JP2005331364A - Hydrogen gas sensing film and hydrogen gas sensor - Google Patents

Hydrogen gas sensing film and hydrogen gas sensor Download PDF

Info

Publication number
JP2005331364A
JP2005331364A JP2004149991A JP2004149991A JP2005331364A JP 2005331364 A JP2005331364 A JP 2005331364A JP 2004149991 A JP2004149991 A JP 2004149991A JP 2004149991 A JP2004149991 A JP 2004149991A JP 2005331364 A JP2005331364 A JP 2005331364A
Authority
JP
Japan
Prior art keywords
hydrogen gas
tungsten oxide
fine particle
gas sensor
detection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149991A
Other languages
Japanese (ja)
Inventor
Koichi Hiranaka
弘一 平中
Osamu Yamada
修 山田
Takeshi Hatayama
健 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004149991A priority Critical patent/JP2005331364A/en
Publication of JP2005331364A publication Critical patent/JP2005331364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen gas sensor using a hydrogen gas sensing film having high sensitivity and high speed response. <P>SOLUTION: The hydrogen gas sensor is constituted by providing a hydrogen gas sensing film 10 with a predetermined film thickness, which is changed in electric resistance when a proton formed by the dissociation of hydrogen gas is injected and reduced or the proton is eliminated to be oxidized, on a pair of the electrodes 20 provided on an insulating substrate. The hydrogen gas sensing film 10 is constituted of an aggregate of microcrystalline particles based on tungsten oxide and a catalyst metal in an oxidized state is provided on the surfaces of the microcrystalline particle tungsten oxide 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素ガスを解離して発生されるプロトンにより、酸化タングステンを主成分とする微粒子酸化タングステンの集合体からなる膜が還元されて電気抵抗が変化する水素ガス検知膜および水素ガスセンサに関するものである。   The present invention relates to a hydrogen gas detection film and a hydrogen gas sensor in which electrical resistance changes by reducing a film made of an aggregate of fine particle tungsten oxide mainly composed of tungsten oxide by protons generated by dissociating hydrogen gas. It is.

水素ガスセンサとしては、半導体式センサ、固体電解質センサ、接触熱変換方式センサ、熱伝導式センサ、光検知式センサなど点センサや、光学導波路や光ファイバのクラッドに光学的に水素検知を行う検知膜を有する面センサがある。ガスの自由化や水素燃料社会の到来において、23℃から25℃の常温で水素を含むガス検知が可能で、高速応答性を有し高感度で、かつ信頼性に優れた水素ガスセンサが望まれている。従来の水素を含むガスセンサとしては、種々の添加物を有する酸化スズ(SnO2)センサならびに酸化鉄(γ―Fe23)センサがある。これらのセンサは、動作温度が350℃と高く、動作温度に伴う消費電力が高いという問題があり、常温付近で十分な感度と応答性を有する水素ガスセンサが望まれていた。 Hydrogen gas sensors include semiconductor sensors, solid electrolyte sensors, contact heat conversion sensors, heat conduction sensors, light detection sensors, and other sensors that detect hydrogen optically in optical waveguides and optical fiber cladding. There are surface sensors with membranes. With the advent of gas liberation and the advent of a hydrogen fuel society, a hydrogen gas sensor capable of detecting gas containing hydrogen at ordinary temperatures from 23 ° C to 25 ° C, having high-speed response, high sensitivity, and high reliability is desired. ing. Conventional gas sensors containing hydrogen include a tin oxide (SnO 2 ) sensor and an iron oxide (γ-Fe 2 O 3 ) sensor having various additives. These sensors have the problem that the operating temperature is as high as 350 ° C. and the power consumption accompanying the operating temperature is high, and a hydrogen gas sensor having sufficient sensitivity and responsiveness near room temperature has been desired.

石英ガラス、酸化シリコンまたはセラミックス等からなる絶縁基板上に真空蒸着法により酸化タングステン(WO3)薄膜を形成し、水素を含むガスによる電気抵抗変化を利用する水素ガスセンサが提案され開発されてきた。酸化タングステンからなる半導体表面に還元性ガスが接触すると電気抵抗に変化が生じることは公知である。 A hydrogen gas sensor has been proposed and developed in which a tungsten oxide (WO 3 ) thin film is formed by vacuum deposition on an insulating substrate made of quartz glass, silicon oxide, ceramics, or the like, and changes in electrical resistance due to a gas containing hydrogen. It is known that a change in electrical resistance occurs when a reducing gas contacts a semiconductor surface made of tungsten oxide.

石英ガラス基板上に金属タングステンを真空蒸着して、然る後に金属タングステンを酸化して酸化タングステンを形成する。さらに前記酸化タングステン上に白金薄膜を成膜して積層型薄膜ガスセンサを作製する。前記積層型薄膜ガスセンサを用いて、空気中に0.1%の水素ガスを入れた混合ガスを用いて、水素ガス暴露による電気抵抗の変化について検討している。しかしながら本方法では、金属タングステンの酸化条件により、水素ガスの検出感度のばらつきが発生するという問題がある。これは酸化タングステンの膜厚方向の不均一性による酸化タングステンの構造が不安定であることによる。また本文献では酸化タングステンの構造と水素ガスの検出感度の関係については記載がなかった。(非特許文献1;APPLIED PHYSICS Letters,11巻、No.8, 1967年、255〜257頁、P. J. Shaver)
石英ガラス、酸化シリコンまたはセラミックスからなる絶縁基板上に酸素を含む不活性ガス雰囲気中でスパッタ蒸着法を用いた薄膜ガスセンサにおいて、酸化タングステンWO3-δ(ここにδ<0.2)の薄膜からなることを特徴とする薄膜ガスセンサが記載されている。さらにWO3-δ薄膜の表面に貴金属または金属酸化物からなる活性化膜が設けられていることを特徴とする選択性薄膜ガスセンサも記載されている。しかしながら、これらの酸化タングステン膜は、水素ガスに対しては感度の低いものである。また本論文では活性膜である貴金属または金属酸化物の詳細な構造については言及されていない。(特許文献1;特開昭57−74648)
Metal tungsten is vacuum-deposited on a quartz glass substrate, and then the metal tungsten is oxidized to form tungsten oxide. Further, a platinum thin film is formed on the tungsten oxide to produce a laminated thin film gas sensor. Using the laminated thin film gas sensor, a change in electrical resistance due to exposure to hydrogen gas is studied using a mixed gas containing 0.1% hydrogen gas in the air. However, this method has a problem that the detection sensitivity of hydrogen gas varies depending on the oxidation conditions of the metallic tungsten. This is because the structure of tungsten oxide is unstable due to the non-uniformity of tungsten oxide in the film thickness direction. In addition, this document did not describe the relationship between the structure of tungsten oxide and the detection sensitivity of hydrogen gas. (Non-Patent Document 1; APPLIED PHYSICS Letters, Vol. 11, No. 8, 1967, pages 255-257, P. J. Shaver)
In a thin film gas sensor using a sputtering deposition method in an inert gas atmosphere containing oxygen on an insulating substrate made of quartz glass, silicon oxide or ceramics, a thin film of tungsten oxide WO 3- δ (here, δ <0.2) is used. A thin film gas sensor is described. Furthermore, a selective thin film gas sensor is also described in which an activated film made of a noble metal or metal oxide is provided on the surface of the WO 3 -δ thin film. However, these tungsten oxide films have low sensitivity to hydrogen gas. In this paper, the detailed structure of the noble metal or metal oxide as the active film is not mentioned. (Patent Document 1; JP-A-57-74648)

水素ガスセンサに関して、同一基板上に設けられた一対の電極上にまたがって、アモルファス酸化タングステン薄膜を設け、さらにその上に白金もしくはパラジウムを島状に形成した水素ガスセンサの開示がある。本構造は酸化タングステン薄膜を利用する水素ガスセンサにおいて、抵抗加熱蒸着法を用いて所定の密度を有するアモルファス酸化タングステン薄膜になるように製造することにより水素ガスの検出感度を増加させるものである。しかしながら該アモルファス酸化タングステン薄膜においては密度制御が困難であり、信頼性に乏しく、また湿度の影響を受けやすいという問題があった。これはアモルファス酸化タングステン薄膜の構造不安定性によるものである。またアモルファス酸化タングステン薄膜上の白金薄膜は、水素ガス以外の可燃性ガスの影響を受けやすく、水素ガスの検出感度のばらつきが生じる。パラジウムも水素脆弱性のために水素ガスの検出感度が次第に劣化するという問題がある。(特許文献2;特許公報1799658)
一酸化炭素(CO)、水素(H2)及び炭化水素のような可燃性ガス濃度に応じて感応層の電気抵抗が変化するガスセンサにおいて、セラミックス基板上に酸化錫(SnO2)などn型半導体金属酸化物をベースとするガス感応層を有し、前記感応膜が半導体金属酸化物材料の焼結された粒子の結合体を有し、かつ結合体の表面に金及び/または金合金で被覆された可燃性ガスセンサが記載されている。しかし、水素ガスに関しては感度の低いものであった。(特許文献3;特表平10−510919)
Regarding a hydrogen gas sensor, there is a disclosure of a hydrogen gas sensor in which an amorphous tungsten oxide thin film is provided over a pair of electrodes provided on the same substrate and platinum or palladium is further formed in an island shape thereon. In this structure, a hydrogen gas sensor using a tungsten oxide thin film is manufactured by using a resistance heating vapor deposition method so as to be an amorphous tungsten oxide thin film having a predetermined density, thereby increasing the detection sensitivity of hydrogen gas. However, the amorphous tungsten oxide thin film has a problem that density control is difficult, reliability is poor, and humidity is easily affected. This is due to the structural instability of the amorphous tungsten oxide thin film. In addition, the platinum thin film on the amorphous tungsten oxide thin film is easily affected by a flammable gas other than hydrogen gas, and the detection sensitivity of hydrogen gas varies. Palladium also has a problem that the detection sensitivity of hydrogen gas gradually deteriorates due to hydrogen vulnerability. (Patent Document 2; Patent Publication 1799658)
An n-type semiconductor such as tin oxide (SnO 2 ) on a ceramic substrate in a gas sensor in which the electrical resistance of the sensitive layer changes according to the concentration of combustible gases such as carbon monoxide (CO), hydrogen (H 2 ), and hydrocarbons A gas-sensitive layer based on a metal oxide, the sensitive film having a combination of sintered particles of a semiconductor metal oxide material, and covering the surface of the combination with gold and / or a gold alloy A combustible gas sensor is described. However, the sensitivity of hydrogen gas was low. (Patent Document 3; Japanese Translation of PCT International Publication No. 10-510919)

常温動作のために水素ガスの吸着解離を行う触媒金属を酸化タングステン(WO3)に付着させる試みがある。John E. Benson, H.W. Kohn, and Michel Boudartらは、酸化タングステン(WO3)の粉体を塩化白金酸(H2PtCl6)と混練し、基板上にスクリーン印刷し、大気中425℃で10時間、引続き大気中600℃で3時間仮焼処理することにより白金混合酸化タングステンからなる水素ガス検知膜を合成している。その結果、白金混合酸化タングステンからなる水素ガス検知膜を用いて常温で水素ガス暴露を行ったところ水素ガス検知膜の重量が増えることから、白金混合酸化タングステンにおいて水素ガスの検出感度が増加すると推定している。しかしながら、本論文では酸化タングステンの構造やその結晶状態、さらには白金の構造やその結晶状態と、水素ガスの検出感度との関係には言及していない。また本論文には水素ガス暴露による色相変化や電気抵抗の変化の記述もない。(非特許文献2、JOUNAL OF CATALYSIS Vol.5,pp307−313(1966)) There is an attempt to attach a catalytic metal that adsorbs and dissociates hydrogen gas to tungsten oxide (WO 3 ) for normal temperature operation. John E.M. Benson, H.M. W. Kohn and Michel Boudart et al. Kneaded tungsten oxide (WO 3 ) powder with chloroplatinic acid (H 2 PtCl 6 ), screen-printed on a substrate, followed by atmospheric 600 ° C. for 10 hours at 425 ° C. A hydrogen gas detection film made of platinum mixed tungsten oxide is synthesized by calcining at 3 ° C. for 3 hours. As a result, the hydrogen gas detection film made of platinum mixed tungsten oxide was exposed to hydrogen gas at room temperature, and the hydrogen gas detection film increased in weight. doing. However, this paper does not mention the relationship between the structure of tungsten oxide and its crystal state, or the structure and crystal state of platinum and the detection sensitivity of hydrogen gas. This paper also does not describe changes in hue or electrical resistance due to hydrogen gas exposure. (Non-patent document 2, JOUNAL OF CATALYSIS Vol. 5, pp 307-313 (1966))

また、常温動作可能なセンサの実現に向けて、酸化タングステン薄膜の結晶状態に注目し、酸化タングステン薄膜のX線回折パターン(001)指数のX線回折強度を増やし、X線回折パターン(001)指数の結晶面を増大させた酸化タングステン薄膜と触媒金属との積層構造を備えたことを特徴とする色相変化を利用する高感度な光検知式水素センサが開示されている。本特許では、X線回折パターン指数(001)に高い配向性を有する結晶膜として酸化タングステン薄膜を形成することで水素ガス検知時の光吸収量のばらつきを低減し、したがって水素ガスの検出感度のばらつきを抑制することができると記載されている。しかしながら、酸化タングステン(WO3)薄膜を酸素ガス中においてアニール処理する際の処理温度を増加させるとともに指数(001)の結晶面のX線回折強度は増大するが、水素ガスの検出感度は単調増加せずに減少する。また、本特許においては水素ガスの検出感度と、酸化タングステン(WO3)薄膜のX線回折パターン指数(001)の結晶面のX線回折強度との関係が開示されていない。さらに、上記特許に開示されている触媒金属として、パラジウム薄膜を酸化タングステン薄膜上に積層構造とする水素センサの場合には、水素暴露サイクル試験を行うと、水素化によるパラジウムの脆弱性により水素感度が劣化するという問題がある。一方他の実施例である触媒金属として白金薄膜を酸化タングステン薄膜上に積層構造とする水素センサの場合には、水素ガス以外のガスの影響を受けやすく、水素ガスの検出感度のばらつきが生じるという問題がある。(特許文献4;特開昭62−257047号公報参照)
P.J.Shaver著、APPLIED PHYSICS Letters,11巻、No.8, 1967年、255〜257頁 John E. Benson, H.W. Kohn, and Michel Boudart著、JOUNAL OF CATALYSIS、5巻、1966年、307〜313頁 特開昭57−74648号公報 特許第1799658号公報 特表平10−510919号公報 特開昭62−257047号公報
In addition, focusing on the crystalline state of the tungsten oxide thin film, the X-ray diffraction pattern (001) index X-ray diffraction intensity of the tungsten oxide thin film is increased, and the X-ray diffraction pattern (001) is realized. A highly sensitive photodetection type hydrogen sensor using a hue change, characterized in that it has a laminated structure of a tungsten oxide thin film with an increased index crystal plane and a catalytic metal, is disclosed. In this patent, the tungsten oxide thin film is formed as a crystal film having a high orientation in the X-ray diffraction pattern index (001), thereby reducing the variation in the amount of light absorption at the time of hydrogen gas detection. It is described that variation can be suppressed. However, the annealing temperature of the tungsten oxide (WO 3 ) thin film in oxygen gas increases and the X-ray diffraction intensity of the crystal plane with index (001) increases, but the detection sensitivity of hydrogen gas increases monotonously. Decrease without. Further, this patent does not disclose the relationship between the detection sensitivity of hydrogen gas and the X-ray diffraction intensity of the crystal plane of the X-ray diffraction pattern index (001) of the tungsten oxide (WO 3 ) thin film. Furthermore, as a catalyst metal disclosed in the above patent, in the case of a hydrogen sensor having a palladium thin film laminated on a tungsten oxide thin film, a hydrogen exposure cycle test results in hydrogen sensitivity due to the weakness of palladium due to hydrogenation. There is a problem of deterioration. On the other hand, in the case of a hydrogen sensor having a platinum thin film laminated on a tungsten oxide thin film as a catalyst metal according to another embodiment, it is easily affected by a gas other than hydrogen gas, resulting in variations in detection sensitivity of hydrogen gas. There's a problem. (See Patent Document 4; JP-A-62-257047)
P. J. et al. By Shaver, APPLIED PHYSICS Letters, Vol. 8, 1967, pages 255-257. John E.M. Benson, H.M. W. By Kohn and Michael Boudart, JOUNAL OF CATALYSIS, 5, 1966, 307-313. JP-A-57-74648 Japanese Patent No. 1799658 Japanese National Patent Publication No. 10-510919 JP-A-62-257047

しかしながら、従来の構成による水素を含むガス漏洩検知センサは,常温付近での水素ガスの検出感度が低く、応答速度が非常に遅く、長期信頼性に乏しいという実用上の課題を有していた。   However, the conventional gas leak detection sensor containing hydrogen has a practical problem that the detection sensitivity of hydrogen gas near normal temperature is low, the response speed is very slow, and the long-term reliability is poor.

本発明は、従来の課題を解決するもので、常温付近での水素を含むガスの検出感度を増大させ,併せて、水素ガスに対して高速な応答性を有する水素ガス検知膜を提供するとともに、その水素ガス検知膜を用いた水素ガスセンサを提供することを目的とする。  The present invention solves the conventional problems, and increases the detection sensitivity of a gas containing hydrogen at around room temperature, and at the same time provides a hydrogen gas detection film having high-speed response to hydrogen gas. An object of the present invention is to provide a hydrogen gas sensor using the hydrogen gas detection film.

従来の課題を解決するために、本発明の水素検知膜は、水素ガスを解離して生成されるプロトンが注入されて還元され或いは前記プロトンが脱離されて酸化されることにより電気抵抗が変化する水素ガス検知膜であって、前記検知膜は、酸化タングステンを主成分とする結晶微粒子の集合体で構成され、前記結晶微粒子酸化タングステンの表面に酸化状態の触媒金属を含有することを特徴としたものでる。   In order to solve the conventional problems, the hydrogen detection film of the present invention has an electric resistance that is changed by injecting protons generated by dissociating hydrogen gas and then reducing or oxidizing the protons. A hydrogen gas detection film, wherein the detection film is composed of an aggregate of crystalline fine particles mainly composed of tungsten oxide, and contains a catalytic metal in an oxidized state on a surface of the crystalline fine particle tungsten oxide. It is what you did.

また、本発明は、絶縁基板上に設けられた一対の電極上に、水素ガスを解離して発生されるプロトンが注入されて還元され或いは前記プロトンが脱離されて酸化されることにより電気抵抗が変化する所定の膜厚の検知膜を有する水素ガスセンサであって、前記検知膜は、酸化タングステンを主成分とする結晶微粒子の集合体で構成され、前記結晶微粒子酸化タングステンの表面に酸化状態の触媒金属を含有することを特徴としたものである。   In addition, the present invention provides an electrical resistance in which protons generated by dissociating hydrogen gas are injected and reduced on a pair of electrodes provided on an insulating substrate, or reduced by being desorbed and oxidized. A hydrogen gas sensor having a detection film of a predetermined thickness that changes, wherein the detection film is composed of an aggregate of crystalline fine particles mainly composed of tungsten oxide, and is in an oxidized state on the surface of the crystalline fine particle tungsten oxide. It is characterized by containing a catalytic metal.

また、本発明は、絶縁基板上に、水素ガスを解離して発生されるプロトンが注入されて還元され或いは前記プロトンが脱離されて酸化されることにより電気抵抗が変化する所定の膜厚の検知膜と、前記検知膜上に一対の電極を備える水素ガスセンサであって、前記検知膜は、酸化タングステンを主成分とする結晶微粒子の集合体で構成され、前記結晶微粒子酸化タングステンの表面に酸化状態の触媒金属を含有することを特徴としたものである。   In addition, the present invention has a predetermined film thickness in which electrical resistance is changed by injecting protons generated by dissociating hydrogen gas into an insulating substrate and then reducing or oxidizing the protons by desorption. A hydrogen gas sensor comprising a sensing film and a pair of electrodes on the sensing film, wherein the sensing film is composed of an aggregate of crystalline fine particles mainly composed of tungsten oxide and is oxidized on the surface of the crystalline fine particle tungsten oxide. The catalyst metal in a state is contained.

以上のように、本発明によれば、常温付近で水素ガスの検出感度を増大させ,また水素ガス応答性の速い水素を含むガス検知膜を提供するとともに、その水素ガス検知膜を用いた高感度で高速応答性を有する水素ガスセンサを実現することができる。   As described above, according to the present invention, the detection sensitivity of hydrogen gas is increased near normal temperature, and a gas detection film containing hydrogen having a fast hydrogen gas responsiveness is provided. A hydrogen gas sensor having high sensitivity and high sensitivity can be realized.

水素ガスの検出感度の向上を目的として、検知膜である酸化タングステンの合成条件を種々検討した結果、酸化タングステンを微粒子化し、該微粒子酸化タングステンの結晶状態、微粒子酸化タングステンの平均粒子径、微粒子酸化タングステンの酸素欠陥状態、さらに微粒子酸化タングステンの酸素とタングステンの原子数比、さらに、微粒子酸化タングステン表面に含まれている触媒金属の酸化状態、触媒金属の種類、及び触媒金属の平均粒子径に最適条件があることを発明者らは見出した。   As a result of various investigations on the synthesis conditions of tungsten oxide, which is a detection film, for the purpose of improving the detection sensitivity of hydrogen gas, the tungsten oxide was made into fine particles, the crystalline state of the fine tungsten oxide, the average particle diameter of the fine tungsten oxide, the fine particle oxidation Ideal for oxygen defect state of tungsten, oxygen / tungsten atomic ratio of fine tungsten oxide, oxidation state of catalytic metal contained on fine tungsten oxide surface, type of catalytic metal, and average particle diameter of catalytic metal The inventors have found that there are conditions.

触媒金属を酸化状態にすることにより、触媒金属は電子の引き抜き(電子受容体)能力が高まり、水素ガス(H2)の触媒金属上での吸着解離する速度を増加せしめ、プロトン(H+)の発生速度を増大させることにより、水素ガスの検出速度と検出感度の両方を向上させる。したがって、水素ガスの検出において高速応答性と高感度化を実現できる。さらに微粒子酸化タングステンにおいて、酸化タングステンの構造を制御することにより微粒子酸化タングステン中の酸素欠陥(Vacancy)数を最適化し、水素の検出感度を向上させることができる。この酸素欠陥は、プロトン導電チャネルとして作用するとともに、電子キャリア濃度の増加をもたらし、両方の効果により検知膜の電気導電率を向上させ、水素ガスの検出感度を増大させる。 By bringing the catalytic metal into an oxidized state, the catalytic metal has an increased ability to withdraw electrons (electron acceptor), increasing the rate of adsorption and dissociation of hydrogen gas (H 2 ) on the catalytic metal, and protons (H + ). By increasing the generation rate of hydrogen, both hydrogen gas detection speed and detection sensitivity are improved. Therefore, high-speed response and high sensitivity can be realized in hydrogen gas detection. Furthermore, in the fine particle tungsten oxide, by controlling the structure of the tungsten oxide, the number of oxygen defects (vacancy) in the fine particle tungsten oxide can be optimized, and the hydrogen detection sensitivity can be improved. This oxygen defect acts as a proton conduction channel and causes an increase in the electron carrier concentration. By both effects, the electric conductivity of the detection film is improved and the detection sensitivity of hydrogen gas is increased.

触媒金属上で生成されたプロトンと電子は、水素ガス検知膜の主成分である微粒子酸化タングステンの酸素空孔(Vacancy)をそれぞれ移動し、その際に微粒子酸化タングステンのタングステン(W)がW6+からW5+へと還元されて、タングステンブロンズ(HxWO3)が形成される。その結果、微粒子酸化タングステンの電気導電率が数桁増加する。したがって、上記微粒子酸化タングステンで構成される薄膜の電気抵抗の変化により水素ガスの漏洩検知ができる。なお、酸化タングステンからタングステンブロンズが形成される際に、ガス検知膜の色が薄黄緑色から濃青色へと変化するので、色相変化による水素ガス漏洩検知も可能である。 Protons and electrons generated on the catalytic metal move through oxygen vacancies of fine particle tungsten oxide, which is the main component of the hydrogen gas detection film, respectively. At this time, tungsten (W) of fine particle tungsten oxide is W 6. Reduction from + to W 5+ forms tungsten bronze (H x WO 3 ). As a result, the electrical conductivity of the particulate tungsten oxide increases by several orders of magnitude. Therefore, leakage of hydrogen gas can be detected by a change in the electrical resistance of the thin film composed of the fine particle tungsten oxide. Note that, when tungsten bronze is formed from tungsten oxide, the color of the gas detection film changes from light yellow green to dark blue, so that hydrogen gas leakage detection due to hue change is also possible.

以下に、水素ガス検知膜及びそれを用いた水素ガスセンサについて、図面を用いて詳細に説明する。   Hereinafter, a hydrogen gas detection film and a hydrogen gas sensor using the same will be described in detail with reference to the drawings.

図1は、本発明の実施例1における水素ガスセンサ図2の水素ガス検知膜10の拡大断面図であって、図2および図10の水素ガスセンサの断面A−A‘の拡大図である。  1 is an enlarged cross-sectional view of the hydrogen gas detection film 10 of FIG. 2 according to the first embodiment of the present invention, and is an enlarged view of a cross-section A-A ′ of the hydrogen gas sensor of FIGS. 2 and 10.

図2において水素ガス検知膜10の構造は、図1の拡大されて示される水素ガス検知膜6で表される。図1は、本発明の水素ガス検知膜10の断面構造を説明するために、拡大強調している。水素ガス検知膜6の膜厚としては、100nm〜5μmであり、水素ガス検知膜6は粒径15nmから80nmの微粒子酸化タングステン1の集合体で構成され、隙間3を有する。隙間3は、水素ガス検知膜製造時において350℃〜600℃で熱処理する際に、後述の微粒子酸化タングステンの合成材料であるコロイド溶液に含まれる水やアルコールの溶媒成分が蒸発することで形成される。微粒子酸化タングステン集合体の隙間3の構造はガスの吸着に関係し、隙間3が多いほど水素ガスの吸着面積が多くなり、水素ガスの検出感度は向上する。微粒子酸化タングステン1の表面には、粒径2nm〜35nmの触媒金属2を有する。微粒子酸化タングステン1の粒径は、触媒金属2の微粒子の粒径より大きい方が好ましく、触媒金属2は微粒子酸化タングステンの表面に露出する面積が広いほど、水素ガスの吸着解離作用が大となり、プロトン生成量が多くなる。図1では、微粒子酸化タングステン表面に複数の金属触媒2が存在するように示されているが、微粒子酸化タングステン表面の触媒金属の個数を限定するものではない。   In FIG. 2, the structure of the hydrogen gas detection film 10 is represented by the hydrogen gas detection film 6 shown enlarged in FIG. 1. FIG. 1 is enlarged and emphasized in order to explain the cross-sectional structure of the hydrogen gas detection film 10 of the present invention. The film thickness of the hydrogen gas detection film 6 is 100 nm to 5 μm. The hydrogen gas detection film 6 is composed of an aggregate of fine particle tungsten oxide 1 having a particle diameter of 15 nm to 80 nm and has a gap 3. The gap 3 is formed by evaporating the solvent components of water and alcohol contained in a colloidal solution, which is a synthetic material of particulate tungsten oxide described later, when heat treatment is performed at 350 ° C. to 600 ° C. during manufacture of the hydrogen gas detection film. The The structure of the gap 3 of the fine particle tungsten oxide aggregate is related to gas adsorption. As the gap 3 increases, the hydrogen gas adsorption area increases and the detection sensitivity of hydrogen gas improves. The surface of the fine particle tungsten oxide 1 has a catalyst metal 2 having a particle diameter of 2 nm to 35 nm. The particle size of the fine particle tungsten oxide 1 is preferably larger than the particle size of the fine particle of the catalyst metal 2. The larger the area of the catalyst metal 2 exposed on the surface of the fine particle tungsten oxide, the greater the adsorption / dissociation action of hydrogen gas, Proton production increases. Although FIG. 1 shows that a plurality of metal catalysts 2 exist on the surface of the fine particle tungsten oxide, the number of catalyst metals on the surface of the fine particle tungsten oxide is not limited.

酸化タングステンの集合体と隙間で構成される水素ガス検知膜10を密度で定量的に表すと、本発明においては、微粒子酸化タングステンからなる水素ガス検知膜10の充填密度は4.0g/cm3〜12.0g/cm3、好ましくは4.2g/cm3〜6.5g/cm3が、水素ガスの検出感度が高い。 When the hydrogen gas detection film 10 composed of tungsten oxide aggregates and gaps is quantitatively expressed in terms of density, in the present invention, the filling density of the hydrogen gas detection film 10 made of particulate tungsten oxide is 4.0 g / cm 3. ~12.0g / cm 3, preferably is 4.2g / cm 3 ~6.5g / cm 3 , a high detection sensitivity of the hydrogen gas.

図1で示す水素ガス検知膜6の構造を有する水素ガスセンサ70の製造法を図2の水素ガスセンサの模式図を用いて以下に詳細に説明する。   A method for manufacturing the hydrogen gas sensor 70 having the structure of the hydrogen gas detection film 6 shown in FIG. 1 will be described below in detail with reference to the schematic diagram of the hydrogen gas sensor in FIG.

図2において、水素ガス検知膜10の構造は、図1の拡大されて示される水素ガス検知膜6で表される。   In FIG. 2, the structure of the hydrogen gas detection film 10 is represented by the hydrogen gas detection film 6 shown enlarged in FIG. 1.

電極20は、絶縁基板30上に、金(Au)または金合金、白金(Pt)または白金合金、またはモリブデン(Mo)またはタンタル(Ta),またはニオブ(Nb)など高融点金属で耐腐食性の金属材料を蒸着法で形成する。蒸着法にはスパッタ蒸着、電子ビーム蒸着、イオンプレーティング蒸着などが使用できる。然る後に公知のフォトリソグラフィ法により電極幅0.3mm、電極間隔0.1mm、電極長20mmの一対の電極を形成する。
また、電極形成方法としては、スクリーン印刷法や、インクジェット法により電極を形成してもよい。この際に、700℃以上の耐熱性がある材料が好ましい。
The electrode 20 is made of a high melting point metal such as gold (Au) or a gold alloy, platinum (Pt) or a platinum alloy, molybdenum (Mo), tantalum (Ta), or niobium (Nb) on the insulating substrate 30 and is resistant to corrosion. The metal material is formed by vapor deposition. As the vapor deposition method, sputtering vapor deposition, electron beam vapor deposition, ion plating vapor deposition, or the like can be used. Thereafter, a pair of electrodes having an electrode width of 0.3 mm, an electrode interval of 0.1 mm, and an electrode length of 20 mm are formed by a known photolithography method.
Moreover, as an electrode formation method, you may form an electrode by the screen-printing method or the inkjet method. At this time, a material having heat resistance of 700 ° C. or higher is preferable.

絶縁基板30としては、石英基板や、シリコン基板、炭化珪素(SiC)基板、セラミックス基板など電気的に絶縁性があればよく、具体的には、基板の電気導電率としては、微粒子酸化タングステンで構成される水素ガス検知膜の水素ガスに暴露されていない電気導電率10-4(Ω・cm)-1より小さく、かつ700℃以上の耐熱性があればよい。シリコン基板、炭化珪素(SiC)基板では、酸化珪素膜(SiOx;ここでxは1〜2)や窒素珪素膜(SiNx;ここでxは1.0〜1.33)など絶縁膜を形成し、該絶縁膜上にゾル・ゲル法により、微粒子酸化タングステンからなる水素ガス検知膜6または10を形成する。以下にゾル・ゲル法による微粒子酸化タングステンの製造方法の詳細を示す。 The insulating substrate 30 only needs to be electrically insulative, such as a quartz substrate, a silicon substrate, a silicon carbide (SiC) substrate, or a ceramic substrate. Specifically, the electrical conductivity of the substrate is fine particle tungsten oxide. The electrical conductivity of the hydrogen gas detection film that is not exposed to the hydrogen gas should be less than 10 −4 (Ω · cm) −1 and have heat resistance of 700 ° C. or higher. In a silicon substrate or silicon carbide (SiC) substrate, an insulating film such as a silicon oxide film (SiO x ; where x is 1 to 2) or a nitrogen silicon film (SiN x ; where x is 1.0 to 1.33) is used. Then, a hydrogen gas detection film 6 or 10 made of particulate tungsten oxide is formed on the insulating film by a sol-gel method. Details of the method for producing fine-particle tungsten oxide by the sol-gel method are shown below.

タングステン酸(H2WO4)2.5gをメタノール31mlに溶解させ、30分室温で攪拌し、純水18mlを加え、さらに触媒金属塩水溶液を所定量添加してタングステン酸(H2WO4)のコロイド溶液を得る。例えば触媒金属として白金を用いる場合には、タングステン酸のコロイド溶液に、塩化白金酸水溶液(H2[PtCl6]・xH2O)をタングステンに対する割合が、0.3〜30モル%添加することで触媒金属を含有するタングステン酸コロイド溶液を得る。 Dissolve 2.5 g of tungstic acid (H 2 WO 4 ) in 31 ml of methanol, stir at room temperature for 30 minutes, add 18 ml of pure water, and then add a predetermined amount of aqueous catalyst metal salt solution to add tungstic acid (H 2 WO 4 ). To obtain a colloidal solution. For example, when platinum is used as the catalyst metal, a chloroplatinic acid aqueous solution (H 2 [PtCl 6 ] · xH 2 O) is added to the colloidal solution of tungstic acid in a proportion of 0.3 to 30 mol% with respect to tungsten. To obtain a tungstic acid colloidal solution containing a catalytic metal.

上記ゾル・ゲル合成では、還元剤としてメタノールを用いたが、メタノールに限定されるわけではなく、エタノール、プロパノール、ブドウ糖等種々の還元剤が使用可能であり、これら各還元剤によりゾル・ゲル状態を制御できる。ここで還元剤はタングステン酸の水素と、還元剤の水酸基が反応して脱水縮合が生じ酸化タングステンのゲル化が開始する。各還元剤により水酸基の解離速度の違いを利用することにより酸化タングステンのゾル・ゲル状態の安定化を制御することができる。   In the above sol-gel synthesis, methanol was used as the reducing agent, but it is not limited to methanol, and various reducing agents such as ethanol, propanol, and glucose can be used. Can be controlled. Here, the hydrogen of the tungstic acid and the hydroxyl group of the reducing agent react with each other to cause dehydration condensation, and the tungsten oxide starts to gel. Stabilization of the sol-gel state of tungsten oxide can be controlled by utilizing the difference in the dissociation rate of hydroxyl groups depending on each reducing agent.

またタングステン酸の前躯体として、タングステン酸ナトリウム(Na2WO4)水溶液を用い、H+イオン交換樹脂により、タングステン酸を得てもよい。 Further, as a precursor of tungstic acid, an aqueous solution of sodium tungstate (Na 2 WO 4 ) may be used, and tungstic acid may be obtained by H + ion exchange resin.

また、タングステン酸の前躯体としてアルコキシドタングステンを用いてもよい。   Further, alkoxide tungsten may be used as a precursor of tungstic acid.

また、無水クロロタングステン(WCl6)と無水エタノールによりタングステン酸(H2WO4)コロイド溶液を得ることができる。 A colloidal solution of tungstic acid (H 2 WO 4 ) can be obtained from anhydrous chlorotungsten (WCl 6 ) and anhydrous ethanol.

さらに、触媒金属塩としては、無機塩でも有機塩でも良い。例えば、無機塩では塩化物塩、硝酸塩、硫酸塩等が、有機塩では、カルボン酸塩、ジカルボン酸塩やアセチルアセトン錯塩が挙げられる。   Furthermore, the catalyst metal salt may be an inorganic salt or an organic salt. For example, inorganic salts include chloride salts, nitrate salts, sulfate salts, etc., and organic salts include carboxylate salts, dicarboxylate salts, and acetylacetone complex salts.

次に、水素ガスセンサ70の製造方法について説明する。   Next, a method for manufacturing the hydrogen gas sensor 70 will be described.

絶縁基板上に予め設けられた一対の電極20上に、触媒金属を含むタングステン酸のコロイド溶液をスピンコーティングにより塗布して微粒子酸化タングステンからなる水素ガス検知膜10を膜厚100nm〜5μm、好ましくは膜厚200nm〜3μm形成する。   A colloidal solution of tungstic acid containing a catalytic metal is applied onto a pair of electrodes 20 provided in advance on an insulating substrate by spin coating to form a hydrogen gas detection film 10 made of particulate tungsten oxide with a thickness of 100 nm to 5 μm, preferably A film thickness of 200 nm to 3 μm is formed.

なお酸化タングステンの塗布方法は上記スピンコーティングに限定されるものではなく、一対の電極を覆うように形成できればよく、スクリーン印刷法やインクジェット法を用いてもよい。   Note that the method of applying tungsten oxide is not limited to the above spin coating, and it is sufficient if it can be formed so as to cover a pair of electrodes, and a screen printing method or an ink jet method may be used.

然る後に、仮焼温度350℃から700℃で空気50ml/minのフロー状態で5時間仮焼処理することで、白金触媒金属を表面に一部含有して酸化タングステンは結晶化し、そしてその結晶化した微粒子酸化タングステンが集合化した水素ガス検知膜6からなる、膜厚100nm〜3μmからなる検知膜10を有する水素ガスセンサ70を作製した。なお仮焼処理により、コロイド溶液中に含まれていた溶媒である水やアルコール成分が蒸発し、水素ガス検知膜10の焼成後の膜厚は、焼成前の膜厚に比べて約40%〜60%に減少する。また水素ガス検知膜6は、隙間3を有する。   After that, by calcining for 5 hours at a calcining temperature of 350 ° C. to 700 ° C. in a flow state of air of 50 ml / min, tungsten catalyst is crystallized by partially containing a platinum catalyst metal on the surface. A hydrogen gas sensor 70 having a detection film 10 having a film thickness of 100 nm to 3 μm made of a hydrogen gas detection film 6 in which fine particles of tungsten oxide were assembled was produced. In addition, water and alcohol components, which are solvents contained in the colloidal solution, are evaporated by the calcination treatment, and the film thickness of the hydrogen gas detection film 10 after baking is approximately 40% to the film thickness before baking. Reduce to 60%. Further, the hydrogen gas detection film 6 has a gap 3.

そして、リード線40を形成するために一対の電極20それぞれの一端を露出させ、Agペーストでリード線40を形成し、DC電源60で電界強度10V/cm程度を印加する。一対の電極20間の電気抵抗値または、電気導電率を測定するために、微小電流計50を接続し、水素ガスの検出感度、及び応答性を測定する。   Then, one end of each of the pair of electrodes 20 is exposed to form the lead wire 40, the lead wire 40 is formed with Ag paste, and an electric field strength of about 10 V / cm is applied by the DC power source 60. In order to measure the electrical resistance value or electrical conductivity between the pair of electrodes 20, a microammeter 50 is connected to measure the hydrogen gas detection sensitivity and responsiveness.

微小電流計の代わりに交流インピーダンス測定装置を用いてもよく、本発明は測定方法に限定されるものでない。そして、水素ガス検知層10は一対の電極20を覆えばよい。   An AC impedance measuring device may be used instead of the microammeter, and the present invention is not limited to the measuring method. The hydrogen gas detection layer 10 may cover the pair of electrodes 20.

水素ガスの検出感度は、図2に示す測定系を用いて、動作温度25℃において、空気中で水素ガス濃度1%とし、相対湿度は50%の条件で行う。   The detection sensitivity of hydrogen gas is measured using the measurement system shown in FIG. 2 under the conditions of an operating temperature of 25 ° C., a hydrogen gas concentration of 1% in air, and a relative humidity of 50%.

ここで水素ガスの検出感度とは、水素ガスに暴露しない状態の抵抗値R0と空気中で水素ガス1%濃度暴露状態の電気抵抗Reとの比(=R0/Re)で表す。即ち、水素ガスの検出感度=R0/Re で表される。 Here, the detection sensitivity of the hydrogen gas, expressed by the ratio of the electric resistance R e of the resistance value R 0 and hydrogen gas concentration of 1% exposure state in air at state not exposed to hydrogen gas (= R 0 / R e) . That is, the detection sensitivity of hydrogen gas = R 0 / Re .

水素ガスの検出感度としては、感度ばらつき及びまたは応答速度のばらつきを考慮すると、R0/Reが10以上、好ましくは100以上が、水素ガスセンサとして必要である。 As the hydrogen gas detection sensitivity, in consideration of sensitivity variations and / or response speed variations, R 0 / Re is 10 or more, preferably 100 or more, as a hydrogen gas sensor.

なお、水素ガスを検知すると、水素ガス検知膜10は、触媒金属上で水素ガスを吸着解離してプロトンを生じさせ、そのプロトンが微粒子酸化タングステンに注入され、微粒子酸化タングステンを還元することにより、酸化タングステンを主成分とする微粒子の集合体からなる水素ガス検知膜は薄緑色から青色への色相変化を呈し、同時に水素ガスにより水素ガス検知膜10の電気抵抗が減少する。   When the hydrogen gas is detected, the hydrogen gas detection film 10 absorbs and dissociates the hydrogen gas on the catalyst metal to generate protons, and the protons are injected into the fine particle tungsten oxide, thereby reducing the fine particle tungsten oxide, A hydrogen gas detection film made of an aggregate of fine particles mainly composed of tungsten oxide exhibits a hue change from light green to blue, and at the same time, the electric resistance of the hydrogen gas detection film 10 is reduced by hydrogen gas.

この水素ガスの検出感度を実現する水素ガス検知膜の構造にについて発明者は以下の検討を行った。   The inventor conducted the following investigation on the structure of the hydrogen gas detection film that achieves this hydrogen gas detection sensitivity.

まず、微粒子酸化タングステンに表面に含有する触媒金属量と水素ガスの検出感度との関係について以下に検討した。   First, the relationship between the amount of catalytic metal contained on the surface of fine particle tungsten oxide and the detection sensitivity of hydrogen gas was examined below.

触媒金属は、前述のゾル・ゲル合成時のタングステン酸コロイド溶液に、触媒金属塩水溶液として所定量添加する。例えば触媒金属として白金を用いる場合には、タングステン酸のコロイド溶液に、塩化白金酸水溶液(H2[PtCl6]・xH2O)を0.0125mol/lを4ml、8ml、24ml、48ml、80mlを加えることにより、タングステンに対する白金触媒のモル比がそれぞれ0.5%、1%、3%、6%、10%の白金触媒を含有するタングステン酸のコロイド溶液を得る。それらのコロイド溶液を予め形成された一対の電極を覆うようにスピンコーティングで塗布し、然る後に仮焼温度350℃から700℃の温度範囲で空気50ml/minのフロー状態で5時間仮焼処理をすることにより、図2に示すガスセンサを作製する。なお酸化タングステンの塗布方法は上記スピンコーティングに限定されるものではなく、一対の電極を覆うように形成できればよく、スクリーン印刷法やインクジェット法などの工法が適用できる。 A predetermined amount of the catalyst metal is added as an aqueous solution of a catalyst metal salt to the above-described tungstic acid colloid solution during the sol-gel synthesis. For example, when platinum is used as a catalyst metal, 0.0125 mol / l of a chloroplatinic acid aqueous solution (H 2 [PtCl 6 ] · xH 2 O) is added to a colloidal solution of tungstic acid in 4 ml, 8 ml, 24 ml, 48 ml, and 80 ml. Is added to obtain a colloidal solution of tungstic acid containing platinum catalysts with a platinum catalyst to tungsten molar ratio of 0.5%, 1%, 3%, 6% and 10%, respectively. These colloidal solutions are applied by spin coating so as to cover a pair of pre-formed electrodes, and then calcined for 5 hours at a calcining temperature of 350 ° C. to 700 ° C. in a flow state of air 50 ml / min. By doing this, the gas sensor shown in FIG. 2 is produced. Note that the method of applying tungsten oxide is not limited to the above spin coating, and any method such as a screen printing method or an ink jet method can be applied as long as it can be formed so as to cover a pair of electrodes.

水素ガスの検出感度は、室温25℃、空気中水素ガス濃度1%とし、相対湿度50%の条件で測定した。併せてガスセンサ素子の微粒子酸化タングステンの結晶性、表面状態、また水素ガスの検出感度と、触媒金属量、また触媒金属の酸化状態との関係を調べた。   The detection sensitivity of hydrogen gas was measured under the conditions of room temperature of 25 ° C., hydrogen gas concentration in air of 1%, and relative humidity of 50%. At the same time, the relationship between the crystallinity and surface state of the fine particle tungsten oxide of the gas sensor element, the detection sensitivity of hydrogen gas, the amount of catalyst metal, and the oxidation state of the catalyst metal was investigated.

なお、上記熱処理温度と時間など仮焼処理条件は、上記作製条件に限定されるものではなく、本発明の酸化タングステン検知膜の構造である、微粒子酸化タングステンを主成分とし、それらの微粒子酸化タングステンの表面に酸化状態の触媒金属を含有すれば水素ガスの吸着解離が容易になり、酸化状態の触媒金属を含有すれば酸化状態の触媒金属は電子受容体として作用するので、各触媒金属の酸化還元電位に応じた水素ガスの検出感度を実現できる。   The calcining treatment conditions such as the heat treatment temperature and time are not limited to the above production conditions, but the fine tungsten oxide, which is the structure of the tungsten oxide detection film of the present invention, is used as the main component. If the catalyst metal in the oxidized state is contained on the surface of the metal, the adsorption and dissociation of hydrogen gas is facilitated. If the catalyst metal in the oxidized state is contained, the oxidized catalyst metal acts as an electron acceptor. The detection sensitivity of hydrogen gas according to the reduction potential can be realized.

図3に本発明の触媒金属を含む微粒子酸化タングステンの集合体で構成される水素ガス検知膜10のX線回折パターンを示す。ここでは、触媒金属を白金とし、タングステンに対する割合が3モル%の場合であり、各X線回折パターンの凡例は、水素ガス検知膜を製造する際の仮焼温度である。X線回折パターンを観察すると、X線回折角2θ=20°から30°において酸化タングステンのX線回折メインピークが見られ、X線回折角2θ=30°より広角度には、高次のX線回折ピークが見られることから、水素ガス検知膜10は結晶構造を有することがわかる。特に2θ=24.2°は酸化タングステンの三斜晶系(triclinic)のメイン回折ピーク結晶格子面指数(200)に相当し、2θ=23.1°は酸化タングステンの単斜晶系(monoclinic)のメイン回折ピーク結晶格子面指数(001)である。なお図3においては、酸化タングステンの三斜晶系のその他のピーク(020)も示している。   FIG. 3 shows an X-ray diffraction pattern of the hydrogen gas detection film 10 composed of an aggregate of fine particle tungsten oxide containing the catalytic metal of the present invention. Here, the catalyst metal is platinum and the ratio to tungsten is 3 mol%, and the legend of each X-ray diffraction pattern is the calcining temperature at the time of manufacturing the hydrogen gas detection film. When observing the X-ray diffraction pattern, an X-ray diffraction main peak of tungsten oxide is observed at an X-ray diffraction angle 2θ = 20 ° to 30 °, and higher-order X is observed at a wider angle than the X-ray diffraction angle 2θ = 30 °. From the fact that a line diffraction peak is observed, it can be seen that the hydrogen gas detection film 10 has a crystal structure. In particular, 2θ = 24.2 ° corresponds to the triclinic main diffraction peak crystal lattice plane index (200) of tungsten oxide, and 2θ = 23.1 ° is a monoclinic system of tungsten oxide. The main diffraction peak crystal lattice plane index (001). FIG. 3 also shows another triclinic peak (020) of tungsten oxide.

また、酸化タングステンのX線回折メインピークの回折強度は、タングステンに対する触媒金属の割合の増加にともない減少するが、触媒金属のタングステンに対する割合が0.3〜30モル%では酸化タングステンのX線回折ピークが見られることから結晶相の存在が確認できる(図示せず)。   Further, the diffraction intensity of the X-ray diffraction main peak of tungsten oxide decreases as the ratio of the catalytic metal to tungsten increases, but when the ratio of the catalytic metal to tungsten is 0.3 to 30 mol%, the X-ray diffraction of tungsten oxide. The presence of a crystal phase can be confirmed from the peak (not shown).

一方、走査型電子顕微鏡(SEM)の水素ガス検知膜の観察によれば、水素ガス検知膜は、酸化タングステンの微粒子の集合体であることが確認され、微粒子酸化タングステンの平均粒子径をSEMによる約100個の粒子径度数分布より算出した結果、微粒子酸化タングステンの平均粒子径は15nm〜100nmであった。したがって、X線回折パターンと走査型電子顕微鏡(SEM)の観察から、水素ガス検知膜は、平均粒子径15nm〜100nmの微粒子酸化タングステンの集合体であり、各微粒子酸化タングステンは、結晶化していることを確認した。   On the other hand, according to the observation of the hydrogen gas detection film of a scanning electron microscope (SEM), it is confirmed that the hydrogen gas detection film is an aggregate of tungsten oxide fine particles, and the average particle diameter of the fine particle tungsten oxide is determined by SEM. As a result of calculating from the particle size frequency distribution of about 100 particles, the average particle size of the fine particle tungsten oxide was 15 nm to 100 nm. Therefore, from observation of an X-ray diffraction pattern and a scanning electron microscope (SEM), the hydrogen gas detection film is an aggregate of fine particle tungsten oxide having an average particle diameter of 15 nm to 100 nm, and each fine particle tungsten oxide is crystallized. It was confirmed.

図4に、図3の酸化タングステンのX線回折パターンより求めた酸化タングステンの三斜晶系(triclinic)と単斜晶系(monoclinic)のX線回折メインピークの比(=(001)/(200)と水素ガスの検出感度依存性を示す。図4においては、水素ガス検知膜の合成法にはゾル・ゲル法を用いて、ゾル・ゲル合成時の触媒金属は白金とし、タングステンに対する白金触媒のモル比が3%の場合とした。仮焼条件は、空気50ml/minで仮焼温度を350℃から700℃の範囲で5時間仮焼処理し、仮焼処理後に室温に戻し、水素ガス検知膜10のX線回折パターンの測定を行った。なお水素ガスの検出感度は、図2の測定系を有する水素ガスセンサ70を用いて測定した。測定条件は、動作温度25℃、空気中水素ガス濃度1%とし、相対湿度は50%の条件である。   FIG. 4 shows the ratio of triclinic and monoclinic X-ray diffraction main peaks of tungsten oxide obtained from the X-ray diffraction pattern of tungsten oxide in FIG. 3 (= (001) / ( 200) and hydrogen gas detection sensitivity dependence in Fig. 4. In Fig. 4, the sol-gel method is used for the synthesis method of the hydrogen gas detection film, and the catalyst metal at the time of sol-gel synthesis is platinum and platinum relative to tungsten. The molar ratio of the catalyst was 3% The calcining conditions were calcining conditions at a temperature of 350 ° C. to 700 ° C. for 5 hours with air 50 ml / min, and returned to room temperature after the calcining treatment. The X-ray diffraction pattern of the gas detection film 10 was measured, and the hydrogen gas detection sensitivity was measured using the hydrogen gas sensor 70 having the measurement system of Fig. 2. The measurement conditions were an operating temperature of 25 ° C and in the air. And 1% oxygen gas concentration, relative humidity is 50% for.

図4に示すようにメインピークの比(=(001)/(200))は、仮焼処理温度の上昇とともに増加する。水素ガスの検出感度に関しては、メインピークの比(=(001)/(200))を、0.53から0.94とすることにより、水素ガスの検出感度R0/Reが10以上となる水素ガスセンサ70を実現できる。この水素ガス検出の高感度化のメカニズムは、酸化タングステン水素検知膜が、2つの結晶相を有する場合に結晶相の界面でずれ変質層(shear defect)が形成される。この変質層には酸素欠陥が形成されやすく、電子濃度が増加するとともに、プロトン移動のパスが形成されやすい。したがって高移動度のプロトン導電が得られて、電気導電率が増加するためと考えている。なお、ここでは、三斜晶系(triclinic)と単斜晶系(monoclinic)のX線回折パターンのメインピークの比で、2つの結晶相が有する場合に、水素ガスの検出感度が増大することを説明するものであり、本発明は、酸化タングステン水素検知膜6の三斜晶系(triclinic)のメイン回折ピーク結晶格子面指数(200)と、単斜晶系(monoclinic)のメイン回折ピーク結晶格子面指数(001)に限定されるものではない。 As shown in FIG. 4, the ratio of the main peak (= (001) / (200)) increases as the calcining temperature rises. For the detection sensitivity of the hydrogen gas, the ratio of the main peak (= (001) / (200)), by 0.53 from 0.94, the detection sensitivity R 0 / R e of the hydrogen gas is 10 or more and A hydrogen gas sensor 70 can be realized. The mechanism for increasing the sensitivity of this hydrogen gas detection is that when the tungsten oxide hydrogen detection film has two crystal phases, a shift defect layer (shear defect) is formed at the interface between the crystal phases. In the altered layer, oxygen defects are easily formed, the electron concentration is increased, and a proton transfer path is easily formed. Therefore, it is considered that proton mobility with high mobility is obtained and electric conductivity is increased. Here, the detection sensitivity of hydrogen gas is increased when the two crystal phases have a ratio of the main peak of the triclinic and monoclinic X-ray diffraction patterns. In the present invention, the triclinic main diffraction peak crystal lattice index (200) and the monoclinic main diffraction peak crystal of the tungsten oxide hydrogen detection film 6 are described. It is not limited to the lattice plane index (001).

図5に微粒子酸化タングステンの平均粒子径と水素ガスの検出感度との関係を示す。微粒子酸化タングステンの平均粒子径は微粒子酸化タングステン形成時のゾル・ゲル合成において、処理温度と処理時間により制御する。図5のガス感度特性の測定に供した微粒子酸化タングステンは、ゾル・ゲル合成時において、タングステン酸(H2WO4)2.5gをメタノール31mlに溶解させ、30分室温で攪拌し、純水18mlを加えコロイド溶液を作製した。触媒金属としては白金を採用し、タングステン酸のコロイド溶液に、塩化白金酸水溶液を0.0125mol/lを8ml添加し、予め形成した一対の電極20を覆うように絶縁基板30上に、上記コロイド溶液をスピンコーティングで塗布し、仮焼条件として空気50ml/minのフロー状態で、仮焼温度を300℃から800℃の範囲でそれぞれ5時間加熱し室温25℃に自然冷却した。 FIG. 5 shows the relationship between the average particle diameter of fine tungsten oxide and the detection sensitivity of hydrogen gas. The average particle diameter of the fine particle tungsten oxide is controlled by the treatment temperature and the treatment time in the sol-gel synthesis when forming the fine particle tungsten oxide. The fine particle tungsten oxide used for the measurement of the gas sensitivity characteristics in FIG. 5 was prepared by dissolving 2.5 g of tungstic acid (H 2 WO 4 ) in 31 ml of methanol at the time of sol-gel synthesis and stirring at room temperature for 30 minutes. 18 ml was added to prepare a colloidal solution. Platinum is used as the catalyst metal, and 8 ml of 0.0125 mol / l of chloroplatinic acid aqueous solution is added to the colloidal solution of tungstic acid, and the colloid is placed on the insulating substrate 30 so as to cover the pair of electrodes 20 formed in advance. The solution was applied by spin coating, and was calcined under a flow condition of 50 ml / min of air as calcining conditions, and each was calcined at a temperature of 300 ° C. to 800 ° C. for 5 hours, and then naturally cooled to 25 ° C.

微粒子酸化タングステン1の平均粒子径は、各仮焼条件の試料において走査型電子顕微鏡(SEM)を用いて微粒子酸化タングステン約100個の粒子径の度数分布より平均粒子径を算出した。水素ガスの検出感度の測定は、図2の評価系により各仮焼条件にて水素ガス検知膜を作製した水素ガスセンサ70を用いて行った。   The average particle size of the fine particle tungsten oxide 1 was calculated from the frequency distribution of the particle size of about 100 fine particle tungsten oxides using a scanning electron microscope (SEM) in each calcining condition sample. The hydrogen gas detection sensitivity was measured using a hydrogen gas sensor 70 in which a hydrogen gas detection film was produced under each calcining condition using the evaluation system shown in FIG.

水素ガス検知膜は、図1、図2、図10においても同じ構造を有し、図5からわかるように、本発明の水素ガス検知膜6または10の構成する微粒子酸化タングステン1は、平均粒子径(短い方の長さ)が15nmから80nmの場合に水素ガスの検出感度10以上が得られる。この水素ガスの検出感度向上の理由は、微粒子酸化タングステンの平均粒子サイズを15nmから80nmとすることにより触媒金属が吸着できる表面積を増やすことができ、水素ガスの高感度化を実現できるからである。一方、微粒子酸化タングステンの平均粒子サイズが15nmより小さくなると、触媒金属が吸着できる表面積が減るとともに、酸化タングステン中のプロトン及び電子の散乱が増え電気導電率が低下するために水素ガスの検出感度は減少する。   The hydrogen gas detection film has the same structure in FIGS. 1, 2, and 10. As can be seen from FIG. 5, the fine particle tungsten oxide 1 constituting the hydrogen gas detection film 6 or 10 of the present invention has an average particle size. When the diameter (shorter length) is 15 nm to 80 nm, a hydrogen gas detection sensitivity of 10 or more is obtained. The reason for this improvement in detection sensitivity of hydrogen gas is that the surface area on which the catalytic metal can be adsorbed can be increased by increasing the average particle size of the fine particle tungsten oxide from 15 nm to 80 nm, thereby realizing high sensitivity of hydrogen gas. . On the other hand, when the average particle size of the fine particle tungsten oxide is smaller than 15 nm, the surface area on which the catalytic metal can be adsorbed is reduced, and the proton and electron scattering in the tungsten oxide is increased and the electric conductivity is lowered. Decrease.

図6にX線光電子分光(X−ray photoelectron spectroscopy, XPS)測定より求めた微粒子酸化タングステンを構成する酸素原子数とタングステン原子数の比|O|/|W|と水素ガスの検出感度依存性を示す。酸素原子数とタングステン原子数の比は、島津製X線電子分光分析装置(型番AXIS−HSU)を用い、15KV、300Wの条件とし、X線源にはMgKα;1253.6eVを用いる。水素ガス検知膜6は、以下のゾル・ゲル法により合成する。   FIG. 6 shows the ratio of the number of oxygen atoms and the number of tungsten atoms constituting the fine-particle tungsten oxide determined by X-ray photoelectron spectroscopy (XPS) measurement | O | / | W | and the detection sensitivity dependence of hydrogen gas. Indicates. The ratio between the number of oxygen atoms and the number of tungsten atoms is 15 KV, 300 W using an X-ray electron spectrometer (model number AXIS-HSU) manufactured by Shimadzu, and MgKα: 1253.6 eV is used as the X-ray source. The hydrogen gas detection film 6 is synthesized by the following sol-gel method.

具体的には、タングステン酸(H2WO4)2.5gをメタノール31mlに溶融させ、30分室温で攪拌し、純水18mlを加えコロイド溶液を作製する。触媒金属として白金を採用し、タングステン酸のコロイド溶液に、濃度0.1モル/lの塩化白金酸水溶液を1.8ml、3.6ml、11ml、23mlを加えタングステンに対する白金触媒の割合が1.8モル%、3.6モル%、11モル%、23モル%の白金触媒を含有するタングステン酸コロイド溶液を合成する。仮焼条件は、空気50ml/minのフロー状態で、仮焼温度を350℃から700℃の範囲で5時間仮焼を行った。 Specifically, 2.5 g of tungstic acid (H 2 WO 4 ) is melted in 31 ml of methanol, stirred at room temperature for 30 minutes, and 18 ml of pure water is added to prepare a colloidal solution. Platinum is employed as the catalyst metal, and 1.8 ml, 3.6 ml, 11 ml, and 23 ml of 0.1 mol / l chloroplatinic acid aqueous solution are added to the colloidal solution of tungstic acid, and the ratio of the platinum catalyst to tungsten is 1. Tungstic acid colloidal solutions containing 8 mol%, 3.6 mol%, 11 mol%, 23 mol% platinum catalyst are synthesized. The calcination conditions were such that the calcination temperature was 350 ° C. to 700 ° C. for 5 hours in a flow state of air of 50 ml / min.

仮焼後、室温25℃まで自然徐冷し、空気中水素ガス濃度1%、相対湿度50%とし、水素ガスの検出感度を測定した。   After calcination, the mixture was naturally cooled to room temperature of 25 ° C., hydrogen gas concentration in air was set to 1%, relative humidity was set to 50%, and hydrogen gas detection sensitivity was measured.

図6より、微粒子酸化タングステンを構成する酸素原子数とタングステン原子数の比|O|/|W|は、白金触媒のモル比に依存すること無く、仮焼温度を350℃から700℃に上昇させるとともに増加する。   As shown in FIG. 6, the ratio of the number of oxygen atoms and the number of tungsten atoms constituting the fine particle tungsten oxide | O | / | W | is increased from 350 ° C. to 700 ° C. without depending on the molar ratio of the platinum catalyst. Increase with increasing

図6において、特にタングステンに対する白金触媒の割合が1.8モル%の場合には、酸素原子数とタングステン原子数の比|O|/|W|が2.54で、水素ガスの検出感度16が得られ、|O|/|W|が2.60で水素ガスの検出感度の最大値320をとり、その後水素ガスの検出感度は、|O|/|W|の増加とともにやや減少傾向を示し、|O|/|W|=2.63では、水素ガスの検出感度80となる。したがって、タングステンに対する白金触媒の割合が1.8モル%の場合には、酸素原子数とタングステン原子数の比|O|/|W|は2.54から2.63の場合のガス検知膜が、水素ガスの検出感度10以上がえられ、水素ガスセンサの検知膜として好ましい。さらに好ましくは、|O|/|W|が2.56から、2.62で水素ガスの検出感度100以上を実現できる。   In FIG. 6, especially when the ratio of the platinum catalyst to tungsten is 1.8 mol%, the ratio of the number of oxygen atoms to the number of tungsten atoms | O | / | W | When | O | / | W | is 2.60, the hydrogen gas detection sensitivity reaches a maximum value 320, and the hydrogen gas detection sensitivity tends to decrease slightly as | O | / | W | increases. When | O | / | W | = 2.63, the hydrogen gas detection sensitivity is 80. Therefore, when the ratio of the platinum catalyst to tungsten is 1.8 mol%, the ratio of the number of oxygen atoms to the number of tungsten atoms | O | / | W | is 2.54 to 2.63. A detection sensitivity of hydrogen gas of 10 or more is obtained, which is preferable as a detection film for a hydrogen gas sensor. More preferably, when | O | / | W | is 2.56 to 2.62, a hydrogen gas detection sensitivity of 100 or more can be realized.

タングステンに対する白金触媒の割合が3.6モル%の場合には、酸素原子数とタングステン原子数の比|O|/|W|が2.54から2.63で、水素ガスの検出感度10以上が得られ、特に|O|/|W|が2.55から2.63の範囲で、水素ガスの検出感度100以上を得ることができる。   When the ratio of platinum catalyst to tungsten is 3.6 mol%, the ratio of the number of oxygen atoms to the number of tungsten atoms | O | / | W | is 2.54 to 2.63, and the detection sensitivity of hydrogen gas is 10 or more. Particularly, when | O | / | W | is in the range of 2.55 to 2.63, a hydrogen gas detection sensitivity of 100 or more can be obtained.

タングステンに対する白金触媒の割合を11モル%以上に増大させると、水素ガスの検出感度は減少する。   When the ratio of the platinum catalyst to tungsten is increased to 11 mol% or more, the detection sensitivity of hydrogen gas decreases.

タングステンに対する白金触媒の割合23モル%では、水素ガスの検出感度は10以下であった。これは、白金触媒のタングステンに対する割合の増大とともに白金粒子が凝集し粒子が巨大となり、水素ガスが吸着する触媒金属の表面積が減少するからであると発明者は推測している。   At a platinum catalyst ratio of 23 mol% with respect to tungsten, the hydrogen gas detection sensitivity was 10 or less. The inventors speculate that this is because as the ratio of the platinum catalyst to tungsten increases, the platinum particles agglomerate, the particles become huge, and the surface area of the catalytic metal adsorbed by hydrogen gas decreases.

上記の酸素欠陥による水素ガスの検出感度の向上は、微粒子酸化タングステンの酸素欠陥が増えることにより電子キャリア濃度が増え、電気導電率が増大するとともに、微粒子酸化タングステンのプロトンの入る隙間3が増え、各微粒子酸化タングステンに有効にプロトン伝導チャネルが形成されるためである。したがって、最適な酸素原子数とタングステン原子数の比|O|/|W|が存在する。酸素欠陥が多い、すなわち|O|/|W|が小さな領域で水素ガスの検出感度が減少するのは、仮焼温度が低いために酸化タングステンの粒子径が小さすぎて、酸化タングステンの粒界でのプロトン及び電子の散乱が伝導より優勢となり、電気導電率が低下して水素ガスの検出感度が低下すると考えている。   The improvement in hydrogen gas detection sensitivity due to the above oxygen defects increases the electron carrier concentration by increasing the oxygen defects of the fine particle tungsten oxide, increases the electrical conductivity, and increases the gap 3 into which the protons of the fine particle tungsten oxide enter, This is because a proton conduction channel is effectively formed in each fine particle tungsten oxide. Therefore, there exists an optimal ratio of oxygen atoms to tungsten atoms | O | / | W |. The reason why the hydrogen gas detection sensitivity decreases in a region where there are many oxygen defects, that is, where | O | / | W | is small, is that the particle size of tungsten oxide is too small due to the low calcining temperature, and the grain boundary of tungsten oxide is reduced. It is believed that the proton and electron scattering at this point becomes more dominant than the conduction, and the electric conductivity is lowered and the hydrogen gas detection sensitivity is lowered.

一方、|O|/|W|を増やすと水素ガスの検出感度が低下するのは、|O|/|W|が2.60以上の場合には、仮焼温度を550℃以上に加熱する必要があり、その範囲の仮焼温度においては仮焼温度の増大とともに、酸素欠陥が減少し電子キャリア濃度が低下するために電気抵抗が増加する影響と、仮焼温度を上げるとともに微粒子酸化タングステンの平均粒子径が増大することから、酸化タングステンの凝集化が生じ酸化タングステンの表面積が減少し、そのために酸化タングステン表面に吸着する触媒金属量が減るためと解釈される。   On the other hand, when | O | / | W | is increased, the detection sensitivity of hydrogen gas decreases. When | O | / | W | is 2.60 or more, the calcining temperature is heated to 550 ° C. or more. At the calcining temperature within that range, the increase in the calcining temperature, the effect of increasing the electrical resistance because the oxygen defects decrease and the electron carrier concentration decreases, Since the average particle diameter increases, it is interpreted that the aggregation of tungsten oxide occurs and the surface area of tungsten oxide decreases, thereby reducing the amount of catalytic metal adsorbed on the tungsten oxide surface.

図7に微粒子酸化タングステンの表面に含有する白金金属触媒の酸化状態と水素ガスの検出感度との関係を示す。白金の酸化状態の測定は前述のX線光電子分光(XPS)測定により評価した。   FIG. 7 shows the relationship between the oxidation state of the platinum metal catalyst contained on the surface of the particulate tungsten oxide and the detection sensitivity of hydrogen gas. The measurement of the oxidation state of platinum was evaluated by the aforementioned X-ray photoelectron spectroscopy (XPS) measurement.

図8に示すように白金金属触媒のX線光電子分光において結合エネルギ70.9eVに酸化していない金属状白金の電子状態4f2/7ピーク(Pt0)を有する。酸化状態の白金は、酸素との結合により高エネルギ側にケミカルシフトし、結合エネルギ73.7eVに2価の酸化状態の白金(PtO)ピークを呈する。さらに酸化が進み、4価の酸化状態の白金(PtO2)では、結合エネルギ74.5eVにピークが現れる。 As shown in FIG. 8, it has an electronic state 4f 2/7 peak (Pt 0 ) of metallic platinum that is not oxidized to a binding energy of 70.9 eV in X-ray photoelectron spectroscopy of a platinum metal catalyst. Oxidized platinum chemically shifts to a higher energy side by bonding with oxygen, and exhibits a bivalent oxidized platinum (PtO) peak at a binding energy of 73.7 eV. Further, oxidation progresses, and a peak appears at a binding energy of 74.5 eV in platinum (PtO 2 ) in a tetravalent oxidation state.

合成した白金触媒を含む微粒子酸化タングステンのX線光電子分光測定において、図8に示すように結合エネルギ65eVから80eVの白金ピークにおいて、金属状態(Pt0)、2価の酸化状態(PtO)、4価の酸化状態(PtO2)にピーク分離を行う。それぞれのピーク分離の例を図8に点線で示す。ここで白金触媒の酸化状態の定義として、図1の白金の電子状態4f2/7の結合エネルギ位置70.9eVに現れるピーク面積と、2価の酸化状態白金の結合エネルギ73.7eVのピーク面積と、4価の酸化状態白金の結合エネルギ74.5eVに現れるピーク面積の和から、即ち、(XPS(1)/XPS(2))×100(%)の式を用いて酸化状態の白金の割合を算出する。 In the X-ray photoelectron spectroscopy measurement of the fine particle tungsten oxide containing the synthesized platinum catalyst, as shown in FIG. 8, at the platinum peak with a binding energy of 65 eV to 80 eV, the metal state (Pt 0 ), divalent oxidation state (PtO), 4 Peak separation is performed in the valence oxidation state (PtO 2 ). An example of each peak separation is shown by dotted lines in FIG. Here, as the definition of the oxidation state of the platinum catalyst, the peak area appearing at the binding energy position 70.9 eV of the electronic state 4f 2/7 of platinum in FIG. 1 and the peak area of the binding energy 73.7 eV of the divalent oxidation state platinum are shown. And the sum of the peak areas appearing at 74.5 eV of the binding energy of tetravalent oxidation state platinum, that is, using the expression (XPS (1) / XPS (2)) × 100 (%), Calculate the percentage.

ここで、XPS(1)=XPSの白金酸化状態のピーク面積、XPS(2)=XPSの白金金属状態のピーク面積+XPSの酸化状態のピーク面積とする。   Here, XPS (1) = XPS peak area in the platinum oxidation state, XPS (2) = XPS platinum metal state peak area + XPS oxidation state peak area.

なお水素ガス検知層の作成にはゾル・ゲル合成法を用い、具体的にはタングステン酸(H2WO4)2.5gをメタノール31mlに溶融させ、30分室温で攪拌し、純水18mlを加えコロイド溶液を作製する。触媒金属として白金を採用し、タングステン酸のコロイド溶液に、濃度0.1モル/lの塩化白金酸(H2(PtCl6))水溶液4mlを加え、タングステンに対する白金触媒の割合が4モル%の白金触媒を含有するタングステン酸コロイド溶液を合成した。特に仮焼処理を空気50ml/minのフロー状態で、仮焼温度を350℃から700℃の範囲で5時間行い、仮焼温度により微粒子酸化タングステンの酸素欠陥を最適化することで、触媒金属である白金の酸化状態を制御した。 The hydrogen gas detection layer was prepared by using a sol-gel synthesis method. Specifically, 2.5 g of tungstic acid (H 2 WO 4 ) was melted in 31 ml of methanol, stirred at room temperature for 30 minutes, and 18 ml of pure water was added. Add colloidal solution. Platinum is used as the catalyst metal, 4 ml of a chloroplatinic acid (H 2 (PtCl 6 )) aqueous solution having a concentration of 0.1 mol / l is added to the colloidal solution of tungstic acid, and the ratio of the platinum catalyst to tungsten is 4 mol%. Tungstic acid colloidal solution containing platinum catalyst was synthesized. In particular, the calcination treatment is performed in a flow state of 50 ml / min of air at a calcining temperature of 350 ° C. to 700 ° C. for 5 hours, and by optimizing oxygen defects of the fine particle tungsten oxide by the calcining temperature, The oxidation state of some platinum was controlled.

水素ガスセンサ感度は、前述と同様に図2に示した水素ガスセンサにより、測定温度25℃、空気中水素ガス濃度1%、相対湿度50%で測定した。   The hydrogen gas sensor sensitivity was measured at the measurement temperature of 25 ° C., the hydrogen gas concentration in the air of 1%, and the relative humidity of 50% using the hydrogen gas sensor shown in FIG.

図7において前記ゾル・ゲル合成方法により得られた酸化タングステンに含まれる白金触媒金属の酸化状態と水素ガスの検出感度依存性を記号●で示す。   In FIG. 7, the oxidation state of the platinum catalyst metal contained in the tungsten oxide obtained by the sol-gel synthesis method and the dependence on detection sensitivity of hydrogen gas are indicated by symbols ●.

図7よりわかるように、仮焼温度400℃で、微粒子酸化タングステン表面に含有する白金触媒の酸化状態が18%でとなり、そのときの水素ガスの検出感度36を得る。ガスセンサとしては水素ガスの検出感度10以上が要求されることから、白金触媒の酸化状態10%以上となる仮焼条件、すなわち仮焼温度400℃、空気フロー条件50ml/minで5時間行うことが好ましい。   As can be seen from FIG. 7, at a calcination temperature of 400 ° C., the oxidation state of the platinum catalyst contained on the surface of the fine particle tungsten oxide is 18%, and the hydrogen gas detection sensitivity 36 at that time is obtained. Since the gas sensor is required to have a detection sensitivity of 10 or more for hydrogen gas, it is performed for 5 hours at a calcining condition where the oxidation state of the platinum catalyst is 10% or more, that is, calcining temperature 400 ° C. and air flow condition 50 ml / min. preferable.

さらに仮焼温度を上げ500℃以上で、また、白金触媒の酸化状態30%が得られ、この酸化状態の白金触媒を有する微粒子酸化タングステンを主成分とするガスセンサ素子で、水素ガスの検出感度250を実現できる。これは、高感度な水素ガスセンサ素子に必要なガス感度100以上を満足するものである。前述の塩化白金酸を含むタングステン酸のコロイド溶液においては、仮焼温度450℃から650℃と上昇させるとともに白金触媒の酸化状態は30%から78%と増加する。水素ガスの検出感度は白金触媒の酸化状態約60%で最大値約1000をとる。しかしながら、白金触媒の酸化状態が約60%を超えると、水素ガスの検出感度は減少する。   Further, the calcining temperature is raised to 500 ° C. or higher, and an oxidation state of 30% of the platinum catalyst is obtained. The gas sensor element mainly composed of fine particle tungsten oxide having the platinum catalyst in this oxidation state has a hydrogen gas detection sensitivity of 250. Can be realized. This satisfies the gas sensitivity of 100 or more required for a highly sensitive hydrogen gas sensor element. In the above-described colloidal solution of tungstic acid containing chloroplatinic acid, the calcining temperature is increased from 450 ° C. to 650 ° C., and the oxidation state of the platinum catalyst is increased from 30% to 78%. The detection sensitivity of hydrogen gas takes a maximum value of about 1000 when the oxidation state of the platinum catalyst is about 60%. However, when the oxidation state of the platinum catalyst exceeds about 60%, the detection sensitivity of hydrogen gas decreases.

その他のゾル・ゲル合成法として、Na2WO4・2H2Oを26.6gとり、純水を入れて200mlに調整する。液温60Cで、超音波を30分照射して攪拌し溶解させ、無色透明のNa2WO4水溶液(0.4モル/l)を得る。その後カチオン交換樹脂(商品名;ダイアイイオンSK1B, 三菱化学製)を用いてナトリウムと水素原子を交換させタングステン酸(H2WO4)コロイド溶液を作製し、さらにメチルアルコール65mlと、濃度0.125モル/l塩化白金酸(H2(PtCl6))水溶液64mlを添加し、白金触媒を含むタングステン酸(H2WO4)のコロイド溶液とした。仮焼条件、及び水素ガスの検出感度測定は、前記タングステン酸(H2WO4)を前躯体とするコロイド溶液の場合と同様である。金属触媒の酸化状態と水素ガスの検出感度依存性との関係も合わせて図7において記号○で表している。図7からわかるようにタングステン酸(H2WO4)コロイド溶液のゾル・ゲルの合成方法にはほとんど依存せず、白金触媒の酸化状態20%〜90%で水素ガスの検出感度10以上が得られる。さらに、白金触媒の酸化状態30%〜78%で水素ガスの検出感度100以上が得られる。 As another sol-gel synthesis method, 26.6 g of Na 2 WO 4 .2H 2 O is taken and pure water is added to adjust to 200 ml. At a liquid temperature of 60C, ultrasonic waves are irradiated for 30 minutes to stir and dissolve to obtain a colorless and transparent Na 2 WO 4 aqueous solution (0.4 mol / l). Thereafter, sodium and hydrogen atoms are exchanged using a cation exchange resin (trade name; Diaiion SK1B, manufactured by Mitsubishi Chemical) to prepare a tungstic acid (H 2 WO 4 ) colloidal solution. A 125 mol / l chloroplatinic acid (H 2 (PtCl 6 )) aqueous solution (64 ml) was added to prepare a colloidal solution of tungstic acid (H 2 WO 4 ) containing a platinum catalyst. The calcining conditions and the hydrogen gas detection sensitivity measurement are the same as in the case of the colloidal solution containing the tungstic acid (H 2 WO 4 ) as a precursor. The relationship between the oxidation state of the metal catalyst and the dependence on the detection sensitivity of hydrogen gas is also indicated by symbol ◯ in FIG. As can be seen from FIG. 7, it hardly depends on the sol-gel synthesis method of a tungstic acid (H 2 WO 4 ) colloidal solution, and a hydrogen gas detection sensitivity of 10 or more is obtained when the oxidation state of the platinum catalyst is 20% to 90%. It is done. Furthermore, a hydrogen gas detection sensitivity of 100 or more is obtained when the oxidation state of the platinum catalyst is 30% to 78%.

触媒金属としての添加物は、実施例1及び2のような塩化物塩だけではなく、硝酸塩、硫酸塩など無機塩でも有機塩でもよい。有機塩ではカルボン酸塩、ジカルボン酸塩やアセチルアセトン錯塩が挙げられる。さらには、触媒金属としての添加物は、タングステン酸コロイド溶液に溶解するものが好ましい。   The additive as the catalyst metal is not limited to the chloride salt as in Examples 1 and 2, but may be an inorganic salt such as nitrate or sulfate, or an organic salt. Organic salts include carboxylates, dicarboxylates and acetylacetone complex salts. Furthermore, the additive as the catalyst metal is preferably one that dissolves in the tungstic acid colloid solution.

パラジウムの場合には、タングステン酸(H2WO4)のコロイド溶液にパラジウム水化物を添加する。具体的には、タングステン酸(H2WO4)2.5gをメタノール31mlに溶融させ、30分室温で攪拌し、純水18mlを加えてタングステン酸のコロイド溶液を作製する。触媒金属として、濃度0.0125モル/lのジニトロジアミンパラジウム硝酸塩水溶液Pd(NH3)2(NO2)2、8mlをタングステン酸のコロイド溶液に添加し、パラジウム触媒金属を含有するタングステン酸のコロイド溶液を図2に示す一対の電極20を覆うように絶縁基板30上に、スピンコーティングにより塗布し、空気50ml/minで仮焼温度400℃から600℃の範囲で5時間加熱保持し、然る後に自然冷却し室温25℃で、水素ガスの検出感度の測定を行った。水素ガスの検出感度は、パラジウム触媒の方が、白金触媒の場合に比べて向上する。また水素ガスの検出速度も早くなる。 In the case of palladium, palladium hydrate is added to a colloidal solution of tungstic acid (H 2 WO 4 ). Specifically, 2.5 g of tungstic acid (H 2 WO 4 ) is melted in 31 ml of methanol, stirred at room temperature for 30 minutes, and 18 ml of pure water is added to prepare a colloidal solution of tungstic acid. As a catalytic metal, 2 ml of dinitrodiamine palladium nitrate aqueous solution Pd (NH 3 ) 2 (NO 2 ) at a concentration of 0.0125 mol / l was added to a colloidal solution of tungstic acid, and a colloid of tungstic acid containing palladium catalytic metal. The solution is applied by spin coating on the insulating substrate 30 so as to cover the pair of electrodes 20 shown in FIG. 2, and is heated and held at a calcining temperature range of 400 ° C. to 600 ° C. for 5 hours at 50 ml / min. Thereafter, it was naturally cooled and the detection sensitivity of hydrogen gas was measured at room temperature of 25 ° C. The detection sensitivity of hydrogen gas is improved with the palladium catalyst compared with the platinum catalyst. Also, the detection speed of hydrogen gas is increased.

また、触媒金属として、イリジウム(Ir)の場合には、濃度0.0125モル/l硝酸イリジウムIr(NO34溶液8mlを添加する以外は同様にして水素ガスセンサ素子を作製し、水素ガスの検出感度を評価した。または、濃度0.0125モル/l塩化イリジウム酸(H2[IrCl6]・6H2O)水溶液8mlを添加してもよい。 In the case of iridium (Ir) as the catalyst metal, a hydrogen gas sensor element was prepared in the same manner except that 8 ml of a solution having a concentration of 0.0125 mol / l iridium nitrate Ir (NO 3 ) 4 was added. The detection sensitivity was evaluated. Alternatively, 8 ml of a 0.0125 mol / l chlorinated iridium acid (H 2 [IrCl 6 ] · 6H 2 O) aqueous solution may be added.

また、触媒金属としてオスミウム(Os)の場合には、濃度0.0125モル/lの酸化オスミウム(VIII)水溶液8mlを添加する以外は同様にして素子を作製した。   In the case of osmium (Os) as the catalyst metal, an element was prepared in the same manner except that 8 ml of an osmium oxide (VIII) aqueous solution having a concentration of 0.0125 mol / l was added.

また、触媒金属としてロシウム(Rh)の場合には、濃度0.0125モル/lの硝酸ロジウム溶液(III)水溶液8mlを添加する以外は同様にして素子を作製した。   In the case of rhodium (Rh) as the catalyst metal, a device was prepared in the same manner except that 8 ml of a rhodium nitrate solution (III) aqueous solution having a concentration of 0.0125 mol / l was added.

また、触媒金属としてルテニウム(Ru)の場合には、濃度0.0125モル/lの硝酸ルテニウム(III)水溶液8mlを添加する以外は同様にして素子を作製した。   In the case of ruthenium (Ru) as the catalyst metal, a device was produced in the same manner except that 8 ml of a ruthenium (III) nitrate aqueous solution having a concentration of 0.0125 mol / l was added.

以上白金族金属は、電子陰性度もほぼ同等であり、水素ガスの検出感度及び速度の違いはあるが水素吸着解離に対する作用はほぼ同様であり、図2に示した水素ガスセンサにより、測定温度25℃、空気中水素ガス濃度1%、相対湿度50%で測定したところ、いずれも水素ガスの検出感度10以上が得られる。   As described above, the platinum group metals have substantially the same electronegativity, and have almost the same effect on hydrogen adsorption / dissociation although there are differences in the detection sensitivity and speed of hydrogen gas. The hydrogen gas sensor shown in FIG. When measured at 0 ° C., a hydrogen gas concentration in air of 1%, and a relative humidity of 50%, a hydrogen gas detection sensitivity of 10 or more can be obtained.

また酸化タングステンに添加するドーパントとしての金属は、タングステンにイオン半径が近く、また金属や半導体の結晶表面からその外側へ,1個の電子をとり出すのに必要な最小のエネルギである仕事関数がタングステンに近い、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe),コバルト(Co)、Ni(ニッケル)、銅(Cu),ニオブ(Nb),モリブデン(Mo),レニウム(Re)、チタン(Ti)も使用でき、タングステンに対して割合0.25モル%〜5モル%を添加することにより、酸化タングステン中に微小歪みが生じ、酸化タングステン中に酸素欠陥を発生させ、したがってプロトン導電率及び電子キャリア濃度を増加させ、電気導電率の向上させることができる。   Metals as dopants added to tungsten oxide have a work function, which is the minimum energy required to extract one electron from the crystal surface of a metal or semiconductor to the outside, because the ionic radius is close to that of tungsten. Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), Ni (nickel), copper (Cu), niobium (Nb), molybdenum (Mo), rhenium, close to tungsten (Re) and titanium (Ti) can also be used. By adding a proportion of 0.25 mol% to 5 mol% with respect to tungsten, minute distortion occurs in tungsten oxide and oxygen defects are generated in tungsten oxide. Therefore, the proton conductivity and the electron carrier concentration can be increased, and the electrical conductivity can be improved.

触媒金属としてバナジウム(V)の場合には、0.0125モル/l濃度メタバナジウム酸アンモニウム水溶液2mlをタングステン酸のコロイド溶液に添加する以外は同様にして素子を作製した。   In the case of vanadium (V) as the catalyst metal, a device was prepared in the same manner except that 2 ml of 0.0125 mol / l ammonium metavanadate aqueous solution was added to the colloidal solution of tungstic acid.

また、触媒金属としてクロム(Cr)の場合には、0.0125モル/l濃度硝酸クロム(III)九水和物水溶液2mlを添加する以外は同様にして素子を作製した。クロム(Cr)の添加量は、タングステンに対して0.25モル%〜2モル%が好ましい。   Further, in the case of chromium (Cr) as the catalyst metal, a device was fabricated in the same manner except that 2 ml of 0.0125 mol / l concentration chromium nitrate (III) nonahydrate was added. The addition amount of chromium (Cr) is preferably 0.25 mol% to 2 mol% with respect to tungsten.

また、触媒金属としてマンガン(Mn)の場合には、0.0125モル/l濃度硝酸マンガン水溶液2mlを添加する以外は同様にして素子を作製した。   In the case of manganese (Mn) as the catalyst metal, a device was prepared in the same manner except that 2 ml of 0.0125 mol / l aqueous manganese nitrate solution was added.

また、触媒金属として鉄(Fe)の場合には、0.0125モル/l濃度塩化第1鉄(FeCl2(H2O))4水溶液2mlを添加する以外は同様にして素子を作製した。 In the case of iron (Fe) as the catalyst metal, a device was fabricated in the same manner except that 2 ml of 0.0125 mol / l ferrous chloride (FeCl 2 (H 2 O)) 4 aqueous solution was added.

また、触媒金属としてコバルト(Co)の場合には、0.0125モル/l濃度塩化コバルト(CoCl2・6H2O)水溶液2mlを添加する以外は同様にして素子を作製した。 In the case of cobalt (Co) as the catalyst metal, a device was fabricated in the same manner except that 2 ml of 0.0125 mol / l concentration cobalt chloride (CoCl 2 .6H 2 O) aqueous solution was added.

また、金属触媒としてニッケル(Ni)の場合には、0.0125モル/l濃度ニッケル水和酸化物(Ni23・2H2O)水溶液2mlを添加する以外は同様にして素子を作製した。 In the case of nickel (Ni) as the metal catalyst, a device was fabricated in the same manner except that 2 ml of 0.0125 mol / l nickel hydrated oxide (Ni 2 O 3 .2H 2 O) aqueous solution was added. .

また、金属触媒として銅(Cu)の場合には、0.0125モル/l濃度酢酸銅(II)水和物(Cu(CH3COO)2・H2O)水溶液2mlを添加する以外は同様にして素子を作製した。 In addition, in the case of copper (Cu) as the metal catalyst, the same except that 2 ml of 0.0125 mol / l copper acetate (II) hydrate (Cu (CH 3 COO) 2 .H 2 O) aqueous solution is added. Thus, an element was produced.

また、金属触媒としてニオブ(Nb)の場合には、0.0125モル/l濃度塩化ニオブ水溶液2mlを添加する以外は同様にして素子を作製した。   In the case of niobium (Nb) as the metal catalyst, a device was produced in the same manner except that 2 ml of 0.0125 mol / l niobium chloride aqueous solution was added.

また、金属触媒としてモリブデン(Mo)の場合には、0.0125モル/l濃度モリブデン(I)水和物水溶液2mlを添加する以外は同様にして素子を作製した。   In the case of molybdenum (Mo) as the metal catalyst, a device was fabricated in the same manner except that 2 ml of 0.0125 mol / l concentration molybdenum (I) hydrate aqueous solution was added.

また、金属触媒としてレニウム(Re)の場合には、0.0025モル/l濃度酸化レニウム水和物水溶液2mlを添加する以外は同様にして素子を作製した。   In the case of rhenium (Re) as the metal catalyst, a device was fabricated in the same manner except that 2 ml of 0.0025 mol / l concentration rhenium oxide hydrate solution was added.

また、金属触媒としてチタン(Ti)の場合には、0.0025モル/l濃度チタン酸アルコキシド2mlとエタノール5 X 10―5モルとジエタノールアミン4X 10―6モルを添加する以外は同様にして素子を作製した。 Further, when a metal catalyst titanium (Ti) is an element in the same manner except that the addition of 0.0025 mol / l concentration titanate alkoxide 2ml ethanol 5 X 10- 5 moles diethanolamine 4X 10- 6 moles Produced.

上記いずれの場合においても、図2に示した水素ガスセンサにより、測定温度25℃、空気中水素ガス濃度1%、相対湿度50%で測定したところ、いずれも水素ガスの検出感度10以上が得られた。   In any of the above cases, the hydrogen gas sensor shown in FIG. 2 measured at a measurement temperature of 25 ° C., an air hydrogen gas concentration of 1%, and a relative humidity of 50%. It was.

図9に、触媒金属としての白金触媒金属の平均粒子径と水素ガスの検出感度依存性を示す。水素ガス検知膜の微粒子酸化タングステンは、ゾル・ゲル法により作製する。具体的には、タングステン酸(H2WO4)2.5gをメタノール31mlに溶融させ、30分室温で攪拌し、純水18mlを加えタングステン酸(H2WO4)のコロイド溶液を作製する。触媒金属として白金触媒を採用し、タングステン酸のコロイド溶液に、塩化白金酸水溶液(H2(PtCl6))を0.1mol/lを1.8ml、3.6ml、11ml、23mlを加えタングステンに対する白金量をパラメータとしてタングステンに対する白金触媒のモル比が1.8%、3.6%、11%、23%の触媒金属を含有するタングステン酸のコロイド溶液を合成する。然る後に、それぞれ白金触媒を有するタングステン酸のコロイド溶液を、図2のような一対の電極20を覆うように、絶縁基板30上にスピンコーティングした。然る後に空気50ml/minで、仮焼温度を350℃から600℃の温度範囲で5時間仮焼処理を行った。仮焼後の水素ガス検知膜10の膜厚は約500nmであった。 FIG. 9 shows the dependence of the average particle size of platinum catalyst metal as the catalyst metal on the detection sensitivity of hydrogen gas. The fine particle tungsten oxide of the hydrogen gas detection film is produced by a sol-gel method. Specifically, 2.5 g of tungstic acid (H 2 WO 4 ) is melted in 31 ml of methanol, stirred at room temperature for 30 minutes, and 18 ml of pure water is added to prepare a colloidal solution of tungstic acid (H 2 WO 4 ). A platinum catalyst is used as a catalyst metal, and 0.1 mol / l of a chloroplatinic acid aqueous solution (H 2 (PtCl 6 )) is added in 1.8 ml, 3.6 ml, 11 ml, and 23 ml to a tungstic acid colloidal solution. Using a platinum amount as a parameter, a colloidal solution of tungstic acid containing a catalyst metal with a molar ratio of platinum catalyst to tungsten of 1.8%, 3.6%, 11%, and 23% is synthesized. Thereafter, a colloidal solution of tungstic acid each having a platinum catalyst was spin-coated on the insulating substrate 30 so as to cover the pair of electrodes 20 as shown in FIG. Thereafter, calcination treatment was performed for 5 hours at a temperature of 350 ° C. to 600 ° C. with air at 50 ml / min. The film thickness of the hydrogen gas detection film 10 after calcination was about 500 nm.

仮焼後室温25℃まで自然徐冷し、空気中水素ガス濃度1%、相対湿度50%で水素ガスの検出感度を測定した。なお、白金触媒の平均粒子径は、微粒子酸化タングステンの平均粒子径の測定と同様に、各仮焼温度の条件で生成した試料において走査型電子顕微鏡(SEM)を用いて約100個の白金触媒粒子径の度数分布より平均粒子径を算出した。   After calcination, the mixture was naturally cooled to room temperature of 25 ° C., and the hydrogen gas detection sensitivity was measured at an air hydrogen gas concentration of 1% and a relative humidity of 50%. In addition, the average particle diameter of a platinum catalyst is about 100 platinum catalysts using the scanning electron microscope (SEM) in the sample produced | generated on the conditions of each calcining temperature similarly to the measurement of the average particle diameter of fine particle tungsten oxide. The average particle size was calculated from the frequency distribution of the particle size.

タングステンに対する白金触媒のモル比を増加させるとともに、白金触媒粒子の平均粒子径は増加する。   As the molar ratio of platinum catalyst to tungsten increases, the average particle size of the platinum catalyst particles increases.

図9より、タングステンに対する白金のモル比|Pt|/|W|が、0.036から0.11において白金平均粒子径が2nmから35nmの場合に水素ガスの検出感度が10以上の値が得られる。なお、各モル比の資料はどれも仮焼温度の上昇に伴い、白金触媒の平均粒子径は増加する。   From FIG. 9, when the molar ratio of platinum to tungsten | Pt | / | W | is 0.036 to 0.11 and the platinum average particle diameter is 2 nm to 35 nm, the hydrogen gas detection sensitivity is 10 or more. It is done. In addition, as for the data of each molar ratio, the average particle diameter of a platinum catalyst increases with a raise of calcination temperature.

|Pt|/|W|=0.23では、水素ガスの検出感度は10以下であり、白金触媒の平均粒子径は22nmから78nmである。これは、白金触媒の増加に伴い、白金触媒上で水素ガスから発生されるプロトンと空気中の酸素との完全酸化による水の生成がタングステンブロンズの生成より優勢になるためと考えられる。   When | Pt | / | W | = 0.23, the detection sensitivity of hydrogen gas is 10 or less, and the average particle diameter of the platinum catalyst is 22 nm to 78 nm. This is thought to be because with the increase in platinum catalysts, the generation of water by the complete oxidation of protons generated from hydrogen gas on the platinum catalyst and oxygen in the air becomes more dominant than the formation of tungsten bronzes.

上記の結果から、水素ガス検知膜として、酸化タングステンを主成分とする微粒子酸化タングステン表面に含有する触媒金属としては平均粒子径5nmから20nmの場合が好ましい。   From the above results, it is preferable that the catalyst metal contained on the surface of the fine particle tungsten oxide containing tungsten oxide as a main component as the hydrogen gas detection film has an average particle diameter of 5 nm to 20 nm.

図10にその他の実施例2である水素ガスセンサ構造を示す。一対の電極20が、水素ガス検知層10上に形成されている以外は実施例1と同様である。 なお線A−A‘は、断面を表し、断面A−A‘の拡大図は図1と同一の構造を有する。図10において、石英基板、またはシリコン基板や炭化珪素基板上に絶縁膜を有する絶縁基板、アルミナ等セラミックス基板など絶縁基板30上に、上記の触媒金属を含有するタングステン酸のコロイド溶液を仮焼熱処理後の膜厚が300nm〜1μmとなるようにスピンコーティングにより塗布し、空気50ml/minで仮焼温度400℃から600℃の範囲で5時間加熱保持し、然る後に自然冷却して水素ガス検知膜10を形成する。その後一対の電極20を形成する。実施例1に比べて、水素ガス検知膜の仮焼処理後に一対の電極を形成するので、電極材料として、実施例1の金(Au)または金合金、白金(Pt)または白金合金、またはモリブデン(Mo)またはタンタル(Ta),またはニオブ(Nb)など高融点金属材料に加えて、銅(Cu)や、アルミニウム(Al)など低融点金属材料が使えるとともに、電極材料の製造においても、スクリーン印刷法やインクジェット法により電極材料を製造できるので、電極材料と電極の製造方法の自由度が広がり製造コストを低減できる。  FIG. 10 shows a hydrogen gas sensor structure according to another embodiment 2. Example 2 is the same as Example 1 except that the pair of electrodes 20 is formed on the hydrogen gas detection layer 10. A line A-A ′ represents a cross section, and an enlarged view of the cross section A-A ′ has the same structure as FIG. 1. In FIG. 10, a colloidal solution of tungstic acid containing the above catalytic metal is calcined on an insulating substrate 30 such as a quartz substrate, an insulating substrate having an insulating film on a silicon substrate or a silicon carbide substrate, or a ceramic substrate such as alumina. It is applied by spin coating so that the film thickness afterwards becomes 300 nm to 1 μm, heated and maintained at a calcining temperature range of 400 ° C. to 600 ° C. for 5 hours with air 50 ml / min, and then naturally cooled to detect hydrogen gas A film 10 is formed. Thereafter, a pair of electrodes 20 is formed. Compared to Example 1, since the pair of electrodes are formed after the calcination treatment of the hydrogen gas detection film, the electrode material is gold (Au) or gold alloy, platinum (Pt) or platinum alloy, or molybdenum of Example 1. In addition to high melting point metal materials such as (Mo), tantalum (Ta), or niobium (Nb), low melting point metal materials such as copper (Cu) and aluminum (Al) can be used. Since the electrode material can be manufactured by a printing method or an inkjet method, the degree of freedom of the electrode material and the electrode manufacturing method is increased, and the manufacturing cost can be reduced.

さらに、測定環境におけるセンサの雰囲気温度や湿度の影響を低減し、または、水素ガスの検出感度と応答速度を向上させるために、一対の電極間を挟む水素ガス検知膜を含むようにヒータを具備することが好ましい(図示せず)。ヒータとしては、ニッケル(Ni)、クロム(Cr)または及びこれらの合金、または白金、または及び白金合金などが使用できる。ヒータの構成としては、絶縁基板を介して水素ガス検知膜の反対側に設けることもできる。また、絶縁基板上に、ヒータを予め形成し、然る後に、ヒータ上に電気絶縁膜を形成する。さらに電気絶縁膜上に、水素ガス検知膜を形成する。   Furthermore, in order to reduce the influence of sensor ambient temperature and humidity in the measurement environment, or to improve the detection sensitivity and response speed of hydrogen gas, a heater is provided to include a hydrogen gas detection film sandwiched between a pair of electrodes. Preferably (not shown). As the heater, nickel (Ni), chromium (Cr) or an alloy thereof, platinum, or a platinum alloy, or the like can be used. As a structure of a heater, it can also provide in the other side of a hydrogen gas detection film | membrane through an insulating substrate. In addition, a heater is formed in advance on the insulating substrate, and then an electric insulating film is formed on the heater. Further, a hydrogen gas detection film is formed on the electrical insulating film.

ヒータを搭載した水素ガスセンサを用いて、ヒータにより水素ガスセンサの検知膜の温度を変えることにより、水素ガスの検出感度と応答性を所望の値を得ることができる。検知膜の応答時間を向上させるには水素ガス検知膜の製造方法にも依存するが、漏洩監視時において水素ガスセンサの動作温度を常温より高温にすればよい。例えば、動作温度としては50℃〜300℃が好ましい。水素ガスの検知速度は速くなるが、水素ガスの検出感度は、動作温度の増加とともに減少する傾向を示す。したがって、水素ガス検知時に応答性を重視なのか、感度を重視するかによって、水素ガス検知膜の動作温度を変えることにより所望の水素ガスセンサを提供できる。   By using a hydrogen gas sensor equipped with a heater and changing the temperature of the detection film of the hydrogen gas sensor with the heater, it is possible to obtain desired values for the hydrogen gas detection sensitivity and responsiveness. Although the response time of the detection film is improved depending on the method of manufacturing the hydrogen gas detection film, the operation temperature of the hydrogen gas sensor may be set higher than the normal temperature at the time of leakage monitoring. For example, the operating temperature is preferably 50 ° C to 300 ° C. Although the hydrogen gas detection speed increases, the hydrogen gas detection sensitivity tends to decrease as the operating temperature increases. Therefore, it is possible to provide a desired hydrogen gas sensor by changing the operating temperature of the hydrogen gas detection film depending on whether responsiveness is important when detecting hydrogen gas or sensitivity is important.

本発明にかかる水素ガス検知膜は、水素ガスの検出感度を増大させ、併せて検出速度を向上させた水素ガス検知膜を提供するとともに、そのガス検知膜を用いた水素を含むガス漏洩を容易に検知する水素ガスセンサを実現できる。   The hydrogen gas detection film according to the present invention provides a hydrogen gas detection film that increases the detection sensitivity of hydrogen gas and at the same time improves the detection speed, and easily leaks gas containing hydrogen using the gas detection film. A hydrogen gas sensor can be realized.

また、本発明の水素ガス検知膜や、水素ガスセンサはプロトン(H+)による物性変化を利用することから、硫化水素ガス(H2S)、アンモニア(NH3)や可燃性ガスである酸化窒素(NOx)、一酸化炭素(CO)用のガス検知膜やガスセンサにも適用できる。さらに酸化タングステンの色相変化を利用することにより、ガス検知用の塗料、ガス検知用テープ、または光検知式ガスセンサに利用できる。 In addition, since the hydrogen gas detection film and the hydrogen gas sensor of the present invention utilize changes in physical properties due to protons (H + ), hydrogen sulfide gas (H 2 S), ammonia (NH 3 ), and nitrogen oxides that are flammable gases (NO x), it can be applied to the gas sensing film or a gas sensor for carbon monoxide (CO). Furthermore, by using the hue change of tungsten oxide, it can be used for a gas detection paint, a gas detection tape, or a light detection type gas sensor.

また、水素ガスセンサはプロトン量を検出するピーエイチ(pH)センサなど化学センサへも利用可能である。   Further, the hydrogen gas sensor can be used for a chemical sensor such as a pH (pH) sensor for detecting a proton amount.

また、本発明にかかる水素ガス検知膜は、プロトン(H+)による物性変化を利用することから、エレクトロミック(EC)ディスプレイ用材料,e−inkなど電子ブック用インク材料としても適用できる。 Moreover, since the hydrogen gas detection film | membrane concerning this invention utilizes the physical property change by a proton (H <+> ), it can apply also as ink materials for electronic books, such as an electromic (EC) display material and e-ink.

本発明の実施例1における水素ガス検知膜を模式的に説明するための図(図2及び図10における水素ガスセンサの検知膜10の拡大断面図)The figure for demonstrating typically the hydrogen gas detection film | membrane in Example 1 of this invention (enlarged sectional drawing of the detection film | membrane 10 of the hydrogen gas sensor in FIG.2 and FIG.10) 本発明の実施例1における水素ガスセンサの構成を示す図The figure which shows the structure of the hydrogen gas sensor in Example 1 of this invention. 本発明の実施例1における水素ガス検知膜を構成する微粒子酸化タングステンX線回折パターンのゾル・ゲル合成時の仮焼温度依存性を説明するための図The figure for demonstrating the calcination temperature dependence at the time of the sol-gel synthesis | combination of the fine particle tungsten oxide X-ray diffraction pattern which comprises the hydrogen gas detection film | membrane in Example 1 of this invention 本発明の実施例1における微粒子酸化タングステンのX線結晶面指数メインピークの比(=(001)/(200))と水素ガスの検出感度依存性を示す図The figure which shows the detection sensitivity dependence of the ratio (= (001) / (200)) of the X-ray crystal plane index main peak of the fine particle tungsten oxide in Example 1 of this invention, and hydrogen gas. 本発明の実施例1における微粒子酸化タングステンの平均粒子径と水素ガスの検出感度との関係を示す図The figure which shows the relationship between the average particle diameter of particulate tungsten oxide and the detection sensitivity of hydrogen gas in Example 1 of this invention 本発明の実施例1における微粒子酸化タングステンの酸素原子数とタングステン原子数の比|O|/|W|と水素感度依存性を示す図The figure which shows hydrogen sensitivity dependence with ratio | O | / | W | of oxygen atom number and tungsten atom number of the fine particle tungsten oxide in Example 1 of this invention. 本発明の実施例1における微粒子酸化タングステンの表面に含有する触媒金属として白金金属触媒における白金の酸化状態と水素ガスの検出感度との関係を示す図The figure which shows the relationship between the oxidation state of platinum in the platinum metal catalyst as a catalyst metal contained in the surface of the fine particle tungsten oxide in Example 1 of this invention, and the detection sensitivity of hydrogen gas 本発明の実施例1における微粒子酸化タングステンに含有する白金のX線光電子分光スペクトルを示す図The figure which shows the X-ray photoelectron spectroscopy spectrum of platinum contained in the fine particle tungsten oxide in Example 1 of this invention. 本発明の実施例1における微粒子酸化タングステンに含有する白金触媒金属の平均粒子径と水素ガスの検出感度依存性を示す図The figure which shows the detection sensitivity dependence of the average particle diameter of the platinum catalyst metal contained in the fine-particle tungsten oxide in Example 1 of this invention, and hydrogen gas 本発明の実施例2における水素ガスセンサの構成を示す図The figure which shows the structure of the hydrogen gas sensor in Example 2 of this invention.

符号の説明Explanation of symbols

1 酸化タングステン
2 触媒金属
3 隙間
4 触媒金属を表面に含有する微粒子酸化タングステン
5 絶縁基板
6 水素ガス検知膜
10 水素ガス検知膜
20 電極
30 絶縁基板
40 リード線
50 微小電流計
60 DC電源
70 水素ガスセンサ素子
DESCRIPTION OF SYMBOLS 1 Tungsten oxide 2 Catalytic metal 3 Crevice 4 Particulate tungsten oxide containing catalyst metal on the surface 5 Insulating substrate 6 Hydrogen gas detecting film 10 Hydrogen gas detecting film 20 Electrode 30 Insulating substrate 40 Lead wire 50 Microammeter 60 DC power supply 70 Hydrogen gas sensor element

Claims (21)

水素ガスを解離して生成されるプロトンが注入されて還元され或いは前記プロトンが脱離されて酸化されることにより電気抵抗が変化する水素ガス検知膜であって、
前記検知膜は、酸化タングステンを主成分とする結晶微粒子の集合体で構成され、前記結晶微粒子酸化タングステンの表面に酸化状態の触媒金属を含有することを特徴とする水素ガス検知膜。
A hydrogen gas detection membrane in which electric resistance is changed by injecting protons generated by dissociating hydrogen gas and being reduced or desorbing and oxidizing the protons,
2. The hydrogen gas detection film according to claim 1, wherein the detection film is composed of an aggregate of crystal fine particles containing tungsten oxide as a main component, and a catalytic metal in an oxidized state is contained on a surface of the crystal fine particle tungsten oxide.
前記結晶微粒子酸化タングステンは、その平均粒子径が15nmから80nmであることを特徴とする請求項1に記載の水素ガス検知膜。 The hydrogen gas detection film according to claim 1, wherein the crystalline fine particle tungsten oxide has an average particle diameter of 15 nm to 80 nm. 前記結晶微粒子酸化タングステンは、所定の比率の酸素欠陥を有することを特徴とする請求項1に記載の水素ガス検知膜。 2. The hydrogen gas detection film according to claim 1, wherein the crystalline fine particle tungsten oxide has a predetermined ratio of oxygen defects. 前記結晶微粒子酸化タングステンの酸素原子数とタングステン原子数との比を2.54から2.63とすることを特徴とする請求項1に記載の水素ガス検知膜。 2. The hydrogen gas detection film according to claim 1, wherein the ratio of the number of oxygen atoms and the number of tungsten atoms in the fine crystalline tungsten oxide is 2.54 to 2.63. 前記結晶微粒子酸化タングステンは、少なくとも三斜晶系(triclinic)と斜方晶系(monoclinic)の結晶構造とを含むことを特徴とする請求項1に記載の水素ガス検知膜。 2. The hydrogen gas detection film according to claim 1, wherein the crystalline fine particle tungsten oxide includes at least a triclinic crystal system and an orthorhombic crystal structure. 3. 前記微粒子酸化タングステンに、バナジウム(V)、クロム(Cr)、
マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、
ニオブ(Nb)、モリブデン(Mo)、レニウム(Re)、チタン(Ti)のいずれかの金属、または、これらの金属のいずれかの混合物が、タングステンに対して、0.25モル%〜5モル%の濃度でドープされていることを特徴とする請求項1に記載の水素ガス検知膜。
In the fine particle tungsten oxide, vanadium (V), chromium (Cr),
Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu),
Any metal of niobium (Nb), molybdenum (Mo), rhenium (Re), titanium (Ti), or a mixture of these metals is 0.25 mol% to 5 mol with respect to tungsten. 2. The hydrogen gas detection film according to claim 1, wherein the hydrogen gas detection film is doped with a concentration of about 1%.
前記触媒金属は,微粒子酸化タングステンに含有する全触媒金属量の18%から90%が酸化状態であることを特徴とする請求項1に記載の水素ガス検知膜。 2. The hydrogen gas detection film according to claim 1, wherein the catalyst metal is in an oxidized state of 18% to 90% of the total amount of the catalyst metal contained in the fine particle tungsten oxide. 前記触媒金属は、タングステンに対する割合が、1.8モル%〜11モル%であることを特徴とする請求項1に記載の水素ガス検知膜。 2. The hydrogen gas detection film according to claim 1, wherein the catalyst metal has a ratio of 1.8 mol% to 11 mol% with respect to tungsten. 前記触媒金属の平均粒子径が2nmから35nmとすることを特徴とする請求項1に記載の水素ガス検知膜。 2. The hydrogen gas detection film according to claim 1, wherein the catalyst metal has an average particle diameter of 2 nm to 35 nm. 前記触媒金属は、白金、(Pt),イリジウム(Ir)、オスニウム(Os)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)のいずれかの金属、または、これらの金属のいずれかの混合物であることを特徴とする請求項1に記載の水素ガス検知膜 The catalyst metal is any one of platinum, (Pt), iridium (Ir), osmium (Os), palladium (Pd), rhodium (Rh), ruthenium (Ru), or any of these metals. It is a mixture, The hydrogen gas detection film | membrane of Claim 1 characterized by the above-mentioned 絶縁基板上に設けられた一対の電極上に、水素ガスを解離して発生されるプロトンが注入されて還元され或いは前記プロトンが脱離されて酸化されることにより電気抵抗が変化する所定の膜厚の検知膜を有する水素ガスセンサであって、
前記検知膜は、酸化タングステンを主成分とする結晶微粒子の集合体で構成され、前記結晶微粒子酸化タングステンの表面に酸化状態の触媒金属を含有することを特徴とする水素ガスセンサ。
On a pair of electrodes provided on an insulating substrate, protons generated by dissociating hydrogen gas are injected and reduced, or a predetermined film whose electric resistance is changed by desorption and oxidation of the protons A hydrogen gas sensor having a thickness detection film,
2. The hydrogen gas sensor according to claim 1, wherein the detection film is composed of an aggregate of crystal fine particles containing tungsten oxide as a main component, and contains a catalytic metal in an oxidized state on a surface of the crystal fine particle tungsten oxide.
絶縁基板上に、水素ガスを解離して発生されるプロトンが注入されて還元され或いは前記プロトンが脱離されて酸化されることにより電気抵抗が変化する所定の膜厚の検知膜と、前記検知膜上に一対の電極を備える水素ガスセンサであって、
前記検知膜は、酸化タングステンを主成分とする結晶微粒子の集合体で構成され、前記結晶微粒子酸化タングステンの表面に酸化状態の触媒金属を含有することを特徴とする水素ガスセンサ。
A detection film having a predetermined thickness whose electrical resistance is changed by injecting and reducing protons generated by dissociating hydrogen gas on an insulating substrate and reducing or oxidizing the protons. A hydrogen gas sensor comprising a pair of electrodes on a membrane,
2. The hydrogen gas sensor according to claim 1, wherein the detection film is composed of an aggregate of crystal fine particles containing tungsten oxide as a main component, and contains a catalytic metal in an oxidized state on a surface of the crystal fine particle tungsten oxide.
結晶微粒子酸化タングステンは、その平均粒子径が15nmから80nmであることを特徴とする請求項11あるいは請求項12のいずれかに記載の水素ガスセンサ。 The hydrogen gas sensor according to claim 11 or 12, wherein the crystalline fine particle tungsten oxide has an average particle diameter of 15 nm to 80 nm. 前記結晶微粒子酸化タングステンは、少なくとも三斜晶系(triclinic)と斜方晶系(monoclinic)の結晶構造とを含むことを特徴とする請求項11或いは請求項12のいずれかに記載の水素ガスセンサ。 13. The hydrogen gas sensor according to claim 11, wherein the crystalline fine particle tungsten oxide includes at least a triclinic crystal structure and an orthorhombic crystal structure. 13. 前記結晶微粒子酸化タングステンは、所定の比率の酸素欠陥を有することを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。 13. The hydrogen gas sensor according to claim 11, wherein the crystalline fine particle tungsten oxide has oxygen defects at a predetermined ratio. 前記結晶微粒子酸化タングステンの酸素原子数とタングステン原子数との比を2.54から2.63とすることを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。 13. The hydrogen gas sensor according to claim 11, wherein a ratio between the number of oxygen atoms and the number of tungsten atoms in the crystalline fine particle tungsten oxide is 2.54 to 2.63. 前記微粒子酸化タングステンに、バナジウム(V)、クロム(Cr)、
マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、
ニオブ(Nb)、モリブデン(Mo)、レニウム(Re)、チタン(Ti)のいずれかの金属、または、これらの金属のいずれかの混合物が、タングステンに対して、0.25モル%〜5モル%の濃度でドープされていることを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。
In the fine particle tungsten oxide, vanadium (V), chromium (Cr),
Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu),
Any metal of niobium (Nb), molybdenum (Mo), rhenium (Re), titanium (Ti), or a mixture of these metals is 0.25 mol% to 5 mol with respect to tungsten. 13. The hydrogen gas sensor according to claim 11, wherein the hydrogen gas sensor is doped at a concentration of%.
前記触媒金属は,微粒子酸化タングステンに含有する全触媒金属量の18%から90%が酸化状態であることを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。 13. The hydrogen gas sensor according to claim 11, wherein the catalyst metal is in an oxidized state in an amount of 18% to 90% of the total amount of the catalyst metal contained in the particulate tungsten oxide. 前記触媒金属は、白金、(Pt),イリジウム(Ir)、オスニウム(Os)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)のいずれかの金属、または、これらの金属のいずれかの混合物であることを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。 The catalyst metal is any one of platinum, (Pt), iridium (Ir), osmium (Os), palladium (Pd), rhodium (Rh), ruthenium (Ru), or any of these metals. It is a mixture, The hydrogen gas sensor in any one of Claim 11 or Claim 12 characterized by the above-mentioned. 前記触媒金属は、タングステンに対する割合が、1.8モル%〜11モル%であることを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。 The hydrogen gas sensor according to claim 11, wherein the catalyst metal has a ratio of 1.8 mol% to 11 mol% with respect to tungsten. 前記触媒金属の平均粒子径が2nmから35nmとすることを特徴とする請求項11または請求項12のいずれかに記載の水素ガスセンサ。
13. The hydrogen gas sensor according to claim 11, wherein the catalyst metal has an average particle diameter of 2 nm to 35 nm.
JP2004149991A 2004-05-20 2004-05-20 Hydrogen gas sensing film and hydrogen gas sensor Pending JP2005331364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149991A JP2005331364A (en) 2004-05-20 2004-05-20 Hydrogen gas sensing film and hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149991A JP2005331364A (en) 2004-05-20 2004-05-20 Hydrogen gas sensing film and hydrogen gas sensor

Publications (1)

Publication Number Publication Date
JP2005331364A true JP2005331364A (en) 2005-12-02

Family

ID=35486122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149991A Pending JP2005331364A (en) 2004-05-20 2004-05-20 Hydrogen gas sensing film and hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP2005331364A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051715A (en) * 2006-08-25 2008-03-06 Yoshiharu Nagamatsu Wireless tag type sensor
WO2008143534A1 (en) * 2007-05-22 2008-11-27 Andreas Lassesson Method for the preparation of thin film metal oxide cluster fluid sensors
JP2009150885A (en) * 2007-12-20 2009-07-09 General Electric Co <Ge> Gas sensor and method of making
JP2010222677A (en) * 2009-03-25 2010-10-07 Uchiya Thermostat Co Ltd Method for producing deposited film including nanoparticle
JP2011506940A (en) * 2007-12-10 2011-03-03 エーアーデーエス・ドイッチュラント・ゲーエムベーハー Gas sensor with improved selectivity
CN102346161A (en) * 2010-07-30 2012-02-08 罗伯特·博世有限公司 Apparatus and method for gas detection
JP2013513110A (en) * 2009-12-02 2013-04-18 ザ・リサーチ・フアウンデーシヨン・オブ・ステイト・ユニバーシテイ・オブ・ニユーヨーク Selective chemosensor based on temperature modulation of the stability of ferroelectric materials, mixed oxides, or oxide polymorphs
JP2013104768A (en) * 2011-11-14 2013-05-30 Figaro Eng Inc Metal oxide semiconductor gas sensor and method of manufacturing the same
JP2015148551A (en) * 2014-02-07 2015-08-20 国立大学法人富山大学 hydrogen response element
US9422160B1 (en) * 2005-10-28 2016-08-23 Element One, Inc. Method of making a hydrogen sensing pigment
JP2017516993A (en) * 2014-05-23 2017-06-22 ゼネラル・エレクトリック・カンパニイ Fuses for detecting gas trap failures
JP2017519978A (en) * 2014-05-28 2017-07-20 日東電工株式会社 Gas sensor element
WO2017217086A1 (en) * 2016-06-16 2017-12-21 株式会社フジクラ Hydrogen gas sensor
WO2019235921A1 (en) * 2018-06-05 2019-12-12 Technische Universiteit Delft Hydrogen gas sensing with single-crystal wo3 thin films
CN112098473A (en) * 2020-08-18 2020-12-18 国网河北省电力有限公司电力科学研究院 Preparation method and evaluation method of sphere-like tungsten trioxide sensitive material and sulfur dioxide gas sensor
US10900926B2 (en) * 2017-09-04 2021-01-26 Panasonic Semiconductor Solutions Co., Ltd. Gas sensor, gas detection apparatus, fuel cell powered vehicle, and manufacturing method of gas sensor
CN113933360A (en) * 2021-11-22 2022-01-14 广州航海学院 Doped sensitive material for improving performance of hydrogen sensor and preparation method and application thereof
EP4102217A1 (en) * 2021-06-09 2022-12-14 Carrier Corporation Hydrogen gas sensor assembly

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252486A1 (en) * 2005-10-28 2016-09-01 Element One, Inc. Visual hydrogen sensors using chemochromic metal oxide microparticles or nanoparticles superficially coated with catalyst nanoparticles
US9422160B1 (en) * 2005-10-28 2016-08-23 Element One, Inc. Method of making a hydrogen sensing pigment
JP2008051715A (en) * 2006-08-25 2008-03-06 Yoshiharu Nagamatsu Wireless tag type sensor
WO2008143534A1 (en) * 2007-05-22 2008-11-27 Andreas Lassesson Method for the preparation of thin film metal oxide cluster fluid sensors
JP2011506940A (en) * 2007-12-10 2011-03-03 エーアーデーエス・ドイッチュラント・ゲーエムベーハー Gas sensor with improved selectivity
JP2009150885A (en) * 2007-12-20 2009-07-09 General Electric Co <Ge> Gas sensor and method of making
JP2010222677A (en) * 2009-03-25 2010-10-07 Uchiya Thermostat Co Ltd Method for producing deposited film including nanoparticle
JP2013513110A (en) * 2009-12-02 2013-04-18 ザ・リサーチ・フアウンデーシヨン・オブ・ステイト・ユニバーシテイ・オブ・ニユーヨーク Selective chemosensor based on temperature modulation of the stability of ferroelectric materials, mixed oxides, or oxide polymorphs
CN102346161A (en) * 2010-07-30 2012-02-08 罗伯特·博世有限公司 Apparatus and method for gas detection
JP2013104768A (en) * 2011-11-14 2013-05-30 Figaro Eng Inc Metal oxide semiconductor gas sensor and method of manufacturing the same
JP2015148551A (en) * 2014-02-07 2015-08-20 国立大学法人富山大学 hydrogen response element
JP2017516993A (en) * 2014-05-23 2017-06-22 ゼネラル・エレクトリック・カンパニイ Fuses for detecting gas trap failures
JP2017519978A (en) * 2014-05-28 2017-07-20 日東電工株式会社 Gas sensor element
WO2017217086A1 (en) * 2016-06-16 2017-12-21 株式会社フジクラ Hydrogen gas sensor
US10900926B2 (en) * 2017-09-04 2021-01-26 Panasonic Semiconductor Solutions Co., Ltd. Gas sensor, gas detection apparatus, fuel cell powered vehicle, and manufacturing method of gas sensor
WO2019235921A1 (en) * 2018-06-05 2019-12-12 Technische Universiteit Delft Hydrogen gas sensing with single-crystal wo3 thin films
CN112098473A (en) * 2020-08-18 2020-12-18 国网河北省电力有限公司电力科学研究院 Preparation method and evaluation method of sphere-like tungsten trioxide sensitive material and sulfur dioxide gas sensor
EP4102217A1 (en) * 2021-06-09 2022-12-14 Carrier Corporation Hydrogen gas sensor assembly
CN113933360A (en) * 2021-11-22 2022-01-14 广州航海学院 Doped sensitive material for improving performance of hydrogen sensor and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2005331364A (en) Hydrogen gas sensing film and hydrogen gas sensor
Cai et al. NO sensing by single crystalline WO3 nanowires
McCue et al. SnO2− In2O3 Nanocomposites as Semiconductor Gas Sensors for CO and NO x Detection
Ansari et al. Physico-chemical properties and catalytic activity of the sol-gel prepared Ce-ion doped LaMnO3 perovskites
Haridas et al. Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection
Manjula et al. Au/SnO2 an excellent material for room temperature carbon monoxide sensing
Lavanya et al. Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications
JP2005345338A (en) Coating film pigment for hydrogen gas detection, coating film for hydrogen gas detection, and hydrogen gas detection tape
Djerdj et al. Neodymium dioxide carbonate as a sensing layer for chemoresistive CO2 sensing
Mokrushin et al. Gas-sensing properties of nanostructured CeO2-xZrO2 thin films obtained by the sol-gel method
Dharmalingam et al. Quantification of ethanol by metal-oxide-based resistive sensors: A review
Trakhtenberg et al. Effect of composition and temperature on conductive and sensing properties of CeO2+ In2O3 nanocomposite films
JP2007163253A (en) Hydrogen gas sensor
JP2012522242A (en) Thin film type highly active gas sensor using core-shell structured composite nanoparticles as sensor material and method for producing the same
Bagheri et al. Highly sensitive gallia-SnO2 nanocomposite sensors to CO and ethanol in presence of methane
Shouli et al. Sn/In/Ti nanocomposite sensor for CH4 detection
Zhong et al. Ce incorporated pyrochlore Pr2Zr2O7 solid electrolytes for enhanced mild-temperature NO2 sensing
Michel et al. Improvement of the gas sensing response of nanostructured LaCoO3 by the addition of Ag nanoparticles
Enhessari et al. Perovskites-based nanomaterials for chemical sensors
JP2007178168A (en) Hydrogen gas detection sensor and its manufacturing method
JP2006201100A (en) Hydrogen gas detection sensor
Edla et al. Study of gaseous interactions on Co3O4 thin film coatings by ambient pressure soft X-ray absorption spectroscopy
Kim et al. Sensitivity enhancement for CO gas detection using a SnO2–CeO2–PdOx system
Dhariwal et al. Ethanol sensing materials and device using Co2+, Zn2+, Cr2+ doped α-Fe2O3 nano-particles with room temperature response/recovery
Fazio et al. Synthesis, characterization and hydrogen sensing properties of nanosized colloidal rhodium oxides prepared by Pulsed Laser Ablation in water