JP2005334736A - Desalting method for salts-containing treated water and apparatus therefor - Google Patents

Desalting method for salts-containing treated water and apparatus therefor Download PDF

Info

Publication number
JP2005334736A
JP2005334736A JP2004155037A JP2004155037A JP2005334736A JP 2005334736 A JP2005334736 A JP 2005334736A JP 2004155037 A JP2004155037 A JP 2004155037A JP 2004155037 A JP2004155037 A JP 2004155037A JP 2005334736 A JP2005334736 A JP 2005334736A
Authority
JP
Japan
Prior art keywords
salt
treated water
containing treated
treatment
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004155037A
Other languages
Japanese (ja)
Other versions
JP4018667B2 (en
Inventor
Toru Ohara
徹 尾原
Norihiro Shimura
憲尋 志村
Yoshio Kamono
義男 鴨野
Masamichi Maki
正通 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2004155037A priority Critical patent/JP4018667B2/en
Publication of JP2005334736A publication Critical patent/JP2005334736A/en
Application granted granted Critical
Publication of JP4018667B2 publication Critical patent/JP4018667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desalting method for high concentration salts-containing organic waste water, and an apparatus therefor. <P>SOLUTION: Salts-containing treated water obtained by treating the high concentration salts-containing organic waste water by the combination of biological treatment, coagulation treatment, and solid-liquid separation membrane treatment is subjected to multistage concentration using a plurality of evaporators to deposit and separate salts. Organic matter in the salts-containing treated water is removed by activated carbon absorption treatment or/and ozone oxidation treatment beforehand, and then fed to a first stage evaporator. A calcium salt, and the like, contained in the salts-containing treated water are removed beforehand as carbonates before or after the first stage evaporator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、し尿、ごみ埋立て浸出水などのような高濃度の塩類を含有する有機性廃水を生物処理、凝集処理、固液分離膜処理(例えば、精密ろ過膜処理または限外ろ過膜処理)などを組合せて処理することによって得られる塩類含有処理水から、その塩類を工業塩などとして利用可能な結晶塩として回収することができる脱塩方法及びその装置に関するものである。   The present invention can be applied to biological treatment, coagulation treatment, solid-liquid separation membrane treatment (for example, microfiltration membrane treatment or ultrafiltration membrane treatment) for organic wastewater containing a high concentration of salts such as human waste and landfill leachate. ) And the like, and a salt-removing method and apparatus for recovering the salt as a crystal salt that can be used as an industrial salt or the like from a salt-containing treated water obtained by a combination treatment.

し尿やごみ埋立て浸出水などの有機性廃水の処理方法としては、例えば、BOD(生物的酸素要求量)成分の除去を目的とした生物処理、COD(化学的酸素要求量)成分、色度成分及びSS(懸濁物質)などの除去を目的とした凝集処理および固液分離膜処理があり、それらの処理方法を組合せて処理することが一般的である。   Examples of methods for treating organic wastewater such as human waste and landfill leachate include biological treatment for the purpose of removing BOD (biological oxygen demand) components, COD (chemical oxygen demand) components, and chromaticity. There are agglomeration treatment and solid-liquid separation membrane treatment for the purpose of removing components and SS (suspended material), and the treatment methods are generally combined.

しかし、し尿やごみ埋立て浸出水などの有機性廃水は、低希釈処理を行った場合、有機物などの汚染物質を処理しても、処理水中には高濃度の塩類が含まれるため、放流する際には、河川の水質保護、あるいは、農業用水への影響も考慮しなければならない。そのため、最近では、有機性汚濁成分だけでなく、塩類も除去する必要性が高まってきている。   However, organic wastewater, such as human waste and landfill leachate, will be discharged when treated with low dilution, even if contaminants such as organic matter are treated, the treated water contains high-concentration salts. In some cases, the protection of river water quality or the impact on agricultural water should be considered. Therefore, recently, there is an increasing need for removing not only organic pollutant components but also salts.

し尿の処理水から塩類を除去する方法として、固液分離膜と逆浸透膜を使用する方法が提案されている(例えば、特許文献1参照)。しかし、この方法は塩類を含まない処理水を得る一方で、塩類を高濃度に含む濃縮液は放流するものなので、根本的な解決にはなっていない。   As a method for removing salts from human waste water, a method using a solid-liquid separation membrane and a reverse osmosis membrane has been proposed (see, for example, Patent Document 1). However, this method is not a fundamental solution because it obtains treated water that does not contain salts, but discharges concentrated liquids containing salts at high concentrations.

また、ごみ埋立て浸出水などの高濃度塩類を含有する処理水から塩類を逆浸透膜や電気透析膜を用いて除去する方法において、逆浸透膜処理や電気透析膜処理で脱塩を行う前または脱塩を行った後にキレート樹脂を用いて重金属を除去し、膜分離の濃縮液を蒸発乾燥して塩分を固形物として回収する方法が提案されている(例えば、特許文献2参照)。
この方法では、高価な逆浸透膜装置や電気透析膜装置が必要である上に、重金属処理装置が必要である。また、キレート樹脂は再生が必要であり、取扱いが複雑である。さらに、濃縮液の水分を全量蒸発させるので、得られる固形物は重金属以外のものが雑多に混入したものになる。
Also, in the method of removing salts from treated water containing high-concentration salts such as landfill leachate using reverse osmosis membrane or electrodialysis membrane, before desalting by reverse osmosis membrane treatment or electrodialysis membrane treatment Alternatively, a method has been proposed in which heavy metals are removed using a chelate resin after desalting, and the concentrated solution of membrane separation is evaporated and dried to recover the salt as a solid (see, for example, Patent Document 2).
In this method, an expensive reverse osmosis membrane device or electrodialysis membrane device is required, and a heavy metal processing device is required. In addition, the chelate resin needs to be regenerated and is complicated to handle. Further, since the entire amount of water in the concentrated solution is evaporated, the obtained solid matter is a mixture of various things other than heavy metals.

また、し尿系汚水に凝集剤を加えて、沈殿分離などの固液分離を行い、汚泥と分離液とに分け、分離液を蒸発処理し、蒸気を凝縮した後、逆浸透膜を透過させて塩類を含まない処理水を得る一方、蒸発処理の残留濃縮液を脱水汚泥などと一緒に焼却炉で焼却処理して灰として処分する方法が提案されている(例えば、特許文献3参照)。この方法でも、上記と同様に種々雑多なものを含有する固形物しか得られない。   In addition, flocculant is added to human waste sewage, solid-liquid separation such as precipitation separation is performed, and sludge and separation liquid are separated. A method has been proposed in which treated water not containing salts is obtained, and the residual concentrated liquid of the evaporation treatment is incinerated in an incinerator together with dehydrated sludge and disposed as ash (see, for example, Patent Document 3). Even in this method, only a solid substance containing various miscellaneous materials as described above can be obtained.

特開平9−174051号公報JP-A-9-174051 特開2001−70989号公報JP 2001-70989 A 特開昭63−123500号公報JP-A-63-123500

本発明は、上記のような事情に鑑みてなされたものであり、その目的は、高価な逆浸透
膜や電気透析膜などを使用することなく、高濃度塩類を含有する有機性廃水の処理水から脱塩する方法及びその装置を提供することである。
The present invention has been made in view of the above circumstances, and its purpose is to treat organic wastewater containing high-concentration salts without using expensive reverse osmosis membranes or electrodialysis membranes. It is to provide a method and an apparatus for desalinating from water.

本発明は、上述した課題を達成するためになされたもので、以下の手段で解決された。 高濃度塩類を含有する処理水の脱塩方法であって、高濃度の塩類を含有する有機性廃水を生物処理、凝集処理、固液分離膜処理などを組合せて処理することによって得られる塩類含有処理水を、複数の蒸発缶を用いて多段濃縮し、塩類を析出させて分離するようにした。   The present invention has been made to achieve the above-described problems, and has been solved by the following means. A method for desalinating treated water containing high-concentration salts, containing salts obtained by combining organic wastewater containing high-concentration salts with biological treatment, coagulation treatment, solid-liquid separation membrane treatment, etc. The treated water was concentrated in a plurality of stages using a plurality of evaporators to precipitate the salts and separate them.

前記塩類含有処理水中の有機物を、予め活性炭吸着処理または/およびオゾン酸化処理で除去した後に、第一段目の蒸発缶へ供給すること、前記塩類含有処理水中に含まれるカルシウム塩などを、第一段目の蒸発缶の前段または後段で、予め炭酸塩として除去することも特徴とする。   The organic matter in the salt-containing treated water is removed in advance by activated carbon adsorption treatment or / and ozone oxidation treatment, and then supplied to the first stage evaporator, and the calcium salt contained in the salt-containing treated water, It is also characterized in that it is removed as carbonate in advance before or after the first stage evaporator.

高濃度塩類を含有する処理水の脱塩装置であって、高濃度の塩類を含有する有機性廃水を生物処理、凝集処理、固液分離膜処理などを組合せて処理することによって得られる塩類含有処理水を、順次濃縮する複数の蒸発缶と、析出した塩類を分離する遠心分離機を備えるようにした。   Desalination equipment for treated water containing high-concentration salts, containing salts obtained by combining organic wastewater containing high-concentration salts with biological treatment, coagulation treatment, solid-liquid separation membrane treatment, etc. The treated water was provided with a plurality of evaporators for sequentially concentrating and a centrifuge for separating the precipitated salts.

前記塩類含有処理水が供給される第一段目の蒸発缶の前段に、塩類含有処理水中に含まれる有機物を除去するための活性炭吸着装置または/およびオゾン酸化装置を備えること、前記塩類含有処理水に含まれるカルシウム塩などを炭酸塩として除去するための軟化装置を、第一段目の蒸発缶の前段または後段に設けることも特徴とする。   An activated carbon adsorbing device or / and an ozone oxidation device for removing organic substances contained in the salt-containing treated water are provided in a previous stage of the first-stage evaporator to which the salt-containing treated water is supplied, the salt-containing treatment It is also characterized in that a softening device for removing calcium salt and the like contained in water as carbonate is provided in the front stage or the rear stage of the first stage evaporator.

本発明によれば、し尿やごみ埋立て浸出水などの高濃度の塩類を含有する有機性廃水を生物処理、凝集処理、固液分離膜処理などを組合せて処理することによって得られる処理水を、複数の蒸発缶を用いて順次濃縮するために、蒸発缶のスケーリングが抑制され、スケール除去などのメンテナンス作業の低減化を図ることができる。
また、蒸発缶で発生した蒸気を冷却して回収される凝縮水は塩類を含まない処理水のため、再利用が可能である。
According to the present invention, treated water obtained by treating organic wastewater containing high-concentration salts such as human waste and landfill leachate in combination with biological treatment, coagulation treatment, solid-liquid separation membrane treatment, etc. Since the plurality of evaporators are used for sequential concentration, scaling of the evaporators is suppressed, and maintenance work such as scale removal can be reduced.
Further, the condensed water recovered by cooling the steam generated in the evaporator can be reused because it is treated water that does not contain salts.

また、高濃度塩類を含む処理水を、予め活性炭処理または/およびオゾン酸化処理を施すことにより、蒸発缶内での有機物による発泡が防止でき、また、着色の少ない結晶塩が得られる。
さらに、第一段目の蒸発缶の前段または後段にカルシウムなどを除去する軟化装置を設けることにより、蒸発缶のスケーリングを防止でき、装置の操業を安定化することができる。
Further, by subjecting treated water containing high-concentration salts to activated carbon treatment and / or ozone oxidation treatment in advance, foaming due to organic matter in the evaporator can be prevented, and a crystalline salt with less coloring can be obtained.
Furthermore, by providing a softening device that removes calcium or the like at the front stage or the rear stage of the first stage evaporator, scaling of the evaporator can be prevented and the operation of the apparatus can be stabilized.

以下、本発明に関する好適な実施形態を添付図面に沿って説明するが、本発明は下記の実施の形態になんら限定されるものではなく、適宜変更して実施することが可能である。
図1は本発明の一実施形態の構成例を示す概略図、図2は本発明の他の実施形態の構成例を示す概略図である。なお、図1と図2において、同一の要素には同一の符号を付し、重複する説明は省略する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
FIG. 1 is a schematic diagram illustrating a configuration example of an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating a configuration example of another embodiment of the present invention. In FIG. 1 and FIG. 2, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1において、1はし尿や浄化槽汚泥に含まれる夾雑物を分離するドラムスクリーンなどの分離機、2はBODなどの有機物の除去や、アンモニア態窒素および硝酸・亜硝酸態窒素を窒素ガスに変換する一次硝化脱窒素槽である。3は残留する窒素を除去する二次硝化脱窒素槽である。4は汚泥と処理水を分離する第一段目膜分離装置、5はCOD成分や着色成分を凝集するための凝集槽、6は凝集物などの固形物と処理水を固液分離するための第二段目膜分離装置である。
7は高濃度の塩類を含有する処理水の水槽で、脱塩が必要な脱塩原水槽である。
In FIG. 1, 1 is a separator such as a drum screen for separating impurities contained in human waste and septic tank sludge, 2 is removal of organic matter such as BOD, and ammonia nitrogen and nitric acid / nitrite nitrogen are converted to nitrogen gas. This is the primary nitrification denitrification tank. Reference numeral 3 denotes a secondary nitrification denitrification tank for removing remaining nitrogen. 4 is a first stage membrane separator for separating sludge and treated water, 5 is a coagulation tank for coagulating COD components and colored components, and 6 is for solid-liquid separation of solids such as aggregates and treated water. It is a second stage membrane separator.
7 is a tank of treated water containing high-concentration salts, and is a desalting raw water tank that needs to be desalted.

8、9、10は脱塩原水を順次濃縮するための第一段目の蒸発缶、第二段目の蒸発缶および第三段目の蒸発缶(以下、第一段目蒸発缶、第二段目蒸発缶、第三段目蒸発缶、または、単に、蒸発缶と記す)である。通常、最終段の蒸発缶(図1の例では第三段目蒸発缶)で塩類の大部分が析出するので、この蒸発缶は晶析缶と呼ばれることが多いが、ここでは蒸発缶と記す。   8, 9, and 10 are the first-stage evaporator, second-stage evaporator and third-stage evaporator (hereinafter, first-stage evaporator, second-stage evaporator) for sequentially concentrating the desalted raw water. A stage evaporator, a third stage evaporator, or simply an evaporator). Usually, most of the salt precipitates in the final stage evaporator (the third stage evaporator in the example of FIG. 1), so this evaporator is often referred to as a crystallization can. .

11は蒸発缶の加熱源として使用される水蒸気を供給する水蒸気ボイラ、12は蒸発缶で結晶化して析出した塩類を分離するための遠心分離機である。
14、15、16は蒸発缶8、9、10内で気化した蒸気を凝縮させるための水冷式のコンデンサである。17はコンデンサの凝縮水を処理するための活性炭処理装置、18は処理水を消毒するための接触槽である。
A steam boiler 11 supplies steam used as a heating source of the evaporator, and 12 is a centrifuge for separating salts that are crystallized and precipitated by the evaporator.
Reference numerals 14, 15 and 16 denote water-cooled condensers for condensing vapor vaporized in the evaporators 8, 9 and 10. 17 is an activated carbon treatment apparatus for treating the condensed water of the condenser, and 18 is a contact tank for disinfecting the treated water.

し尿や浄化槽汚泥などのし尿系汚水は送液管L1を介して分離機1に供給され、分離機1のスクリーンで大きな固形物である夾雑物が取り除かれる。
次いで、一次硝化脱窒素槽2、二次硝化脱窒素槽3および第一段目膜分離装置4からなる生物処理装置AによってBOD成分などの有機物の除去と脱窒が行われる。二次硝化脱窒素槽3には、必要に応じて栄養源としてメタノールなどが添加される(図示されていない)。
生物処理水である生物膜分離装置4の透過液は送液管L2を介して凝集槽5に供給される。
Human waste sewage such as human waste and septic tank sludge is supplied to the separator 1 via the liquid feeding pipe L1, and contaminants which are large solids are removed by the screen of the separator 1.
Next, organic substances such as BOD components are removed and denitrified by the biological treatment apparatus A composed of the primary nitrification denitrification tank 2, the secondary nitrification denitrification tank 3, and the first stage membrane separation apparatus 4. Methanol or the like is added to the secondary nitrification denitrification tank 3 as a nutrient source if necessary (not shown).
The permeated liquid of the biological membrane separation device 4 that is biologically treated water is supplied to the coagulation tank 5 through the liquid feeding pipe L2.

凝集槽5にはポリ硫酸鉄、塩化鉄、硫酸アルミニウムあるいはポリ塩化アルミニウムなどの無機凝集剤と水酸化ナトリウムなどのpH調整剤が添加され、COD成分、リン、着色成分などが凝集する。凝集槽5の処理液は送液管L3を介して、凝集膜分離装置6に供給されて凝集物などの固形物が分離除去される。第二段目膜分離装置6の透過液は、通常、活性炭吸着処理および消毒処理を施して、処理水として放流されるが、高濃度の塩類を含有しているので、脱塩原水槽7に貯留される。   To the aggregating tank 5, an inorganic aggregating agent such as polyiron sulfate, iron chloride, aluminum sulfate or polyaluminum chloride and a pH adjusting agent such as sodium hydroxide are added to agglomerate COD components, phosphorus, coloring components and the like. The treatment liquid in the flocculation tank 5 is supplied to the flocculation membrane separation device 6 via the liquid feed pipe L3, and solids such as flocculates are separated and removed. The permeate of the second-stage membrane separation device 6 is usually discharged as treated water after being subjected to activated carbon adsorption treatment and disinfection treatment, but since it contains high-concentration salts, it is stored in the desalting raw water tank 7. Is done.

前記の生物膜分離装置4や凝集膜分離装置6に使用される分離膜としては、固液分離が主体のため、通常、精密ろ過膜や限外ろ過膜が使用される。膜ろ過の方式としては固定膜や回転可能な膜(例えば、回転平膜など)を被処理水に浸漬して使用する方法など各種の方式が採用される。また、使用する膜の形状としては平膜、チューブラ膜、中空糸膜などが使用される。   As the separation membrane used in the biomembrane separation device 4 and the agglomeration membrane separation device 6, since solid-liquid separation is mainly used, a microfiltration membrane or an ultrafiltration membrane is usually used. As the membrane filtration method, various methods such as a method of immersing a fixed membrane or a rotatable membrane (for example, a rotating flat membrane) in water to be treated are used. Moreover, as a shape of the membrane to be used, a flat membrane, a tubular membrane, a hollow fiber membrane or the like is used.

高濃度の塩類を含む脱塩原水は、脱塩原水槽7より送液管L4を介して、蒸気ボイラ11から水蒸気が供給される第一段目蒸発缶8、次いで、第二段目蒸発缶9、さらに、第三段目蒸発缶10へと順次送られる。
第一段目蒸発缶8で脱塩原水は約10倍に濃縮され、濃縮液はカルシウム塩などの析出を防止するために、必要により酸などを添加してpHを調節し、さらに、第二段目蒸発缶9で約4倍に濃縮される。すなわち、第二段目の蒸発缶9では脱塩原水に対して約40倍に濃縮される。
The demineralized raw water containing high-concentration salt is supplied from the demineralized raw water tank 7 via the liquid feed pipe L4 to the first stage evaporator 8 to which water vapor is supplied from the steam boiler 11, and then to the second stage evaporator 9. Further, it is sequentially sent to the third stage evaporator 10.
The demineralized raw water is concentrated about 10 times in the first stage evaporator 8, and the concentrated solution is adjusted to pH by adding an acid or the like as necessary in order to prevent precipitation of calcium salt and the like. It is concentrated about 4 times in the stage evaporator 9. That is, the second-stage evaporator 9 is concentrated about 40 times with respect to the demineralized raw water.

第二段目蒸発缶9で濃縮された濃縮液は、第三段目蒸発缶10へ供給され、ここでさらに約5倍、脱塩原水に対して約200倍に濃縮され、溶解している塩類の結晶化が行われる。
第三段目蒸発缶10からは結晶化した塩類を含有する高濃度スラリの状態で排出され、スラリ配管L5を介して遠心分離機12に供給される。遠心分離機12よって結晶化した塩(NaCl、NaSOなど)が濃縮液から分離され、工業塩などとして回収される。
The concentrated liquid concentrated in the second stage evaporator 9 is supplied to the third stage evaporator 10, where it is further concentrated by about 5 times and about 200 times with respect to the desalted raw water and dissolved. Crystallization of the salts takes place.
The third-stage evaporator 10 is discharged in a high-concentration slurry containing crystallized salts and is supplied to the centrifuge 12 via the slurry pipe L5. Salts (such as NaCl and Na 2 SO 4 ) crystallized by the centrifuge 12 are separated from the concentrate and recovered as industrial salts and the like.

遠心分離機12によって結晶塩を分離された母液は、母液タンク13に貯留され、送液管L6を介して、第三段目蒸発缶10へ戻されて再び濃縮され、結晶塩が回収される。母液の一部は結晶化に適さない物質の蓄積を防ぐために排液管L7を介して系外へ排出される。   The mother liquor from which the crystal salt has been separated by the centrifuge 12 is stored in the mother liquor tank 13, returned to the third stage evaporator 10 through the liquid feed pipe L 6, and concentrated again to recover the crystal salt. . A part of the mother liquor is discharged out of the system through the drain pipe L7 in order to prevent accumulation of substances not suitable for crystallization.

一方、蒸発缶8、9、10の蒸気はそれぞれコンデンサ14、15、16によって冷却され、凝縮水は活性炭処理装置17に供給されて処理される。活性炭処理装置17の処理水は塩分や有機物などを含まないので、一部はプロセス用水や中水などとして利用され、残部は接触槽18で次亜塩素酸ナトリウムなどの消毒剤によって殺菌処理を行った後放流される。   On the other hand, the vapors of the evaporators 8, 9, and 10 are cooled by condensers 14, 15, and 16, respectively, and the condensed water is supplied to the activated carbon treatment device 17 and processed. Since the treated water of the activated carbon treatment apparatus 17 does not contain salt or organic matter, a part is used as process water or middle water, and the rest is sterilized with a disinfectant such as sodium hypochlorite in the contact tank 18. After being released.

第一段目蒸発缶8および第二段目蒸発缶9内での塩類含有処理水の加熱は、例えば、水蒸気を熱源として、蒸発缶内に設置した伝熱管による熱交換により行い、第三段目蒸発缶10内の加熱も水蒸気を熱源として、シェルアンドチューブ式の熱交換器による熱交換で行われる。熱源として電気ヒータを使用することも可能である。
また、蒸発缶8、9、10の形式についても各種のものを適宜組合せて使用することが可能である。
さらに、蒸発操作は回分式、連続式のいずれでもよく、複数の蒸発缶を用いる多重効用法や多段フラッシュ法などによる蒸発方式も採用することが可能である。
The salt-containing treated water in the first stage evaporator 8 and the second stage evaporator 9 is heated by, for example, heat exchange using a heat transfer tube installed in the evaporator using steam as a heat source. The heating inside the eye evaporator 10 is also performed by heat exchange using a shell-and-tube heat exchanger using steam as a heat source. It is also possible to use an electric heater as a heat source.
Various types of evaporators 8, 9, and 10 can be used in appropriate combination.
Further, the evaporation operation may be either a batch type or a continuous type, and an evaporation method using a multiple effect method using a plurality of evaporators or a multistage flash method can be employed.

なお、図1の実施形態においては三つの蒸発缶を使用する場合について説明したが、さらに蒸発缶を追加して4段以上にしてもよい。
蒸発缶を多段に設ける本発明の方法によって、各段の濃縮倍率などを個別に設定して対象スケール物質の濃度調整を行ったり、また、スケールの発生しやすい濃縮度の高い蒸発缶内のpH調整を行うことができるので、し尿やごみ埋立て浸出水のような雑多な、しかも高濃度の塩類を含有する処理水においても、蒸発缶、その他の系内配管などにおけるスケーリング発生を効果的に抑制することが可能である。
In addition, although the case where three evaporators were used was demonstrated in embodiment of FIG. 1, you may add an evaporator and make it 4 steps | paragraphs or more.
By the method of the present invention in which evaporators are provided in multiple stages, the concentration factor of the target scale substance is adjusted by individually setting the concentration ratio of each stage, and the pH in the evaporator with high concentration that is likely to cause scales. Because adjustments can be made, scaling can be effectively generated in evaporators and other in-system piping, even in wastewater and other wastewater such as waste landfill leachate, even in treated water containing high concentrations of salts. It is possible to suppress.

例えば、処理量の約9割を担う第一段目蒸発缶8は脱塩原水に対して約10倍濃縮のため、塩の結晶化はほとんど起こらないので、スケーリングの影響を受けず連続運転が可能である。
一方、第二段目蒸発缶9では脱塩原水に対して約40倍に濃縮されるため、スケールを形成する塩類の濃度が飽和、または、過飽和となるので、スケーリングが生じる可能性があり、連続運転には不向きである。しかし、pH調整をしてカルシウム塩などの対象塩類の溶解度を上げてスケーリングを抑えることが可能である。
For example, the first-stage evaporator 8 responsible for about 90% of the processing amount is about 10 times concentrated with respect to the demineralized raw water, so there is almost no crystallization of the salt. Is possible.
On the other hand, since the second stage evaporator 9 is concentrated about 40 times with respect to the demineralized raw water, the concentration of the salts forming the scale becomes saturated or supersaturated, so scaling may occur. Not suitable for continuous operation. However, it is possible to suppress the scaling by adjusting the pH to increase the solubility of target salts such as calcium salts.

また、仮に第二段目蒸発缶9内にスケーリングが生じたとしても、小型の第二段目蒸発缶9のみのスケーリング除去を行えばよく、使用する薬品の節約や作業の短縮が可能になる。   Further, even if scaling occurs in the second stage evaporator 9, it is only necessary to remove the scaling of only the small second stage evaporator 9, and it is possible to save chemicals used and shorten the work. .

次に、図2に示す本発明の他の実施形態について説明する。
図2において、19は活性炭処理装置、Bはカルシウム塩などを不溶性の炭酸塩にする反応槽20と、生成物を沈殿分離などによって分離するための固液分離槽21からなる軟化装置である。
図2に示す実施形態は図1の実施形態に、処理すべき塩類含有の処理水を、予め前処理するための工程である活性炭処理装置19を第一段目蒸発缶8の前段に、また、第一段目蒸発缶の後段に軟化装置Bを設けたものである。
Next, another embodiment of the present invention shown in FIG. 2 will be described.
In FIG. 2, 19 is an activated carbon treatment apparatus, B is a softening apparatus comprising a reaction tank 20 for converting calcium salt or the like into an insoluble carbonate, and a solid-liquid separation tank 21 for separating a product by precipitation separation or the like.
The embodiment shown in FIG. 2 is the same as the embodiment shown in FIG. 1 except that the activated carbon treatment device 19, which is a process for pretreating the salt-containing treated water to be treated, is placed in the front stage of the first stage evaporator 8. The softening device B is provided after the first stage evaporator.

すなわち、図1の実施形態においては、処理すべき塩類含有処理水を送液管L4を介して、直接第一段目蒸発缶8へ供給したが、図2の実施形態では処理すべき塩類含有処理水中の有機物や着色成分を、予め活性炭処理装置19を通して除去した後、送液管L8を介して第一段目蒸発缶8に供給するようにしている。   That is, in the embodiment of FIG. 1, the salt-containing treated water to be treated is supplied directly to the first stage evaporator 8 via the liquid feeding pipe L4. However, in the embodiment of FIG. Organic substances and coloring components in the treated water are previously removed through the activated carbon treatment device 19 and then supplied to the first stage evaporator 8 via the liquid feeding pipe L8.

また、第一段目蒸発缶8の後段に溶解性のカルシウム塩やマグネシウム塩などを不溶性の炭酸塩に変換するために炭酸ソーダあるいは炭酸イオンを含有する温泉水などと、中和剤(アルカリまたは酸)を添加して反応させる反応槽20と、生成した炭酸カルシウム、炭酸マグネシウムなどを沈殿分離する固液分離槽21とからなる軟化装置Bを設けて、カルシウムやマグネシウムなどのスケーリングを引き起こす成分を除去するようにしたものである。   Further, in order to convert soluble calcium salt or magnesium salt into insoluble carbonate in the subsequent stage of the first stage evaporator 8, hot water containing sodium carbonate or carbonate ions, etc., and a neutralizing agent (alkaline or A softening device B including a reaction tank 20 to which an acid is added and reacted, and a solid-liquid separation tank 21 that precipitates and separates the generated calcium carbonate, magnesium carbonate, and the like, and includes components that cause scaling such as calcium and magnesium. It is intended to be removed.

し尿やごみ埋立て浸出水などの高濃度塩類を含有する有機性廃水は、前述した生物処理、凝集処理、固液分離膜処理などを組合せて処理することにより、かなりの程度浄化されるが、し尿処理水では胆汁色素の酸化物やヘモグロビン変性物など難分解性の有機物が残存している。また、ごみ埋立て浸出水の処理水には難分解性のフミン酸やフルボ酸が残存する。   Organic wastewater containing high-concentration salts, such as human waste and landfill leachate, is purified to a considerable extent by combining the aforementioned biological treatment, coagulation treatment, solid-liquid separation membrane treatment, etc. In treated human waste water, persistent organic substances such as oxides of bile pigment and denatured hemoglobin remain. In addition, persistent humic acid and fulvic acid remain in the treated water of landfill leachate.

これらの残存有機物は濃縮度の高い第三段目蒸発缶10内において発泡現象を引き起こす。発泡が起こると、凝縮液側に高濃度の塩類を含む泡が流出し、放流水の水質を悪化させる。また、それらの難分解性の物質は着色成分であるため、回収される結晶塩は黒色などの色を呈し、工業用塩類などとして利用する際の障害となる。   These remaining organic substances cause a foaming phenomenon in the highly concentrated third stage evaporator 10. When foaming occurs, bubbles containing high-concentration salts flow out on the condensate side, deteriorating the quality of the discharged water. In addition, since these hardly decomposable substances are colored components, the recovered crystalline salt exhibits a color such as black, which becomes an obstacle when used as industrial salts.

上記の問題を引起こす胆汁色素の酸化物、ヘモグロビン変性物、フミン酸、フルボ酸などの有機物は活性炭に吸着され得るので、それらを含む塩類含有処理水を第一段目の蒸発缶8に供給する前に、予め活性処理装置19に通すことによって除去することができる。
また、活性炭吸着処理の代わりに、オゾン酸化処理を行ってそれらの有機物を分解除去することも可能である。また、オゾン酸化処理の後に、さらに、活性炭処理を行うようにすることも可能である。
Organic substances such as bile pigment oxides, hemoglobin denatured products, humic acid, and fulvic acid that cause the above problems can be adsorbed by activated carbon, so supply salt-containing treated water containing them to the first stage evaporator 8 It can be removed by passing through the active treatment device 19 in advance.
Further, instead of the activated carbon adsorption treatment, it is possible to perform ozone oxidation treatment to decompose and remove these organic substances. Further, after the ozone oxidation treatment, it is also possible to perform an activated carbon treatment.

活性炭処理装置19、または、オゾン酸化処理装置(図示されていない)を設けて有機物を除去することにより、着色のない塩類の回収ができるだけでなく、蒸発缶内の濃縮液中の有機物の量が低減するので、濃縮率が上げられ、系外に排出する廃液を低減できるという利点もある。   By providing an activated carbon treatment device 19 or an ozone oxidation treatment device (not shown) to remove organic matter, not only the salt without coloring can be recovered, but also the amount of organic matter in the concentrated liquid in the evaporator can be reduced. Since it reduces, there is also an advantage that the concentration rate can be increased and waste liquid discharged out of the system can be reduced.

高濃度塩類を含む処理水中には、通常、カルシウムやマグネシウムなどが溶解していることが多く、それらが蒸発濃縮によって固形の炭酸塩や硫酸塩となって蒸発缶など各種の機器に付着してスケーリングが発生する。   In treated water containing high-concentration salts, calcium and magnesium are usually dissolved, and they become solid carbonates and sulfates by evaporation and concentration and adhere to various devices such as evaporators. Scaling occurs.

特に、脱塩原水に対して濃縮率が高い第二段目蒸発缶9内の伝熱管表面にはスケーリングが発生することがある。しかし、軟化装置Bを設けて、カルシウムやマグネシウムなどを、予め取り除くことにより、この問題を防止することが可能である。
なお、図では軟化装置Bを第一段目蒸発缶8の後段に設置しているが、第一段目蒸発缶8の前段に配置することも可能である。
In particular, scaling may occur on the surface of the heat transfer tube in the second stage evaporator 9 having a high concentration rate with respect to the desalted raw water. However, this problem can be prevented by providing the softening device B and removing calcium, magnesium, and the like in advance.
In addition, although the softening apparatus B is installed in the back | latter stage of the 1st stage evaporator 8 in the figure, it is also possible to arrange | position in the front | former stage of the 1st stage evaporator 8.

高濃度の塩類を含有するこのような処理水を、予め活性炭処理装置19や軟化装置Bを設けて処理することにより、第二段目蒸発缶9でのスケーリング問題や第三段目蒸発缶10内での発泡問題および回収結晶塩の着色問題を解決することができる。
すなわち、活性炭処理装置19あるいはオゾン酸化処理装置(図示していない)または/および軟化装置Bを設ける図2の実施形態では、図1に示す実施形態に比べて、スケーリング問題の更なる改善ができ、また、着色のない工業塩を回収することが可能である。
By treating such treated water containing high-concentration salts with the activated carbon treatment device 19 and the softening device B in advance, scaling problems in the second-stage evaporator 9 and the third-stage evaporator 10 The problem of foaming inside and the problem of coloring the recovered crystal salt can be solved.
That is, the embodiment of FIG. 2 provided with the activated carbon treatment device 19 or the ozone oxidation treatment device (not shown) or / and the softening device B can further improve the scaling problem as compared with the embodiment shown in FIG. In addition, it is possible to recover industrial salt without coloring.

なお、図1および図2の実施形態では、主にし尿を例に説明したが、産業廃水など各種の高濃度塩類を含有する有機性の廃水についても、同様に適用し、同様の効果を得ることができる。   In the embodiment of FIGS. 1 and 2, urine has been mainly described as an example. However, the present invention is similarly applied to organic wastewater containing various high-concentration salts such as industrial wastewater to obtain the same effect. be able to.

本発明の一実施形態を模式的に示す概略図である。It is the schematic which shows one Embodiment of this invention typically. 本発明の他の実施形態を模式的に示す構成図である。It is a block diagram which shows typically other embodiment of this invention.

符号の説明Explanation of symbols

1 分離機
2 一次硝化脱窒素槽
3 二次硝化脱窒素槽
4 第一段目膜分離槽
5 凝集槽
6 第二段目膜分離槽
7 脱塩原水槽
8 第一段目蒸発缶
9 第二段目蒸発缶
10 第三段目蒸発缶
11 蒸気ボイラ
12 遠心分離機
13 母液タンク
14、15、16 コンデンサ
17、19 活性炭処理装置
18 接触槽
20 反応槽
21 固液分離槽
A 生物処理装置
B 軟化装置

DESCRIPTION OF SYMBOLS 1 Separator 2 Primary nitrification denitrification tank 3 Secondary nitrification denitrogenation tank 4 First stage membrane separation tank 5 Coagulation tank 6 Second stage membrane separation tank 7 Desalination raw water tank 8 First stage evaporator 9 Second stage Eye evaporator 10 Third stage evaporator 11 Steam boiler 12 Centrifugal separator 13 Mother liquor tanks 14, 15, 16 Capacitors 17, 19 Activated carbon treatment equipment 18 Contact tank 20 Reaction tank 21 Solid-liquid separation tank A Biological treatment equipment B Softening equipment

Claims (7)

高濃度の塩類を含有する有機性廃水を生物処理、凝集処理、固液分離膜処理などを組合せて処理することによって得られる塩類含有処理水を、複数の蒸発缶を用いて多段濃縮し、塩類を析出させて分離することを特徴とする塩類含有処理水の脱塩方法。 Salt-containing treated water obtained by treating organic wastewater containing high-concentration salt in combination with biological treatment, flocculation treatment, solid-liquid separation membrane treatment, etc., is concentrated in multiple stages using multiple evaporators. A method for desalting salt-containing treated water, wherein the salt-containing treated water is separated. 前記塩類含有処理水中の有機物を、予め活性炭吸着処理または/およびオゾン酸化処理で除去した後に、第一段目の蒸発缶へ供給することを特徴とする請求項1記載の塩類含有処理水の脱塩方法。   2. The salt-containing treated water according to claim 1, wherein organic substances in the salt-containing treated water are previously removed by activated carbon adsorption treatment and / or ozone oxidation treatment and then supplied to the first stage evaporator. Salt method. 前記塩類含有処理水中に含まれるカルシウム塩などを、第一段目の蒸発缶の前段または後段で、予め炭酸塩として除去することを特徴とする請求項1、請求項2記載の塩類含有処理水の脱塩方法。   3. The salt-containing treated water according to claim 1, wherein calcium salt or the like contained in the salt-containing treated water is removed in advance as a carbonate before or after the first-stage evaporator. Desalting method. 前記塩類を析出させて分離した後、工業塩として回収することを特徴とする請求項1、請求項2、請求項3記載の塩類含有処理水の脱塩方法。   4. The method for desalinating salt-containing treated water according to claim 1, wherein the salt is precipitated and separated and then recovered as an industrial salt. 高濃度の塩類を含有する有機性廃水を生物処理、凝集処理、固液分離膜処理などを組合せて処理することによって得られる塩類含有処理水を、順次濃縮する複数の蒸発缶と、析出した塩類を分離する遠心分離機を備えることを特徴とする塩類含有処理水の脱塩装置。   Multiple evaporators that sequentially concentrate salt-containing treated water obtained by combining organic wastewater containing high-concentration salt with biological treatment, coagulation treatment, solid-liquid separation membrane treatment, etc., and precipitated salts A demineralizer for salt-containing treated water, comprising a centrifuge for separating water. 前記塩類含有処理水が供給される第一段目の蒸発缶の前段に、塩類含有処理水中に含まれる有機物を除去するための活性炭吸着装置または/およびオゾン酸化装置を備えることを特徴とする請求項5記載の塩類含有処理水の脱塩装置。   An activated carbon adsorbing device and / or an ozone oxidation device for removing organic substances contained in the salt-containing treated water is provided in a previous stage of the first stage evaporator to which the salt-containing treated water is supplied. Item 6. A desalinization apparatus for salt-containing treated water according to Item 5. 前記塩類含有処理水に含まれるカルシウム塩などを炭酸塩として除去するための軟化装置を、第一段目の蒸発缶の前段または後段に設けることを特徴とする請求項5、請求項6記載の塩類含有処理水の脱塩装置。

The softening apparatus for removing the calcium salt etc. which are contained in the said salt containing treated water as carbonate is provided in the front | former stage or the back | latter stage of a 1st stage evaporator, The Claims 5 and 6 characterized by the above-mentioned. Desalination equipment for salt-containing treated water.

JP2004155037A 2004-05-25 2004-05-25 Desalination method and apparatus for salt-containing treated water Expired - Fee Related JP4018667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155037A JP4018667B2 (en) 2004-05-25 2004-05-25 Desalination method and apparatus for salt-containing treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155037A JP4018667B2 (en) 2004-05-25 2004-05-25 Desalination method and apparatus for salt-containing treated water

Publications (2)

Publication Number Publication Date
JP2005334736A true JP2005334736A (en) 2005-12-08
JP4018667B2 JP4018667B2 (en) 2007-12-05

Family

ID=35488872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155037A Expired - Fee Related JP4018667B2 (en) 2004-05-25 2004-05-25 Desalination method and apparatus for salt-containing treated water

Country Status (1)

Country Link
JP (1) JP4018667B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200556A (en) * 2007-01-25 2008-09-04 Sasakura Engineering Co Ltd Recovery method of byproduct salt
CN100460348C (en) * 2007-03-16 2009-02-11 嘉兴市新大众印染有限公司 Method for treating and reclaiming wastewater of polyester piece goods dyeing and finishing
JP2010537799A (en) * 2007-08-23 2010-12-09 ダウ グローバル テクノロジーズ インコーポレイティド Brine purification
JP2011020064A (en) * 2009-07-16 2011-02-03 Astom:Kk Method and apparatus for treating waste liquid containing inorganic salt
CN104192927A (en) * 2014-09-16 2014-12-10 青岛国标环保有限公司 Phenol-acetone wastewater evaporation desalting pretreatment process
CN104326491A (en) * 2014-11-21 2015-02-04 广东源盛生态环保科技有限公司 Method for extracting salt contents of garbage leachate by using hot mud balls
CN105439395A (en) * 2016-01-04 2016-03-30 大唐国际化工技术研究院有限公司 Zero-discharge treatment method of salt-containing organic wastewater
JP2017503103A (en) * 2014-01-22 2017-01-26 牟大同 Electric and water cogeneration system and method
KR102003428B1 (en) * 2018-11-13 2019-07-24 코오롱환경에너지 주식회사 Desulfurization wastewater zero-discharge treatment apparatus and method
CN110354517A (en) * 2019-06-19 2019-10-22 常熟美特钙业有限公司 A kind of double-effect evaporation production technology of high concentration precipitated calcium carbonate
JP2020179363A (en) * 2019-04-26 2020-11-05 株式会社神鋼環境ソリューション Wastewater treatment method and wastewater treatment equipment
CN111960590A (en) * 2020-06-22 2020-11-20 光大环境科技(中国)有限公司 Membrane concentrate treatment system of waste incineration power plant
CN114716053A (en) * 2022-03-02 2022-07-08 华电水务工程有限公司 Softening pretreatment method for high-COD high-salinity wastewater
CN115403207A (en) * 2022-11-02 2022-11-29 天津高能时代水处理科技有限公司 Method and system for treating high-salinity high-organic-matter wastewater
CN117509993A (en) * 2024-01-04 2024-02-06 清大国华环境集团股份有限公司 Physical and chemical high-concentration waste liquid treatment process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645637A (en) * 2016-01-28 2016-06-08 嘉园环保有限公司 Concentrated solution treatment method and device based on Fenton reaction
CN108178364B (en) * 2017-11-27 2021-11-16 上海化学工业区中法水务发展有限公司 Method for treating organic matters in high-salinity industrial wastewater
CN108675531A (en) * 2018-05-17 2018-10-19 海若斯(北京)环境科技有限公司 The thermochemical treatment system and method for high organic waste liquid with high salt

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200556A (en) * 2007-01-25 2008-09-04 Sasakura Engineering Co Ltd Recovery method of byproduct salt
CN100460348C (en) * 2007-03-16 2009-02-11 嘉兴市新大众印染有限公司 Method for treating and reclaiming wastewater of polyester piece goods dyeing and finishing
JP2010537799A (en) * 2007-08-23 2010-12-09 ダウ グローバル テクノロジーズ インコーポレイティド Brine purification
JP2011020064A (en) * 2009-07-16 2011-02-03 Astom:Kk Method and apparatus for treating waste liquid containing inorganic salt
JP2017503103A (en) * 2014-01-22 2017-01-26 牟大同 Electric and water cogeneration system and method
CN104192927A (en) * 2014-09-16 2014-12-10 青岛国标环保有限公司 Phenol-acetone wastewater evaporation desalting pretreatment process
CN104326491A (en) * 2014-11-21 2015-02-04 广东源盛生态环保科技有限公司 Method for extracting salt contents of garbage leachate by using hot mud balls
CN105439395A (en) * 2016-01-04 2016-03-30 大唐国际化工技术研究院有限公司 Zero-discharge treatment method of salt-containing organic wastewater
KR102003428B1 (en) * 2018-11-13 2019-07-24 코오롱환경에너지 주식회사 Desulfurization wastewater zero-discharge treatment apparatus and method
JP2020179363A (en) * 2019-04-26 2020-11-05 株式会社神鋼環境ソリューション Wastewater treatment method and wastewater treatment equipment
CN110354517A (en) * 2019-06-19 2019-10-22 常熟美特钙业有限公司 A kind of double-effect evaporation production technology of high concentration precipitated calcium carbonate
CN111960590A (en) * 2020-06-22 2020-11-20 光大环境科技(中国)有限公司 Membrane concentrate treatment system of waste incineration power plant
CN114716053A (en) * 2022-03-02 2022-07-08 华电水务工程有限公司 Softening pretreatment method for high-COD high-salinity wastewater
CN115403207A (en) * 2022-11-02 2022-11-29 天津高能时代水处理科技有限公司 Method and system for treating high-salinity high-organic-matter wastewater
CN115403207B (en) * 2022-11-02 2023-02-07 天津高能时代水处理科技有限公司 Method and system for treating high-salinity high-organic-matter wastewater
CN117509993A (en) * 2024-01-04 2024-02-06 清大国华环境集团股份有限公司 Physical and chemical high-concentration waste liquid treatment process
CN117509993B (en) * 2024-01-04 2024-04-09 清大国华环境集团股份有限公司 Physical and chemical high-concentration waste liquid treatment process

Also Published As

Publication number Publication date
JP4018667B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4018667B2 (en) Desalination method and apparatus for salt-containing treated water
US11332379B2 (en) Industrial waste salt resourceful treatment method and device
JP3883445B2 (en) Sewage treatment equipment
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
JP5567468B2 (en) Method and apparatus for treating organic wastewater
US20150315055A1 (en) Water Treatment Process
CN105540967A (en) Processing method for reducing and recycling organic waste water and processing system
US8119008B2 (en) Fluid purification methods and devices
US20160340212A1 (en) Forward Osmosis Separation Processes
JP3477526B2 (en) Wastewater recovery equipment
CN106746115A (en) Desulfurization wastewater recycling processing method and processing system
CN105906126A (en) Salt-containing wastewater resource recycling and disposal system and method
JP2008223115A (en) Method for treating salt water
CN106186550A (en) Sewage recycling Zero emission device and method
CN105906128A (en) Method and system for recovering sodium chloride from high salinity wastewater
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
CN106007093A (en) Zero discharge method for heavy metal waste water
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP7226731B2 (en) Processing method of the object to be processed
CN106430771B (en) salt separation system and salt separation method
US11834358B2 (en) Process for treating frac flowback and produced water including naturally occurring radioactive material
JPH11188389A (en) Method and apparatus for treating seepage water
CN114195304A (en) Quality-based salt separation treatment device and treatment method for high-salinity wastewater in coal chemical industry
CN206089336U (en) Zero discharging equipment of sewage recycling

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Ref document number: 4018667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees