JP2005331371A - Illumination auxiliary device, and inspection device using the illumination auxiliary device - Google Patents

Illumination auxiliary device, and inspection device using the illumination auxiliary device Download PDF

Info

Publication number
JP2005331371A
JP2005331371A JP2004150033A JP2004150033A JP2005331371A JP 2005331371 A JP2005331371 A JP 2005331371A JP 2004150033 A JP2004150033 A JP 2004150033A JP 2004150033 A JP2004150033 A JP 2004150033A JP 2005331371 A JP2005331371 A JP 2005331371A
Authority
JP
Japan
Prior art keywords
lens
illumination
diaphragm
light
auxiliary device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150033A
Other languages
Japanese (ja)
Other versions
JP4521660B2 (en
Inventor
Yasuharu Nakajima
康晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004150033A priority Critical patent/JP4521660B2/en
Publication of JP2005331371A publication Critical patent/JP2005331371A/en
Application granted granted Critical
Publication of JP4521660B2 publication Critical patent/JP4521660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination auxiliary device using efficiently a light beam emitted from a lighting system, irrespective of a size of an effective diameter in an opening diaphragm, and to provide an inspection device using the illumination auxiliary device. <P>SOLUTION: This imaging element inspecting device 1 concerned in the present invention is constituted of the lighting system 2 for telecentric illumination, the illumination auxiliary device 3 for irradiating a solid imaging element 4 with the light beam emitted from the lighting system 2, and a signal processor 16 for detecting a signal output from the solid imaging element 4. The illumination auxiliary device 3 has a lens 31 for converging the beam emitted from the lighting system 2, a diffusion plate 32 arranged in the vicinity of a focal point of the lens 31 to diffuse the beam converged by the lens 31, the opening diaphragm 33 arranged in the vicinity of the diffusion plate 32, in this order, starting from a lighting system 2 side, and is constituted to be integrally inserted removably into the lighting system 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像素子等の被検物の検査において照明光を効率よく集光照射する照明補助装置と、この照明補助装置を用いた検査装置に関する。   The present invention relates to an illumination auxiliary device that efficiently collects and irradiates illumination light in an inspection of a test object such as a solid-state imaging device, and an inspection device using the illumination auxiliary device.

従来、CCDやCMOS等の固体撮像素子は、半導体ウェハ表面に半導体集積回路を積層形成して製造される。形成される固体撮像素子は光電変換素子であるフォトダイオード等からなる画素を格子状あるいは直線に配置したものである。これらのフォトダイオードは照射される光強度に応じた電荷が発生するが、このとき撮像素子の各画素における光応答特性は、製造過程における諸工程の変動によりばらつきを生じる。そのため、通常の製造工程においてはこの光応答特性のばらつきが所定の範囲内にあるもののみを検査により識別し、良品として出荷している。   Conventionally, a solid-state imaging device such as a CCD or a CMOS is manufactured by stacking a semiconductor integrated circuit on the surface of a semiconductor wafer. The formed solid-state imaging device is a pixel in which pixels such as photodiodes that are photoelectric conversion elements are arranged in a grid or a straight line. These photodiodes generate charges according to the intensity of light applied. At this time, the light response characteristics of each pixel of the image sensor vary due to variations in the manufacturing process. For this reason, in a normal manufacturing process, only those having a variation in the light response characteristics within a predetermined range are identified by inspection and shipped as non-defective products.

この固体撮像素子の光応答特性の検査は、所定の照明装置により照明し、固体撮像素子からの電気信号を測定することで行われているが、この検査は対象となる固体撮像素子が実際に使用される条件と略同一な照明下において検査を行うこと、具体的には、その固体撮像素子が使用されるカメラ等の撮像レンズの射出瞳と撮像素子間の距離(以下、「瞳距離」と称する)、及び、撮像レンズの口径比に等しい照明条件を満たした光源による検査を行うことが望ましい。   The inspection of the optical response characteristics of the solid-state imaging device is performed by illuminating with a predetermined illumination device and measuring an electrical signal from the solid-state imaging device. This inspection is actually performed by the target solid-state imaging device. Inspection is performed under substantially the same illumination as the conditions used. Specifically, the distance between the exit pupil of an imaging lens such as a camera in which the solid-state imaging device is used and the imaging device (hereinafter referred to as “pupil distance”) And inspection with a light source that satisfies an illumination condition equal to the aperture ratio of the imaging lens.

そのため、このような撮像素子の検査装置においては、拡散板と開口絞りを有する照明補助装置を用いて、光源からの光線を拡散板で拡散させるとともに撮像レンズの口径比及び瞳距離となるように開口絞りを配設して固体撮像素子に照明光を照射するように構成されている(例えば、特許文献1参照)。このとき、撮像レンズの口径比をAとし、瞳距離をLとしたときと略同一条件となる照明補助装置における開口絞りの有効径Φは、次式(1)に示す関係で表される。   Therefore, in such an inspection device for an image sensor, an illumination auxiliary device having a diffusing plate and an aperture stop is used to diffuse the light beam from the light source with the diffusing plate and to obtain the aperture ratio and pupil distance of the imaging lens. An aperture stop is provided to illuminate the solid-state image sensor with illumination light (see, for example, Patent Document 1). At this time, the effective diameter Φ of the aperture stop in the illumination assisting device, which has substantially the same conditions as when the aperture ratio of the imaging lens is A and the pupil distance is L, is expressed by the relationship expressed by the following equation (1).

Φ = L/A (1)                             Φ = L / A (1)

近年のコンパクトデジタルカメラやカメラ付き携帯電話に用いられる固体撮像素子は、これらの機器の小型化に伴い小型化しており、その瞳距離Lも撮像レンズや固体撮像素子の大きさに応じて短くなる。そのため、式(1)より明らかなように照明補助装置に用いられている開口絞りの有効径Φもこの瞳距離に比例して小さくする必要がある。   Solid-state image sensors used in recent compact digital cameras and camera-equipped mobile phones have been downsized with the miniaturization of these devices, and the pupil distance L has also become shorter depending on the size of the imaging lens and solid-state image sensor. . Therefore, as is clear from the equation (1), the effective diameter Φ of the aperture stop used in the illumination assist device needs to be reduced in proportion to the pupil distance.

実用新案登録第2582733号公報Utility Model Registration No. 2583733

しかしながら、照明補助装置の開口絞りの有効径Φを小さくすると、照明装置からの照明光の多くが開口絞りで遮られ、一部の光線だけが固体撮像素子の検査に用いられることとなる。そのため、固体撮像素子に対して強い光線を照射して検査を行う場合は、より強い光源を有する照明装置が必要となり効率的でない。   However, when the effective diameter Φ of the aperture stop of the illumination assisting device is reduced, much of the illumination light from the illumination device is blocked by the aperture stop, and only some of the light rays are used for the inspection of the solid-state imaging device. For this reason, when an inspection is performed by irradiating the solid-state imaging device with a strong light beam, an illumination device having a stronger light source is required, which is not efficient.

本発明は、このような課題に鑑みてなされたものであり、開口絞りの有効径の大きさに拘わらず、照明装置から出射される光線を効率よく利用して、所定の口径比と瞳距離の条件にて固体撮像素子を照明する照明補助装置、及び、この照明補助装置を用いた検査装置を提供することを目的とする。   The present invention has been made in view of such a problem, and the light beam emitted from the illumination device is efficiently used regardless of the size of the effective diameter of the aperture stop, and a predetermined aperture ratio and pupil distance are obtained. It is an object of the present invention to provide an illumination auxiliary device that illuminates a solid-state imaging device under the above conditions, and an inspection device using the illumination auxiliary device.

前記課題を解決するために、本発明に係る照明補助装置はテレセントリック照明する照明装置と光電変換素子を有する被検物(例えば、実施形態における固体撮像素子4)との間の光路上に配設され、照明装置から出射される光線を被検物に照射するものであり、照明装置側から順に、照明装置から出射した光線を集光するレンズと、このレンズの焦点付近に配設されレンズにより集光された光線を拡散する拡散板と、拡散板の近傍に配設された絞り(例えば、実施形態における開口絞り33)とを有し、照明装置に対して一体的に挿脱可能に構成される。   In order to solve the above-described problems, the illumination auxiliary device according to the present invention is disposed on an optical path between an illumination device that performs telecentric illumination and a test object having a photoelectric conversion element (for example, the solid-state imaging device 4 in the embodiment). In order to irradiate the test object with light rays emitted from the illumination device, a lens that collects the light rays emitted from the illumination device in order from the illumination device side, and a lens disposed near the focal point of the lens. A diffusing plate for diffusing the condensed light beam and a diaphragm (for example, the aperture diaphragm 33 in the embodiment) disposed in the vicinity of the diffusing plate, and configured to be integrally inserted into and removed from the lighting device. Is done.

このとき、絞りの有効径をΦとし、照明装置の開口数をNAとし、レンズの焦点距離をfaとしたとき、次式
Φ/(2・NA) < fa < 2・Φ/NA
を満足するように構成されることが好ましい。
At this time, the effective diameter of the aperture and [Phi, when the numerical aperture of the illumination system and NA, the focal length of the lens was f a, the following equation
Φ / (2 · NA) < f a <2 · Φ / NA
It is preferable to be configured to satisfy

また、レンズは、非球面レンズ若しくはフレネルレンズで構成されることが好ましい。   The lens is preferably composed of an aspheric lens or a Fresnel lens.

一方、第1の本発明に係る検査装置(例えば、実施形態における撮像素子検査装置1)は、テレセントリック照明する照明装置と、この照明装置から出射された光線を集光するレンズと、レンズの焦点近傍に配設されレンズにより集光された光線を拡散する拡散板と、拡散板の近傍に配設された絞りと、絞りから出射した光線を、光電変換素子を有する被検物に照射してこの被検物から出力される信号を検出する検出手段とから構成される。   On the other hand, the inspection device according to the first aspect of the present invention (for example, the image sensor inspection device 1 in the embodiment) includes an illumination device that performs telecentric illumination, a lens that collects light emitted from the illumination device, and a focal point of the lens. A diffusing plate for diffusing the light beam collected near the lens disposed in the vicinity, a diaphragm disposed in the vicinity of the diffusing plate, and a test object having a photoelectric conversion element irradiated with the light beam emitted from the diaphragm And a detecting means for detecting a signal output from the test object.

また、第2の本発明に係る検査装置(例えば、実施形態における撮像素子検査装置100)は、テレセントリック照明する照明装置と、照明装置から出射される光線を集光するレンズ、このレンズの焦点近傍に配設されレンズにより集光された光線を拡散する拡散板、及び、拡散板の近傍に配設された絞りとからなる少なくとも2組以上の照明補助装置と、絞りから出射した光線の各々を被検物の少なくとも2箇所以上に形成された光電変換領域(例えば、実施形態における撮像面104a)に照射して光電変換領域から出力される各々の信号を検出する検出手段とから構成される。   An inspection apparatus according to the second aspect of the present invention (for example, the image sensor inspection apparatus 100 in the embodiment) includes an illumination apparatus that performs telecentric illumination, a lens that collects light rays emitted from the illumination apparatus, and the vicinity of the focal point of the lens. And at least two or more sets of illumination auxiliary devices each including a diffuser plate that diffuses the light beam collected by the lens and a diaphragm disposed in the vicinity of the diffuser plate, and each of the light beams emitted from the diaphragm It is comprised from the detection means which irradiates the photoelectric conversion area | region (for example, imaging surface 104a in embodiment) formed in at least 2 places or more of to-be-tested objects, and detects each signal output from a photoelectric conversion area | region.

この第1及び第2の本発明に係る検査装置において、絞りから出射される光線の口径比をAとし、絞りから被検物までの光軸上の距離をLとしたとき、絞りの有効径Φが次式
Φ = L/A
を満足するように構成されることが好ましい。
In the inspection apparatus according to the first and second aspects of the present invention, when the aperture ratio of the light beam emitted from the diaphragm is A and the distance on the optical axis from the diaphragm to the test object is L, the effective diameter of the diaphragm Φ is the following formula
Φ = L / A
It is preferable to be configured to satisfy

また、この第1及び第2の本発明に係る検査装置において、照明装置の開口数をNAとし、レンズの焦点距離をfaとしたとき、次式
Φ/(2・NA) < fa < 2・Φ/NA
を満足するように構成されることが好ましい。
Further, in the inspection apparatus according to the first and second aspects of the present invention, when the numerical aperture of the illumination system and NA, the focal length of the lens was f a, the following equation
Φ / (2 · NA) < f a <2 · Φ / NA
It is preferable to be configured to satisfy

さらに、この第1及び第2の本発明に係る検査装置を構成するレンズは、非球面レンズ若しくはフレネルレンズで構成されることが好ましい。   Furthermore, it is preferable that the lens constituting the inspection apparatus according to the first and second aspects of the present invention is composed of an aspheric lens or a Fresnel lens.

本発明に係る照明補助装置を以上のように構成すると、絞りの有効径の大きさに拘わらず、照明装置からの照明光をレンズで集光して拡散板及び絞りを通過させて被検物に照射することができるため、照明装置の照明光を効率良く利用することができる。このとき、所定の焦点距離を有するレンズを用いることにより、さらに効率よく照明装置の照明光を被検物に照射することができる。また、レンズを非球面レンズ若しくはフレネルレンズとすることにより、このレンズでの収差の発生を抑え被検物に対して均等な照明光を照射することができる。   When the illumination auxiliary device according to the present invention is configured as described above, the illumination light from the illumination device is collected by the lens regardless of the effective diameter of the diaphragm, and is passed through the diffusion plate and the diaphragm. Therefore, the illumination light from the illumination device can be used efficiently. At this time, by using a lens having a predetermined focal length, it is possible to irradiate the object with illumination light from the illumination device more efficiently. Further, by using an aspherical lens or a Fresnel lens as the lens, it is possible to suppress the generation of aberrations in the lens and to irradiate the object with uniform illumination light.

第1及び第2の本発明に係る検査装置を以上のように構成すると、絞りの有効径の大きさに拘わらず、照明装置からの照明光をレンズで集光して拡散板及び絞りを通過させて被検物に照射することができるため、照明装置の照明光を効率良く利用することができる。また、第2の本発明に係る検査装置のように2組以上の照明補助装置を有するように構成することにより、一度に複数の被検物(光電変換領域)に照明光を照射して検査を行うことができるため、検査装置のスループットを向上させることができる。   When the inspection apparatus according to the first and second aspects of the present invention is configured as described above, the illumination light from the illumination apparatus is collected by the lens and passes through the diffusion plate and the diaphragm regardless of the effective diameter of the diaphragm. Therefore, the illumination light of the illuminating device can be efficiently used. Moreover, by having two or more sets of illumination auxiliary devices as in the inspection device according to the second aspect of the present invention, a plurality of test objects (photoelectric conversion regions) are irradiated with illumination light at a time for inspection. Therefore, the throughput of the inspection apparatus can be improved.

なお、この第1及び第2の本発明に係る検査装置において、絞りから出射される口径比と絞りから被検物までの光軸上の距離(瞳距離)から絞りの有効径を定めることにより、実際にその被検物が使用される光学機器と同一条件の照明光を照射して被検物を検査することができる。   In the inspection apparatus according to the first and second aspects of the present invention, by determining the effective diameter of the diaphragm from the aperture ratio emitted from the diaphragm and the distance (pupil distance) on the optical axis from the diaphragm to the test object. The test object can be inspected by irradiating illumination light under the same conditions as the optical instrument in which the test object is actually used.

さらに、上述の本発明に係る照明補助装置と同様に、所定の焦点距離を有するレンズを用いることにより、効率よく照明装置の照明光を被検物に照射することができ、また、レンズを非球面レンズ若しくはフレネルレンズとすることにより、このレンズでの収差の発生を抑え被検物に対して均等な照明光を照射することができる。   Furthermore, similarly to the above-described illumination assist device according to the present invention, by using a lens having a predetermined focal length, it is possible to efficiently irradiate the object with illumination light from the illumination device, and to remove the lens. By using a spherical lens or a Fresnel lens, it is possible to suppress the generation of aberration in this lens and to irradiate the object with uniform illumination light.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図2を用いて本発明に係る照明補助装置が用いられる撮像素子検査装置1について説明する。撮像素子検査装置1は、照明装置2と、照明補助装置3及び検査対象となる被検物(固体撮像素子)4とから構成される。照明装置2は、光軸上に順に光源5と、コレクタレンズ6と、濃度フィルタ7と、フィルタ群8と、インプットレンズ9と、インテグレータロッド10と、フライアイレンズ11と、光量モニタ12とから構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the image sensor inspection apparatus 1 in which the illumination assisting apparatus according to the present invention is used will be described with reference to FIG. The image sensor inspection device 1 includes an illumination device 2, an illumination auxiliary device 3, and a test object (solid-state image sensor) 4 to be inspected. The illumination device 2 includes a light source 5, a collector lens 6, a density filter 7, a filter group 8, an input lens 9, an integrator rod 10, a fly-eye lens 11, and a light amount monitor 12 in order on the optical axis. Composed.

この照明装置2のうち、撮像素子4を検査する際の照明条件の設定に関わる構成要素は、濃度フィルタ7、フィルタ群8である。濃度フィルタ7は、円盤形状をし、その回転方向に段階的または濃度勾配のある調整のフィルタディスク7aとこのフィルタディスク7aを回転させるモータ7bとから構成され、フィルタディスク7の一部(円周側)が照明装置2の光軸と直交するように配設されている。そのため、濃度フィルタ7の回転により、固体撮像素子4の被照射面4aにおける光量(照度)を調整することができる。   Among the illuminating device 2, components related to setting of illumination conditions when inspecting the image sensor 4 are a density filter 7 and a filter group 8. The density filter 7 has a disk shape, and includes an adjustment filter disk 7a having a stepwise or density gradient in the rotation direction thereof, and a motor 7b for rotating the filter disk 7a. Side) is arranged so as to be orthogonal to the optical axis of the illumination device 2. Therefore, the amount of light (illuminance) on the irradiated surface 4 a of the solid-state imaging device 4 can be adjusted by the rotation of the density filter 7.

また、フィルタ群8は、カラーフィルタや色温度変換フィルタなどを含み、図示しない機構により検査内容に応じて切り換え可能である。フィルタ群8の切り換えにより、被照射面4aにおける分光スペクトルを調整することができる。なお、インテグレータロッド10の内部には一部の光を側方に反射し、残りの光を透過するハーフミラー13が形成されており、このハーフミラー13で反射された光を光電検出器14で検出して光量をモニタするように構成されている。   The filter group 8 includes a color filter, a color temperature conversion filter, and the like, and can be switched according to inspection contents by a mechanism (not shown). By switching the filter group 8, the spectral spectrum on the irradiated surface 4a can be adjusted. In addition, a half mirror 13 is formed inside the integrator rod 10 to reflect a part of the light to the side and transmit the remaining light. The light reflected by the half mirror 13 is reflected by the photoelectric detector 14. It is configured to detect and monitor the amount of light.

ハロゲンランプやキセノンランプなどの光源5から放射された光線は、コレクタレンズ6で集光され、ほぼ平行光となって濃度フィルタ7とフィルタ群8を通過し、インプットレンズ9でインテグレータロッド10の光入射面10aに集光され、この光入射面10aに光源5の像が形成される。インテグレータロッド10は、棒状のガラス材料(その断面は矩形状)からなり、ロッドレンズまたはロット型オプティカルインテグレータとも呼ばれる。インテグレータロッド10の光出射面10bは、撮像素子検査装置1の被照射面4a(すなわち、撮像素子検査装置1に載置された固体撮像素子4の撮像面)と共役な面に配置されている。   A light beam emitted from a light source 5 such as a halogen lamp or a xenon lamp is collected by a collector lens 6, becomes almost parallel light, passes through a density filter 7 and a filter group 8, and is input to an integrator rod 10 by an input lens 9. The light is condensed on the incident surface 10a, and an image of the light source 5 is formed on the light incident surface 10a. The integrator rod 10 is made of a rod-shaped glass material (whose cross section is rectangular), and is also called a rod lens or a lot-type optical integrator. The light exit surface 10b of the integrator rod 10 is disposed on a surface conjugate with the irradiated surface 4a of the image sensor inspection apparatus 1 (that is, the image pickup surface of the solid-state image sensor 4 placed on the image sensor inspection apparatus 1). .

インテグレータロッド10の内部では、光入射面10aから入射した光線が、その入射角度に応じた回数で内面反射を繰り返し、光出射面10bに向けて伝搬する。そして光出射面10bでは、反射回数の異なる光が重なり、光量分布が均一化される。つまり、上記の光源5、コレクタレンズ6、インプットレンズ9及びインテグレータロッド10によって、光出射面10b(すなわち、被照射面4aに共役な面)内で光量分布が均一化された構造を生成することができる。   Inside the integrator rod 10, the light beam incident from the light incident surface 10a repeats internal reflection at the number of times corresponding to the incident angle, and propagates toward the light emitting surface 10b. Then, on the light exit surface 10b, light having different reflection times overlaps, and the light quantity distribution is made uniform. That is, the light source 5, the collector lens 6, the input lens 9, and the integrator rod 10 generate a structure in which the light amount distribution is uniform in the light emitting surface 10 b (that is, a surface conjugated to the irradiated surface 4 a). Can do.

インテグレータドット10を出射した光束は、フライアイレンズ11で複数の光束に分割されて出射してテレセントリック光として照明補助装置3に入射する(照明補助装置3の構成については後述する)。そして、照明補助装置3から出射した光線は固体撮像素子4の撮像面(被照射面4a)に照射される。なお、この固体撮像素子4の出力端子には信号処理装置16から延びるプローブ15が電気的に接続されており、照明装置2及び照明補助装置3により照射された照明光により固体撮像素子4が出力する信号を検出して検査が行われる。   The luminous flux emitted from the integrator dot 10 is divided into a plurality of luminous fluxes by the fly-eye lens 11 and emitted to enter the illumination auxiliary device 3 as telecentric light (the configuration of the illumination auxiliary device 3 will be described later). The light beam emitted from the illumination assisting device 3 is applied to the imaging surface (irradiated surface 4a) of the solid-state imaging device 4. Note that a probe 15 extending from the signal processing device 16 is electrically connected to an output terminal of the solid-state imaging device 4, and the solid-state imaging device 4 is output by illumination light emitted by the illumination device 2 and the illumination auxiliary device 3. Inspection is performed by detecting a signal to be detected.

それでは、図1を用いて、本実施例に係る照明補助装置3の構成について説明する。照明補助装置3は、レンズ31と、このレンズ31の焦点近傍に配置された拡散板32及び開口絞り33とから構成されており、照明装置2から出射されたテレセントリック光をレンズ31で集光して拡散板32に照射し、この拡散板32で拡散した光線を開口絞り33を通して固体撮像素子4の撮像面4aに照射するものである。なお、拡散板32と開口絞り33とは密接するように構成しても良いし、間隙を有するように構成することも可能である。   Then, the structure of the illumination auxiliary device 3 which concerns on a present Example is demonstrated using FIG. The illumination auxiliary device 3 includes a lens 31, a diffuser plate 32 and an aperture stop 33 disposed in the vicinity of the focal point of the lens 31, and condenses telecentric light emitted from the illumination device 2 by the lens 31. Then, the diffusion plate 32 is irradiated, and the light beam diffused by the diffusion plate 32 is irradiated to the imaging surface 4 a of the solid-state imaging device 4 through the aperture stop 33. The diffusing plate 32 and the aperture stop 33 may be configured to be in close contact with each other, or may be configured to have a gap.

ここで、開口絞り33と固体撮像素子4との距離Lは、検査対象となる固体撮像素子4が用いられる光学機器(上述のコンパクトデジタルカメラやカメラ付き携帯電話等)の瞳距離と等しくなるように配設されており、また、開口絞り33の有効径Φは、その利用対象の光学機器の撮像レンズと同等の口径比Aとなるように、この口径比Aと瞳距離Lから式(1)により求められる大きさに構成されている。そのため、開口絞り33により拡散板32において拡散された光線の射出範囲が限定され、これにより開口絞り33から固体撮像素子4までの距離Lを瞳距離とし、瞳距離と開口絞り33の有効径Φで決まる口径比Aを有する2次光源として機能し、固体撮像素子4の撮像面4aを照射する。   Here, the distance L between the aperture stop 33 and the solid-state imaging device 4 is equal to the pupil distance of an optical apparatus (such as the above-described compact digital camera or camera-equipped mobile phone) in which the solid-state imaging device 4 to be inspected is used. In addition, the effective diameter Φ of the aperture stop 33 is calculated from the aperture ratio A and pupil distance L so that the aperture ratio A is equivalent to that of the imaging lens of the optical device to be used. ). For this reason, the emission range of the light beam diffused by the aperture stop 33 at the diffusion plate 32 is limited. As a result, the distance L from the aperture stop 33 to the solid-state imaging device 4 is the pupil distance, and the pupil distance and the effective diameter Φ of the aperture stop 33 It functions as a secondary light source having an aperture ratio A determined by: irradiates the imaging surface 4 a of the solid-state imaging device 4.

例えば、本実施例において、照明装置2が、照明補助装置3を用いない状態では固体撮像素子4を開口数0.05(口径比AがF/10相当)の光束でテレセントリックに照明するように構成されている場合、照明補助装置3が、口径比AがF/8、瞳距離Lが16mmのカメラレンズで撮像するのと同等の条件で被検物(固体撮像素子)4を照明させる場合には、式(1)より開口絞り33の有効径Φは2mmとなる。   For example, in this embodiment, when the illumination device 2 does not use the auxiliary illumination device 3, the solid-state imaging device 4 is illuminated in a telecentric manner with a light beam having a numerical aperture of 0.05 (aperture ratio A is equivalent to F / 10). When configured, the illumination assisting device 3 illuminates the test object (solid-state imaging device) 4 under the same conditions as when imaging with a camera lens having an aperture ratio A of F / 8 and a pupil distance L of 16 mm. Therefore, the effective diameter Φ of the aperture stop 33 is 2 mm from Equation (1).

上述のように照明装置2からのテレセントリックな照明光は、レンズ31により拡散板32上に集光される。このとき、拡散板32はレンズ31の焦点近傍に配置されていることから、この拡散板32上に形成される照明光の集光スポットの径Φ2は、照明装置2の開口数をNAとし、レンズ31の焦点距離をfaとしたとき、次の式(2)で表される。 As described above, the telecentric illumination light from the illumination device 2 is condensed on the diffusion plate 32 by the lens 31. At this time, since the diffusing plate 32 is disposed in the vicinity of the focal point of the lens 31, the diameter Φ 2 of the condensing spot of the illumination light formed on the diffusing plate 32 is NA of the numerical aperture of the illuminating device 2. When the focal length of the lens 31 is f a , it is expressed by the following equation (2).

Φ2 = 2・NA・fa (2) Φ 2 = 2 · NA · f a (2)

固体撮像素子4(撮像面4a)を照明する光の口径比Aが開口絞り33の有効径Φにより制限されるためには、集光スポットの径Φ2は開口絞り33の有効径Φより大きくなければならない。一方、集光スポットの径Φ2が開口絞り33の有効径Φに比べて著しく大きい場合は、レンズ31による集光の効果が少なく開口絞り33に遮断される光線が多くなり照明光の利用効率が低下する。そのため、集光スポットの径Φ2は開口絞り33の有効径Φの4倍程度以下であることが望ましい。この関係は次に示す式(3)のようになる。 In order for the aperture ratio A of the light that illuminates the solid-state imaging device 4 (imaging surface 4 a) to be limited by the effective diameter Φ of the aperture stop 33, the diameter Φ 2 of the focused spot is larger than the effective diameter Φ of the aperture stop 33. There must be. On the other hand, when the diameter Φ 2 of the condensing spot is remarkably larger than the effective diameter Φ of the aperture stop 33, the condensing effect by the lens 31 is small, and more rays are blocked by the aperture stop 33, and the use efficiency of illumination light is increased. Decreases. Therefore, it is desirable that the diameter Φ 2 of the focused spot is not more than about four times the effective diameter Φ of the aperture stop 33. This relationship is expressed by the following equation (3).

Φ < Φ2 < 4・Φ (3) Φ <Φ 2 <4 · Φ (3)

以上より、式(2)及び式(3)から、本実施例に係る照明補助装置3は、次に示す式(4)に示される条件を満たすような焦点距離faを有するレンズ31を用いることで、所定の口径比A及び瞳距離Lで効率的に固体撮像素子4を照明することができる。 As described above, from the expressions (2) and (3), the illumination assisting apparatus 3 according to the present embodiment uses the lens 31 having the focal length f a that satisfies the condition represented by the following expression (4). Thus, the solid-state imaging device 4 can be efficiently illuminated with a predetermined aperture ratio A and pupil distance L.

Φ/(2・NA) < fa < 2・Φ/NA (4) Φ / (2 · NA) < f a <2 · Φ / NA (4)

例えば、上述の条件の照明装置2及びカメラレンズの場合、集光スポットの径Φ2を開口絞り33の有効径Φの2倍程度、すなわち、式(2)よりレンズ31の焦点距離faを40mm程度とすることで固体撮像素子4を効率的に照明することが可能となる。 For example, in the case of the illuminating device 2 and the camera lens having the above-described conditions, the diameter Φ 2 of the focused spot is about twice the effective diameter Φ of the aperture stop 33, that is, the focal length f a of the lens 31 is calculated from Equation (2). By setting the thickness to about 40 mm, the solid-state imaging device 4 can be efficiently illuminated.

このような照明補助装置3において、レンズ31はその有効径が大きいほど拡散板32上の集光スポットに集光される光束が大きくなり照明の効率が向上するが、有効径が大きくなるにつれて球面収差も増大して、拡散板32上での集光スポットがボケて、スポット径が広がるので、式(2)で見積もった集光スポットの径Φ2の値に対してずれが生じ、設計値よりも照明効率を下げてしまう。この球面収差を抑えるために、レンズ31のレンズ面を非球面形状に形成した非球面レンズを用いることが好ましい。また、同様の理由からレンズ31をフレネルレンズとしても良い。 In such an illumination assisting device 3, the larger the effective diameter of the lens 31, the larger the light beam condensed at the condensing spot on the diffusion plate 32 and the more efficient the illumination. However, as the effective diameter increases, the spherical surface becomes spherical. As the aberration increases, the condensing spot on the diffuser plate 32 is blurred and the spot diameter is widened. Therefore, a deviation occurs with respect to the value of the condensing spot diameter Φ 2 estimated by the equation (2). Will lower the lighting efficiency than. In order to suppress this spherical aberration, it is preferable to use an aspheric lens in which the lens surface of the lens 31 is formed in an aspheric shape. For the same reason, the lens 31 may be a Fresnel lens.

なお、照明補助装置3は照明装置2と一体化しても良いが、その場合、瞳距離等の仕様の異なる別の固体撮像素子を検査するためには、この仕様に合わせて設計を行った別の撮像素子検査装置を必要とする。本実施形態においては、照明装置2に、照明補助装置3を一体的に挿脱可能に構成しているので、固体撮像素子の瞳距離や照明領域に応じて設計した照明補助装置3を用意することによって、照明装置2を共用しつつ、多種多様な固体撮像素子の検査を行うことができる。また、この場合、照明補助装置3を取り外せば、テレセントリック照明による検査を行うことができる。   The illumination auxiliary device 3 may be integrated with the illumination device 2, but in that case, in order to inspect another solid-state imaging device having different specifications such as pupil distance, another design that is designed in accordance with this specification is performed. Image sensor inspection apparatus. In this embodiment, since the illumination auxiliary device 3 is configured to be detachable with respect to the illumination device 2, the illumination auxiliary device 3 designed according to the pupil distance and the illumination area of the solid-state imaging device is prepared. Accordingly, it is possible to inspect a wide variety of solid-state imaging elements while sharing the illumination device 2. In this case, if the illumination assisting device 3 is removed, the inspection by telecentric illumination can be performed.

また、レンズ31が球面レンズであって、その球面収差量が大きい場合には、式(2)で見積もった集光スポットの径Φ2よりも大きくなってしまうことは上述の通りであるが、この場合であっても、球面収差を考慮した集光スポット径Φ2を、式(1)を満足する有効径Φの値に対して式(3)を満足するように設計することによって照明効率を落とさずに設計することができる。 Further, as described above, when the lens 31 is a spherical lens and the amount of spherical aberration is large, it is larger than the diameter Φ 2 of the focused spot estimated by the equation (2). Even in this case, the illumination spot efficiency Φ 2 considering the spherical aberration is designed to satisfy the expression (3) with respect to the value of the effective diameter Φ that satisfies the expression (1). Can be designed without dropping.

以上より、検査対象となる固体撮像レンズ4が使用される光学機器の瞳距離Lとなるように固体撮像レンズ4と照明補助装置3(開口絞り33)との距離を設定し、この光学機器の口径比Aと瞳距離Lから式(1)を用いて開口絞り33の有効径Φを決定し、さらに、照明装置2の開口数NAから式(4)を用いて焦点距離faを求めてレンズ31を決定することにより、撮像素子検査装置1の各要素の好ましい構成を求めることが可能である。 As described above, the distance between the solid-state imaging lens 4 and the illumination auxiliary device 3 (aperture stop 33) is set so that the pupil distance L of the optical equipment in which the solid-state imaging lens 4 to be inspected is used. The effective diameter Φ of the aperture stop 33 is determined from the aperture ratio A and the pupil distance L using the equation (1), and the focal length f a is obtained from the numerical aperture NA of the illumination device 2 using the equation (4). By determining the lens 31, it is possible to obtain a preferable configuration of each element of the image sensor inspection apparatus 1.

なお、以上の実施例においては、固体撮像素子4を1個ずつ検査するように構成した場合について説明したが、図3に示すように、1シークエンスに2個のチップを形成して、同時に照明光を照射して検査を行い、この撮像素子検査装置100のスループットを向上させることもできる。この場合、被検物(固体撮像素子)104上の複数の撮像面(素子形成領域)104a,104aに対して、照明補助装置103は、それぞれレンズ131、拡散板132、開口絞り133を設けて、所定の照明条件にして照明することができる。このとき、各撮像面104aに対応する開口絞りの有効径Φや、それぞれに対応するレンズ131の焦点距離faは上述の式(1)及び式(4)で求めることができる。また、拡散板132や開口絞り133は図3に示すようにそれぞれ一体の部材で構成することも可能であるし、個別の部材として構成することも可能である。図3においては、2つのチップに対して一度に検査をする構成について説明したが、レンズ131、拡散板132及び開口絞り133の組み合わせを3組以上有するように照明補助装置103を構成して、3個以上のチップを一度に検査するように構成することも可能である。また、図3においては図示していないが、固体撮像素子104のそれぞれのチップ104aに対して、図2で示すプローブ15を接続して信号処理装置16でその出力信号を処理して撮像素子検査装置100で検査される。 In the above embodiment, the case where the solid-state imaging device 4 is inspected one by one has been described. However, as shown in FIG. 3, two chips are formed in one sequence, and illumination is performed simultaneously. Inspection can be performed by irradiating light, and the throughput of the image sensor inspection apparatus 100 can be improved. In this case, the illumination assisting device 103 is provided with a lens 131, a diffusion plate 132, and an aperture stop 133 for a plurality of imaging surfaces (element forming regions) 104a and 104a on the test object (solid-state imaging device) 104, respectively. The illumination can be performed under predetermined illumination conditions. At this time, and the effective diameter Φ of the aperture stop corresponding to the imaging plane 104a, the focal length f a of the lens 131 corresponding to each can be calculated by the aforementioned formula (1) and (4). Further, as shown in FIG. 3, the diffusion plate 132 and the aperture stop 133 can be configured by integral members, or can be configured as individual members. In FIG. 3, the configuration for inspecting two chips at a time has been described. However, the illumination assisting device 103 is configured to have three or more combinations of the lens 131, the diffusion plate 132, and the aperture stop 133, It is also possible to configure to inspect three or more chips at a time. Although not shown in FIG. 3, the probe 15 shown in FIG. 2 is connected to each chip 104a of the solid-state image pickup device 104, and the output signal is processed by the signal processing device 16 to check the image pickup device. Inspected with device 100.

本発明に係る照明補助装置を示すレンズ構成図である。It is a lens block diagram which shows the illumination auxiliary device which concerns on this invention. 第1の本発明に係る撮像素子検査装置を示すレンズ構成図である。It is a lens block diagram which shows the image pick-up element inspection apparatus which concerns on 1st this invention. 第2の本発明に係る撮像素子検査装置を示すレンズ構成図である。It is a lens block diagram which shows the image pick-up element inspection apparatus which concerns on 2nd this invention.

符号の説明Explanation of symbols

1 撮像素子検査装置
2 照明装置
3 照明補助装置
4,104 固体撮像素子(被検物)
104a 撮像面
16 信号処理装置
31 レンズ
32 拡散板
33 開口絞り(絞り)
DESCRIPTION OF SYMBOLS 1 Image pick-up element inspection apparatus 2 Illumination apparatus 3 Illumination auxiliary | assistance apparatus 4,104 Solid-state image sensor (test object)
104a Imaging surface 16 Signal processing device 31 Lens 32 Diffusion plate 33 Aperture stop (aperture)

Claims (10)

テレセントリック照明する照明装置と光電変換素子を有する被検物との間の光路上に配設され、前記照明装置から出射される光線を前記被検物に照射する照明補助装置であって、
前記照明装置側から順に、前記照明装置から出射した光線を集光するレンズと、
前記レンズの焦点近傍に配設され前記レンズにより集光された光線を拡散する拡散板と、
前記拡散板の近傍に配設された絞りとを有し、前記照明装置に対して一体的に挿脱可能に構成されたことを特徴とする照明補助装置。
An illumination auxiliary device that is disposed on an optical path between an illumination device that performs telecentric illumination and a test object having a photoelectric conversion element, and that irradiates the test object with a light beam emitted from the illumination device,
In order from the lighting device side, a lens that collects the light emitted from the lighting device;
A diffusing plate disposed near the focal point of the lens and diffusing the light collected by the lens;
An illumination auxiliary device having a diaphragm disposed in the vicinity of the diffusion plate and configured to be integrally inserted into and removed from the illumination device.
前記絞りの有効径をΦとし、前記照明装置の開口数をNAとし、前記レンズの焦点距離をfaとしたとき、次式
Φ/(2・NA) < fa < 2・Φ/NA
を満足するように構成されたことを特徴とする請求項1に記載の照明補助装置。
When the effective diameter of the diaphragm and [Phi, the numerical aperture of the illumination device and NA, a focal length of the lens was f a, the following equation
Φ / (2 · NA) < f a <2 · Φ / NA
The illumination auxiliary device according to claim 1, wherein the illumination auxiliary device is configured to satisfy the following.
前記レンズが、非球面レンズで構成されていることを特徴とする請求項1または2に記載の照明補助装置。   The illumination auxiliary device according to claim 1, wherein the lens is an aspheric lens. 前記レンズが、フレネルレンズで構成されていることを特徴とする請求項1または2に記載の照明補助装置。   The illumination auxiliary device according to claim 1, wherein the lens is configured by a Fresnel lens. テレセントリック照明する照明装置と、
前記照明装置から出射された光線を集光するレンズと、
前記レンズの焦点近傍に配設され前記レンズにより集光された光線を拡散する拡散板と、
前記拡散板の近傍に配設された絞りと、
前記絞りから出射した光線を、光電変換素子を有する被検物に照射して前記被検物から出力される信号を検出する検出手段とから構成されることを特徴とする検査装置。
A lighting device for telecentric illumination;
A lens that collects the light emitted from the illumination device;
A diffusing plate disposed near the focal point of the lens and diffusing the light collected by the lens;
A diaphragm disposed in the vicinity of the diffusion plate;
An inspection apparatus comprising: a detection unit configured to irradiate a test object having a photoelectric conversion element with a light beam emitted from the diaphragm and detect a signal output from the test object.
テレセントリック照明する照明装置と、
前記照明装置から出射された光線を集光するレンズ、前記レンズの焦点近傍に配設され前記レンズにより集光された光線を拡散する拡散板、及び、前記拡散板の近傍に配設された絞りとからなる少なくとも2組以上の照明補助装置と、
前記絞りから出射した光線の各々を被検物の少なくとも2箇所以上に形成された光電変換領域に照射して前記光電変換領域から出力される各々の信号を検出する検出手段とから構成されることを特徴とする検査装置。
A lighting device for telecentric illumination;
A lens for condensing the light emitted from the illumination device, a diffuser disposed near the focal point of the lens and diffusing the light collected by the lens, and a diaphragm disposed near the diffuser And at least two or more sets of lighting auxiliary devices consisting of:
And a detection means for detecting each signal output from the photoelectric conversion region by irradiating each of the light beams emitted from the diaphragm to the photoelectric conversion region formed in at least two places of the test object. Inspection device characterized by
前記絞りから出射される光線の口径比をAとし、前記絞りから前記被検物までの光軸上の距離をLとしたとき、前記絞りの有効径Φが次式
Φ = L/A
を満足するように構成されたことを特徴とする請求項5または6に記載の検査装置。
When the aperture ratio of the light beam emitted from the diaphragm is A and the distance on the optical axis from the diaphragm to the test object is L, the effective diameter Φ of the diaphragm is
Φ = L / A
The inspection apparatus according to claim 5, wherein the inspection apparatus is configured to satisfy the following.
前記照明装置の開口数をNAとし、前記レンズの焦点距離をfaとしたとき、次式
Φ/(2・NA) < fa < 2・Φ/NA
を満足するように構成されたことを特徴とする請求項5〜7のいずれかに記載の検査装置。
The numerical aperture of the illumination device and NA, the focal length of the lens was f a, the following equation
Φ / (2 · NA) < f a <2 · Φ / NA
The inspection apparatus according to claim 5, wherein the inspection apparatus is configured to satisfy the above.
前記レンズが、非球面レンズで構成されていることを特徴とする請求項5〜8のいずれかに記載の検査装置。   The inspection apparatus according to claim 5, wherein the lens is an aspheric lens. 前記レンズが、フレネルレンズで構成されていることを特徴とする請求項5〜8のいずれかに記載の検査装置。   The inspection apparatus according to claim 5, wherein the lens is a Fresnel lens.
JP2004150033A 2004-05-20 2004-05-20 LIGHTING ASSISTANCE DEVICE AND INSPECTION DEVICE USING THE LIGHTING ASSISTANCE DEVICE Expired - Fee Related JP4521660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150033A JP4521660B2 (en) 2004-05-20 2004-05-20 LIGHTING ASSISTANCE DEVICE AND INSPECTION DEVICE USING THE LIGHTING ASSISTANCE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150033A JP4521660B2 (en) 2004-05-20 2004-05-20 LIGHTING ASSISTANCE DEVICE AND INSPECTION DEVICE USING THE LIGHTING ASSISTANCE DEVICE

Publications (2)

Publication Number Publication Date
JP2005331371A true JP2005331371A (en) 2005-12-02
JP4521660B2 JP4521660B2 (en) 2010-08-11

Family

ID=35486129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150033A Expired - Fee Related JP4521660B2 (en) 2004-05-20 2004-05-20 LIGHTING ASSISTANCE DEVICE AND INSPECTION DEVICE USING THE LIGHTING ASSISTANCE DEVICE

Country Status (1)

Country Link
JP (1) JP4521660B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164387A (en) * 2006-12-27 2008-07-17 Ricoh Opt Ind Co Ltd Optical inspection method and optical inspection device
JP2009019882A (en) * 2007-07-10 2009-01-29 Nikon Corp Adaptor for lighting, lighting system, and lighting system for inspecting imaging device
JP2015111222A (en) * 2013-12-06 2015-06-18 三星電子株式会社Samsung Electronics Co.,Ltd. Lighting device, optical inspection apparatus, and optical microscope
JP2017146496A (en) * 2016-02-18 2017-08-24 三菱電機株式会社 Illumination light source
WO2020079960A1 (en) * 2018-10-19 2020-04-23 ソニー株式会社 Imaging device and solid-state imaging device
JP7128403B1 (en) 2021-04-15 2022-08-31 株式会社インターアクション Pupil module and inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156406A (en) * 2001-11-21 2003-05-30 Nikon Corp Lighting optical system and lighting system for solid state image sensing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156406A (en) * 2001-11-21 2003-05-30 Nikon Corp Lighting optical system and lighting system for solid state image sensing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164387A (en) * 2006-12-27 2008-07-17 Ricoh Opt Ind Co Ltd Optical inspection method and optical inspection device
JP2009019882A (en) * 2007-07-10 2009-01-29 Nikon Corp Adaptor for lighting, lighting system, and lighting system for inspecting imaging device
JP2015111222A (en) * 2013-12-06 2015-06-18 三星電子株式会社Samsung Electronics Co.,Ltd. Lighting device, optical inspection apparatus, and optical microscope
JP2017146496A (en) * 2016-02-18 2017-08-24 三菱電機株式会社 Illumination light source
WO2020079960A1 (en) * 2018-10-19 2020-04-23 ソニー株式会社 Imaging device and solid-state imaging device
US11546530B2 (en) 2018-10-19 2023-01-03 Sony Corporation Imaging device and solid-state imaging device
JP7128403B1 (en) 2021-04-15 2022-08-31 株式会社インターアクション Pupil module and inspection device
JP2022164061A (en) * 2021-04-15 2022-10-27 株式会社インターアクション Pupil module and inspection device
JP7388766B2 (en) 2021-04-15 2023-11-29 株式会社インターアクション Pupil module and inspection device

Also Published As

Publication number Publication date
JP4521660B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
TWI818136B (en) Differential imaging for single-path optical wafer inspection
JP2006201044A (en) Defect inspection method, and device thereof
TW200839227A (en) Automatic inspection system for flat panel substrate
US20130063721A1 (en) Pattern inspection apparatus and method
JP5012810B2 (en) Image measuring instrument
JP2012078152A (en) Light projection beam adjusting method
WO2015011968A1 (en) Inspection device
JP4521660B2 (en) LIGHTING ASSISTANCE DEVICE AND INSPECTION DEVICE USING THE LIGHTING ASSISTANCE DEVICE
JP4394631B2 (en) Defect inspection method and apparatus
JP2010286457A (en) Surface inspection apparatus
JP2010190776A (en) Imaging device and surface inspection device
JP2006234450A (en) Light source device
JP2005195348A (en) Illumination optical apparatus
JP5261095B2 (en) Illumination optical system for image sensor inspection
JP4958663B2 (en) Illumination adapter, illumination device, and imaging device inspection illumination device
JP3981895B2 (en) Automatic macro inspection device
JP2011085494A (en) Surface inspection device
JPH0571732U (en) Lighting aids
JP2006064380A (en) Illumination optical apparatus
JP5541646B2 (en) Line lighting device
JP2004061154A (en) Solid-state image pickup element illuminating apparatus and method for inspecting solid-state image pickup element
JP2005164346A (en) Solid-state imaging element lighting system and inspection method for solid-state imaging element
JP2009198191A (en) Probe card and apparatus, and method for inspecting solid-state image sensor
JP4400184B2 (en) Lighting auxiliary device
JP3259433B2 (en) Apparatus for measuring and inspecting optical characteristics of solid-state imaging device and measuring and inspecting method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Ref document number: 4521660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees