JP2005333545A - Modulation/demodulation method and circuit - Google Patents

Modulation/demodulation method and circuit Download PDF

Info

Publication number
JP2005333545A
JP2005333545A JP2004151717A JP2004151717A JP2005333545A JP 2005333545 A JP2005333545 A JP 2005333545A JP 2004151717 A JP2004151717 A JP 2004151717A JP 2004151717 A JP2004151717 A JP 2004151717A JP 2005333545 A JP2005333545 A JP 2005333545A
Authority
JP
Japan
Prior art keywords
signal
signal point
circuit
points
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151717A
Other languages
Japanese (ja)
Other versions
JP4207845B2 (en
Inventor
Yosuke Akimoto
陽介 秋元
Yasushi Shirato
裕史 白戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004151717A priority Critical patent/JP4207845B2/en
Publication of JP2005333545A publication Critical patent/JP2005333545A/en
Application granted granted Critical
Publication of JP4207845B2 publication Critical patent/JP4207845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a modulation method and circuit in which the arrangement of signal points is compliant to square quadrature amplitude modulation (QAM) and the arrangement of QAM signal points is used to efficiently suppress the deterioration of a BER (Bit Error Rate) characteristic caused by phase noise. <P>SOLUTION: Signal points selected out of signal points in which an in-phase/quadrature component is divided at equal intervals and which do not exceed a maximum amplitude of a multi-level square QAM outside the signal points of the square QAM, so as not to be adjacent to each other are added to the arrangement of signal points of the square QAM. Further, signal points which are on the outer-most periphery of the square QAM and adjacent to four corners or at the second from signal points adjacent to the four corners, and in which order of closeness from four corners is within the number of the added signal points, are deleted. A transmission bit sequence is then mapped to the remaining signal points. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、直交振幅変調(QAM:Quadrature Amplitude Modulation)方式において、送受信機発振器の位相雑音によるビット誤り率(BER:Bit Error Rate)特性の劣化を軽減する変復調方法及び回路に関する。   The present invention relates to a modulation / demodulation method and circuit for reducing deterioration in bit error rate (BER) characteristics due to phase noise of a transmitter / receiver oscillator in a quadrature amplitude modulation (QAM) system.

QAMはデジタル変調方式のひとつであり、振幅と位相の両方を使って情報を表現することによって限られた帯域幅で効率よくデータを転送することができる。このため、FWA(Fixed Wireless Access)やCATV等の十分な搬送波対雑音電力比(C/N:Carrier to Noise Ratio)が確保できるシステムにおいて広く用いられている。多値QAMにおける信号点配置の方式には、様々なものが提案されているが、信号点が同相方向及び直交方向に正方形に配置される正方形型QAMは、同相・直交成分をそれぞれ独立と看做した変復調が可能なため、実装が容易であるといったメリットがある。図4は、64値の正方形型QAMの信号点配置を示す図である。   QAM is one of digital modulation systems, and data can be efficiently transferred with a limited bandwidth by expressing information using both amplitude and phase. For this reason, it is widely used in systems capable of ensuring a sufficient carrier-to-noise ratio (C / N) such as FWA (Fixed Wireless Access) and CATV. Various signal point arrangement methods in multi-level QAM have been proposed, but a square QAM in which signal points are arranged in a square in the in-phase direction and in the orthogonal direction regards the in-phase and orthogonal components as independent. There is an advantage that it is easy to mount because it is possible to modulate and demodulate. FIG. 4 is a diagram showing a signal point arrangement of 64-valued square QAM.

この正方形型QAMのBER特性に劣化を与える要因の一つに、送受信機における局部発振周波数の揺らぎ(位相雑音)がある。位相雑音Φ(t)が重畳した受信信号r(t)は、同相・直交成分の変調信号i(t)、q(t)、角周波数ω、時刻tを用いて、次式
r(t)=i(t)cos(ωt+Φ(t))−q(t)sin(ωt+Φ(t))
により与えられる。通常、位相雑音Φ(t)の帯域は、数十kHz程度であり、シンボルレートが数MHz以上の高速通信においては、緩やかな位相の揺らぎといった形で影響が現れる。図5は、正方形型QAMの信号点に位相雑音が重畳した場合を表す図である。図5に示すように、位相雑音の影響により元の信号点が位相方向に広がった形となる。
One factor that causes deterioration in the BER characteristics of the square QAM is local oscillation frequency fluctuation (phase noise) in the transceiver. The received signal r (t) on which the phase noise Φ (t) is superimposed is expressed by the following equation r (t) using the in-phase / quadrature component modulation signals i (t), q (t), the angular frequency ω, and the time t. = I (t) cos (ωt + Φ (t)) − q (t) sin (ωt + Φ (t))
Given by. Usually, the band of the phase noise Φ (t) is about several tens of kHz, and in high-speed communication with a symbol rate of several MHz or more, an influence appears in the form of gradual phase fluctuations. FIG. 5 is a diagram illustrating a case where phase noise is superimposed on a square QAM signal point. As shown in FIG. 5, the original signal point is spread in the phase direction due to the influence of phase noise.

正方形型QAMでは、同相・直交方向に均一に信号点が配置されるため、位相方向への識別余裕は不均一である。特に、信号点の振幅が大きくなるほど位相に対する識別余裕が小さくなる傾向があるため、変調多値数の増加に伴い、位相雑音によるBER特性の劣化が顕著になる。具体的に図4の正方形型64QAMにおいて、信号点401では、隣の信号点402までの位相間隔は、0.5π(rad)であるが、外側の信号点403では、隣の信号点404までの位相間隔は、0.053π(rad)である。このため、信号点401及び402では、位相雑音の影響が小さいのに対し、信号点403及び404では、位相雑音による影響が大きくなる。   In the square QAM, the signal points are uniformly arranged in the in-phase / orthogonal directions, so that the identification margin in the phase direction is not uniform. In particular, since the discriminating margin for the phase tends to decrease as the amplitude of the signal point increases, the deterioration of the BER characteristic due to the phase noise becomes remarkable as the modulation multi-level number increases. Specifically, in the square 64QAM of FIG. 4, at the signal point 401, the phase interval to the adjacent signal point 402 is 0.5π (rad), but at the outer signal point 403, up to the adjacent signal point 404. The phase interval is 0.053π (rad). Therefore, the signal points 401 and 402 are less affected by the phase noise, whereas the signal points 403 and 404 are more affected by the phase noise.

位相雑音を除去する手法として、受信機のベースバンド処理部において、基準信号点からの受信信号の位相誤差を算出し、補償を行う自動位相制御(APC:Automatic Phase Control)回路がある。APC回路は、緩やかな位相変動に対しては、高精度な補償を実現するが、位相雑音の帯域がAPC回路の補償範囲より広い場合には、位相雑音による受信信号の揺らぎに対して十分な追従ができないため、APC回路の出力に位相雑音が残留する。   As a method for removing phase noise, there is an automatic phase control (APC) circuit that calculates and compensates for a phase error of a received signal from a reference signal point in a baseband processing unit of a receiver. The APC circuit realizes highly accurate compensation for gradual phase fluctuations. However, when the phase noise band is wider than the compensation range of the APC circuit, the APC circuit is sufficient for fluctuation of the received signal due to the phase noise. Since no follow-up is possible, phase noise remains in the output of the APC circuit.

また、APC回路と併用可能な手法として、正方形型QAMの信号点の一部を変更するものが提案されている(例えば、特許文献1、特許文献2参照)。特許文献1、2に記載されているStepped Square QAM(以下、SS−QAMという)の変調方法、回路は、正方形型QAMにおける最大振幅の信号点及びその近傍に存在する高振幅の信号点を、新たに作成された振幅の小さい信号点へ移動させることによって、C/Nの向上を図ったものである。新たに作成される信号点は、元の正方形型QAMの最大振幅を超えない範囲で、元の信号点の外側に同相・直交成分を等分割して作成される。図9は、64値のSS−QAMの信号点配置を示す図である。図9に示すように、SS−64QAMは、正方形型64QAMの最大電力を持つ信号点900a〜900dを、それぞれ信号点901a〜901dへ移動することで実現される。これにより、移動前の信号点と、移動後の信号点でのC/Nを約0.8dB、信号全体の平均C/Nを約0.2dB改善できる。同時に、SS−QAMは、信号点配置が同相・直交方向に等間隔であることから、正方形型QAM用の搬送波同期回路やシンボルタイミング同期回路等を、大幅に変更することなく利用可能といったメリットがある。   In addition, as a technique that can be used in combination with an APC circuit, a technique for changing a part of square QAM signal points has been proposed (see, for example, Patent Document 1 and Patent Document 2). The modulation method and circuit of Stepped Square QAM (hereinafter referred to as SS-QAM) described in Patent Documents 1 and 2 are a maximum amplitude signal point in square QAM and a high amplitude signal point present in the vicinity thereof. The C / N ratio is improved by moving to a newly created signal point having a small amplitude. The newly created signal point is created by equally dividing the in-phase / quadrature component outside the original signal point within a range not exceeding the maximum amplitude of the original square QAM. FIG. 9 is a diagram illustrating a signal point arrangement of 64-value SS-QAM. As shown in FIG. 9, SS-64QAM is realized by moving signal points 900a to 900d having the maximum power of square type 64QAM to signal points 901a to 901d, respectively. As a result, the C / N at the signal point before movement and the signal point after movement can be improved by about 0.8 dB, and the average C / N of the entire signal can be improved by about 0.2 dB. At the same time, SS-QAM has the advantage that the square QAM carrier synchronization circuit, symbol timing synchronization circuit, etc. can be used without significant changes since the signal point arrangement is equally spaced in the in-phase and orthogonal directions. is there.

また、正方形型QAMから、信号点を変更させずに位相雑音の影響を軽減する手法が提案されている(例えば、非特許文献1参照)。図10は、非特許文献1に記載の各信号点の閾値を表す図である。これは、従来では図4のように熱雑音に対するシンボル判定の誤りの特性が最良となるように、同相・直交平面上において直線で表していた信号点の閾値を、熱雑音と位相雑音の両面から最良となるように決定される曲線に置き換えたものである。ここで、閾値を表す線は、図10に示すように振幅が大きくなるほど位相方向に識別余裕を大きくとるように広がったものとなる。これにより、熱雑音と位相雑音環境下におけるBER特性を最適にでき、また、正方形型QAMからシンボル判定回路だけ変更すればよく、少ない変更で位相雑音の影響を軽減できるといったメリットがある。   In addition, a method of reducing the influence of phase noise without changing the signal point from the square QAM has been proposed (see Non-Patent Document 1, for example). FIG. 10 is a diagram illustrating threshold values of signal points described in Non-Patent Document 1. Conventionally, as shown in FIG. 4, the threshold value of the signal point represented by a straight line on the in-phase / orthogonal plane is set to both thermal noise and phase noise so that the error characteristic of symbol determination with respect to thermal noise becomes the best as shown in FIG. Is replaced with a curve determined to be the best. Here, as shown in FIG. 10, the line representing the threshold value is widened so as to increase the identification margin in the phase direction as the amplitude increases. As a result, the BER characteristics under the environment of thermal noise and phase noise can be optimized, and only the symbol determination circuit needs to be changed from the square QAM, and there is an advantage that the influence of the phase noise can be reduced with a small change.

特開昭61−077452号公報JP 61-077452 A 特公平06−71278号公報Japanese Patent Publication No. 06-71278 倉掛、中村、小山田、“位相雑音の影響を低減するQAMシンボル判定法”2003年電子情報通信学会通信ソサイエティ大会、B−8−8、2003年、p286Kurakake, Nakamura, and Oyamada, “QAM Symbol Judgment Methods for Reducing Phase Noise Effects” 2003 IEICE Communication Society, B-8-8, 2003, p286

SS−QAM方式は、平均C/Nに対するピークC/Nを下げることにより、一定の送信電力で全信号点に対して利得を得ることを目的としている。このため、振幅方向に均等に影響を与える熱雑音環境においては、良い特性を示すが、前述のように特定の信号点において特性劣化が顕著になる位相雑音に対しては、補償効果が不十分である。   The SS-QAM scheme is intended to obtain gain for all signal points with constant transmission power by lowering the peak C / N with respect to the average C / N. For this reason, it exhibits good characteristics in a thermal noise environment that affects the amplitude direction evenly, but as described above, the compensation effect is insufficient for phase noise in which characteristic deterioration becomes significant at a specific signal point as described above. It is.

また、非特許文献1の方法では、正方形型QAMの変復調器から、少ない変更で位相雑音の影響を低減できるものの、熱雑音と位相雑音の変化により最適な閾値が変化するため、設計が困難という問題点がある。また、特性に関して、位相雑音に対する特性を高めるために閾値を歪ませることにより、熱雑音に対するBER特性が劣化するといった、トレードオフの関係があり、大きな改善効果が得られない問題があった。   Although the method of Non-Patent Document 1 can reduce the influence of phase noise with a small change from a square QAM modulator / demodulator, the optimum threshold changes due to changes in thermal noise and phase noise, so design is difficult. There is a problem. In addition, regarding the characteristics, there is a trade-off relationship in which the BER characteristics against thermal noise are deteriorated by distorting the threshold value in order to enhance the characteristics against phase noise, and there is a problem that a large improvement effect cannot be obtained.

このように、正方形型QAMにおいて、位相雑音によって生じるBER特性劣化を十分に改善する手法は提案されていない。   Thus, no method has been proposed for sufficiently improving the BER characteristic degradation caused by the phase noise in the square QAM.

従って、本発明は、APC回路と併用することが可能で、信号点配置が正方形型QAMに準じており、位相雑音によるBER特性の劣化を効率よく抑えられるQAM信号点の配置を用いた変調方法及び回路を提供することを目的とする。   Therefore, the present invention can be used together with an APC circuit, the signal point arrangement conforms to the square QAM, and the modulation method using the QAM signal point arrangement that can efficiently suppress the deterioration of the BER characteristic due to the phase noise. And it aims at providing a circuit.

本発明における変調方法によれば、
多値の正方形型QAMの信号点配置に、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点を追加し、さらに、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記追加した信号点の数以内の信号点を削除し、残りの信号点に、送信ビット系列をマッピングすることを特徴とする。
According to the modulation method of the present invention,
Dividing the in-phase and quadrature components at equal intervals in the signal point arrangement of the multi-valued square QAM, and out of the signal points that do not exceed the maximum amplitude of the square QAM outside the square QAM signal point, Signal points selected so that they are not adjacent to each other are added, and further, the signal points on the outermost periphery of the square QAM and the signal points adjacent to the four corners or every other signal point from the four corners. In addition, signal points within the order of proximity from the four corners within the number of the added signal points are deleted, and a transmission bit sequence is mapped to the remaining signal points.

即ち、正方形型QAMの信号点のうち、位相雑音の影響が特に大きい最も外側に位置する信号点を、四隅からひとつ置きに選び出し、正方形型QAMの外側の信号点へ移動することを特徴としている。ここで、移動先の信号点は、SS−QAMと同様に、同相・直交成分を等分割して作成され、元の正方形型QAMの最大振幅を超えることなく決定される。また本発明において移動先の信号点は、互いに隣接しないように決定される。位相雑音環境下では、信号点の振幅が大きくなるほど位相方向に隣接する信号点との識別誤りが多く発生するため、正方形型QAMの外側の信号点を交互に取り除くことで、十分な位相余裕を確保できる。この結果、正方形型QAMの信号点が持つ最大振幅を増加させることなく、位相雑音に特化した特性改善が可能となる。また、SS−QAMと同様に、正方形型QAMに準じた信号点を持つため、各種同期処理は、正方形型QAMと同様のものを用いることができるといった利点もある。   That is, among the signal points of the square QAM, the signal points located on the outermost side where the influence of the phase noise is particularly large are selected from every other corner and moved to the signal points outside the square QAM. . Here, the destination signal point is created by equally dividing the in-phase and quadrature components as in SS-QAM, and is determined without exceeding the maximum amplitude of the original square QAM. In the present invention, the destination signal points are determined not to be adjacent to each other. Under a phase noise environment, the larger the amplitude of a signal point, the more identification errors occur between adjacent signal points in the phase direction. Therefore, by removing signal points outside the square QAM alternately, a sufficient phase margin can be obtained. It can be secured. As a result, it is possible to improve the characteristics specialized for phase noise without increasing the maximum amplitude of the square QAM signal point. Further, as with SS-QAM, since it has signal points according to square QAM, there is an advantage that various synchronization processes can use the same as those of square QAM.

本発明の変調方法における他の実施形態によれば、
多値の正方形型QAMの信号点にマッピングされた入力信号の各信号点が、移動元信号点であるか否かを判定する第1のステップと、移動元信号点である場合は、前記入力信号の信号点を、対である移動先信号点へ移動させる第2のステップとを有し、前記移動先信号点は、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点であり、前記移動元信号点は、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記移動先信号点の数以内の信号点であることを特徴とする。
According to another embodiment of the modulation method of the present invention,
A first step of determining whether or not each signal point of an input signal mapped to a signal point of a multi-valued square QAM is a movement source signal point; A second step of moving the signal point of the signal to a pair of destination signal points, wherein the destination signal point divides the in-phase and quadrature components at equal intervals, and the signal points of the square QAM Are signal points that are selected so as not to be adjacent to each other from among signal points that do not exceed the maximum amplitude of the square QAM, and the source signal points are on the outermost circumference of the square QAM. The signal points are adjacent to the four corners or every other signal point from the signal points adjacent to the four corners, and the order of the proximity from the four corners is within the number of the destination signal points. Features.

また、本発明の変調方法における他の実施形態によれば、前記第1のステップの前に、送信ビット系列を、多値の正方形型QAMの信号点にマッピングするステップを有し、前記第2のステップの後に、伝送路に応じた信号に変換し送信するステップを有することも好ましい。   According to another embodiment of the modulation method of the present invention, before the first step, there is a step of mapping a transmission bit sequence to a signal point of a multi-valued square QAM, and the second step It is also preferable to have a step of converting the signal into a signal corresponding to the transmission path and transmitting it after this step.

本発明における復調方法によれば、
前記のいずれかに記載の変調方法により変調された信号を入力し、送信ビット系列を出力することを特徴とする。
According to the demodulation method of the present invention,
A signal modulated by any of the modulation methods described above is input, and a transmission bit sequence is output.

本発明における変調回路によれば、
多値の正方形型QAMの信号点にマッピングされた信号を入力信号とし、入力信号の信号点が移動元信号点であるか否かを判定し、判定結果を出力する第1の判定回路と、前記第1の判定回路の出力を第1の入力信号、前記正方形型QAMの信号点にマッピングされた信号を第2の入力信号とし、第1の入力信号により移動元信号であると通知された場合に、対である移動先信号点へ、第2の入力信号の信号点を移動させる再マッピング回路とを有し、前記移動先信号点は、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点であり、前記移動元信号点は、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記移動先信号点の数以内の信号点であることを特徴とする。
According to the modulation circuit of the present invention,
A first determination circuit that uses a signal mapped to a signal point of a multivalued square QAM as an input signal, determines whether the signal point of the input signal is a source signal point, and outputs a determination result; The output of the first determination circuit is the first input signal, the signal mapped to the signal point of the square QAM is the second input signal, and the first input signal notifies that it is the source signal A remapping circuit that moves the signal point of the second input signal to a pair of destination signal points, the destination signal point divides in-phase and quadrature components at equal intervals, and Out of the square QAM signal points, the signal points are selected so as not to be adjacent to each other from the signal points that do not exceed the maximum amplitude of the square QAM, and the source signal points are the square type Signal points on the outermost circumference of the QAM, and four To the signal point of every other from the signal point adjacent to the adjacent or corners, and wherein the order of closeness from the four corners is a signal point within a few of the destination signal point.

本発明の変調回路における他の実施形態によれば、
送信するビット系列を多値の正方形型QAMの信号点にマッピングし、前記第1の判定回路に入力するマッピング回路と、前記再マッピング回路の出力信号を、伝送路に応じた信号に変換し送信する送信回路とを有することも好ましい。
According to another embodiment of the modulation circuit of the present invention,
A bit sequence to be transmitted is mapped to a signal point of a multi-valued square QAM, and a mapping circuit input to the first determination circuit and an output signal of the remapping circuit are converted into a signal corresponding to a transmission path and transmitted. It is also preferable to have a transmission circuit that performs the above.

本発明における複調回路によれば、受信多値QAMの信号点にマッピングされた信号を入力信号とし、入力信号の信号点が移動先信号点であるか否かを判定し、判定結果を出力する第2の判定回路と、前記第2の判定回路の出力を第1の入力信号、前記多値QAMの信号点にマッピングされた信号を第2の入力信号とし、第1の入力信号により移動先信号点であると通知された場合に、対である移動元信号点へ、第2の入力信号の信号点を移動させる信号点復元回路とを有し、前記移動先信号点は、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点であり、前記移動元信号点は、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記移動先信号点の数以内の信号点であることを特徴とする。   According to the multitone circuit of the present invention, a signal mapped to the signal point of the received multilevel QAM is used as an input signal, it is determined whether or not the signal point of the input signal is a destination signal point, and the determination result is output. A second determination circuit that outputs the first input signal as an output of the second determination circuit, and a second input signal that is mapped to the signal point of the multi-level QAM, and is moved by the first input signal. A signal point restoration circuit that moves the signal point of the second input signal to a pair of source signal points when notified that the destination signal point is a destination signal point, Signal points selected by dividing orthogonal components into equal intervals and not being adjacent to each other outside the square QAM signal point and not exceeding the maximum amplitude of the square QAM; The source signal point is the outermost periphery of the square QAM. And signal points that are adjacent to the four corners or every other signal point from the signal points adjacent to the four corners, and the order of proximity from the four corners is within the number of the destination signal points. It is characterized by.

本発明の復調回路における他の実施形態によれば、
伝送路からのデジタル変調信号を受信する受信回路と、前記受信回路の出力信号の信号点位置を判別し、前記第2の判定回路と、前記信号点復元回路へ入力する信号点判別回路と、前記信号点復元回路の出力信号をシンボル判定し、ビット系列を再生するシンボル判定回路とを有することも好ましい。
According to another embodiment of the demodulation circuit of the present invention,
A receiving circuit that receives a digitally modulated signal from a transmission path; a signal point position of an output signal of the receiving circuit; and a signal point determining circuit that inputs to the second determining circuit and the signal point restoring circuit; It is also preferable to include a symbol determination circuit that performs symbol determination on the output signal of the signal point restoration circuit and reproduces a bit sequence.

本発明における変複調回路によれば、
前記いずれかの変調回路と、前記いずれかの復調回路とを有することを特徴とする。
According to the modulation and modulation circuit in the present invention,
One of the modulation circuits and one of the demodulation circuits are provided.

本発明により、デジタル信号処理により位相雑音の影響緩和が可能となる。通常、発振器は、位相雑音の特性を良くするほど高価になるため、本発明によりデジタル通信システムの低価格化が実現可能となる。   According to the present invention, the influence of phase noise can be reduced by digital signal processing. In general, an oscillator becomes more expensive as the phase noise characteristic is improved. Therefore, the present invention makes it possible to reduce the price of a digital communication system.

本発明を実施するための最良の実施形態について、以下では図面を用いて詳細に説明する。以下の説明においては、64値の場合を例にとり説明を行うが、M値(Mは2のべき乗)にも適用可能である。   The best mode for carrying out the present invention will be described in detail below with reference to the drawings. In the following description, the case of 64 values will be described as an example, but the present invention can also be applied to M values (M is a power of 2).

図3は、64値の場合の、本発明の変復調方法及び回路が使用する信号点配置図である(以下、本発明の信号点配置という)。   FIG. 3 is a signal point arrangement diagram used by the modulation / demodulation method and circuit of the present invention in the case of 64 values (hereinafter referred to as the signal point arrangement of the present invention).

本発明による変調方法の第1の実施形態は、送信するビット系列を、本発明の信号点配置にマッピングすることであり、本発明の復調方法の実施形態は、本発明の信号点配置にマッピングされた信号を、送信されたビット系列に変換することである。ビット系列と、本発明の信号点配置の各信号点との対応は、任意の方法により予め決められる。   The first embodiment of the modulation method according to the present invention is to map the bit sequence to be transmitted to the signal point arrangement of the present invention. The demodulation method embodiment of the present invention maps to the signal point arrangement of the present invention. The converted signal is converted into a transmitted bit sequence. The correspondence between the bit sequence and each signal point of the signal point arrangement of the present invention is determined in advance by an arbitrary method.

以下、本発明の信号点配置の作成方法について、正方形型QAMの信号点配置を基準に説明する。   Hereinafter, the signal point arrangement creation method of the present invention will be described with reference to the square QAM signal point arrangement.

図4の正方形型64QAMの信号点のうち移動されるもの、即ち、削除される信号点(以下、移動元信号点という)と、それらの移動後の信号点、即ち、新たな信号点(以下、移動先信号点という)を以下の手順により決定する。   Among the signal points of the square type 64QAM in FIG. 4, the signal points to be moved, that is, the signal points to be deleted (hereinafter referred to as the movement source signal points) and the signal points after the movement, that is, the new signal points (hereinafter referred to as the signal points) The destination signal point is determined by the following procedure.

まず、正方形型64QAMの外側、かつ、正方形型64QAMの最大振幅を超えない位置に確保できる信号点を調査する。図6より、最大振幅を表す円600の内側に、信号点601a〜601pの計16個の信号点が確保できる。   First, signal points that can be secured outside the square type 64QAM and at positions that do not exceed the maximum amplitude of the square type 64QAM are investigated. From FIG. 6, a total of 16 signal points of signal points 601 a to 601 p can be secured inside the circle 600 representing the maximum amplitude.

次に、これらの信号点について、位相雑音の影響を避けるため、それぞれが隣接しないように取捨選択を行う。図7は、取捨選択の例を表す図である。ここでは、601b、601c、601f、601g、601j、601k、601n及び601oの8点を間引き、移動先信号点として、601a、601d、601e、601h、601i、601l、601m及び601pの8点を採用する。   Next, in order to avoid the influence of phase noise, these signal points are selected so that they are not adjacent to each other. FIG. 7 is a diagram illustrating an example of selection. Here, 8 points of 601b, 601c, 601f, 601g, 601j, 601k, 601n and 601o are thinned out, and 8 points of 601a, 601d, 601e, 601h, 601i, 601l, 601m and 601p are adopted as destination signal points. To do.

続いて移動元信号点を決定する。図5からも明らかなように、信号点の振幅が大きいほど移動雑音の影響が大きくなるため、正方形型QAMの最外周上の信号点であり、かつ、四隅に隣接する信号点又は四隅に隣接する信号点から一つおきにある信号点であり、かつ、四隅から近い順に数えた順番が上記移動先信号点数以内の信号点を選択する。ここでは、移動後の信号点が8個であるため、四隅の信号点に隣接する8つの信号点、即ち、図3における300a、300d、300e、300h、300i、300l、300m及び300pを移動元信号点とする。   Subsequently, the source signal point is determined. As apparent from FIG. 5, since the influence of moving noise increases as the amplitude of the signal point increases, it is a signal point on the outermost periphery of the square QAM and adjacent to the four corners or adjacent to the four corners. A signal point that is every other signal point from the signal point to be processed and whose order counted in the order from the four corners is within the number of destination signal points is selected. Here, since there are eight signal points after movement, eight signal points adjacent to the signal points at the four corners, that is, 300a, 300d, 300e, 300h, 300i, 300l, 300m, and 300p in FIG. Let it be a signal point.

以上、正方形型QAMの信号点配置に、移動先信号点を追加し、同数の移動元信号点を削除したものが、本発明の信号点配置となる。   As described above, the signal point arrangement of the present invention is obtained by adding destination signal points to the square QAM signal point arrangement and deleting the same number of movement source signal points.

図2は、本発明による変調方法及び復調方法の第2の実施形態のフローチャートである。   FIG. 2 is a flowchart of a second embodiment of the modulation method and the demodulation method according to the present invention.

(S201) まず送信ビット系列を多値の正方形型QAMへマッピングする。   (S201) First, the transmission bit sequence is mapped to multi-valued square QAM.

(S202, S210, S211) 前記、正方形型QAMへマッピングされた信号点が、移動元信号点であるか否かを判定する。つまり、正方形型QAMの最外周上の点であるか否か、四隅の信号点に隣接又は四隅の信号点から一つおきの信号点であるか否か、四隅からの近さの順が用意された移動先信号点の個数以内であるか否かにより判定する。図3の例では、信号点300a、300d、300e、300h、300i、300l、300m及び300pが、移動元信号点と判定される。   (S202, S210, S211) It is determined whether or not the signal point mapped to the square QAM is a source signal point. That is, whether it is a point on the outermost periphery of the square QAM, whether it is adjacent to the four corner signal points or every other signal point from the four corner signal points, the order from the four corners is prepared Judgment is made based on whether the number is within the number of movement destination signal points. In the example of FIG. 3, the signal points 300a, 300d, 300e, 300h, 300i, 300l, 300m, and 300p are determined as the movement source signal points.

(S203) S202, S210, S211により移動元信号点と判定された場合、予め作成している対となる移動先信号点へ移動させる。なお、移動元信号点と移動先信号点の対の決め方は任意である。図3の例では、信号点300aを601aに、300dを601dに、300eを601eに、300hを601h、300iを601iに、300lを601lに、300mを601mに、300pを601pに、それぞれ移動させ、図3に示す信号点配置を持つQAM信号を得る。   (S203) When it is determined as a movement source signal point by S202, S210, S211, it is moved to a pair of movement destination signal points that are created in advance. The method of determining the pair of the movement source signal point and the movement destination signal point is arbitrary. In the example of FIG. 3, the signal point 300a is moved to 601a, 300d to 601d, 300e to 601e, 300h to 601h, 300i to 601i, 300l to 601l, 300m to 601m, 300p to 601p, respectively. A QAM signal having the signal point arrangement shown in FIG. 3 is obtained.

(S206) 上記得られたQAM信号は、伝送路に送信され(S204)、受信側で受信された後(S205)、本発明の信号点配置のいずれの位置であるかの判別が行われる。   (S206) The obtained QAM signal is transmitted to the transmission line (S204) and received on the receiving side (S205), and then it is determined which position is the signal point arrangement of the present invention.

(S207) 上記判別された信号点の位置が、移動先信号点であるか否かを判定する。図3の例では、信号点601a、601d、601e、601h、601i、601l、601m、601pのいずれかに該当するか否かが判定する。   (S207) It is determined whether or not the position of the determined signal point is a destination signal point. In the example of FIG. 3, it is determined whether or not any of the signal points 601a, 601d, 601e, 601h, 601i, 601l, 601m, and 601p is applicable.

(S208) 移動先信号点であると判定された場合は、対である移動元信号点、即ち、元の正方形型QAMの信号点の位置へ信号を移動させる。図3の例では、信号点601aを300aに、601dを300dに、601eを300eに、601hを300h、601iを300iに、601lを300lに、601mを300mに、601pを300pに、それぞれ移動させ、正方形型64QAM信号を復元する。   (S208) If it is determined that the signal point is the destination signal point, the signal is moved to the position of the paired source signal point, that is, the original square QAM signal point. In the example of FIG. 3, the signal point 601a is moved to 300a, 601d to 300d, 601e to 300e, 601h to 300h, 601i to 300i, 601l to 300l, 601m to 300m, and 601p to 300p. The square 64QAM signal is restored.

(S209) 続いて、これをシンボル判定し、ビット系列を再生する。   (S209) Subsequently, this is determined as a symbol and a bit sequence is reproduced.

図1は、本発明による変調回路及び復調回路の実施形態を示すブロック図である。変調回路101は、マッピング回路103、判定回路104、再マッピング回路105及び送信回路106を含む。復調回路102は、受信回路107、信号点判別回路108、判定回路109、信号点復元回路110及びシンボル判定回路111を含む。   FIG. 1 is a block diagram showing an embodiment of a modulation circuit and a demodulation circuit according to the present invention. The modulation circuit 101 includes a mapping circuit 103, a determination circuit 104, a remapping circuit 105, and a transmission circuit 106. The demodulation circuit 102 includes a reception circuit 107, a signal point determination circuit 108, a determination circuit 109, a signal point restoration circuit 110, and a symbol determination circuit 111.

送信ビット系列は、マッピング回路103に入力される。マッピング回路103において多値の正方形型QAMの信号点にマッピングされ、マッピングされた信号は、判定回路104及び再マッピング回路105に入力される。   The transmission bit sequence is input to the mapping circuit 103. The mapping circuit 103 maps the signal points of the multi-valued square QAM, and the mapped signal is input to the determination circuit 104 and the remapping circuit 105.

判定回路104は、入力信号の信号点が、移動元信号点であるか否かを判定する。図3の例では、信号点300a、300d、300e、300h、300i、300l、300m又は300pであるか否かの判定を行う。判定結果は、再マッピング回路105に入力される。   The determination circuit 104 determines whether the signal point of the input signal is a movement source signal point. In the example of FIG. 3, it is determined whether the signal point is 300a, 300d, 300e, 300h, 300i, 300l, 300m, or 300p. The determination result is input to the remapping circuit 105.

再マッピング回路105は、判定回路104からの判定結果が“移動元信号点”を示している場合、マッピング回路103からの入力信号の信号点を、予め決められた対である移動先信号点に移動させる。図3の例では、信号点300aを601aに、300dを601dに、300eを601eに、300hを601h、300iを601iに、300lを601lに、300mを601mに、300pを601pに、それぞれ移動させ、図3に示す信号点配置を持つQAM信号を得る。   When the determination result from the determination circuit 104 indicates “movement source signal point”, the remapping circuit 105 changes the signal point of the input signal from the mapping circuit 103 to a destination signal point that is a predetermined pair. Move. In the example of FIG. 3, the signal point 300a is moved to 601a, 300d to 601d, 300e to 601e, 300h to 601h, 300i to 601i, 300l to 601l, 300m to 601m, 300p to 601p, respectively. A QAM signal having the signal point arrangement shown in FIG. 3 is obtained.

送信回路106は、再マッピング回路105からの、本発明の信号点配置にマッピングされた信号を、伝送路に応じた信号に変換し、送信を行う。   The transmission circuit 106 converts the signal mapped to the signal point arrangement of the present invention from the remapping circuit 105 into a signal corresponding to the transmission path, and performs transmission.

受信回路107は、伝送路からの信号を受信し、直交復調を行った後、信号点判別回路108へ入力を行う。   The reception circuit 107 receives a signal from the transmission path, performs quadrature demodulation, and inputs the signal to the signal point determination circuit 108.

信号点判別回路108は、受信回路107からの入力信号の信号点が、本発明の信号点配置のいずれの位置であるかを判定する。ここでは、ユークリッド距離の最も近い点への判定を行う。判定後の信号は、判定回路109及び信号点復元回路110へ入力される。   The signal point discriminating circuit 108 determines which position of the signal point arrangement of the present invention the signal point of the input signal from the receiving circuit 107 is. Here, the determination is made to the point with the closest Euclidean distance. The signal after the determination is input to the determination circuit 109 and the signal point restoration circuit 110.

判定回路109は、入力信号の信号点が、移動先信号点であるか否かの判定を行い、判定結果は信号点復元回路110へ入力される。   The determination circuit 109 determines whether or not the signal point of the input signal is the destination signal point, and the determination result is input to the signal point restoration circuit 110.

信号点復元回路110は、判定回路109からの入力信号により、”移動先信号点”であると通知された場合は、信号点判別回路108からの入力信号の信号点を、対である移動元信号点に移動させる。これにより、正方形型QAMが復元される。図3の例では、信号点601aを300aに、601dを300dに、601eを300eに、601hを300h、601iを300iに、601lを300lに、601mを300mに、601pを300pに、それぞれ移動させ、図4で表される正方形型64QAM信号を得る。復元された正方形型64QAM信号は、シンボル判定回路111に入力される。   When the signal point restoration circuit 110 is notified by the input signal from the determination circuit 109 that it is a “movement destination signal point”, the signal point of the input signal from the signal point determination circuit 108 is used as a pair of movement source. Move to signal point. Thereby, the square QAM is restored. In the example of FIG. 3, the signal point 601a is moved to 300a, 601d to 300d, 601e to 300e, 601h to 300h, 601i to 300i, 601l to 300l, 601m to 300m, and 601p to 300p. The square 64QAM signal represented in FIG. 4 is obtained. The restored square 64QAM signal is input to the symbol determination circuit 111.

シンボル判定回路111は、信号点復元回路110からの入力信号の同相・直交成分より送信ビット系列を再生する。   The symbol determination circuit 111 reproduces a transmission bit sequence from the in-phase / quadrature components of the input signal from the signal point restoration circuit 110.

もしくは、受信信号から送信ビット系列の再生回路に関して、信号点判別回路108と、判定回路109と、信号点復元回路110とを受信信号の同相・直交成分に対応したメモリを保持し、これをアドレスとして対応するビットを返す回路で構成することも可能である。   Alternatively, with respect to a circuit for reproducing a transmission bit sequence from a reception signal, the signal point determination circuit 108, the determination circuit 109, and the signal point restoration circuit 110 hold a memory corresponding to the in-phase / quadrature components of the reception signal, and store this as an address It is also possible to configure with a circuit that returns a corresponding bit.

図8は、本発明の信号点配置とLMS(Least Mean Square)アルゴリズムを用いたAPC回路を適用した場合の、位相雑音環境下でのBER特性を計算機シミュレーションにより求めた結果である。ただし、位相雑音のキャリアC/Nは20dB、カットオフ周波数は35kHzである。比較のため、正方形型64QAMにLMSを採用した場合についてもBER特性を示している。図8によると、本発明による配置方法を用いることでBER特性を改善できることがわかる。BER=10−5において、正方形型QAMと比較し、約0.7dBの改善効果が得られている。 FIG. 8 shows the results of calculating the BER characteristics under a phase noise environment by computer simulation when the APC circuit using the signal point arrangement and the LMS (Least Mean Square) algorithm of the present invention is applied. However, the carrier C / N of the phase noise is 20 dB, and the cutoff frequency is 35 kHz. For comparison, the BER characteristics are also shown when LMS is adopted for the square type 64QAM. FIG. 8 shows that the BER characteristics can be improved by using the arrangement method according to the present invention. At BER = 10 −5 , an improvement effect of about 0.7 dB is obtained compared to the square QAM.

本発明による変調回路及び復調回路のブロック図である。It is a block diagram of a modulation circuit and a demodulation circuit according to the present invention. 本発明による変調方法の第2の実施形態のフローチャートである。6 is a flowchart of a second embodiment of a modulation method according to the present invention; 64値の場合の、本発明の変復調方法及び回路が使用する信号点配置図である。It is a signal point arrangement diagram used by the modulation and demodulation method and circuit of the present invention in the case of 64 values. 64値の正方形型QAMの信号点配置を示す図である。It is a figure which shows signal point arrangement | positioning of 64-valued square type QAM. 正方形型QAMの信号点に位相雑音が重畳した場合を表す図である。It is a figure showing the case where phase noise is superimposed on the signal point of square type QAM. 64値の正方形型QAMの信号点配置の最大振幅を超えない、新しい信号点を表す図である。It is a figure showing the new signal point which does not exceed the maximum amplitude of signal point arrangement | positioning of 64 value square type QAM. 図6の新しい信号点から、位相雑音の影響を除去するために行う選択の例を表す図である。It is a figure showing the example of the selection performed in order to remove the influence of a phase noise from the new signal point of FIG. 本発明の信号点配置とAPC回路を適用した場合の、位相雑音環境下でのBER特性図である。It is a BER characteristic figure under a phase noise environment at the time of applying a signal point arrangement and an APC circuit of the present invention. 64値のSS−QAMの信号点配置を示す図である。It is a figure which shows the signal point arrangement | positioning of 64-value SS-QAM. 位相雑音の影響軽減のための従来法による、閾値変更を表す図である。It is a figure showing the threshold value change by the conventional method for the influence reduction of a phase noise.

符号の説明Explanation of symbols

101 変調回路
102 復調回路
103 マッピング回路
104、109 判定回路
105 再マッピング回路
106 送信回路
107 受信回路
108 信号点判別回路
110 信号点復元回路
111 シンボル判定回路
300a〜300p 移動元信号点
401〜404 正方形型QAMの信号点
600 正方形型QAMの最大振幅を表す線
601a〜601p 移動先信号点候補
900a〜900d SS−QAM方式での移動元信号点
901a〜901d SS−QAM方式での移動先信号点
DESCRIPTION OF SYMBOLS 101 Modulation circuit 102 Demodulation circuit 103 Mapping circuit 104,109 Judgment circuit 105 Remapping circuit 106 Transmission circuit 107 Reception circuit 108 Signal point discrimination circuit 110 Signal point restoration circuit 111 Symbol judgment circuit 300a-300p Original signal point 401-404 Square type QAM signal points
600 Line representing maximum amplitude of square QAM 601a to 601p Destination signal point candidates 900a to 900d Source signal points in SS-QAM system 901a to 901d Destination signal points in SS-QAM system

Claims (9)

デジタル通信の変調方法において、
多値の正方形型QAMの信号点配置に、
同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点を追加し、
さらに、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記追加した信号点の数以内の信号点を削除し、
残りの信号点に、送信ビット系列をマッピングすることを特徴とする変調方法。
In the modulation method of digital communication,
For signal point arrangement of multi-valued square type QAM,
In-phase and quadrature components are divided at equal intervals, and signal points selected so as not to be adjacent to each other outside the square QAM signal points that do not exceed the maximum amplitude of the square QAM are obtained. Add
Further, the signal points on the outermost periphery of the square QAM, the signal points adjacent to the four corners or every other signal point from the signal points adjacent to the four corners, and the order of the proximity from the four corners is the added signal. Delete signal points within the number of points,
A modulation method characterized by mapping a transmission bit sequence to remaining signal points.
デジタル通信の変調方法において、
多値の正方形型QAMの信号点にマッピングされた入力信号の各信号点が、移動元信号点であるか否かを判定する第1のステップと、
移動元信号点である場合は、前記入力信号の信号点を、対である移動先信号点へ移動させる第2のステップとを有し、
前記移動先信号点は、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点であり、
前記移動元信号点は、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記移動先信号点の数以内の信号点であることを特徴とする変調方法。
In the modulation method of digital communication,
A first step of determining whether or not each signal point of the input signal mapped to the signal point of the multi-valued square QAM is a source signal point;
A second source step of moving the signal point of the input signal to a pair of destination signal points if the source signal point is a source signal point;
The destination signal points are divided so that the in-phase and quadrature components are equally spaced, and the signal points outside the square QAM signal points are not adjacent to each other among the signal points that do not exceed the maximum amplitude of the square QAM. Is the signal point selected by
The source signal point is a signal point on the outermost circumference of the square QAM, and every other signal point adjacent to or adjacent to the four corners, and in order of proximity from the four corners. Is a signal point within the number of the destination signal points.
デジタル通信の変調方法において、
前記第1のステップの前に、送信ビット系列を、多値の正方形型QAMの信号点にマッピングするステップを有し、
前記第2のステップの後に、伝送路に応じた信号に変換し送信するステップを有することを特徴とする請求項2に記載の変調方法。
In the modulation method of digital communication,
Mapping the transmission bit sequence to a signal point of a multi-valued square QAM before the first step;
3. The modulation method according to claim 2, further comprising a step of converting and transmitting a signal corresponding to a transmission path after the second step.
デジタル通信の復調方法において、
請求項1から3のいずれか1項に記載の変調方法により変調された信号を入力し、送信ビット系列を出力することを特徴とする復調方法。
In the demodulation method of digital communication,
4. A demodulation method, comprising: inputting a signal modulated by the modulation method according to claim 1; and outputting a transmission bit sequence.
直交振幅変調を用いたデジタル通信用変調回路において、
多値の正方形型QAMの信号点にマッピングされた信号を入力信号とし、入力信号の信号点が移動元信号点であるか否かを判定し、判定結果を出力する第1の判定回路と、
前記第1の判定回路の出力を第1の入力信号、前記正方形型QAMの信号点にマッピングされた信号を第2の入力信号とし、第1の入力信号により移動元信号であると通知された場合に、対である移動先信号点へ、第2の入力信号の信号点を移動させる再マッピング回路とを有し、
前記移動先信号点は、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点であり、
前記移動元信号点は、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記移動先信号点の数以内の信号点であることを特徴とする変調回路。
In a modulation circuit for digital communication using quadrature amplitude modulation,
A first determination circuit that uses a signal mapped to a signal point of a multivalued square QAM as an input signal, determines whether the signal point of the input signal is a source signal point, and outputs a determination result;
The output of the first determination circuit is the first input signal, the signal mapped to the signal point of the square QAM is the second input signal, and the first input signal notifies that it is the source signal A remapping circuit that moves the signal point of the second input signal to a destination signal point that is a pair,
The destination signal points are divided so that the in-phase and quadrature components are equally spaced, and the signal points outside the square QAM signal points are not adjacent to each other among the signal points that do not exceed the maximum amplitude of the square QAM. Is the signal point selected by
The source signal point is a signal point on the outermost circumference of the square QAM, and every other signal point adjacent to or adjacent to the four corners, and in order of proximity from the four corners. Is a signal point within the number of the destination signal points.
送信するビット系列を多値の正方形型QAMの信号点にマッピングし、前記第1の判定回路に入力するマッピング回路と、
前記再マッピング回路の出力信号を、伝送路に応じた信号に変換し送信する送信回路とを有することを特徴とする請求項5に記載の変調回路。
A mapping circuit that maps a bit sequence to be transmitted to signal points of a multi-valued square QAM and inputs the signal to the first determination circuit;
The modulation circuit according to claim 5, further comprising: a transmission circuit that converts an output signal of the remapping circuit into a signal corresponding to a transmission path and transmits the signal.
直交振幅変調方式を用いたデジタル通信用復調回路において、
受信多値QAMの信号点にマッピングされた信号を入力信号とし、入力信号の信号点が移動先信号点であるか否かを判定し、判定結果を出力する第2の判定回路と、
前記第2の判定回路の出力を第1の入力信号、前記多値QAMの信号点にマッピングされた信号を第2の入力信号とし、第1の入力信号により移動先信号点であると通知された場合に、対である移動元信号点へ、第2の入力信号の信号点を移動させる信号点復元回路とを有し、
前記移動先信号点は、同相・直交成分を等間隔に分割し、前記正方形型QAMの信号点の外側で、前記正方形型QAMの最大振幅を超えない信号点の中から、それぞれが隣接しないように選択された信号点であり、
前記移動元信号点は、前記正方形型QAMの最外周上の信号点で、かつ、四隅に隣接又は四隅に隣接する信号点から一つおきの信号点で、かつ、四隅からの近さの順が前記移動先信号点の数以内の信号点であることを特徴とする復調回路。
In the demodulation circuit for digital communication using the quadrature amplitude modulation method,
A second determination circuit that uses a signal mapped to a signal point of received multilevel QAM as an input signal, determines whether the signal point of the input signal is a destination signal point, and outputs a determination result;
The output of the second determination circuit is the first input signal, the signal mapped to the signal point of the multilevel QAM is the second input signal, and the destination input signal point is notified by the first input signal. A signal point restoration circuit that moves the signal point of the second input signal to the pair of source signal points,
The destination signal points are divided so that the in-phase and quadrature components are equally spaced, and the signal points outside the square QAM signal points are not adjacent to each other among the signal points that do not exceed the maximum amplitude of the square QAM. Is the signal point selected by
The source signal point is a signal point on the outermost circumference of the square QAM, and every other signal point adjacent to or adjacent to the four corners, and in order of proximity from the four corners. Is a signal point within the number of the destination signal points.
伝送路からのデジタル変調信号を受信する受信回路と、
前記受信回路の出力信号の信号点位置を判別し、前記第2の判定回路と、前記信号点復元回路へ入力する信号点判別回路と、
前記信号点復元回路の出力信号をシンボル判定し、ビット系列を再生するシンボル判定回路とを有することを特徴とする請求項7に記載の復調回路。
A receiving circuit for receiving a digitally modulated signal from the transmission path;
A signal point position of an output signal of the receiving circuit is determined; the second determination circuit; and a signal point determination circuit that is input to the signal point restoration circuit;
The demodulation circuit according to claim 7, further comprising: a symbol determination circuit that performs symbol determination on an output signal of the signal point restoration circuit and reproduces a bit sequence.
請求項5又は6に記載の変調回路と、
請求項7又は8に記載の復調回路とを有することを特徴とする変復調回路。
The modulation circuit according to claim 5 or 6,
A modulation / demodulation circuit comprising the demodulation circuit according to claim 7.
JP2004151717A 2004-05-21 2004-05-21 Modulation / demodulation method and circuit Active JP4207845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151717A JP4207845B2 (en) 2004-05-21 2004-05-21 Modulation / demodulation method and circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151717A JP4207845B2 (en) 2004-05-21 2004-05-21 Modulation / demodulation method and circuit

Publications (2)

Publication Number Publication Date
JP2005333545A true JP2005333545A (en) 2005-12-02
JP4207845B2 JP4207845B2 (en) 2009-01-14

Family

ID=35487866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151717A Active JP4207845B2 (en) 2004-05-21 2004-05-21 Modulation / demodulation method and circuit

Country Status (1)

Country Link
JP (1) JP4207845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100763A1 (en) * 2009-03-02 2010-09-10 株式会社日立製作所 Optical multi-level transmission system
US8958492B1 (en) 2009-12-01 2015-02-17 Nec Corporation Data transmission method, data reception method, data modulation device, data demodulation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100763A1 (en) * 2009-03-02 2010-09-10 株式会社日立製作所 Optical multi-level transmission system
US8655193B2 (en) 2009-03-02 2014-02-18 Hitachi, Ltd. Optical multi-level transmission system
US8958492B1 (en) 2009-12-01 2015-02-17 Nec Corporation Data transmission method, data reception method, data modulation device, data demodulation device

Also Published As

Publication number Publication date
JP4207845B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP3421452B2 (en) Nonlinear distortion compensator
JP4572982B2 (en) Log likelihood ratio calculation circuit, transmission apparatus, log likelihood ratio calculation method, and program
CN111669343B (en) Probabilistic amplitude shaping
CN106713213B (en) A kind of Ditital modulation method, demodulation method, relevant apparatus and system
US9401833B2 (en) Method and apparatus for transmitting/receiving signal in wireless communication system
KR102183206B1 (en) non-uniform(NU) constellation
US20200412595A1 (en) Multi-dimensional signal encoding
WO2018032268A1 (en) Target constellation diagram determination method, data sending method, and apparatus
US8942273B2 (en) Communication method of relay node using non-linear hybrid network coding and device using said method
JP4207845B2 (en) Modulation / demodulation method and circuit
US9819530B2 (en) Constellation designs with non-gray bit mapping
JP4268602B2 (en) Radio transmission apparatus, transmission power control method, and transmission power control program
CN107995140B (en) Symbol judgment method, symbol judgment circuit and digital receiving circuit
US11044049B1 (en) Hybrid unequal error protection (UEP) for heterogeneous multi-service provisioning
JP4841601B2 (en) Radio transmission apparatus, transmission power control method, and transmission power control program
KR101968389B1 (en) Method of pahse rotation shift keying based on probability of bit sequence and apparatus for performing the same, and method of quadrature amplitude pahse rotation modualtion and apparatus for performing the same
Lassing et al. The exact symbol and bit error probabilities of coherent M-ary PSK
KR20110137282A (en) System and method of generating soft bits
CN113315735B (en) Probability shaping method and device based on layered modulation and electronic equipment
JP3738997B2 (en) Communication method
KR101981013B1 (en) Method of quadrature amplitude pahse rotation modualtion and apparatus for performing the same
TW201815139A (en) Method and device of symbol decision and digital receivers
JP6727462B1 (en) Wireless communication device, control circuit, wireless communication method, and storage medium
KR101244608B1 (en) Apparatus and method for normalizing advanced terrestrial digital multimedia broadcasting hierarchically modulated symbol
JP7080566B2 (en) Carrier regenerative circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R151 Written notification of patent or utility model registration

Ref document number: 4207845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350