JP2005333418A - Color solid state imaging apparatus - Google Patents

Color solid state imaging apparatus Download PDF

Info

Publication number
JP2005333418A
JP2005333418A JP2004149961A JP2004149961A JP2005333418A JP 2005333418 A JP2005333418 A JP 2005333418A JP 2004149961 A JP2004149961 A JP 2004149961A JP 2004149961 A JP2004149961 A JP 2004149961A JP 2005333418 A JP2005333418 A JP 2005333418A
Authority
JP
Japan
Prior art keywords
signal
pixel
pixels
correlation
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004149961A
Other languages
Japanese (ja)
Other versions
JP4441809B2 (en
Inventor
Tadashi Sugiki
忠 杉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004149961A priority Critical patent/JP4441809B2/en
Publication of JP2005333418A publication Critical patent/JP2005333418A/en
Application granted granted Critical
Publication of JP4441809B2 publication Critical patent/JP4441809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a color false signal is generated on an edge part between colors of high saturation in a conventional color solid state imaging apparatus. <P>SOLUTION: Respective G signals of all pixels in a pixel signal having the sensitivity of G light are generated by using a highly accurate interpolation processing circuit 14, color difference signals on the pixel positions of R and B light components are calculated, respectively, and after performing interpolation processing by interpolation processing circuits 18, 19 on the basis of the correlation of the G signals, color difference signals of all pixels are synthesized. Since the G signal and the edge position of two color difference signal are aligned each other, a color image of high image quality in which a color false signal is not included can be obtained even on the edge of colors of high saturation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ビデオムービー・電子スチルカメラ・電子内視鏡等に使用される3色から構成されたモザイク色フィルタを有する固体撮像素子を使用したカラー固体撮像装置に関し、得に色偽信号の低減手法に関する。 The present invention relates to a color solid-state image pickup device using a solid-state image pickup device having a mosaic color filter composed of three colors used for a video movie, an electronic still camera, an electronic endoscope, and the like. Regarding the method.

従来のカラー固体撮像装置の色偽信号の低減手法として特開2002−112276がある。これは、図12のように、固体撮像素子の出力映像信号のG(緑)画素をサブサンプルし、高精度に補間処理を行って全画素に対するG信号を得る。R(赤)画素とB(青)画素の位置で、それぞれ補間されたG信号を減算し色差信号を得て、得られた色差信号にそれぞれに補間処理を施して全画素に対する色差信号を生成し、マトリクス演算を施して、全画素に対するR、G、Bの3原色信号又はY(輝度)、Cb(青色差)、Cr(赤色差)の3信号などを得ていた。このため、無彩色画像に対しては色差信号が0のため、エッジ部(明暗が急変する部分)でも色偽信号は発生せず、エッジ部で色を淡くする処理が不要で自然な画像が得られるというものである。 Japanese Unexamined Patent Application Publication No. 2002-112276 is a technique for reducing color false signals of a conventional color solid-state imaging device. As shown in FIG. 12, G (green) pixels of the output video signal of the solid-state imaging device are subsampled, and interpolation processing is performed with high accuracy to obtain G signals for all the pixels. At the positions of R (red) and B (blue) pixels, interpolated G signals are subtracted to obtain color difference signals, and the obtained color difference signals are interpolated to generate color difference signals for all pixels. Then, matrix calculation is performed to obtain R, G, and B primary color signals or Y (luminance), Cb (blue difference), and Cr (red difference) three signals for all pixels. For this reason, since the color difference signal is 0 for an achromatic image, a color false signal is not generated even at an edge portion (a portion where the light and darkness changes suddenly), and a natural image is not required to lighten the color at the edge portion. It is to be obtained.

しかしながら図13のような高彩度のエッジ部では、色偽信号が次のように発生する。図13(a)は、撮像素子上に投影される画像の一部で、緑とマゼンタ(赤と青の加法混色の色)のエッジを示している。図13(B)は、撮像素子のR・G・B画素を丸・正方形・5角形でそれぞれ示し、信号値を塗りつぶしの明るさで示している。つまり、緑領域では白い正方形のG画素は信号値が1で、黒い丸と5角形のR画素とB画素の信号値0を示している。マゼンタ領域では白い丸と5角形のR画素とB画素は信号量が1で、黒い正方形のG画素は信号量0を示している。境界部は中間的な信号レベルとなりハッチングで信号量を表している。 However, a color false signal is generated as follows at the edge portion of high saturation as shown in FIG. FIG. 13A shows a part of an image projected on the image sensor, and shows edges of green and magenta (red and blue additive color mixture). In FIG. 13B, R, G, and B pixels of the image sensor are shown as circles, squares, and pentagons, respectively, and signal values are shown as filled brightness. That is, in the green region, the white square G pixel has a signal value of 1, and the black circle, pentagonal R pixel, and B pixel have a signal value of 0. In the magenta area, the white circle and pentagonal R pixel and B pixel have a signal amount of 1, and the black square G pixel has a signal amount of 0. The boundary portion has an intermediate signal level and the signal amount is indicated by hatching.

G画素をサブサンプルし、補間処理を行い図13(c)の全画素のG信号を得る。撮像素子出力映像信号から全画素のG信号を減算し、R画素位置とB画素位置でサブサンプリングされ、それぞれ図13(d)のR−G画像と図13(e)のB−G画像が生成される。ハッチングは色差信号の信号値を示し、黒が−1に白が+1に対応している。図13(c)〜(e)中の実線は、それぞれG信号と2つの色差信号の画像のエッジ形状を示している。サンプリングの粗い2つの色差信号のエッジ形状が原画像のエッジ形状と異なるため、図13(f)のように高彩度のエッジ部で偽色信号が発生するという問題点があった。
特開2002−112276
The G pixel is subsampled, and interpolation processing is performed to obtain G signals of all the pixels in FIG. The G signal of all pixels is subtracted from the image sensor output video signal, and sub-sampled at the R pixel position and the B pixel position, respectively, and the RG image of FIG. 13D and the BG image of FIG. Generated. Hatching indicates the signal value of the color difference signal, with black corresponding to -1 and white corresponding to +1. The solid lines in FIGS. 13C to 13E indicate the edge shapes of the G signal and the two color difference signal images, respectively. Since the edge shape of the two color difference signals with coarse sampling is different from the edge shape of the original image, there is a problem that a false color signal is generated at the edge portion of high saturation as shown in FIG.
JP2002-112276

上記した従来のカラー固体撮像装置においては、高彩度の色間のエッジ部に色偽信号が生じるという問題があった。 The above-described conventional color solid-state imaging device has a problem in that a color false signal is generated at an edge portion between colors with high saturation.

上記の課題を解決するためにこの発明のカラー固体撮像装置では、第1の分光感度を有する画素と、第2または第3の分光感度を有した画素が互いに隣接して配置されたモザイク色フィルタの付いた固体撮像素子を有し、前記固体撮像素子の出力信号から補間処理により前記固体撮像素子の全画素に対する前記第1の分光感度の画像信号を生成すると共に、補間された信号と相関の強い方向を表す相関信号を生成し、前記第2および第3の分光感度の画素位置でそれぞれ前記第1の分光感度の画素信号との差信号を生成し、前記第2および第3の色光に対応する差信号から前記相関信号に基づいて全画素に対する色差画素信号を得ることを特徴とする。 In order to solve the above problems, in the color solid-state imaging device of the present invention, a mosaic color filter in which a pixel having a first spectral sensitivity and a pixel having a second or third spectral sensitivity are arranged adjacent to each other. And generating an image signal of the first spectral sensitivity for all pixels of the solid-state image sensor by interpolation processing from an output signal of the solid-state image sensor, and correlating with the interpolated signal A correlation signal representing a strong direction is generated, a difference signal from the pixel signal of the first spectral sensitivity is generated at each pixel position of the second and third spectral sensitivities, and the second and third color lights are generated. A color difference pixel signal for all pixels is obtained from the corresponding difference signal based on the correlation signal.

上記した手段により、補間された前記第1の分光感度の画像信号の画素相関の強い方向と補間された前記第2及び第3の分光感度に対する色差画像信号の画素相関の強い方向が揃うようになり、結果として前記第1の分光感度の画像信号のエッジと前記第2及び第3の分光感度に対する色差画像信号のエッジが一致する。したがって、高彩度の色間のエッジ部に生じていた色偽信号が低減できる。 By the means described above, the direction in which the pixel correlation of the interpolated image signal with the first spectral sensitivity is strong and the direction in which the pixel correlation of the color difference image signal with respect to the interpolated second and third spectral sensitivities are aligned are aligned. As a result, the edge of the image signal with the first spectral sensitivity matches the edge of the color difference image signal with respect to the second and third spectral sensitivities. Therefore, it is possible to reduce the color false signal generated at the edge portion between the highly saturated colors.

第1の分光感度を有する画素と、第2または第3の分光感度を有した画素が互いに隣接して配置された固体撮像素子を使用する。最初に、全画素に対する前記第1の分光感度の画像信号を生成すると共に、補間された信号と相関の強い方向を表す相関信号を生成する。前記第2および第3の分光感度の画素位置でそれぞれ前記生成された第1の分光感度の画素信号との差信号を生成する。補間処理により前記第2および第3の色光に対応する全画素に対する色差画素信号を生成する際に、前記相関信号に従って補間値を計算する画素を選択することで、第1の分光感度の信号と2つの色差信号の画像エッジを一致させられる。したがって、高彩度の色間のエッジ部にも色偽信号のほとんど発生しないカラー固体撮像装置が実現できる。 A solid-state imaging device in which a pixel having the first spectral sensitivity and a pixel having the second or third spectral sensitivity are arranged adjacent to each other is used. First, an image signal having the first spectral sensitivity for all pixels is generated, and a correlation signal representing a direction having a strong correlation with the interpolated signal is generated. A difference signal from the generated pixel signal of the first spectral sensitivity is generated at each pixel position of the second and third spectral sensitivity. When generating chrominance pixel signals for all the pixels corresponding to the second and third color lights by interpolation processing, by selecting a pixel for calculating an interpolation value according to the correlation signal, the first spectral sensitivity signal and The image edges of the two color difference signals can be matched. Accordingly, it is possible to realize a color solid-state imaging device in which almost no color false signal is generated at the edge portion between colors with high saturation.

以下、この発明の実施の形態に付いて、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施例に係るカラー固体撮像装置のブロック図である。1は固体撮像素子であり、駆動回路11を経由してタイミング発生器10が発生した撮像素子駆動パルスで駆動され、所定タイミングで映像信号が出力される。この固体撮像素子1には、図中に示すように、G画素が市松状に配置され、1行毎にRとBがGを穴埋めする形のモザイク色フィルタ2が付けられ、GRGR・・・とBGBG・・・の信号を1行毎に出力する。図示していないが、この信号は複数の遅延線やフレームメモリー等の記憶手段を用いて処理対象画素とその周辺画素の信号量が参照できるようにされている。以下、図2に示すように補間位置がR画素として説明する。 FIG. 1 is a block diagram of a color solid-state imaging device according to the first embodiment of the present invention. Reference numeral 1 denotes a solid-state image sensor, which is driven by an image sensor drive pulse generated by a timing generator 10 via a drive circuit 11 and outputs a video signal at a predetermined timing. As shown in the figure, this solid-state imaging device 1 is provided with a mosaic color filter 2 in which G pixels are arranged in a checkered pattern, and R and B fill G in every row. And BGBG... Are output line by line. Although not shown in the drawing, this signal can be used to refer to the signal amount of the pixel to be processed and its peripheral pixels by using a plurality of delay lines and storage means such as a frame memory. Hereinafter, description will be made assuming that the interpolation position is an R pixel as shown in FIG.

補間処理手段3は、固体撮像素子1のG画素位置に対しては画素信号をそのまま出力し、R画素またはB画素の位置に対しては図3の流れ図にしたがって次のように高精度の補間値と相関方向を決定して出力する。相関方向を初期化したのち、補間位置に隣接する4つのG画素(GU,GR,GL,GD)の明暗順序パターンに基づいて処理する。図3の菱形状に並べられた1組の4つの丸が補間位置に隣接する4画素を示し、白丸は最も明るい画素を示し、黒丸は最も暗い画素を示している。ハッチングの丸は中間の明るさを示し、ハッチングの濃さに応じて明るさが異なっている。 The interpolation processing means 3 outputs the pixel signal as it is for the G pixel position of the solid-state imaging device 1, and for the position of the R pixel or B pixel, according to the flowchart of FIG. The value and correlation direction are determined and output. After initializing the correlation direction, processing is performed based on the light / dark order pattern of four G pixels (GU, GR, GL, GD) adjacent to the interpolation position. A set of four circles arranged in a diamond shape in FIG. 3 indicates four pixels adjacent to the interpolation position, a white circle indicates the brightest pixel, and a black circle indicates the darkest pixel. The hatched circles indicate intermediate brightness, and the brightness varies depending on the darkness of the hatching.

明暗順序パターンP1は、GUとGRの信号値が等しく、GLとGDの信号値が等しい場合で、右下がりの境界線に相当する。隣接するG画素から相関の強い方向は決定できないが、B1〜B4が右下がりの境界線を有するのなら、B画素の相関の強いにより判定できる。図4は、右下がりの境界線の位置とB1〜B4の信号値の相関関係を示している。図4(a)は、境界線がR画素の左下にある場合であり、B1・B2・B4の信号値の相関が強く、右上の向きに相関が強い。図4(b)は、境界線がR画素の右上にある場合であり、B1・B3・B4の信号値の相関が強く、左下の向きに相関が強い。図4(c)は、境界線がR画素にある場合であり、相関が強い向きは無い。したがって、B1〜B4の信号値の相関の強い方向が右上または左下の場合は、Bの相関の強い向きでR画素位置の補間値と相関方向情報を決定する。その他の場合は、次の相関に方向性が無い場合の処理をする。 The light / dark order pattern P1 corresponds to the right-downward boundary line when the signal values of GU and GR are equal and the signal values of GL and GD are equal. The direction in which the correlation is strong cannot be determined from the adjacent G pixel, but if B1 to B4 have a right-downward boundary line, it can be determined by the strong correlation of the B pixel. FIG. 4 shows the correlation between the position of the lower right boundary line and the signal values B1 to B4. FIG. 4A shows a case where the boundary line is at the lower left of the R pixel, and the correlation between the signal values of B1, B2, and B4 is strong, and the correlation is strong in the upper right direction. FIG. 4B shows a case where the boundary line is at the upper right of the R pixel, and the correlation between the signal values of B1, B3, and B4 is strong, and the correlation is strong in the lower left direction. FIG. 4C shows a case where the boundary line is in the R pixel, and there is no direction in which the correlation is strong. Therefore, when the direction in which the signal values of B1 to B4 are strongly correlated is the upper right or the lower left, the interpolation value of the R pixel position and the correlation direction information are determined in the direction of the strong B correlation. In other cases, processing is performed when the next correlation has no directionality.

相関に方向性が無い場合の処理は、隣接する4つのG画素の信号値の平均または中間2値の平均を補間値とする。R画素の信号量と補間値との差が小さく、B1・B2画素位置での色差信号も小さい場合には、淡色の部分と考えられるので、B1〜B4の信号値の斜め縞成分を加え、広帯域の信号にする。 When the correlation has no directionality, the average of the signal values of the four adjacent G pixels or the average of the intermediate binary values is used as the interpolation value. When the difference between the signal amount of the R pixel and the interpolation value is small and the color difference signal at the B1 and B2 pixel positions is also small, it is considered to be a light-colored part, so an oblique fringe component of the signal values of B1 to B4 is added, Make a broadband signal.

また、明暗順序パターンP2は、明暗順序パターンP1の左右を入れ替えたものとして処理を行う。 The light / dark order pattern P2 is processed on the assumption that the left and right sides of the light / dark order pattern P1 are interchanged.

明暗順序パターンP3は、隣接する4つのG画素がほぼ同一の信号値の場合であり、相関に方向性は無く、前述の相関に方向性が無い場合の処理をする。 The light / dark order pattern P3 is a case where the four adjacent G pixels have substantially the same signal value, and the correlation is not directional, and the above-described correlation is not directional.

明暗順序パターンP4は、隣接する4つのG画素の上下と左右の信号値がそれぞれ近い場合であり、R画素位置に縦線または横線がある場合である。4つのG画素の信号値の内で1つだけ大きく違う画素が、上か下の場合は横縞と、左か右の場合は縦縞と判断できる。それ以外の場合は、斜め隣接画素B1〜B4の縞成分で判断する。縦縞と判断された場合には、補間値を上下画素(GU,GD)の平均とし、補間値が左右のG画素(GL,GR)の信号値のどちらに近いかで相関方向を決定する。横縞と判断された場合には、補間値を左右のG画素(GL,GR)の平均とし、補間値が上下のG画素(GU,GD)の信号値のどちらに近いかで相関方向を決定する。縦縞とも横縞とも判定されなかった場合は、前述の相関に方向性が無い場合の処理をする。 The light / dark order pattern P4 is a case where the signal values on the upper and lower sides and the left and right sides of the four adjacent G pixels are close to each other, and there is a vertical line or a horizontal line at the R pixel position. Of the four G pixel signal values, only one greatly different pixel can be determined as a horizontal stripe when it is above or below, and as a vertical stripe when it is left or right. In other cases, the determination is made based on the stripe components of the diagonally adjacent pixels B1 to B4. When the vertical stripe is determined, the interpolation value is the average of the upper and lower pixels (GU, GD), and the correlation direction is determined depending on which of the signal values of the left and right G pixels (GL, GR) is closer. If it is determined as horizontal stripes, the interpolation value is the average of the left and right G pixels (GL, GR), and the correlation direction is determined depending on which of the interpolation values is closer to the signal values of the upper and lower G pixels (GU, GD). To do. If neither vertical stripes nor horizontal stripes are determined, processing is performed when the above-described correlation has no directionality.

明暗順序パターンP5は、左と上のG画素(GL,GU)の信号値が最も明るい画素と最も暗い画素で、R画素を中心に回転する方向に明るさが順次変化する場合である。このようなパターンになる画像としては、左上方向に段差による影が生じている場合などが考えられるため、R画素位置の相関の強い方向は右下とする。しかしながら、R画素位置には明確なエッジが無いので、補間値としては前述の相関に方向性が無い場合の処理により決める。 The light / dark order pattern P5 is a case where the brightness of the left and upper G pixels (GL, GU) is the brightest pixel and the darkest pixel, and the brightness changes sequentially in the direction of rotation around the R pixel. As an image having such a pattern, there may be a case where a shadow due to a step is generated in the upper left direction. Therefore, the direction in which the correlation between the R pixel positions is strong is the lower right. However, since there is no clear edge at the R pixel position, the interpolation value is determined by the above-described processing when the correlation has no direction.

明暗順序パターンP6〜P8は、明暗順序パターンP5を回転させたものなので、相関方向はそれぞれ明るさが中間の2画素の方向とし、補間値としては前述の相関に方向性が無い場合の処理により決める。 Since the light and dark order patterns P6 to P8 are obtained by rotating the light and dark order pattern P5, the correlation direction is set to the direction of the two pixels having intermediate brightness, and the interpolation value is based on the above processing when the correlation has no directionality. Decide.

明暗順序パターンP9は、上下のG画素の信号値が最も明るい画素と最も暗い画素で、左右のG画素の信号値が中間値の場合である。このようなパターンとなる画像は、横方向に境界線が伸びているエッジ画像であり、補間値を左右の画素(GL,GR)の信号値の平均とし、補間値が上下どちらのG画素の信号値に近いかで相関方向を決定する。 The light / dark order pattern P9 is a case where the signal values of the upper and lower G pixels are the brightest and darkest pixels, and the signal values of the left and right G pixels are intermediate values. An image having such a pattern is an edge image in which a boundary line extends in the horizontal direction. The interpolation value is an average of the signal values of the left and right pixels (GL, GR), and the interpolation value is the upper or lower G pixel. The correlation direction is determined based on the proximity of the signal value.

明暗順序パターンP10は、上下のG画素の信号値が最も明るい画素と最も暗い画素で、左右のG画素の信号値の少なくとも一方が下のG画素の信号値と同じ場合である。横方向に境界線が伸びているエッジ画像であり、補間値を左右の画素(GL,GR)の信号値の平均とし、補間値は必ず下のG画素(GD)の信号値と近くなるため、相関方向を下に設定する。 The light / dark order pattern P10 is a case where the signal values of the upper and lower G pixels are the brightest and darkest pixels, and at least one of the signal values of the left and right G pixels is the same as the signal value of the lower G pixel. This is an edge image in which the boundary line extends in the horizontal direction, and the interpolation value is the average of the signal values of the left and right pixels (GL, GR), and the interpolation value is always close to the signal value of the lower G pixel (GD). , Set the correlation direction down.

明暗順序パターンP11は、上下のG画素の信号値が最も明るい画素と最も暗い画素で、左右のG画素の信号値の少なくとも一方が上のG画素の信号値と同じ場合である。横方向に境界線が伸びているエッジ画像であり、補間値を左右の画素(GL,GR)の信号値の平均とし、補間値は必ず上のG画素(GU)の信号値と近くなるため、相関方向を上に設定する。 The light / dark order pattern P11 is a case where the signal values of the upper and lower G pixels are the brightest and darkest pixels, and at least one of the signal values of the left and right G pixels is the same as the signal value of the upper G pixel. This is an edge image whose boundary line extends in the horizontal direction, and the interpolation value is the average of the signal values of the left and right pixels (GL, GR), and the interpolation value is always close to the signal value of the upper G pixel (GU). , Set the correlation direction up.

明暗順序パターンP12は、左右のG画素の信号値が最も明るい画素と最も暗い画素で、上下のG画素の信号値が中間値の場合である。このようなパターンとなる画像は、縦方向に境界線が伸びているエッジ画像であり、補間値を上下の画素(GU,GD)の信号値の平均とし、補間値が左右どちらのG画素の信号値に近いかで相関方向を決定する。 The light / dark order pattern P12 is a case where the signal values of the left and right G pixels are the brightest and darkest pixels, and the signal values of the upper and lower G pixels are intermediate values. An image having such a pattern is an edge image in which a boundary line extends in the vertical direction. The interpolation value is an average of the signal values of the upper and lower pixels (GU, GD), and the interpolation value is the left or right G pixel. The correlation direction is determined based on the proximity of the signal value.

明暗順序パターンP13は、左右のG画素の信号値が最も明るい画素と最も暗い画素で、上下のG画素の信号値の少なくとも一方が左のG画素の信号値と同じ場合である。横方向に境界線が伸びているエッジ画像であり、補間値を上下の画素(GU,GD)の信号値の平均とし、補間値は必ず左のG画素の信号値と近くなるため、相関方向を左に設定する。 The light / dark order pattern P13 is a case where the signal values of the left and right G pixels are the brightest and darkest pixels, and at least one of the signal values of the upper and lower G pixels is the same as the signal value of the left G pixel. This is an edge image in which the boundary line extends in the horizontal direction, the interpolation value is the average of the signal values of the upper and lower pixels (GU, GD), and the interpolation value is always close to the signal value of the left G pixel. Set to the left.

明暗順序パターンP14は、左右のG画素の信号値が最も明るい画素と最も暗い画素で、上下のG画素の信号値の少なくとも一方が右のG画素の信号値と同じ場合である。横方向に境界線が伸びているエッジ画像であり、補間値を上下の画素(GU,GD)の信号値の平均とし、補間値は必ず右のG画素の信号値と近くなるため、相関方向を右に設定する。 The light / dark order pattern P14 is a case where the signal values of the left and right G pixels are the brightest and darkest pixels, and at least one of the signal values of the upper and lower G pixels is the same as the signal value of the right G pixel. This is an edge image in which the boundary line extends in the horizontal direction, the interpolation value is the average of the signal values of the upper and lower pixels (GU, GD), and the interpolation value is always close to the signal value of the right G pixel. Set to the right.

以上述べたように、R画素位置のG信号の補間値と相関方向は、R画素に隣接するG画素の明暗順序パターンとR画素を取り囲むG画素とB画素の信号値の分析により高精度に決定できる。 As described above, the interpolation value and correlation direction of the G signal at the R pixel position can be obtained with high accuracy by analyzing the light / dark order pattern of the G pixel adjacent to the R pixel and the signal values of the G pixel and B pixel surrounding the R pixel. Can be determined.

また、B画素位置のG信号の補間値と相関方向は、上記R画素位置の決定手法のR画素とB画素を入れ替え、同様の手法で高精度に決定でき、全画素に対する極めてボケの少ないG信号が得られる。 Further, the interpolation value and correlation direction of the G signal at the B pixel position can be determined with high accuracy by replacing the R pixel and the B pixel in the R pixel position determination method, and G with very little blur for all the pixels. A signal is obtained.

従って、補間処理手段3からは、RB画素位置の高精度に近似されたG信号が出力される。図示していないが遅延手段やフレームメモリー等の記憶手段により、補間処理手段3から出力されるG信号と同位置の固体撮像素子出力が減算器4に供給され、このG信号を減算し、間引き手段5でR画素位置の信号をサンプリングするとR−G信号が、間引き手段6でB画素位置の信号をサンプリングするとB−G信号が得られる。 Therefore, the interpolation processing means 3 outputs a G signal approximated to the RB pixel position with high accuracy. Although not shown, a solid-state imaging device output at the same position as the G signal output from the interpolation processing means 3 is supplied to the subtractor 4 by a storage means such as a delay means or a frame memory, and the G signal is subtracted and thinned out. When the signal at the R pixel position is sampled by the means 5, an RG signal is obtained, and when the signal at the B pixel position is sampled by the thinning means 6, a BG signal is obtained.

補間処理手段7は、相関方向信号に従ってB画素位置のR−G信号を生成したのち、G画素位置のR−G信号を生成する。図5はB画素位置の相関方向信号と生成するR−G信号の関係を示している。白矢印は補間処理手段3から出力される相関方向を示しており、数値付きの矢印線は信号の合成比率を示している。例えば、図5(a)は左上方向に相関が強い場合であり、左上に隣接する画素のR−G信号の0.5倍と、左下と右上に隣接する画素のR−G信号のそれぞれ0.25倍を加えることで、左上方向と相関の強いR−G信号を生成する。図5(c),図5(g),図5(i)は、それぞれ相関の強い方向が右上,左下,右下の場合であり、3画素のR−G信号を同様の比率で加算して補間値を生成する。図5(B)は上方向に相関が強い場合であり、左上と右上に隣接する画素のR−G信号のそれぞれ0.5倍を加え、上方向と相関の強いR−G信号を生成する。図5(d),図5(f),図5(h)は、それぞれ相関の強い方向が左,右,下の場合であり、2画素のR−G信号平均で補間値を生成する。また、図5(e)は相関が強い方向が特定できなかった場合であり、斜めに隣接する4画素のR−G信号の平均をとり、相関方向の無いR−G信号を生成する。また、G画素位置のR−G信号は、隣接するR画素位置とB画素位置のR−G信号の4画素平均や中間2値の平均などで算出する。 The interpolation processing means 7 generates an RG signal at the B pixel position according to the correlation direction signal, and then generates an RG signal at the G pixel position. FIG. 5 shows the relationship between the correlation direction signal at the B pixel position and the RG signal to be generated. The white arrow indicates the correlation direction output from the interpolation processing means 3, and the arrow line with a numerical value indicates the signal synthesis ratio. For example, FIG. 5A shows a case where the correlation is strong in the upper left direction, where 0.5 times the RG signal of the pixel adjacent to the upper left and 0 for each of the RG signals of the pixels adjacent to the lower left and upper right. By adding .25 times, an RG signal having a strong correlation with the upper left direction is generated. 5 (c), 5 (g), and 5 (i) are cases where the directions of strong correlation are the upper right, lower left, and lower right, respectively, and the RG signals of 3 pixels are added at the same ratio. To generate an interpolation value. FIG. 5B shows a case where the correlation is strong in the upward direction, and 0.5 times each of the RG signals of the pixels adjacent to the upper left and upper right are added to generate an RG signal having a strong correlation with the upward direction. . FIG. 5D, FIG. 5F, and FIG. 5H show the cases where the strong correlation directions are left, right, and bottom, respectively, and an interpolation value is generated by averaging two-pixel RG signals. FIG. 5E shows a case where a direction with strong correlation cannot be specified, and an RG signal having no correlation direction is generated by taking an average of RG signals of four pixels diagonally adjacent to each other. Further, the RG signal at the G pixel position is calculated by, for example, averaging the four pixels of the RG signals at the adjacent R pixel position and the B pixel position or the average of the binary values.

補間処理手段8は、補間処理手段7と同様に相関方向信号に従ってR画素位置のB−G信号を生成したのち、G画素位置のB−G信号を生成し、全画素位置のB−G信号を得る。 The interpolation processing unit 8 generates the BG signal at the R pixel position in accordance with the correlation direction signal in the same manner as the interpolation processing unit 7, and then generates the BG signal at the G pixel position, and the BG signal at all the pixel positions. Get.

図6は、具体例として緑(G画素のみ信号あり)とマゼンタ(R画素とB画素に信号あり)の高彩度の色間のエッジ部の画像生成過程を示している。図6(a)は、高彩度の色間のエッジと画素の対応を示しており、左には緑,右にはマゼンタの光が入射する。撮像素子のR・G・B画素を丸・正方形・5角形でそれぞれ示している。図6(B)は、各画素の信号量を塗りつぶしの明るさで示している。つまり、緑領域では白い正方形のG画素は信号値が1で、黒い丸と5角形のR画素とB画素は信号値0を示している。マゼンタ領域では白い丸と5角形のR画素とB画素は信号量が1で、黒い正方形のG画素は信号量0を示している。境界部は中間的な信号レベルとなりハッチングで信号量を表している。 FIG. 6 shows an image generation process of an edge portion between high-saturation colors of green (signals only for G pixels) and magenta (signals are present for R pixels and B pixels) as a specific example. FIG. 6A shows the correspondence between the edge between the high-saturation color and the pixel, and green light is incident on the left and magenta light is incident on the right. The R, G, and B pixels of the image sensor are indicated by circles, squares, and pentagons, respectively. FIG. 6B shows the signal amount of each pixel by the brightness of the fill. That is, in the green region, the white square G pixel has a signal value of 1, and the black circle, pentagonal R pixel and B pixel have a signal value of 0. In the magenta area, the white circle and pentagonal R pixel and B pixel have a signal amount of 1, and the black square G pixel has a signal amount of 0. The boundary portion has an intermediate signal level and the signal amount is indicated by hatching.

図6(c)は、正方形で示されるG画素位置の信号量とR・B画素位置での相関の強い方向とを示している。R・B画素位置が空白のものは相関の強い方向が無いことを示している。また、矢印は相関の強い方向を示し、色の境界線に沿って両側に外側の方向に強い相関がある。左または右に相関が強い画素位置では、上下に隣接するG画素の信号値の平均で補間値が決定され、相関の強い方向が特定できない画素位置では上下左右に隣接するG画素の信号値の平均で補間値が決定され、図6(d)の全画素のG信号は、入射光像の緑光パターンを精度良く再生する。 FIG. 6C shows the amount of signal at the G pixel position indicated by a square and the direction of strong correlation at the R / B pixel positions. A blank R / B pixel position indicates that there is no strong correlation direction. An arrow indicates a direction having a strong correlation, and there is a strong correlation in the outer direction on both sides along the color boundary line. At the pixel position with strong left or right correlation, the interpolation value is determined by averaging the signal values of the G pixels adjacent vertically, and at the pixel position where the strong correlation direction cannot be specified, the signal value of the G pixel adjacent vertically, horizontally is determined. The interpolation value is determined on average, and the G signal of all the pixels in FIG. 6D reproduces the green light pattern of the incident light image with high accuracy.

減算手段4は、撮像素子出力映像信号から全画素のG信号を減算し、R画素位置とB画素位置でそれぞれR−G信号とB−G信号が生成される。間引き手段5,6は、R画素位置とB画素位置の信号をそれぞれ抽出し、図6(e)のR−G画像と図6(g)のB−G画像が生成される。ハッチングは色差信号の信号値を示し、黒が−1に白が+1に対応している。補間処理手段7は、まずB画素位置のG信号の相関情報に基づいてR−G信号の補間値を決定する。図6(f)はこの時点でのR−G信号値を示しており、左または右と強い相関のあるB画素位置では、平均するR−G信号との組み合わせを分かりやすくするために囲んで示している。R−G信号のエッジの中心線は図中の直線であり、再生されたG信号のエッジの中心線と同じになる。G画素位置のR−G信号は、隣接するR画素位置とB画素位置のR−G信号から生成され、全画素のG信号画像とR−G信号画像のエッジの中心線は一致する。同様に、図6(h)はR画素位置のB−G信号の補間値を決定した段階を示している。B−G信号のエッジの中心線は図中の直線であり、再生されたG信号とエッジの中心線と同じになる。 The subtracting means 4 subtracts the G signal of all pixels from the image sensor output video signal, and generates an RG signal and a BG signal at the R pixel position and the B pixel position, respectively. The thinning means 5 and 6 extract the signals at the R pixel position and the B pixel position, respectively, to generate the RG image in FIG. 6E and the BG image in FIG. Hatching indicates the signal value of the color difference signal, with black corresponding to -1 and white corresponding to +1. The interpolation processing means 7 first determines an interpolated value of the RG signal based on the correlation information of the G signal at the B pixel position. FIG. 6 (f) shows the RG signal value at this point. In the B pixel position having a strong correlation with the left or right, the combination with the averaged RG signal is enclosed for easy understanding. Show. The center line of the edge of the RG signal is a straight line in the figure, and is the same as the center line of the edge of the reproduced G signal. The RG signal at the G pixel position is generated from the RG signals at the adjacent R pixel position and the B pixel position, and the center lines of the edges of the G signal image and the RG signal image of all the pixels coincide. Similarly, FIG. 6H shows a stage where the interpolated value of the BG signal at the R pixel position is determined. The center line of the edge of the BG signal is a straight line in the figure, and is the same as the center line of the reproduced G signal and the edge.

このように生成された全画素のG信号と2つの色差信号のエッジ位置は一致しているため、マトリクス手段9で必要とされる3つのカラー信号に変換しても、高彩度の色間のエッジ部でも偽色信号は発生しない高画質な画像の得られるカラー固体撮像装置が実現できる。 Since the edge positions of the two color difference signals coincide with the G signal of all the pixels generated in this way, even if the color signal is converted into the three color signals required by the matrix means 9, the edge between the high-saturation colors Therefore, it is possible to realize a color solid-state imaging device capable of obtaining a high-quality image that does not generate a false color signal.

図7は、本発明の第2の実施例に係るカラー固体撮像装置のブロック図である。図1と同一機能のブロックには同一の符号を付している。異なっているのは、固体撮像素子1の画素が行列状の配列ではなく市松配列である点と、モザイク色フィルタが光の3原色をそれぞれ遮断する3種の補色フィルタ(C(シアン)・Y(イエロー)・M(マゼンタ))から構成されている点と、相関検出手段22,23が設けられている点である。 FIG. 7 is a block diagram of a color solid-state imaging device according to the second embodiment of the present invention. Blocks having the same functions as those in FIG. The difference is that the pixels of the solid-state imaging device 1 are not a matrix arrangement but a checkered arrangement, and the three complementary color filters (C (cyan) and Y) that the mosaic color filter blocks the three primary colors of light respectively. (Yellow) · M (magenta)) and correlation detection means 22 and 23 are provided.

市松配列の画素を有する固体撮像素子1の出力は複数の遅延線やフレームメモリー等の記憶手段を用いて処理対象画素とその周辺画素の信号量が参照できるようにされている。補間処理手段3は、固体撮像素子1のY画素位置に対しては画素信号をそのまま出力し、C画素またはM画素の位置に対しては図8の流れ図に従って高精度の補間値と相関方向を決定して出力する。この補間処理は、隣接画素位置を45度回転させた以外は図3の補間処理と同じなので、説明は省略する。 The output of the solid-state imaging device 1 having the checkered array of pixels can be referred to the signal amount of the processing target pixel and its peripheral pixels by using a plurality of storage means such as delay lines and frame memories. The interpolation processing means 3 outputs the pixel signal as it is for the Y pixel position of the solid-state imaging device 1, and for the position of the C pixel or M pixel, the interpolation value and the correlation direction with high accuracy are shown according to the flowchart of FIG. Determine and output. Since this interpolation process is the same as the interpolation process of FIG. 3 except that the adjacent pixel position is rotated by 45 degrees, a description thereof will be omitted.

補間処理手段3から出力されるY信号と、図示していない遅延手段やフレームメモリー等の記憶手段により同位置の固体撮像素子出力が減算器4に供給され、差信号が出力される。間引き手段5でC画素位置の信号をサンプリングするとC−Y信号すなわちB−R信号が、間引き手段6でM画素位置の信号をサンプリングするとM−Y信号すなわちB−G信号が得られる。 The Y signal output from the interpolation processing unit 3 and the output of the solid-state image sensor at the same position are supplied to the subtractor 4 by a storage unit such as a delay unit or a frame memory (not shown), and a difference signal is output. When the signal at the C pixel position is sampled by the thinning means 5, a CY signal, that is, a BR signal is obtained. When the signal at the M pixel position is sampled by the thinning means 6, an MY signal, that is, a BG signal is obtained.

相関検出手段12には、図示していない遅延手段やフレームメモリー等の記憶手段により、間引き手段5で生成された図9に実践の丸で示される画素位置のB−G信号が供給される。相関検出手段12は、中心画素位置COのB−G信号値が、画素位置CUとCHのB−G信号値のどちらに近いかと、画素位置CIとCTのB−G信号値のどちらに近いかをまず判定する。例えば、画素位置CUとCTに近い場合には右方向に相関が強いと判定し、画素位置CUと近いがCI・CTのどちらにも近いとは判定できない場合には右上方向に相関が強いと判定し、画素位置CU,CH,CU,CTのいずれにも近いと判定できない場合には相関が強い方向は無いと判定する。 The correlation detection means 12 is supplied with a BG signal at a pixel position indicated by a circle in FIG. 9 generated by the thinning means 5 by a storage means such as a delay means or a frame memory not shown. The correlation detection means 12 is closer to the BG signal value at the center pixel position CO, which is closer to the BG signal value at the pixel position CU or CH, or closer to the BG signal value at the pixel position CI or CT. First, determine. For example, if the pixel position CU and CT are close to each other, it is determined that the correlation is strong in the right direction. If it is not close to the pixel position CU but close to either CI or CT, the correlation is strong in the upper right direction. If it cannot be determined that the pixel position is close to any of the pixel positions CU, CH, CU, and CT, it is determined that there is no strong correlation.

補間処理手段7には相関方向信号として、補間処理手段3と相関検出手段12からの出力が入力されが、より近傍の画素情報に基づいて決定されている補間処理手段13が生成する相関方向情報を優先する。このため、相関検出手段12をソフトウエアとして実装する場合には、補間処理手段3で相関の強い方向が特定できなかった場合のみ相関検出手段12を実行するように実装しても良い。補間処理手段7は、上下左右に隣接するM画素位置のB−R色差信号を、相関情報に基づいて図10に示す信号比率で重み付き加算することで補間値を決定する。白矢印は相関方向情報を示しており、数値付きの矢印線は信号の合成比率を示している。例えば、図10(a)は左上方向に相関が強い場合であり、左と上に隣接する画素のB−R信号のそれぞれ0.5倍を加えることで、左上方向と相関の強いB−R信号を生成する。図10(c),図10(g),図10(i)は、それぞれ相関の強い方向が右上,左下,右下の場合であり、2画素のB−R信号の平均で補間値を生成する。図10(b)は上方向に相関が強い場合であり、上に隣接する画素のB−R信号の0.5倍と、左と右に隣接する画素のB−R信号のそれぞれ0.25倍を加え、上方向と相関の強いB−R信号を生成する。図10(d),図10(f),図10(h)は、それぞれ相関の強い方向が左,右,下の場合であり、3画素のB−R信号を同様の比率で加算し補間値を生成する。また、図10(e)は相関が強い方向が特定できなかった場合であり、上下左右に隣接する4画素のB−R信号の平均をとり、相関方向の無いB−R信号を生成する。また、G画素位置のB−R信号は、隣接するC画素位置とM画素位置のB−R信号の4画素平均や中間2値の平均などで算出する。 The correlation processing unit 7 receives outputs from the interpolation processing unit 3 and the correlation detection unit 12 as correlation direction signals. The correlation direction information generated by the interpolation processing unit 13 determined based on the neighboring pixel information. Priority. For this reason, when the correlation detection means 12 is implemented as software, the correlation detection means 12 may be implemented only when the interpolation processing means 3 cannot identify a strong correlation direction. The interpolation processing means 7 determines the interpolation value by weighting and adding the BR color difference signals at the M pixel positions adjacent in the vertical and horizontal directions at the signal ratio shown in FIG. 10 based on the correlation information. White arrows indicate correlation direction information, and arrow lines with numerical values indicate signal synthesis ratios. For example, FIG. 10A shows a case where the correlation is strong in the upper left direction. By adding 0.5 times each of the BR signals of the pixels adjacent to the left and the upper side, BR having a strong correlation with the upper left direction is shown. Generate a signal. FIG. 10C, FIG. 10G, and FIG. 10I are the cases where the directions of strong correlation are the upper right, lower left, and lower right, respectively, and an interpolation value is generated by averaging two-pixel BR signals. To do. FIG. 10B shows a case where the correlation is strong in the upward direction, 0.5 times the BR signal of the pixel adjacent to the upper side, and 0.25 each of the BR signal of the pixel adjacent to the left and right. Double the signal to generate a BR signal having a strong correlation with the upward direction. FIGS. 10 (d), 10 (f), and 10 (h) show the cases where the directions of strong correlation are left, right, and bottom, respectively, and three-pixel BR signals are added at the same ratio and interpolated. Generate a value. FIG. 10E shows a case where a direction having a strong correlation cannot be specified. An average of the BR signals of four pixels adjacent vertically and horizontally is taken to generate a BR signal having no correlation direction. In addition, the BR signal at the G pixel position is calculated by, for example, averaging the four pixels of the BR signals at the adjacent C pixel position and the M pixel position, or averaging the intermediate binary values.

相関検出手段13と補間処理手段8は、相関検出手段12と補間処理手段7の処理と同様に、相関方向に従ってC画素位置のB−G信号を生成したのち、G画素位置のB−G信号を生成し、全画素位置のB−G信号を得る。 Correlation detection means 13 and interpolation processing means 8 generate a BG signal at the C pixel position according to the correlation direction, and then generate a BG signal at the G pixel position in the same manner as the correlation detection means 12 and interpolation processing means 7. And BG signals at all pixel positions are obtained.

図11は、具体例として緑(Y画素とC画素に信号あり)と赤(Y画素とM画素に信号あり)の高彩度の色間のエッジ部の画像生成過程を示している。図11(a)は、高彩度の色間のエッジと画素の対応を示しており、左には赤,右には緑の光が入射する。撮像素子のC・Y・M画素を5角形・正方形・丸でそれぞれ示している。図11(b)は、各画素の信号量を塗りつぶしの明るさで示している。つまり、赤領域では白い丸と正方形のM画素とY画素は信号量が1で、黒い5角形のG画素は信号量0を示している。緑領域では白い正方形と5角形のY画素とC画素は信号値が1で、黒い丸のM画素は信号値0を示している。境界部は中間的な信号レベルとなりハッチングで信号量を表している。 FIG. 11 shows an image generation process of an edge portion between high-saturation colors of green (signals are present in Y and C pixels) and red (signals are present in Y and M pixels) as a specific example. FIG. 11A shows the correspondence between edges and pixels between highly saturated colors. Red light is incident on the left and green light is incident on the right. The C, Y, and M pixels of the image sensor are indicated by pentagons, squares, and circles, respectively. FIG. 11B shows the signal amount of each pixel by the brightness of the fill. That is, in the red region, the white circle and square M and Y pixels have a signal amount of 1, and the black pentagonal G pixel has a signal amount of 0. In the green region, the white square and pentagonal Y pixel and C pixel have a signal value of 1, and the black circle M pixel has a signal value of 0. The boundary portion has an intermediate signal level and the signal amount is indicated by hatching.

図11(c)は、正方形で示されるY画素位置の信号量を示している。Y画素の信号量はどれも同じため、Y画素信号からはC・M画素位置での相関方向は特定できず、空白となっている。相関の強い方向が特定できないので上下左右に隣接するY画素の信号値の平均で補間値が決定され、図11(d)の全画素のY信号は、フラットな状態となる。 FIG. 11C shows the signal amount at the Y pixel position indicated by a square. Since the Y pixel signal amounts are the same, the correlation direction at the C / M pixel position cannot be specified from the Y pixel signal, and is blank. Since the direction with strong correlation cannot be specified, the interpolation value is determined by the average of the signal values of Y pixels adjacent vertically and horizontally, and the Y signals of all the pixels in FIG. 11D are in a flat state.

減算手段4は、撮像素子出力映像信号から全画素のY信号を減算し、間引き手段5,6は、C画素位置とM画素位置の信号をそれぞれ抽出し、図11(e)のB−R画像と図11(f)のB−G画像が生成される。ハッチングは色差信号の信号値を示し、黒が−1に白が0に対応している。また、白矢印は相関検出手段22,23の検出した相関の強い方向を示している。個々の色差信号毎に補間処理をした場合には、点線がエッジの中心線となり、色偽信号が生じることを示している。 The subtracting means 4 subtracts the Y signals of all the pixels from the image sensor output video signal, and the thinning means 5 and 6 extract the signals of the C pixel position and the M pixel position, respectively, and the BR of FIG. An image and a BG image shown in FIG. 11F are generated. Hatching indicates the signal value of the color difference signal, with black corresponding to -1 and white corresponding to 0. A white arrow indicates a direction of strong correlation detected by the correlation detection means 22 and 23. When interpolation processing is performed for each individual color difference signal, the dotted line becomes the center line of the edge, indicating that a color false signal is generated.

補間処理手段7は、Y信号の相関方向情報が特定できないので、相関検出手段12の検出したB−G信号の相関方向情報に基づいてM画素位置のB−R信号の補間値を決定する。図11(g)は、この時点でのB−R信号値を示している。相関の強い方向のあるM画素位置では、重み付け加算するB−R信号の組み合わせを分かりやすくするために囲んで示している。B−R信号のエッジの中心線を図中の点線で示す。Y画素位置のB−R信号は、隣接するC画素位置とM画素位置のB−R信号から生成されるため、全画素のB−R信号のエッジの中心線は図11(g)の点線とほぼ同じになる。同様に、図11(h)はC画素位置のB−G信号の補間値を決定した段階を示しており、B−G信号のエッジの中心線は図中の点線であり、B−R信号とエッジの中心線とほぼ同じになる。 Since the interpolation processing unit 7 cannot specify the correlation direction information of the Y signal, the interpolation processing unit 7 determines the interpolation value of the BR signal at the M pixel position based on the correlation direction information of the BG signal detected by the correlation detection unit 12. FIG. 11G shows the BR signal value at this time. At the M pixel position having a direction with strong correlation, the combination of BR signals to be weighted and added is enclosed for easy understanding. The center line of the edge of the BR signal is indicated by a dotted line in the figure. Since the BR signal at the Y pixel position is generated from the BR signals at the adjacent C pixel position and the M pixel position, the center line of the edge of the BR signal of all the pixels is the dotted line in FIG. Is almost the same. Similarly, FIG. 11 (h) shows a stage where the interpolated value of the BG signal at the C pixel position is determined, and the center line of the edge of the BG signal is a dotted line in the figure, and the BR signal And almost the same as the edge centerline.

このようにY画素の信号値に変化がない画像に対しても、生成された全画素の2つの色差信号のエッジ位置は一致する。また、Y画素の信号値に変化がある場合には、実施例1での説明と同様に生成された全画素のY画素と2つの色差信号のエッジ位置は一致する。マトリクス手段9で色変換が行われ出力される際にも、3信号間でエッジ形状は一致しているため、高彩度の色間のエッジ部にも偽色信号は発生せず、高画質な画像が得られるカラー固体撮像装置が実現できる。 Thus, even for an image in which the signal value of the Y pixel does not change, the edge positions of the two color difference signals of all the generated pixels match. Further, when there is a change in the signal value of the Y pixel, the edge positions of the two color difference signals coincide with the Y pixels of all the pixels generated in the same manner as described in the first embodiment. Even when color conversion is performed by the matrix means 9 and output, since the edge shape is the same among the three signals, no false color signal is generated at the edge portion between the high-saturation colors, and a high-quality image is obtained. A color solid-state imaging device can be realized.

以上説明したように、本発明のカラー固体撮像装置では、3色から構成されるモザイク色フィルタを有した固体撮像素子の出力から得られる1つの色信号と2つの色差信号に周辺画素との相関の強い方向を同一にするように色差信号の補間処理を行うことで、画像エッジの3信号の変化点を一致でき、偽色信号を低減できる。 As described above, in the color solid-state imaging device of the present invention, one color signal obtained from the output of a solid-state imaging device having a mosaic color filter composed of three colors and two color difference signals are correlated with surrounding pixels. By performing the color difference signal interpolation processing so that the strong directions are the same, the change points of the three signals of the image edge can be matched, and the false color signal can be reduced.

本発明の処理アルゴリズムの実装形態は問わない。例えば実時間性が重要なビデオムービーや電子内視鏡等ではハードウエアでの実装が望ましく、柔軟な画質調整が要求される電子スチルカメラではソフトウエアでの実装が望まれる場合もある。また、色フィルタとして3原色フィルタと3補色フィルタを例示したが、例えばR(赤)・G(緑)・C(シアン)という組み合わせでも良く、また必要とされる分光特性が実現できればどのような3色も選択でき、紫外・可視光・赤外という組み合わせでも良く、固体撮像素子の画素配置との限定関係もない。また、色差信号間で相関の強い方向を合わせる補間処理は、市松画素配置の固体撮像素子に対して例示したが、固体撮像素子の配置画素と色差信号間の相関一致処理の有無の関係はこれに限定されない。 The implementation form of the processing algorithm of the present invention is not limited. For example, hardware implementation is desirable for video movies and electronic endoscopes where real-time performance is important, and software implementation may be desired for electronic still cameras that require flexible image quality adjustment. Further, the three primary color filters and the three complementary color filters are exemplified as the color filters. For example, a combination of R (red), G (green), and C (cyan) may be used, and any desired spectral characteristics can be realized. Three colors can be selected, and a combination of ultraviolet, visible light, and infrared may be used, and there is no limited relationship with the pixel arrangement of the solid-state imaging device. In addition, the interpolation process for matching the direction in which the correlation between the color difference signals is strong is exemplified for the solid-state image sensor having the checkered pixel arrangement, but the relationship between the presence of the correlation matching process between the arrangement pixel of the solid-state image sensor and the color difference signal It is not limited to.

カラー固体撮像装置のブロック図(実施例1)Block diagram of a color solid-state imaging device (Example 1) 周辺画像の位置関係を説明するための図(実施例1)FIG. 10 is a diagram for explaining the positional relationship between peripheral images (Example 1) 高精度画素補間処理の流れ図(実施例1)Flow chart of high-precision pixel interpolation processing (Example 1) 右下がりの境界線の位置と信号値の相関関係を説明するための図(実施例1)FIG. 10 is a diagram for explaining the correlation between the position of the lower right boundary line and the signal value (Example 1). 色差補間処理の補間値決定法を説明するための図(実施例1)FIG. 10 is a diagram for explaining an interpolation value determination method for color difference interpolation processing (Example 1). 色差信号の補間処理の効果を説明するための図(実施例1)FIG. 10 is a diagram for explaining the effect of color difference signal interpolation processing (Example 1); カラー固体撮像装置のブロック図(実施例2)Block diagram of a color solid-state imaging device (Example 2) 高精度画素補間処理の流れ図(実施例2)Flow chart of high-precision pixel interpolation processing (Example 2) 色差信号の相関方向を求める画素位置の関係図(実施例2)Relationship diagram of pixel positions for obtaining correlation direction of color difference signals (Example 2) 色差補間処理の補間値決定法を説明するための図(実施例2)FIG. 10 is a diagram for explaining an interpolation value determination method for color difference interpolation processing (second embodiment). 色差信号間の相関方向一致処理の効果を説明するための図(実施例2)FIG. 10 is a diagram for explaining the effect of correlation direction matching processing between color difference signals (Example 2). 従来のカラー固体撮像装置のブロック図(従来例)Block diagram of a conventional color solid-state imaging device (conventional example) 高彩度エッジ部に生じる色偽信号を説明するための図(従来例)Diagram for explaining a color false signal generated at a high saturation edge (conventional example)

符号の説明Explanation of symbols

1 固体撮像素子
2 モザイク色フィルタ
3 補間処理手段
4 減算手段
5 間引き手段
6 間引き手段
7 補間処理手段
8 補間処理手段
9 マトリクス
10 タイミング発生器
11 駆動回路
12 相関検出手段
13 相関検出手段
14 間引き手段
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Mosaic color filter 3 Interpolation processing means 4 Subtraction means 5 Thinning-out means 6 Thinning-out means 7 Interpolation processing means 8 Interpolation processing means 9 Matrix 10 Timing generator 11 Drive circuit 12 Correlation detection means 13 Correlation detection means 14 Thinning-out means

Claims (3)

第1の分光感度特性を有する画素と、第2または第3の分光感度特性のいずれか一方を有した画素が互いに隣接して配置された固体撮像素子を有し、前記固体撮像素子の出力信号から前記固体撮像素子の全画素に対する前記第2または第3の分光感度の画像位置の前記第1の分光感度特性の信号を生成するとともに、前記生成された信号がどの方向の前記第1の分光感度特性の画素信号と相関が強いかを示す相関方向信号を生成し、前記第2および第3の分光感度の画素位置でそれぞれ前記第1の分光感度の画素信号との差信号を生成し、補間処理により全画素に対する前記2つの差信号を生成し、生成された全画素の前記第1の分光感度特性の信号と前記第2および第3の分光感度に対する差信号に変換を施してカラー画像信号を得るカラー固体撮像装置において、前記第2および第3の分光感度の画素位置のそれぞれ前記第3および第2の分光感度に対応する差信号は少なくとも前記相関方向信号に基づいて生成することを特徴とするカラー固体撮像装置。 A solid-state image sensor in which a pixel having the first spectral sensitivity characteristic and a pixel having either the second or third spectral sensitivity characteristic are arranged adjacent to each other, and an output signal of the solid-state image sensor To generate a signal of the first spectral sensitivity characteristic at the image position of the second or third spectral sensitivity with respect to all pixels of the solid-state imaging device, and in which direction the generated signal has the first spectral sensitivity. Generating a correlation direction signal indicating whether the pixel signal of the sensitivity characteristic is strongly correlated, and generating a difference signal from the pixel signal of the first spectral sensitivity at each of the pixel positions of the second and third spectral sensitivity, The two difference signals for all the pixels are generated by interpolation processing, and the first spectral sensitivity characteristic signal of all the generated pixels and the difference signals for the second and third spectral sensitivities are converted to a color image. Color to get signal In the solid-state imaging device, the difference signal corresponding to the third and second spectral sensitivities at the pixel positions of the second and third spectral sensitivities is generated based on at least the correlation direction signal. Solid-state imaging device. 前記第2または第3の分光感度の画素位置の前記相関方向信号が相関方向が特定できなかったことを示している場合には、前記生成されたそれぞれ前記第2または第3の分光感度特性に対応する差信号の周辺画素との相関関係に基づいて、それぞれ前記第3または第2の分光感度に対応するの差信号の補間値を生成することを特徴とする請求項1のカラー固体撮像装置。 When the correlation direction signal at the pixel position of the second or third spectral sensitivity indicates that the correlation direction could not be specified, the generated second or third spectral sensitivity characteristic is indicated respectively. 2. The color solid-state imaging device according to claim 1, wherein an interpolated value of the difference signal corresponding to the third or second spectral sensitivity is generated based on a correlation between the corresponding difference signal and surrounding pixels. . 第1の分光感度特性の信号 の画素補間信号と相関が強い方向を示す信号は、補間対象画素に隣接する4画素の画素信号の明暗順序バターンを優先的に、補間対象画素を囲む8画素の信号に基づき決定したことを特徴とする請求項1または2に記載のカラー固体撮像装置。 A signal indicating a direction having a strong correlation with the pixel interpolation signal of the first spectral sensitivity characteristic signal is an 8-pixel surrounding the interpolation target pixel with priority given to the light / dark order pattern of the pixel signal of the four pixels adjacent to the interpolation target pixel. The color solid-state imaging device according to claim 1, wherein the color solid-state imaging device is determined based on a signal.
JP2004149961A 2004-05-20 2004-05-20 Color solid-state imaging device Expired - Fee Related JP4441809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149961A JP4441809B2 (en) 2004-05-20 2004-05-20 Color solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149961A JP4441809B2 (en) 2004-05-20 2004-05-20 Color solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2005333418A true JP2005333418A (en) 2005-12-02
JP4441809B2 JP4441809B2 (en) 2010-03-31

Family

ID=35487761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149961A Expired - Fee Related JP4441809B2 (en) 2004-05-20 2004-05-20 Color solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4441809B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011308A1 (en) * 2007-07-13 2009-01-22 Acutelogic Corporation Image processing device, imaging device, image processing method, imaging method, and image processing program
JP2009130632A (en) * 2007-11-22 2009-06-11 Olympus Corp Image processor, and image processing program
JP2009526448A (en) * 2006-02-09 2009-07-16 クゥアルコム・インコーポレイテッド Adaptive image filter for filtering image information
CN101867830A (en) * 2009-04-20 2010-10-20 佳能株式会社 Image processing equipment and control method thereof
JP2012169989A (en) * 2011-02-16 2012-09-06 Jvc Kenwood Corp Imaging device and interpolation processing method for imaging device
JP2013243750A (en) * 2007-06-12 2013-12-05 Centre National De La Recherche Scientifique (Cnrs) Digital image sensor, image capture method, image reconstruction method, and system for implementing the same
WO2016079831A1 (en) * 2014-11-19 2016-05-26 オリンパス株式会社 Image processing device, image processing method, image processing program and endoscopic device
US10070771B2 (en) 2015-01-08 2018-09-11 Olympus Corporation Image processing apparatus, method for operating image processing apparatus, computer-readable recording medium, and endoscope device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526448A (en) * 2006-02-09 2009-07-16 クゥアルコム・インコーポレイテッド Adaptive image filter for filtering image information
JP2013243750A (en) * 2007-06-12 2013-12-05 Centre National De La Recherche Scientifique (Cnrs) Digital image sensor, image capture method, image reconstruction method, and system for implementing the same
KR101344824B1 (en) 2007-07-13 2013-12-26 실리콘 하이브 비.브이. Image processing device, imaging device, image processing method, imaging method, and image processing program
US8106974B2 (en) 2007-07-13 2012-01-31 Silicon Hive B.V. Image processing device, imaging device, image processing method, imaging method, and image processing program
US8542299B2 (en) 2007-07-13 2013-09-24 Intel Benelux B.V. Image processing device, imaging device, image processing method, imaging method, and image processing program for pseudo-color suppression in an image
JP2009021962A (en) * 2007-07-13 2009-01-29 Acutelogic Corp Image processor and imaging apparatus, image processing method and imaging method, and image processing program
WO2009011308A1 (en) * 2007-07-13 2009-01-22 Acutelogic Corporation Image processing device, imaging device, image processing method, imaging method, and image processing program
JP2009130632A (en) * 2007-11-22 2009-06-11 Olympus Corp Image processor, and image processing program
CN101867830A (en) * 2009-04-20 2010-10-20 佳能株式会社 Image processing equipment and control method thereof
JP2012169989A (en) * 2011-02-16 2012-09-06 Jvc Kenwood Corp Imaging device and interpolation processing method for imaging device
WO2016079831A1 (en) * 2014-11-19 2016-05-26 オリンパス株式会社 Image processing device, image processing method, image processing program and endoscopic device
JPWO2016079831A1 (en) * 2014-11-19 2017-09-28 オリンパス株式会社 Image processing apparatus, image processing method, image processing program, and endoscope apparatus
US10867367B2 (en) 2014-11-19 2020-12-15 Olympus Corporation Image processing apparatus, image processing method, computer-readable recording medium, and endoscope apparatus
US10070771B2 (en) 2015-01-08 2018-09-11 Olympus Corporation Image processing apparatus, method for operating image processing apparatus, computer-readable recording medium, and endoscope device

Also Published As

Publication number Publication date
JP4441809B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
TWI669963B (en) Dual mode image acquisition device
JP4195169B2 (en) Solid-state imaging device and signal processing method
US7667762B2 (en) Dual sensor video camera
US7973831B2 (en) Solid-state image sensor and imaging apparatus using the same
US7057654B2 (en) Four color image sensing apparatus
US20120287286A1 (en) Image processing device, image processing method, and program
US7777791B2 (en) Defective pixel correction device
US20090290052A1 (en) Color Pixel Pattern Scheme for High Dynamic Range Optical Sensor
JP2004153823A (en) Image processing system using local linear regression
US8736724B2 (en) Imaging apparatus, method of processing captured image, and program for processing captured image
US20070159542A1 (en) Color filter array with neutral elements and color image formation
US7072509B2 (en) Electronic image color plane reconstruction
TWI737979B (en) Image demosaicer and method
US9936172B2 (en) Signal processing device, signal processing method, and signal processing program for performing color reproduction of an image
JP2006165975A (en) Image pickup element, image pickup device and image processing method
JP4441809B2 (en) Color solid-state imaging device
JP2003179819A (en) Image pickup device
US6747698B2 (en) Image interpolating device
JP2004186879A (en) Solid-state imaging unit and digital camera
JP2002112276A (en) Color solid-state image pickup device
JP2007049301A (en) Image processing apparatus and method therefor
JP4122082B2 (en) Signal processing apparatus and processing method thereof
JPH089395A (en) Color image pickup device
JP2008035090A (en) Signal processing method and camera
JPS61127290A (en) Color image pickup device of single plate type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees