less than 2.0 μm, containing powder in an amount of 1 to 60 parts by mass. 亜鉛系めっき鋼板の両面のめっき表面に、第1層として6価クロムを含まないケイ素質被膜と、その上の第2層とを備え、該第1層の付着量がSi量として10〜300mg/m2であり、該第2層は、鋼板の一方の面では、熱硬化型樹脂からなるバインダ100質量部中に、平均粒子径0.1〜6.0μmのNi粉およびフェロシリコン粉から選ばれた金属粉を1〜60質量部の量で含有する、膜厚0.6μm以上、2.0μm未満の金属粉含有樹脂層であり、鋼板の反対側の面では、水酸基、イソシアネート基、カルボキシル基、グリシジル基およびアミノ基から選ばれた少なくとも1種の官能基を有する少なくとも1種の有機樹脂からなるバインダ100質量部中にワックス1〜40質量部とシリカ、チタニアおよびジルコニアから選ばれた少なくとも1種5〜80質量部とを含有する、膜厚0.3〜2.0μmの層であることを特徴とする、燃料容器用表面処理鋼板。 The plating surface of both surfaces of a zinc-based plated steel sheet is provided with a silicon film not containing hexavalent chromium as a first layer and a second layer thereon, and the amount of adhesion of the first layer is 10 to 300 mg as the amount of Si. / M 2 , and the second layer is composed of Ni powder and ferrosilicon powder having an average particle diameter of 0.1 to 6.0 μm in 100 parts by mass of a thermosetting resin on one surface of the steel plate. A metal powder-containing resin layer having a film thickness of 0.6 μm or more and less than 2.0 μm, containing the selected metal powder in an amount of 1 to 60 parts by mass. On the opposite surface of the steel sheet, a hydroxyl group, an isocyanate group, It was selected from 1 to 40 parts by weight of wax and silica, titania and zirconia in 100 parts by weight of a binder composed of at least one organic resin having at least one functional group selected from a carboxyl group, a glycidyl group and an amino group. Small Containing a Kutomo one 5-80 parts by weight, characterized in that it is a layer having a thickness of 0.3 to 2.0 .mu.m, a fuel container for surface treated steel sheet. 前記第1層のケイ素質被膜が、水性シリカ、気相シリカ、アルカリ金属ケイ酸塩、アルコキシシラン、およびケイ酸アルキルエステルから選ばれた1種または2種以上のシリカ源を主成分とする処理液の塗布・乾燥により形成されたものである、請求項1または2に記載の燃料容器用表面処理鋼板。   The treatment in which the silicon-based film of the first layer is mainly composed of one or more silica sources selected from aqueous silica, vapor phase silica, alkali metal silicate, alkoxysilane, and alkyl silicate ester. The surface-treated steel sheet for a fuel container according to claim 1 or 2, which is formed by applying and drying a liquid. 前記金属粉含有樹脂層が、シリカ、チタニアおよびジルコニアから選ばれた少なくとも1種をバインダ100質量部に対して5〜40質量部の量でさらに含有する、請求項1〜3のいずれかに記載の燃料容器用表面処理鋼板。   The metal powder-containing resin layer further contains at least one selected from silica, titania and zirconia in an amount of 5 to 40 parts by mass with respect to 100 parts by mass of the binder. Surface-treated steel sheet for fuel containers. 前記金属粉含有樹脂層が、バインダ100質量部に対して5〜20質量部のワックスをさらに含有する、請求項1〜4のいずれかに記載の燃料容器用表面処理鋼板。   The surface-treated steel sheet for a fuel container according to any one of claims 1 to 4, wherein the metal powder-containing resin layer further contains 5 to 20 parts by mass of wax with respect to 100 parts by mass of the binder. 前記金属粉含有樹脂層が、バインダ100質量部に対して1〜30質量部の金属Al粉をさらに含有する、請求項1〜5のいずれかに記載の燃料容器用表面処理鋼板。   The surface-treated steel sheet for a fuel container according to any one of claims 1 to 5, wherein the metal powder-containing resin layer further contains 1 to 30 parts by mass of metal Al powder with respect to 100 parts by mass of the binder. 前記熱硬化型樹脂がエポキシ系樹脂である、請求項1〜6のいずれかに記載の燃料容器用表面処理鋼板。   The surface-treated steel sheet for fuel containers according to any one of claims 1 to 6, wherein the thermosetting resin is an epoxy resin.
JP2005108708A 2004-04-28 2005-04-05 Surface-treated steel sheet for fuel containers Active JP4400499B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005108708A JP4400499B2 (en) 2004-04-28 2005-04-05 Surface-treated steel sheet for fuel containers
KR1020050035477A KR100712670B1 (en) 2004-04-28 2005-04-28 Surface treated steel for fuel container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004133790 2004-04-28
JP2005108708A JP4400499B2 (en) 2004-04-28 2005-04-05 Surface-treated steel sheet for fuel containers

Publications (2)

Publication Number Publication Date
JP2005335371A true JP2005335371A (en) 2005-12-08
JP4400499B2 JP4400499B2 (en) 2010-01-20

Family

ID=35489439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108708A Active JP4400499B2 (en) 2004-04-28 2005-04-05 Surface-treated steel sheet for fuel containers

Country Status (2)

Country Link
JP (1) JP4400499B2 (en)
KR (1) KR100712670B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194137A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Surface treated steel sheet and coated member
EP2888385B1 (en) 2012-08-27 2018-04-11 Tata Steel IJmuiden BV Coated steel strip or sheet having advantageous properties
CN108368360A (en) * 2015-12-09 2018-08-03 Posco公司 For the composition of coated steel sheet surface treatment, with this surface treated steel plate and its surface treatment method
WO2020067447A1 (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Bonded/joined structure and component for automobiles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE307718T1 (en) * 1997-04-09 2005-11-15 Jfe Steel Corp STEEL SHEET FOR HIGHLY CORROSION-RESISTANT FUEL TANK
FR2796655B1 (en) * 1999-07-22 2001-10-19 Dacral Sa METHOD AND COMPOSITION FOR ANTI-CORROSION TREATMENT OF A METAL SUBSTRATE PREVIOUSLY PROTECTED BY A ZINC-BASED COATING LAYER

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2888385B1 (en) 2012-08-27 2018-04-11 Tata Steel IJmuiden BV Coated steel strip or sheet having advantageous properties
JP2016194137A (en) * 2015-03-31 2016-11-17 新日鐵住金株式会社 Surface treated steel sheet and coated member
CN108368360A (en) * 2015-12-09 2018-08-03 Posco公司 For the composition of coated steel sheet surface treatment, with this surface treated steel plate and its surface treatment method
JP2019504189A (en) * 2015-12-09 2019-02-14 ポスコPosco Composition for surface treatment of plated steel sheet, steel sheet surface-treated using the same, and surface treatment method using the same
WO2020067447A1 (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Bonded/joined structure and component for automobiles
JPWO2020067447A1 (en) * 2018-09-28 2021-09-24 日本製鉄株式会社 Adhesive joint structures and automotive parts

Also Published As

Publication number Publication date
JP4400499B2 (en) 2010-01-20
KR20060047577A (en) 2006-05-18
KR100712670B1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
RU2592895C2 (en) Metal sheet with coating for use in cars with excellent suitability for contact welding, corrosion resistance and formability
KR101008081B1 (en) Surface treated cr-free steel sheet for used in fuel tank, preparing method thereof and treatment composition therefor
KR102376587B1 (en) Metal surface treatment agent for zinc-plated steel material, coating method, and coated steel material
KR20190076099A (en) Coating composition for hot dip galvanized steel sheet having excellent corrosion-resistance and blackening-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
JP4416645B2 (en) Heat-resistant metal plate with excellent corrosion resistance, organic coated metal plate, and phosphate-treated zinc-based plated metal plate
JP4400499B2 (en) Surface-treated steel sheet for fuel containers
KR20160078773A (en) Low temperature curable anti-corrosion coating composition excellent in corrosion resistance and zinc plated steel sheet using the same
JP5126548B2 (en) Coated steel sheet and electronic equipment casing using the same
JP2007070572A (en) Coating composition and fuel tank
JP3389884B2 (en) Surface treated steel sheet for fuel container and paint composition therefor
JP3835017B2 (en) Zn-plated surface-treated steel sheet for fuel containers
JP2834686B2 (en) Organic composite coated steel sheet with excellent chromium elution resistance and post-processing corrosion resistance
JPH0243040A (en) Lubricating resin treated steel plate excellent in corrosion resistance
JPH0316726A (en) Lubricating resin-treated steel plate with excellent moldability
JP5979312B2 (en) Pre-coated steel sheet and manufacturing method thereof
JP3528742B2 (en) Resin coated steel sheet
JP3847921B2 (en) Steel plate for high corrosion resistant fuel tank
JP3847926B2 (en) Steel plate for high corrosion resistant fuel tank
JP3934762B2 (en) Steel plate for high corrosion resistant fuel tank
JP2001279470A (en) Highly corrosion resistant steel sheet for fuel tank
JPH05237449A (en) Lubricating resin treated steel panel excellent in press moldability and processed part corrosion resistance
JPH01110140A (en) Composite coated steel sheet excellent in corrosion resistance and lubrication property
JP3934763B2 (en) Steel plate for high corrosion resistant fuel tank
JPH10137681A (en) Steel plate of superior molding properties for highly corrosion-resistant fuel tank
TWI597387B (en) Fuel tank with surface treatment of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4400499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350