JP2005333065A - Solid state laser apparatus - Google Patents

Solid state laser apparatus Download PDF

Info

Publication number
JP2005333065A
JP2005333065A JP2004151970A JP2004151970A JP2005333065A JP 2005333065 A JP2005333065 A JP 2005333065A JP 2004151970 A JP2004151970 A JP 2004151970A JP 2004151970 A JP2004151970 A JP 2004151970A JP 2005333065 A JP2005333065 A JP 2005333065A
Authority
JP
Japan
Prior art keywords
optical
optical axis
fundamental wave
resonator
switching means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151970A
Other languages
Japanese (ja)
Other versions
JP4425703B2 (en
Inventor
Taizo Kono
泰造 江野
Masayuki Momiuchi
正幸 籾内
Yoshiaki Goto
義明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2004151970A priority Critical patent/JP4425703B2/en
Publication of JP2005333065A publication Critical patent/JP2005333065A/en
Application granted granted Critical
Publication of JP4425703B2 publication Critical patent/JP4425703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid state laser apparatus radiating laser beams of a plurality of wavelengths, maintaining low-cost and high-accuracy characteristics and improving radiation efficiency of laser beams. <P>SOLUTION: The solid state laser apparatus is provided with: a first optical resonator having a first optical axis 24; a second optical resonator having a second optical axis; a third optical resonator having a third optical axis 30; an optical path switching means 37 formed on an intersecting part between the second optical axis 32 and the third optical axis 30; a first wavelength transforming optical member 28 arranged on the first optical axis 24 and the second optical axis 32; and a second wavelength transforming optical member 38 arranged on the third optical axis 30 passing the optical path switching means 28. In the solid state laser apparatus, a laser beam of sum frequency is radiated by the first wavelength transforming optical member in a state of transmitting a second basic wave oscillated from the second optical resonator, and in a state of the optical path switching means transmitting a first basic wave oscillated from the first optical resonator, a laser beam of secondary higher harmonic is projected by a third basic wave oscillated from the third optical resonator and the second wavelength transforming optical member 38. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は複数の波長を持つレーザ光線を射出可能とした固体レーザ装置に関するものである。   The present invention relates to a solid-state laser device capable of emitting laser beams having a plurality of wavelengths.

近年では医学治療の分野でのレーザ光線の利用が普及し、例えばレーザ光線を患部に照射し治療する医療用レーザ手術装置がある。   In recent years, the use of laser beams in the field of medical treatment has become widespread. For example, there is a medical laser surgical apparatus that irradiates a diseased part with a laser beam and treats it.

レーザ光線を利用した医療機械は、非接触で治療部位の光凝固、除去、切開等しており、又治療の種類により使用されるレーザ光線の色、即ち波長が異なっており、医療機械のレーザ光線射出源であるレーザ装置では複数の波長のレーザ光線を医療機械に供給することが望まれる。   A medical machine using a laser beam performs non-contact photocoagulation, removal, incision, etc. of a treatment site in a non-contact manner, and the color, ie, wavelength, of the laser beam used differs depending on the type of treatment. In a laser apparatus which is a light emission source, it is desired to supply laser beams having a plurality of wavelengths to a medical machine.

複数の波長のレーザ光線を射出可能な従来のレーザ装置として特許文献1に示されるものがある。   As a conventional laser apparatus capable of emitting laser beams having a plurality of wavelengths, there is one disclosed in Patent Document 1.

図4に於いて説明する。   This will be described with reference to FIG.

図4中、1はレーザ発振器、2は制御部、3は操作部を示しており、前記制御部2はレーザ発振器1から発せられるレーザ光線の波長の変更、レーザ光線の強度等の制御を行い、前記操作部3は波長を選択するスイッチ、レーザ光線照射条件を設定入力する為の各種スイッチが設けられている。   In FIG. 4, 1 is a laser oscillator, 2 is a control unit, and 3 is an operation unit. The control unit 2 controls the wavelength of the laser beam emitted from the laser oscillator 1 and controls the intensity of the laser beam. The operation unit 3 is provided with a switch for selecting a wavelength and various switches for setting and inputting a laser beam irradiation condition.

前記レーザ発振器1は励起光源である半導体レーザ4を有し、該半導体レーザ4から発せられるレーザ光線は第1共振部5、第2共振部6、第3共振部7に導かれる様になっている。   The laser oscillator 1 has a semiconductor laser 4 as an excitation light source, and a laser beam emitted from the semiconductor laser 4 is guided to a first resonance unit 5, a second resonance unit 6, and a third resonance unit 7. Yes.

前記第1共振部5は第1光軸8a上に配設された第1反射鏡9、レーザ結晶11、半透過鏡である出力鏡12、該出力鏡12の反射光軸13上に設けられた第1波長変換用光学部材(非線形結晶)14a、第2反射鏡15aとから構成されている。   The first resonating unit 5 is provided on a first reflecting mirror 9, a laser crystal 11, an output mirror 12 that is a semi-transmissive mirror, and a reflected optical axis 13 of the output mirror 12 disposed on the first optical axis 8 a. The first wavelength converting optical member (nonlinear crystal) 14a and the second reflecting mirror 15a.

前記第2共振部6は、第2光軸8bを有し、該第2光軸8bには該第2光軸8b上を移動可能に設けられた第2共振部用反射鏡16、前記第2光軸8b上に設けられた第2波長変換用光学部材(非線形結晶)14b、第3反射鏡15bを有し、前記第2共振部用反射鏡16は第2共振部用駆動部17によって移動され、前記反射光軸13と第2光軸8bとの交点に位置決めされる様になっている。   The second resonating unit 6 has a second optical axis 8b, and the second resonating unit reflecting mirror 16 is provided on the second optical axis 8b so as to be movable on the second optical axis 8b. The second wavelength converting optical member (nonlinear crystal) 14b and the third reflecting mirror 15b provided on the two optical axes 8b are provided. The second resonating part reflecting mirror 16 is provided by the second resonating part driving part 17. It is moved and positioned at the intersection of the reflected optical axis 13 and the second optical axis 8b.

前記第3共振部7は、第3光軸8cを有し、該第3光軸8cには該第3光軸8c上を移動可能に設けられた第3共振部用反射鏡18、前記第3光軸8c上に設けられた第3波長変換用光学部材(非線形結晶)14c、第4反射鏡15cを有し、前記第3共振部用反射鏡18は第3共振部用駆動部19によって移動され、前記反射光軸13と第3光軸8cとの交点に位置決めされる様になっている。   The third resonating unit 7 has a third optical axis 8c, and the third resonating mirror 18 for the third resonating unit provided on the third optical axis 8c so as to be movable on the third optical axis 8c. A third wavelength converting optical member (nonlinear crystal) 14c and a fourth reflecting mirror 15c provided on the three optical axes 8c are provided. The third resonating part reflecting mirror 18 is provided by a third resonating part driving part 19. It is moved and positioned at the intersection of the reflection optical axis 13 and the third optical axis 8c.

上記レーザ装置に於いて、第1の波長を有するレーザ光線を射出する場合は、前記第2共振部用反射鏡16、前記第3共振部用反射鏡18を前記反射光軸13から後退させる。前記第1共振部5に入射したレーザ光線は、前記第1反射鏡9と前記第2反射鏡15aとの間で増幅され、前記出力鏡12を透過して射出される。   In the laser apparatus, when the laser beam having the first wavelength is emitted, the second resonating part reflecting mirror 16 and the third resonating part reflecting mirror 18 are moved backward from the reflected optical axis 13. The laser beam incident on the first resonating unit 5 is amplified between the first reflecting mirror 9 and the second reflecting mirror 15a, passes through the output mirror 12, and is emitted.

又、第2の波長を有するレーザ光線を射出する場合は、前記第2共振部用反射鏡16を前記反射光軸13と前記第2光軸8bとの交点に移動させ、前記第1反射鏡9と前記第3反射鏡15b間で構成される前記第2共振部6でレーザ光線を増幅させ、前記出力鏡12を透して射出される。   When the laser beam having the second wavelength is emitted, the second resonating part reflecting mirror 16 is moved to the intersection of the reflecting optical axis 13 and the second optical axis 8b, and the first reflecting mirror is moved. 9 and the third reflecting mirror 15b, the second resonating unit 6 amplifies the laser beam and emits it through the output mirror 12.

又、第3の波長を有するレーザ光線を射出する場合は、前記第2共振部用反射鏡16を前記反射光軸13から後退させ、前記第3共振部用反射鏡18を前記反射光軸13と前記第3光軸8cとの交点に移動させ、前記第1反射鏡9と前記第4反射鏡15c間で構成される前記第3共振部7でレーザ光線を増幅させ、前記出力鏡12を透して射出される。   When a laser beam having a third wavelength is emitted, the second resonator reflecting mirror 16 is retracted from the reflecting optical axis 13 and the third resonator reflecting mirror 18 is moved to the reflecting optical axis 13. And the third optical axis 8c, the laser beam is amplified by the third resonating unit 7 formed between the first reflecting mirror 9 and the fourth reflecting mirror 15c, and the output mirror 12 is It is injected through.

而して、前記第2共振部用反射鏡16、第3共振部用反射鏡18の位置を選択することで、複数の波長を有するレーザ光線を射出することができる。   Thus, by selecting the positions of the second resonance part reflection mirror 16 and the third resonance part reflection mirror 18, laser beams having a plurality of wavelengths can be emitted.

上記した従来のレーザ装置では、前記第2共振部用反射鏡16、前記第3共振部用反射鏡18を移動させる構成である為、駆動部、前記第2共振部用反射鏡16、前記第3共振部用反射鏡18のガイド機構が必要となり、機構が複雑である。又、前記第2共振部用反射鏡16、前記第3共振部用反射鏡18の停止位置はレーザ光線の射出効率に大きく影響する為、高精度が要求される。   In the above-described conventional laser device, the second resonator reflection mirror 16 and the third resonator reflection mirror 18 are configured to move, so that the drive unit, the second resonator reflection mirror 16, and the A guide mechanism for the three-resonator reflecting mirror 18 is required, and the mechanism is complicated. In addition, since the stop positions of the second resonator reflector 16 and the third resonator reflector 18 greatly affect the laser beam emission efficiency, high accuracy is required.

この為、高精度が要求されるガイド機構、制御系等が必要となり、製作コストが掛るという問題があった。   For this reason, a guide mechanism, a control system, and the like that require high accuracy are required, and there is a problem that manufacturing costs are increased.

特開2002−151774号公報JP 2002-151774 A

本発明は斯かる実情に鑑み、複数の波長のレーザ光線を射出可能であり、低コストで而も高精度を維持し、射出効率の向上が可能な固体レーザ装置を提供するものである。   In view of such circumstances, the present invention provides a solid-state laser device capable of emitting laser beams of a plurality of wavelengths, maintaining high accuracy at low cost, and improving the emission efficiency.

本発明は、第1の光軸を有する第1の光共振器と、第2の光軸を有する第2の光共振器と、第3の光軸を有する第3の光共振器と、前記第2の光軸と第3の光軸が交差し、第2の光軸と第3の光軸との交差部分に設けられた光路切換手段と、前記第1の光軸及び第2の光軸に配置された第1波長変換用光学部材と、前記光路切換手段を通過する前記第3の光軸に配置された第2波長変換用光学部材とを具備し、前記第1の光軸は前記第3の光軸が前記光路切換手段により前記第2の光軸と平行になる様に屈折されたものであり、前記光路切換手段は前記第1の光共振器で発振される第1基本波を反射、又は透過し、前記第2の光共振器で発振される第2基本波を透過させるものであり、前記光路切換手段が前記第1の光共振器が発振する第1基本波を反射し、前記第2の光共振器が発振する第2基本波を透過する状態で前記第1波長変換用光学部材により和周波のレーザ光線が射出され、前記光路切換手段が前記第1の光共振器が発振する第1基本波を透過する状態で前記第3の光共振器が発振する第3基本波と前記第2波長変換用光学部材とから2次高調波のレーザ光線が射出される固体レーザ装置に係り、又前記光路切換手段は、第1基本波と第2基本波のいずれか一方を反射し、いずれか他方を透過する光学部材と前記いずれか一方の基本波を透過する透過部を有し、前記光学部材と前記透過部とを択一的に前記交差部分に位置決めする固体レーザ装置に係り、又前記第1基本波と第2基本波とは偏光方向が異なり、前記光学部材は偏光ビームスプリッタである固体レーザ装置に係り、又前記光学部材はダイクロイックミラーである固体レーザ装置に係り、更に又前記光学部材、透過部は回転可能な回転板に設けられた固体レーザ装置に係るものである。   The present invention includes a first optical resonator having a first optical axis, a second optical resonator having a second optical axis, a third optical resonator having a third optical axis, An optical path switching means provided at an intersection of the second optical axis and the third optical axis, the first optical axis and the second light; A first wavelength converting optical member disposed on an axis, and a second wavelength converting optical member disposed on the third optical axis passing through the optical path switching means, wherein the first optical axis is The third optical axis is refracted by the optical path switching means so as to be parallel to the second optical axis, and the optical path switching means is a first basic that is oscillated by the first optical resonator. Reflecting or transmitting a wave and transmitting a second fundamental wave oscillated by the second optical resonator, and the optical path switching means is a first oscillating by the first optical resonator. A sum frequency laser beam is emitted by the first wavelength converting optical member while reflecting the main wave and transmitting the second fundamental wave oscillated by the second optical resonator, and the optical path switching means A second harmonic laser beam is generated from the third fundamental wave oscillated by the third optical resonator and the second wavelength converting optical member in a state where the first fundamental wave oscillated by the first optical resonator is transmitted. The optical path switching means relates to an optical member that reflects either one of the first fundamental wave and the second fundamental wave and transmits either one of the fundamental wave and the fundamental wave. The present invention relates to a solid-state laser device that has a transmission part that transmits light, and alternatively positions the optical member and the transmission part at the intersection, and the first fundamental wave and the second fundamental wave have different polarization directions. The optical member is a polarization beam splitter. The dependency, and the optical member relates to a solid-state laser apparatus is a dichroic mirror, further or the optical member, the transmission portion are those of the solid-state laser device provided in the rotary plate rotatable.

本発明によれば、第1の光軸を有する第1の光共振器と、第2の光軸を有する第2の光共振器と、第3の光軸を有する第3の光共振器と、前記第2の光軸と第3の光軸が交差し、第2の光軸と第3の光軸との交差部分に設けられた光路切換手段と、前記第1の光軸及び第2の光軸に配置された第1波長変換用光学部材と、前記光路切換手段を通過する前記第3の光軸に配置された第2波長変換用光学部材とを具備し、前記第1の光軸は前記第3の光軸が前記光路切換手段により前記第2の光軸と平行になる様に屈折されたものであり、前記光路切換手段は前記第1の光共振器で発振される第1基本波を反射、又は透過し、前記第2の光共振器で発振される第2基本波を透過させるものであり、前記光路切換手段が前記第1の光共振器が発振する第1基本波を反射し、前記第2の光共振器が発振する第2基本波を透過する状態で前記第1波長変換用光学部材により和周波のレーザ光線が射出され、前記光路切換手段が前記第1の光共振器が発振する第1基本波を透過する状態で前記第3の光共振器が発振する第3基本波と前記第2波長変換用光学部材とから2次高調波のレーザ光線が射出されるので、複数の波長のレーザ光線を射出可能であり、構造が簡単で、射出される波長を偏光する場合の可動部が少なく、低コストで而も高精度を維持し、射出効率の向上が可能であるという優れた効果を発揮する。   According to the present invention, a first optical resonator having a first optical axis, a second optical resonator having a second optical axis, a third optical resonator having a third optical axis, , The second optical axis and the third optical axis intersect, an optical path switching means provided at the intersection of the second optical axis and the third optical axis, the first optical axis and the second optical axis. And a first wavelength converting optical member disposed on the third optical axis passing through the optical path switching means, and the first light The axis is refracted by the optical path switching means so that the third optical axis is parallel to the second optical axis, and the optical path switching means is oscillated by the first optical resonator. One fundamental wave is reflected or transmitted, and the second fundamental wave oscillated by the second optical resonator is transmitted, and the optical path switching means oscillates the first optical resonator. A sum frequency laser beam is emitted by the first wavelength conversion optical member in a state of reflecting the first fundamental wave and transmitting the second fundamental wave oscillated by the second optical resonator, and the optical path switching means A second harmonic laser from the third fundamental wave oscillated by the third optical resonator and the second wavelength converting optical member in a state where the first fundamental wave oscillated by the first optical resonator is transmitted. Since the light beam is emitted, it is possible to emit laser beams of multiple wavelengths, the structure is simple, there are few moving parts when the emitted wavelength is polarized, and the high accuracy is maintained at low cost. It exhibits an excellent effect that the efficiency can be improved.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1中、21は第1レーザ光源部、22は第2レーザ光源部、23は第3レーザ光源部、55は第1光共振器、56は第2光共振器、57は第3光共振器を示している。   In FIG. 1, 21 is a first laser light source section, 22 is a second laser light source section, 23 is a third laser light source section, 55 is a first optical resonator, 56 is a second optical resonator, and 57 is a third optical resonance. Shows the vessel.

前記第1レーザ光源部21は第1光軸24を有し、該第1光軸24上に第1集光レンズユニット25、第1凹面鏡26、第1固体レーザ媒質(第1レーザ結晶)27、光路切換手段37(後述)が配設され、前記第1光軸24は前記光路切換手段37により屈折され、前記第1光軸24の屈折された部分(以下第1光軸24′)に第1非線形光学媒質(第1波長変換用光学部材(NLO))28、第1出力鏡29が配設される。   The first laser light source unit 21 has a first optical axis 24, and a first condenser lens unit 25, a first concave mirror 26, and a first solid-state laser medium (first laser crystal) 27 on the first optical axis 24. , An optical path switching means 37 (described later) is disposed, and the first optical axis 24 is refracted by the optical path switching means 37 and is refracted by the refracted portion of the first optical axis 24 (hereinafter referred to as the first optical axis 24 '). A first nonlinear optical medium (first wavelength converting optical member (NLO)) 28 and a first output mirror 29 are disposed.

前記第1集光レンズユニット25と対向して第1LD発光器(半導体レーザ:Laser Diode)31が配設され、該第1LD発光器31から発せられた励起光は、前記第1集光レンズユニット25に入射され、前記第1凹面鏡26を透過して前記第1集光レンズユニット25により前記第1レーザ結晶27に集光される。尚、前記第1LD発光器31は単一の半導体レーザであっても、複数の半導体レーザで構成されるものであってもよい。   A first LD light emitting device (semiconductor laser: Laser Diode) 31 is disposed opposite to the first light collecting lens unit 25, and excitation light emitted from the first LD light emitting device 31 is transmitted to the first light collecting lens unit. 25, passes through the first concave mirror 26, and is focused on the first laser crystal 27 by the first condenser lens unit 25. The first LD light emitter 31 may be a single semiconductor laser or a plurality of semiconductor lasers.

前記第1LD発光器31から射出され、前記第1凹面鏡26と第1出力鏡29間で発振されるレーザ光線の偏光方向は、例えばS偏光となる様に前記第1レーザ結晶27の結晶方向が設定されている。   The polarization direction of the laser beam emitted from the first LD light emitter 31 and oscillated between the first concave mirror 26 and the first output mirror 29 is, for example, that the crystal direction of the first laser crystal 27 is S-polarized light. Is set.

前記光路切換手段37は、回転可能に設けられた回転板51を具備し、該回転板51には光学部材例えば偏光ビームスプリッタ52、前記第1光軸24を光学的に遮らない透過孔53が設けられ、前記回転板51の回転軸54は前記第1光軸24に対して傾斜し、前記回転板51は図示しないモータ、ソレノイド等の回転手段により所定回転され、第1の回転位置と第2の回転位置に位置決め可能となっている。又、第1の回転位置では前記偏光ビームスプリッタ52が前記第1光軸24上に位置し、第2の回転位置では透過孔53が前記第1光軸24上に位置する様になっている。   The optical path switching means 37 includes a rotating plate 51 that is rotatably provided. The rotating plate 51 has an optical member such as a polarizing beam splitter 52 and a transmission hole 53 that does not optically block the first optical axis 24. The rotation plate 54 of the rotation plate 51 is inclined with respect to the first optical axis 24, and the rotation plate 51 is rotated by a rotation means such as a motor or a solenoid (not shown) so that the first rotation position and the first rotation position. 2 can be positioned at the rotational position. The polarizing beam splitter 52 is positioned on the first optical axis 24 at the first rotational position, and the transmission hole 53 is positioned on the first optical axis 24 at the second rotational position. .

前記偏光ビームスプリッタ52は、前記第1凹面鏡26と第1出力鏡29間で発振されるレーザ光線(第1基本波)の偏光方向sに対して90°偏光方向が異なっている。従って、前記偏光ビームスプリッタ52はS偏光を反射し、P偏光を透過する様になっている。   The polarization beam splitter 52 has a 90 ° polarization direction different from the polarization direction s of the laser beam (first fundamental wave) oscillated between the first concave mirror 26 and the first output mirror 29. Accordingly, the polarization beam splitter 52 reflects S-polarized light and transmits P-polarized light.

前記第1凹面鏡26の反射面、及び前記第1出力鏡29の反射面にはそれぞれ誘電体反射膜が形成される。前記第1レーザ結晶27は励起用固体レーザ素子であり、前記第1LD発光器31の波長が809nmの場合、例えばNd:YVO4 を使用すると1064nmの波長で発振される。その他Nd3+イオンをドープしたYAG(イットリウム アルミニウム ガーネット)等が採用され、YAGは、946nm、1064nm、1319nm等の発振線を有している。又、発振線が700〜900nmのTi(Sapphire)等を使用することができる。   Dielectric reflecting films are formed on the reflecting surface of the first concave mirror 26 and the reflecting surface of the first output mirror 29, respectively. The first laser crystal 27 is a solid-state laser element for excitation. When the wavelength of the first LD emitter 31 is 809 nm, for example, when Nd: YVO4 is used, the first laser crystal 27 oscillates at a wavelength of 1064 nm. In addition, YAG (yttrium aluminum garnet) doped with Nd3 + ions or the like is employed, and YAG has oscillation lines of 946 nm, 1064 nm, 1319 nm, and the like. Further, Ti (Sapphire) having an oscillation line of 700 to 900 nm can be used.

前記第1波長変換用光学部材28は和周波用の波長変換用光学部材であり、前記偏光反射板37側には誘電体反射膜58が形成される。第1波長変換用光学部材28としてはKTP(KTiOPO4 リン酸チタニルカリウム)が用いられる。尚、上記第1波長変換用光学部材28としてはKTPの他に、BBO(β−BaB2 O4 β型ホウ酸バリウム)、LBO(LiB3 O5 トリホウ酸リチウム)、KNbO3 (ニオブ酸カリウム)等も採用される。   The first wavelength conversion optical member 28 is a sum frequency wavelength conversion optical member, and a dielectric reflection film 58 is formed on the polarizing reflection plate 37 side. As the first wavelength converting optical member 28, KTP (KTiOPO4 potassium titanyl phosphate) is used. As the first wavelength converting optical member 28, in addition to KTP, BBO (β-BaB 2 O 4 β-type barium borate), LBO (LiB 3 O 5 lithium triborate), KNbO 3 (potassium niobate), etc. are also employed. The

前記第1凹面鏡26の誘電体反射膜は、前記第1LD発光器31からの励起光、例えば809nmの励起光に対して高透過であり、且つ前記第1レーザ結晶27が発する発振波長(第1基本波)、例えば1064nmの第1基本波に対して高反射である。   The dielectric reflecting film of the first concave mirror 26 is highly transmissive with respect to the excitation light from the first LD light emitter 31, for example, 809 nm excitation light, and the oscillation wavelength (the first wavelength emitted by the first laser crystal 27) Fundamental wave), for example, a high reflection with respect to the first fundamental wave of 1064 nm.

前記第1出力鏡29の誘電体反射膜は、前記第1基本波と第2レーザ結晶36が発する発振波長の第2基本波に対して高反射であり、前記第1波長変換用光学部材28による第1基本波と第2基本波との和周波(SFG:SUM FREQUENCY GENERATION)に対して高透過となっている。例えば1064nmの第1基本波と1342nmの第2基本波に高反射であり、593nm(オレンジ色レーザ光線)の和周波に高透過である。   The dielectric reflecting film of the first output mirror 29 is highly reflective with respect to the first fundamental wave and the second fundamental wave of the oscillation wavelength emitted by the second laser crystal 36, and the first wavelength converting optical member 28. Is highly transparent to the sum frequency (SFG: SUM FREQUENCY GENERATION) of the first fundamental wave and the second fundamental wave. For example, the first fundamental wave of 1064 nm and the second fundamental wave of 1342 nm are highly reflective, and the first frequency of 593 nm (orange laser beam) is highly transmissive.

前記第1波長変換用光学部材28の誘電体反射膜58は、第1基本波と第2基本波に対して高透過であり、和周波に高反射である。   The dielectric reflection film 58 of the first wavelength converting optical member 28 is highly transmissive with respect to the first fundamental wave and the second fundamental wave, and highly reflective at the sum frequency.

前記第1レーザ光源部21では、前記第1凹面鏡26と前記第1出力鏡29と前記第1レーザ結晶27で第1光共振器55が構成され、前記第1LD発光器31からのレーザ光線を前記第1集光レンズユニット25を介して前記第1レーザ結晶27にポンピングさせると、前記第1凹面鏡26と前記第1出力鏡29との間でレーザ光線が往復しS偏光になる様規定された第1基本波が発振する。   In the first laser light source unit 21, the first concave mirror 26, the first output mirror 29, and the first laser crystal 27 constitute a first optical resonator 55, and the laser beam from the first LD light emitter 31 is emitted. When the first laser crystal 27 is pumped through the first condenser lens unit 25, the laser beam is reciprocated between the first concave mirror 26 and the first output mirror 29 so as to be S-polarized. The first fundamental wave oscillates.

同様に前記第2レーザ光源部22では、第2凹面鏡35と前記第1出力鏡29と前記第2レーザ結晶36で第2光共振器56が構成され、第2LD発光器33からのレーザ光線を第2集光レンズユニット34を介して前記第1レーザ結晶36にポンピングさせると、前記第2凹面鏡35と前記第1出力鏡29との間でレーザ光線が往復しP偏光になる様に規定された第2基本波が発振する。第2基本波としては、例えば、前記第2LD発光器33からの励起光が809nmであるとき第2基本波の1342nmとなる構成となっている。   Similarly, in the second laser light source unit 22, the second concave mirror 35, the first output mirror 29, and the second laser crystal 36 constitute a second optical resonator 56, and the laser beam from the second LD light emitter 33 is emitted. When the first laser crystal 36 is pumped through the second condenser lens unit 34, the laser beam is defined to reciprocate between the second concave mirror 35 and the first output mirror 29 to become P-polarized light. The second fundamental wave oscillates. As the second fundamental wave, for example, when the excitation light from the second LD light emitter 33 is 809 nm, the second fundamental wave is 1342 nm.

前記第1光軸24と一部を共有し前記光路切換手段37を通過する第3光軸30の前記光路切換手段37通過部分には第2波長変換用光学部材38及び第2出力鏡39が配設されている。前記第1凹面鏡26と前記第2出力鏡39間と前記第2波長変換用光学部材38とで第3光共振器57を構成し、第3基本波が発振される。前記第2波長変換用光学部材38は、例えば波長1064nmの第3基本波を532nmの第二高調波(緑色レーザ光線)に変換するSHG−KTPから成る。   A second wavelength converting optical member 38 and a second output mirror 39 are provided at a portion of the third optical axis 30 passing through the optical path switching means 37 that shares a part with the first optical axis 24 and passes through the optical path switching means 37. It is arranged. The third optical resonator 57 is constituted by the first concave mirror 26, the second output mirror 39, and the second wavelength converting optical member 38, and the third fundamental wave is oscillated. The second wavelength converting optical member 38 is made of, for example, SHG-KTP that converts a third fundamental wave having a wavelength of 1064 nm into a second harmonic wave (green laser beam) having a wavelength of 532 nm.

前記第2出力鏡39は誘電体反射膜が形成され、第3基本波に対して高反射であり、第二高調波に対して高透過である。前記第2波長変換用光学部材38の前記偏光反射板37側には誘電体反射膜59が形成され、該誘電体反射膜59は第3基本波に対して高透過であり、第二高調波に対して高反射である。   The second output mirror 39 is formed with a dielectric reflection film, and is highly reflective to the third fundamental wave and highly transmissive to the second harmonic. A dielectric reflection film 59 is formed on the polarizing reflection plate 37 side of the second wavelength converting optical member 38. The dielectric reflection film 59 is highly transmissive with respect to the third fundamental wave, and the second harmonic wave. Is highly reflective.

前記第2レーザ光源部22は第2光軸32を有し、該第2光軸32は前記光路切換手段37の位置で前記第3光軸30と例えば90°で交差し、前記第2光軸32上に前記第2LD発光器33、第2集光レンズユニット34、第2凹面鏡35、第2レーザ結晶36が配設され、前記第2光軸32の前記光路切換手段37を透過する部分は前記第1光軸24′と共有となっており、前記第1波長変換用光学部材28、第1出力鏡29も同様に前記第1レーザ光源部21と共有している。   The second laser light source unit 22 has a second optical axis 32, and the second optical axis 32 intersects the third optical axis 30 at, for example, 90 ° at the position of the optical path switching means 37, and the second light The second LD light emitter 33, the second condenser lens unit 34, the second concave mirror 35, and the second laser crystal 36 are disposed on the shaft 32, and the portion of the second optical axis 32 that passes through the optical path switching means 37 Is shared with the first optical axis 24 ′, and the first wavelength converting optical member 28 and the first output mirror 29 are also shared with the first laser light source unit 21.

前記第2LD発光器33から発せられた励起光は、P偏光であり、前記第2集光レンズユニット34に入射され、前記第2凹面鏡35を透過して前記第2集光レンズユニット34により前記第2レーザ結晶36に集光される。   The excitation light emitted from the second LD light emitter 33 is P-polarized light, is incident on the second condenser lens unit 34, passes through the second concave mirror 35, and is transmitted by the second condenser lens unit 34. Focused on the second laser crystal 36.

尚、第2レーザ結晶36には、Nd:YVO4 、Nd3+イオンをドープしたYAG(イットリウム アルミニウム ガーネット)、Ti(Sapphire)等が使用され、第2波長変換用光学部材38としてはKTP(KTiOPO4 リン酸チタニルカリウム)、BBO(β−BaB2 O4 β型ホウ酸バリウム)、LBO(LiB3 O5 トリホウ酸リチウム)、KNbO3 (ニオブ酸カリウム)等が採用される。   The second laser crystal 36 is made of YAG (yttrium aluminum garnet) doped with Nd: YVO4, Nd3 + ions, Ti (Sapphire) or the like, and the second wavelength conversion optical member 38 is KTP (KTiOPO4 phosphoric acid). Titanyl potassium), BBO (β-BaB 2 O 4 β-type barium borate), LBO (LiB 3 O 5 lithium triborate), KNbO 3 (potassium niobate) and the like are employed.

前記第3レーザ光源部23は第4光軸42を有し、該第4光軸42上に第3LD発光器43、第3集光レンズユニット44、反射鏡45が配設され、前記第3LD発光器43は赤色レーザ光線を発する。前記第4光軸42は前記反射鏡45によって第4光軸42′に偏向される。   The third laser light source unit 23 has a fourth optical axis 42, and a third LD light emitter 43, a third condenser lens unit 44, and a reflecting mirror 45 are disposed on the fourth optical axis 42, and the third LD The light emitter 43 emits a red laser beam. The fourth optical axis 42 is deflected to the fourth optical axis 42 ′ by the reflecting mirror 45.

前記第2出力鏡39を透過する前記第3光軸30は反射鏡41で偏向され前記第4光軸42′と交差し、前記第3光軸30と第4光軸42′との交点には、第1ダイクロイックミラー46が配設されている。又、前記第1光軸24′と前記第4光軸42′とは交差し、第1光軸24′と第4光軸42′との交点に第2ダイクロイックミラー47が配設されている。   The third optical axis 30 that passes through the second output mirror 39 is deflected by the reflecting mirror 41 and intersects the fourth optical axis 42 ', and at the intersection of the third optical axis 30 and the fourth optical axis 42'. The first dichroic mirror 46 is disposed. The first optical axis 24 'and the fourth optical axis 42' intersect each other, and a second dichroic mirror 47 is disposed at the intersection of the first optical axis 24 'and the fourth optical axis 42'. .

前記第1ダイクロイックミラー46は前記第3LD発光器43が発するレーザ光線、例えば赤色レーザ光線を透過し、赤色レーザ光線以外の波長のレーザ光線を反射するものである。前記第2ダイクロイックミラー47は、前記第1光軸24′からの和周波、例えばオレンジ色(593nm)の波長を反射し、その他の波長を透過する様になっている。   The first dichroic mirror 46 transmits a laser beam emitted from the third LD emitter 43, for example, a red laser beam, and reflects a laser beam having a wavelength other than the red laser beam. The second dichroic mirror 47 reflects the sum frequency from the first optical axis 24 ′, for example, orange (593 nm) wavelength, and transmits other wavelengths.

又、前記光路切換手段37が前記回転板51を第1の回転位置、即ち前記偏光ビームスプリッタ52が第1光軸24上に位置決めしている状態で、前記第1LD発光器31と前記第2LD発光器33とを同時に駆動して両第1LD発光器31、第2LD発光器33から励起光を射出させると、前記第1LD発光器31からのS偏光光束は前記偏光ビームスプリッタ52で反射され、前記第2LD発光器33からのP偏光光束は前記偏光ビームスプリッタ52を透過する。   Further, the first LD light emitter 31 and the second LD in the state where the optical path switching unit 37 positions the rotating plate 51 in the first rotation position, that is, the polarization beam splitter 52 is positioned on the first optical axis 24. When the light emitter 33 is simultaneously driven to emit excitation light from both the first LD light emitter 31 and the second LD light emitter 33, the S-polarized light beam from the first LD light emitter 31 is reflected by the polarization beam splitter 52, The P-polarized light beam from the second LD light emitter 33 passes through the polarization beam splitter 52.

而して、前記第2LD発光器33からのレーザ光線により前記第2凹面鏡35と前記第1出力鏡29間で第2基本波が発振され、前記第1LD発光器31からのレーザ光線により前記第1凹面鏡26と前記第1出力鏡29間で第1基本波が発振され、該第1出力鏡29からは第1基本波と第2基本波との和周波(SFG)が射出される。該和周波の色を、例えば波長593nmのオレンジとする。   Thus, a second fundamental wave is oscillated between the second concave mirror 35 and the first output mirror 29 by the laser beam from the second LD emitter 33, and the second fundamental wave is oscillated by the laser beam from the first LD emitter 31. A first fundamental wave is oscillated between one concave mirror 26 and the first output mirror 29, and a sum frequency (SFG) of the first fundamental wave and the second fundamental wave is emitted from the first output mirror 29. The sum frequency color is, for example, orange having a wavelength of 593 nm.

尚、固体レーザ装置は前記第1LD発光器31、前記第2LD発光器33、第3LD発光器43の駆動状態を駆動制御する電源制御部49を具備しており、該電源制御部49は前記第1LD発光器31、前記第2LD発光器33、前記第3LD発光器43を独立して点滅可能、或は同期して光強度の制御が可能等種々の態様で制御が可能となっている。   Note that the solid-state laser device includes a power supply control unit 49 that drives and controls the driving state of the first LD light emitter 31, the second LD light emitter 33, and the third LD light emitter 43. The 1LD light emitter 31, the second LD light emitter 33, and the third LD light emitter 43 can be controlled in various modes, such as being able to blink independently or controlling the light intensity in synchronization.

以下、図2、図3を参照して作用について説明する。   The operation will be described below with reference to FIGS.

前記第1LD発光器31、前記第2LD発光器33を消灯し、前記第3LD発光器43を点灯すると、赤色レーザ光線は前記反射鏡45で反射され、前記第1ダイクロイックミラー46、前記第2ダイクロイックミラー47を透過する。従って、固体レーザ装置からは赤色レーザ光線が射出される。   When the first LD light emitter 31 and the second LD light emitter 33 are turned off and the third LD light emitter 43 is turned on, the red laser beam is reflected by the reflecting mirror 45, and the first dichroic mirror 46 and the second dichroic light are reflected. It passes through the mirror 47. Therefore, a red laser beam is emitted from the solid-state laser device.

図2に示される様に、前記第3LD発光器43を消灯し、前記回転板51を第1の回転位置とし、前記偏光ビームスプリッタ52が前記第1光軸24上に位置決めされる。前記第1LD発光器31と前記第2LD発光器33とを点灯すると、前記第1LD発光器31の励起光により前記第1光共振器55はS偏光になる様に規定された第1基本波を発振し、前記偏光ビームスプリッタ52により反射される。前記第2LD発光器33の励起光により前記第2光共振器56はP偏光になる様に規定された第2基本波を発振し、前記偏光ビームスプリッタ52を透過する。   As shown in FIG. 2, the third LD light emitter 43 is turned off, the rotating plate 51 is set to the first rotation position, and the polarization beam splitter 52 is positioned on the first optical axis 24. When the first LD light emitter 31 and the second LD light emitter 33 are turned on, the first fundamental wave defined so that the first optical resonator 55 becomes S-polarized light by the excitation light of the first LD light emitter 31 is emitted. Oscillates and is reflected by the polarization beam splitter 52. The second optical resonator 56 oscillates a second fundamental wave defined to be P-polarized light by the excitation light of the second LD light emitter 33 and passes through the polarization beam splitter 52.

第1基本波と第2基本波は、前記第1波長変換用光学部材28により和周波のレーザ光線となり、和周波の例えばオレンジレーザ光線は前記第1出力鏡29を透過して射出され、前記ダイクロイックミラー47で反射され、固体レーザ装置からはオレンジレーザ光線が射出される。   The first fundamental wave and the second fundamental wave are converted into a sum frequency laser beam by the first wavelength converting optical member 28, and a sum frequency, for example, an orange laser beam is transmitted through the first output mirror 29 and emitted. Reflected by the dichroic mirror 47, an orange laser beam is emitted from the solid-state laser device.

次に、図3に示される様に、前記回転板51を回転して第2の回転位置とし、前記透過孔53を前記第1光軸24上に位置決めする。前記第1LD発光器31を点灯し、前記第2LD発光器33、第3LD発光器43を消灯すると、前記第1LD発光器31からのレーザ光線は前記透過孔53を透過して、前記第1凹面鏡26と前記第2出力鏡39間で第3基本波が発振され、更に前記第2波長変換用光学部材38により例えば緑色レーザ光線が発振され、緑色レーザ光線が前記第2出力鏡39より射出される。緑色レーザ光線は前記反射鏡41、前記第1ダイクロイックミラー46で反射され、前記第2ダイクロイックミラー47を透過して固体レーザ装置からは緑色レーザ光線が射出される。   Next, as shown in FIG. 3, the rotating plate 51 is rotated to the second rotation position, and the transmission hole 53 is positioned on the first optical axis 24. When the first LD light emitter 31 is turned on, and the second LD light emitter 33 and the third LD light emitter 43 are turned off, the laser beam from the first LD light emitter 31 is transmitted through the transmission hole 53 and the first concave mirror. 26 and the second output mirror 39, a third fundamental wave is oscillated, and further, for example, a green laser beam is oscillated by the second wavelength converting optical member 38, and the green laser beam is emitted from the second output mirror 39. The The green laser beam is reflected by the reflecting mirror 41 and the first dichroic mirror 46, passes through the second dichroic mirror 47, and the green laser beam is emitted from the solid-state laser device.

而して、前記電源制御部49により前記第1LD発光器31、前記第2LD発光器33、前記第3LD発光器43の点滅制御、前記回転板51の回転位置制御により、固体レーザ装置からは赤色、オレンジ色、緑色の3色のレーザ光線を発することが可能である。又、前記光路切換手段37は回転により位置が変更されるので、機構が簡単である。   Thus, the power supply control unit 49 controls the blinking of the first LD light emitter 31, the second LD light emitter 33, and the third LD light emitter 43, and the rotational position control of the rotating plate 51, so that the red color is emitted from the solid-state laser device. It is possible to emit laser beams of three colors, orange and green. Further, since the position of the optical path switching means 37 is changed by rotation, the mechanism is simple.

尚、上記偏光ビームスプリッタ52は、ダイクロイックミラー52′に変更してもよい。この場合、例えばダイクロイックミラー52′は前記第1光共振器55で発振される第1基本波(1064nmの波長)を反射し、前記第2光共振器56で発振される第2基本波(1342nmの波長)を透過する様になっている。   The polarizing beam splitter 52 may be changed to a dichroic mirror 52 ′. In this case, for example, the dichroic mirror 52 ′ reflects the first fundamental wave (1064 nm wavelength) oscillated by the first optical resonator 55 and the second fundamental wave (1342 nm) oscillated by the second optical resonator 56. (Wavelength).

この場合も、前述したと同様にダイクロイックミラー52′が第1光軸24上に位置される状態で和周波が生成され、第1出力鏡29からはオレンジ色のレーザ光線が射出され、前記透過孔53が第1光軸24上に位置される状態で、緑色のレーザ光線が射出される。   In this case as well, the sum frequency is generated with the dichroic mirror 52 ′ positioned on the first optical axis 24 as described above, and the orange laser beam is emitted from the first output mirror 29 and transmitted. A green laser beam is emitted in a state where the hole 53 is positioned on the first optical axis 24.

尚、上記説明では偏光ビームスプリッタ52、透過孔53を回転板51に設けたが、前記第1光軸24に対して出入りするスライド板に設けてもよい。又、スライド板は単に偏光ビームスプリッタ52を前記第1レーザ光源部21に対して挿脱するだけとし、前記偏光ビームスプリッタ52が第1光軸24上に位置しない場合は、該第1光軸24を遮らない空間である透過部を形成するものであってもよい。   In the above description, the polarization beam splitter 52 and the transmission hole 53 are provided in the rotating plate 51, but they may be provided in a slide plate that goes in and out with respect to the first optical axis 24. The slide plate simply inserts and removes the polarizing beam splitter 52 with respect to the first laser light source unit 21. When the polarizing beam splitter 52 is not positioned on the first optical axis 24, the first optical axis is used. The transmission part which is the space which does not obstruct | occlude 24 may be formed.

又、適宜レーザ結晶、波長変換用光学部材を選択することで種々の色のレーザ光線を射出できることは言う迄もない。   It goes without saying that laser beams of various colors can be emitted by appropriately selecting a laser crystal and a wavelength converting optical member.

本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention. 本発明の実施の形態の作用を示す説明図である。It is explanatory drawing which shows the effect | action of embodiment of this invention. 本発明の実施の形態の作用を示す説明図である。It is explanatory drawing which shows the effect | action of embodiment of this invention. 従来例の概略構成図である。It is a schematic block diagram of a prior art example.

符号の説明Explanation of symbols

21 第1レーザ光源部
22 第2レーザ光源部
23 第3レーザ光源部
24 第1光軸
26 第1凹面鏡
27 第1レーザ結晶
28 第1波長変換用光学部材
29 第1出力鏡
31 第1LD発光器
32 第2光軸
33 第2LD発光器
35 第2凹面鏡
36 第2レーザ結晶
37 光路切換手段
38 第2波長変換用光学部材
39 第2出力鏡
43 第3LD発光器
49 電源制御部
51 回転板
52 偏光ビームスプリッタ
53 透過孔
DESCRIPTION OF SYMBOLS 21 1st laser light source part 22 2nd laser light source part 23 3rd laser light source part 24 1st optical axis 26 1st concave mirror 27 1st laser crystal 28 1st wavelength conversion optical member 29 1st output mirror 31 1st LD light emitter 32 2nd optical axis 33 2nd LD light emitter 35 2nd concave mirror 36 2nd laser crystal 37 Optical path switching means 38 2nd wavelength conversion optical member 39 2nd output mirror 43 3rd LD light emitter 49 Power supply control part 51 Rotating plate 52 Polarization Beam splitter 53 Transmission hole

Claims (5)

第1の光軸を有する第1の光共振器と、第2の光軸を有する第2の光共振器と、第3の光軸を有する第3の光共振器と、前記第2の光軸と第3の光軸が交差し、第2の光軸と第3の光軸との交差部分に設けられた光路切換手段と、前記第1の光軸及び第2の光軸に配置された第1波長変換用光学部材と、前記光路切換手段を通過する前記第3の光軸に配置された第2波長変換用光学部材とを具備し、前記第1の光軸は前記第3の光軸が前記光路切換手段により前記第2の光軸と平行になる様に屈折されたものであり、前記光路切換手段は前記第1の光共振器で発振される第1基本波を反射、又は透過し、前記第2の光共振器で発振される第2基本波を透過させるものであり、前記光路切換手段が前記第1の光共振器が発振する第1基本波を反射し、前記第2の光共振器が発振する第2基本波を透過する状態で前記第1波長変換用光学部材により和周波のレーザ光線が射出され、前記光路切換手段が前記第1の光共振器が発振する第1基本波を透過する状態で前記第3の光共振器が発振する第3基本波と前記第2波長変換用光学部材とから2次高調波のレーザ光線が射出されることを特徴とする固体レーザ装置。   A first optical resonator having a first optical axis; a second optical resonator having a second optical axis; a third optical resonator having a third optical axis; and the second light. And the optical path switching means provided at the intersection of the second optical axis and the third optical axis, and the first optical axis and the second optical axis. A first wavelength converting optical member, and a second wavelength converting optical member disposed on the third optical axis passing through the optical path switching means, wherein the first optical axis is the third optical axis. The optical path is refracted by the optical path switching means so as to be parallel to the second optical axis, and the optical path switching means reflects the first fundamental wave oscillated by the first optical resonator, Alternatively, it transmits the second fundamental wave that is transmitted and oscillated by the second optical resonator, and the optical path switching means counteracts the first fundamental wave that is oscillated by the first optical resonator. Then, a sum frequency laser beam is emitted by the first wavelength converting optical member in a state where the second fundamental wave oscillated by the second optical resonator is transmitted, and the optical path switching means is the first optical resonance. A second harmonic laser beam is emitted from the third fundamental wave oscillated by the third optical resonator and the second wavelength converting optical member in a state where the first fundamental wave oscillated by the resonator is transmitted. A solid-state laser device characterized by the above. 前記光路切換手段は、第1基本波と第2基本波のいずれか一方を反射し、いずれか他方を透過する光学部材と前記いずれか一方の基本波を透過する透過部を有し、前記光学部材と前記透過部とを択一的に前記交差部分に位置決めする請求項1の固体レーザ装置。   The optical path switching means includes an optical member that reflects one of the first fundamental wave and the second fundamental wave and transmits the other, and a transmission portion that transmits the one of the fundamental waves. The solid-state laser device according to claim 1, wherein a member and the transmission portion are alternatively positioned at the intersecting portion. 前記第1基本波と第2基本波とは偏光方向が異なり、前記光学部材は偏光ビームスプリッタである請求項2の固体レーザ装置。   3. The solid-state laser device according to claim 2, wherein the first fundamental wave and the second fundamental wave have different polarization directions, and the optical member is a polarization beam splitter. 前記光学部材はダイクロイックミラーである請求項2の固体レーザ装置。   The solid-state laser device according to claim 2, wherein the optical member is a dichroic mirror. 前記光学部材、透過部は回転可能な回転板に設けられた請求項2の固体レーザ装置。   The solid-state laser device according to claim 2, wherein the optical member and the transmission portion are provided on a rotatable rotating plate.
JP2004151970A 2004-05-21 2004-05-21 Solid state laser equipment Expired - Fee Related JP4425703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151970A JP4425703B2 (en) 2004-05-21 2004-05-21 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151970A JP4425703B2 (en) 2004-05-21 2004-05-21 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2005333065A true JP2005333065A (en) 2005-12-02
JP4425703B2 JP4425703B2 (en) 2010-03-03

Family

ID=35487486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151970A Expired - Fee Related JP4425703B2 (en) 2004-05-21 2004-05-21 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP4425703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173394A (en) * 2005-12-20 2007-07-05 Denso Corp Multiple wavelength laser equipment
CN107732643A (en) * 2017-11-24 2018-02-23 深圳市杰普特光电股份有限公司 Single pump both-end pumping infrared laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173394A (en) * 2005-12-20 2007-07-05 Denso Corp Multiple wavelength laser equipment
JP4518018B2 (en) * 2005-12-20 2010-08-04 株式会社デンソー Multi-wavelength laser equipment
US7843987B2 (en) 2005-12-20 2010-11-30 Denso Corporation Laser equipment
CN107732643A (en) * 2017-11-24 2018-02-23 深圳市杰普特光电股份有限公司 Single pump both-end pumping infrared laser

Also Published As

Publication number Publication date
JP4425703B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP2002542632A (en) Dual active resonator type CW deep ultraviolet laser system
JPH09510836A (en) Diode-pumped multiaxial mode cavity double frequency laser
JP2002151774A (en) Laser equipment
JP2004048049A (en) Diode pumped multiaxial mode intracavity frequency doubled laser
JP2006196866A (en) Solid-state laser device
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JP4202730B2 (en) Solid state laser equipment
CN114122881B (en) Dual-wavelength coaxial controllable switching output laser system
JPH09162470A (en) 2-wavelength laser oscillator
JP7097919B2 (en) A method for producing high power multi-wavelength visible laser light
JP4425703B2 (en) Solid state laser equipment
JP4518843B2 (en) Solid state laser equipment
US20220173576A1 (en) Laser oscillation device
US11796890B2 (en) Transport system for a laser beam
US7088762B2 (en) Multi-wavelength laser apparatus with rotatable mirror
JP2001024264A (en) Wavelength converting laser device
JP4171665B2 (en) Laser equipment
JP4104334B2 (en) Laser equipment
JP2006173526A (en) Solid laser equipment
US7221689B2 (en) Laser apparatus
CN216289476U (en) Dual-wavelength coaxial controllable switching output laser system
JP4146207B2 (en) Nonlinear wavelength conversion laser device
JPS63254776A (en) Solid-state laser device
JP2021132127A (en) Semiconductor laser-excitation solid-state laser
JPH0722686A (en) Laser wavelength conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees