JP2005331288A - Display method of soil constitution based on cone penetration test - Google Patents

Display method of soil constitution based on cone penetration test Download PDF

Info

Publication number
JP2005331288A
JP2005331288A JP2004148155A JP2004148155A JP2005331288A JP 2005331288 A JP2005331288 A JP 2005331288A JP 2004148155 A JP2004148155 A JP 2004148155A JP 2004148155 A JP2004148155 A JP 2004148155A JP 2005331288 A JP2005331288 A JP 2005331288A
Authority
JP
Japan
Prior art keywords
soil
cpt
color
displayed
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004148155A
Other languages
Japanese (ja)
Inventor
Shoji Nomura
正二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIKEN KK
Original Assignee
NIPPON CHIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIKEN KK filed Critical NIPPON CHIKEN KK
Priority to JP2004148155A priority Critical patent/JP2005331288A/en
Publication of JP2005331288A publication Critical patent/JP2005331288A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display method of a soil constitution by a CPT capable of displaying data of a field test by the CPT and the soil constitution by soil determination on the basis thereof, intelligibly to a user. <P>SOLUTION: In this display method of the soil constitution on the basis of the CPT, the soil constitution is displayed by colored pole-shaped 1a and 1b formed by accumulating and plotting soil properties discriminated at each measuring depth on the basis of data of a tip resistance, an interval water pressure and a circumferential friction acquired by the CPT, in different colors relative to each soil property in the measuring depth direction from the surface layer, and a legend 2 of the soil property colors is also displayed. The data of the tip resistance, the interval water pressure and the circumferential friction can be displayed together. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気式静的コーン貫入試験(以下「CPT」という。)の結果を整理して地盤の土質を、土質毎に異なる色で色柱に表示して地盤の土質構成の情報を分かり易く伝えることができるCPTに基づく土質構成の表示方法に関する。   The present invention organizes the results of the electric static cone penetration test (hereinafter referred to as “CPT”) and displays the soil soil texture on the color column in different colors for each soil texture to provide information on the soil soil composition. The present invention relates to a display method of soil composition based on CPT that can be easily communicated.

地盤の調査にCPTが利用されている。CPTはコーンを地中に静的に貫入させてコーンに作用する先端抵抗、間隙水圧、周面摩擦を測定し、測定結果から地盤の特性を評価するものである(特許文献1、非特許文献1)。   CPT is used for ground investigation. CPT statically penetrates the cone into the ground and measures the tip resistance, pore water pressure, and circumferential friction acting on the cone, and evaluates the characteristics of the ground from the measurement results (Patent Document 1, Non-Patent Document). 1).

CPTによる測定データから得られた土質判別結果の整理に、例えば、ロバートソン(Robertson)判別法が利用されている。   For example, a Robertson discrimination method is used to organize soil determination results obtained from measurement data obtained by CPT.

図3はロバートソン判別法による土質判別結果を表示した図及び土質判別結果を示す表である。図3に示すように、ロバートソン判別法による土質判別結果を表示した「Bq−qt法」の図の10と「fs/qt−qt法」の図の11に、土質判別結果の表12の資料No.と「Bq−qt法」と「fs/qt−qt法」のそれぞれの土質を照合して、表12の資料No.(1)、(2)、(3)・・・(尚、図3では丸数字で表記してある)を図の10,11の該当するゾーンにプロットすることにより土の判別を行っていた。
特開2004−55755号公報 地盤工学会基準(JGS 1435−1995)電気式静的コーン貫入試験方法
FIG. 3 is a table showing the soil determination results by the Robertson determination method and a table showing the soil determination results. As shown in FIG. 3, 10 in the “Bq-qt method” diagram and 11 in the “fs / qt-qt method” diagram showing the soil discrimination results by the Robertson discrimination method are shown in Table 12 of the soil discrimination results. Document No. And “Bq-qt method” and “fs / qt-qt method” are compared, and the material No. (1), (2), (3) ... (indicated by circled numbers in Fig. 3) are plotted in the corresponding zones of 10 and 11 in the figure to determine the soil. .
JP 2004-55555 A Geotechnical Society Standard (JGS 1435-1995) Electrical Static Cone Penetration Test Method

しかしながら、前記の「Bq−qt法」の図と「fs/qt−qt法」の図に資料No.(1)、(2)、(3)・・・をプロットする場合、特定の深度の土質は図中の資料No.でわかるが、調査深度全体の土質構成を知るためには、資料No.(1)、(2)、(3)・・・を順に追って行かなくてはならないので、その把握に手間がかかった。   However, in the figure of the “Bq-qt method” and the figure of the “fs / qt-qt method”, the document No. When plotting (1), (2), (3)..., The soil quality at a specific depth is shown in the document No. As can be seen from the above, in order to know the soil composition of the entire survey depth, document no. Since (1), (2), (3), etc. must be followed in order, it took time and effort to grasp them.

また、調査深度が深くなって資料No.が増えると、資料No.が重さならないようにプロットすることが難しくなる。そのため、深さ5〜10m毎にブロック分けしブロック毎に「Bq−qt法」の図と「fs/qt−qt法」の図を用意して、資料No.をプロットするために手間がかかるだけでなく、図が複数あるため見ずらく、且つわかりにくかった。   In addition, as the investigation depth increased, Document No. As the number increases, document no. It becomes difficult to plot so that does not overlap. Therefore, the blocks are divided into 5 to 10 m depths, and a “Bq-qt method” diagram and a “fs / qt-qt method” diagram are prepared for each block. In addition to the time and effort required to plot the graph, it was difficult to see and understand because there were multiple figures.

このようにロバートソン判別法を利用する方法では測定データ毎の判別結果を利用者に分かり易く表現することができないという欠点があった。   As described above, the method using the Robertson discrimination method has a drawback in that the discrimination result for each measurement data cannot be expressed in an easy-to-understand manner for the user.

そこで、本発明は、CPTによる現場試験のデータとこれに基づく土質判定による土質構成を利用者に分かり易く表示することができるCPTによる土質構成の表示方法を提供するものである。   Therefore, the present invention provides a method for displaying a soil composition by CPT that can easily display to the user the data of the field test by CPT and the soil composition by soil judgment based on the data.

本発明のCPTに基づく土質構成の表示方法は、CPTで得られた先端抵抗、間隙水圧、周面摩擦のデータに基づき測定深度毎に判別される土質を、表層から測定深度方向に土質毎に異なる色で描画して集積された色柱状図により土質構成を表示するとともに、土質の色の凡例を表示することを特徴とする。   According to the CPT-based soil composition display method of the present invention, the soil quality determined at each measurement depth based on the tip resistance, pore water pressure, and circumferential friction data obtained by the CPT is determined for each soil in the measurement depth direction from the surface layer. The soil structure is displayed by a color columnar diagram drawn and accumulated in different colors, and a legend of the soil color is displayed.

前記構成において、先端抵抗、間隙水圧、周面摩擦のデータを併せて表示することができる。   In the above configuration, data on tip resistance, pore water pressure, and peripheral surface friction can be displayed together.

本発明によるCPTに基づく土質構成の表示方法では、CPTで得られる深度方向の細かな間隔(一般的には2cm毎)の先端抵抗、間隙水圧、周面摩擦の変化から経験的に判別する土質を、土質毎に異なる色で描画して集積された色柱状図で土質構成を表示することで、調査深度毎、あるいはその全体の土質構成について目視により容易に把握することができるので、土木、建築設計に適用する土質の情報を利用者に的確に分かり易く伝えることができる。   In the display method of the soil composition based on the CPT according to the present invention, the soil texture is determined empirically from the changes in the tip resistance, pore water pressure, and peripheral surface friction at fine intervals in the depth direction (generally every 2 cm) obtained by the CPT. By displaying the soil composition in a colored columnar diagram that is drawn and accumulated in different colors for each soil, it is possible to easily grasp by visual observation about the survey soil depth or the entire soil structure. Soil information applied to architectural design can be accurately and easily communicated to users.

図1は本発明のCPTに基づく土質構成の表示方法により得られた土質構成の色柱状図による表示の一例を示す図である。なお、図1は白黒で表示されているが、実際はカラーで表示される。   FIG. 1 is a diagram showing an example of display by a color column diagram of a soil composition obtained by the soil composition display method based on the CPT of the present invention. Although FIG. 1 is displayed in black and white, it is actually displayed in color.

図1において、CPTに基づく色柱状図には、ロバートソン判別法の「Bq−qt法」により得られた土質の色柱状図1aと、「fs/qt−qt法」により得られた土質の色柱状図1bで表示される。土質の色柱状図は、必ずしも両方の色柱状図1a,1bを表示する必要はなく、いずれか一方、例えば「Bq−qt法」による色柱状図1aを表示してもよい。さらに、土質と色を対応させた土質の凡例2が表示される。   In FIG. 1, the color columnar diagram based on the CPT includes a soil color columnar diagram 1a obtained by the “Bq-qt method” of the Robertson discrimination method and a soil column obtained by the “fs / qt-qt method”. Displayed in the columnar diagram 1b. The color columnar diagram of the soil does not necessarily display both the color columnar diagrams 1a and 1b, and may display one of the color columnar diagrams 1a by, for example, the “Bq-qt method”. In addition, a soil legend 2 in which the soil and the color correspond is displayed.

色柱状図1a,1b、及び凡例2に表示する土質の色は、地盤調査では、粘性土を青色系、砂を黄色系、礫質土を柿色系で表現するのが一般的であるから、これに倣って表示するのがわかりやすい。図1では土質の凡例2が、横に表示されているが、土質の色柱状図1a,1bの隣に縦に表示してもよい。   The soil colors displayed in the color column diagrams 1a and 1b and the legend 2 are generally expressed in the blue soil, the yellow soil, and the gravel soil in the amber system in the soil survey. It is easy to understand following this display. Although the soil legend 2 is displayed horizontally in FIG. 1, it may be displayed vertically next to the soil color column diagrams 1a and 1b.

それぞれの色柱状図1a,1bは、例えば2cm毎に得られるデータによる土質判別結果に相当する土質に応じた色の細い横線を試験区間で集積したものであり、連続する土質は、同じ色線が集まり帯状に見える。   Each of the columnar diagrams 1a and 1b is obtained by accumulating thin horizontal lines of colors corresponding to the soil quality corresponding to the soil quality discrimination result based on data obtained every 2 cm, for example. Gather and look like a band.

土質の色柱の他に、図1に示すとおり、色柱の隣に、さらに先端抵抗、間隙水圧、周面摩擦の試験結果を示すグラフを測定深度に一致して表示してもよい。   In addition to the soil color column, as shown in FIG. 1, a graph indicating test results of tip resistance, pore water pressure, and circumferential friction may be displayed next to the color column in accordance with the measurement depth.

色柱状図1a,1bの隣には、CPTの測定により得られた先端抵抗(qt)、周面摩擦(fs)及び間隙水圧(Ud)を表層から調査深度にしたがって作成された先端抵抗のグラフ3,周面摩擦(fs)のグラフ4,間隙水圧(Ud)のグラフ5を表示してもよい。測定深度にしたがって作成された色柱状図1a,1bと各グラフ3,4,5により特定深度における土質の特性を把握することができる。   Next to the colored columnar figures 1a and 1b, a graph of the tip resistance created by measuring the tip resistance (qt), circumferential friction (fs) and pore water pressure (Ud) obtained from the CPT according to the investigation depth is obtained. 3, the peripheral friction (fs) graph 4 and the pore water pressure (Ud) graph 5 may be displayed. The characteristics of soil properties at a specific depth can be grasped from the color columnar diagrams 1a and 1b and the graphs 3, 4 and 5 created according to the measurement depth.

図2は本発明によるCPTによる土質構成の色柱の作成フローである。   FIG. 2 is a flowchart for creating a color column having a soil structure by CPT according to the present invention.

(1)CPT試験により所定間隔(一般に2cm間隔)で先端抵抗、間隙水圧、周面摩擦を測定する(ステップ1)。 (1) The tip resistance, pore water pressure, and circumferential friction are measured at predetermined intervals (generally 2 cm intervals) by the CPT test (step 1).

(2)CPTで得られるデータを処理して先端抵抗(qt)、間隙水圧比(Bq)、摩擦比(fs/q)を求める(ステップ2)。 (2) The data obtained by CPT is processed to obtain the tip resistance (qt), the pore water pressure ratio (Bq), and the friction ratio (fs / q 1 ) (step 2).

(3)「Bq−qt法」と「fs/qt−qt法」の各関係値を求め、パソコン上で座標化したRobertsonチャート図上で自動的に土質判定する(ステップ3)。 (3) Each relational value of “Bq-qt method” and “fs / qt-qt method” is obtained, and soil quality is automatically determined on the Robertson chart diagram coordinated on the personal computer (step 3).

(4)土質に対応する色線を選択する。色線は、例えば、一般に地盤調査で使用されている、粘性土を青色系、砂を黄色系、礫質土を柿色系に設定する(ステップ4)。 (4) Select a color line corresponding to the soil quality. As for the color lines, for example, viscous soil is set to blue, sand is set to yellow, and gravelly soil is set to amber, which are generally used in ground surveys (step 4).

(5)表層からの調査震度までの測定値毎に処理し、表層から調査深度方向に色を集積して描画し色柱状図を作成する(ステップ5,6)。 (5) Processing is performed for each measured value from the surface layer to the survey seismic intensity, and the color is accumulated and drawn from the surface layer in the survey depth direction to create a color column diagram (steps 5 and 6).

作成された土質構成は、パソコンのディスプレイに表示したり、あるいはアウトプットしてシートに表示したりして利用することができる。   The created soil structure can be displayed on a personal computer display or output and displayed on a sheet.

本発明は、CPTで得られる深度方向の細かな間隔の先端抵抗、間隙水圧、周面摩擦の変化から判別する土質を、色柱状図で視覚的に把握できることで、土木、建築設計に適用することができる。   The present invention can be applied to civil engineering and architectural design because the soil quality discriminated from changes in the tip resistance, pore water pressure, and circumferential friction in the depth direction obtained by CPT can be visually grasped by a color column diagram. be able to.

本発明による土質構成の表示の一例を示す図である。It is a figure which shows an example of the display of the soil structure by this invention. 本発明のCPTによる色柱状図の作成フローを示す図である。It is a figure which shows the creation flow of the color columnar figure by CPT of this invention. ロバートソン判別法による土質判別結果を表示した図及び土質判別結果を示す表である。It is the table | surface which shows the figure which displayed the soil quality discrimination | determination result by Robertson discrimination method, and the soil quality discrimination | determination result.

符号の説明Explanation of symbols

1a,1b:色柱状図
2:土質の凡例
3:先端抵抗のグラフ
4:周面摩擦のグラフ
5:間隙水圧のグラフ
1a, 1b: Colored column diagram 2: Soil legend 3: Tip resistance graph 4: Surface friction graph 5: Pore water pressure graph

Claims (3)

CPTで得られた先端抵抗、間隙水圧、周面摩擦のデータに基づき測定深度毎に判別される土質を、表層から測定深度方向に土質毎に異なる色で描画して集積された色柱状図により土質構成を表示するとともに、土質の色の凡例を表示することを特徴とする電気式静的コーン貫入試験に基づく土質構成の表示方法。   A color columnar diagram in which the soil quality discriminated at each measurement depth based on the data on tip resistance, pore water pressure, and circumferential friction obtained by CPT is drawn and accumulated in a different color for each soil quality from the surface layer to the measurement depth direction. A method for displaying a soil composition based on an electric static cone penetration test, wherein the soil composition is displayed and a legend for the color of the soil is displayed. 色柱状図がロバートソン判別法の「Bq−qt法」により得られた土質の色柱状図及び/又は「fs/qt−qt法」により得られた土質の色柱状図であることを特徴とする請求項1記載の電気式静的コーン貫入試験に基づく土質構成の表示方法。   The color column diagram is a soil color column diagram obtained by the “Bq-qt method” of the Robertson discrimination method and / or a soil color column diagram obtained by the “fs / qt-qt method”. The display method of the soil composition based on the electric static cone penetration test of Claim 1 to do. 先端抵抗、間隙水圧、周面摩擦のデータを併せて表示することを特徴とする請求項1又は2記載の電気式静的コーン貫入試験に基づく土質構成の表示方法。
3. A method for displaying a soil composition based on an electric static cone penetration test according to claim 1, wherein data on tip resistance, pore water pressure, and circumferential friction are displayed together.
JP2004148155A 2004-05-18 2004-05-18 Display method of soil constitution based on cone penetration test Pending JP2005331288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148155A JP2005331288A (en) 2004-05-18 2004-05-18 Display method of soil constitution based on cone penetration test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148155A JP2005331288A (en) 2004-05-18 2004-05-18 Display method of soil constitution based on cone penetration test

Publications (1)

Publication Number Publication Date
JP2005331288A true JP2005331288A (en) 2005-12-02

Family

ID=35486056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148155A Pending JP2005331288A (en) 2004-05-18 2004-05-18 Display method of soil constitution based on cone penetration test

Country Status (1)

Country Link
JP (1) JP2005331288A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158673B (en) * 2007-11-16 2010-10-13 中国科学院力学研究所 In-situ measurement probe
CN102042947A (en) * 2010-07-01 2011-05-04 青岛海洋地质研究所 Natural gas hydrate permeability simulation experimental device
CN102042948A (en) * 2010-07-01 2011-05-04 青岛海洋地质研究所 Device for testing hydrate acoustic properties
CN102330422A (en) * 2011-06-09 2012-01-25 上海市城市建设设计研究院 In-situ test and acquisition instrument with positioning and wireless transmitting functions and use method thereof
CN102839641A (en) * 2012-08-27 2012-12-26 东南大学 Nuclear density pore pressure static cone penetration test probe for testing density of soil mass
CN102953363A (en) * 2012-11-14 2013-03-06 东南大学 Resistivity detector for quantitatively evaluating change of soil porosity
CN103424532A (en) * 2012-05-22 2013-12-04 青岛海洋地质研究所 Experiment device for researching structural characteristics of hydrate-containing deposit velocity profile
CN104141294A (en) * 2014-07-24 2014-11-12 中国电建集团华东勘测设计研究院有限公司 Judgment method for soil body seepage failure caused by foundation pit supporting water stopping body defect
JP2016156209A (en) * 2015-02-25 2016-09-01 株式会社地盤試験所 Foundation liquefaction determination method
CN107016204A (en) * 2017-04-14 2017-08-04 中铁第四勘察设计院集团有限公司 A kind of method for determining lateral loading test horizontal foundation modulus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158673B (en) * 2007-11-16 2010-10-13 中国科学院力学研究所 In-situ measurement probe
CN102042947A (en) * 2010-07-01 2011-05-04 青岛海洋地质研究所 Natural gas hydrate permeability simulation experimental device
CN102042948A (en) * 2010-07-01 2011-05-04 青岛海洋地质研究所 Device for testing hydrate acoustic properties
CN102330422A (en) * 2011-06-09 2012-01-25 上海市城市建设设计研究院 In-situ test and acquisition instrument with positioning and wireless transmitting functions and use method thereof
CN103424532A (en) * 2012-05-22 2013-12-04 青岛海洋地质研究所 Experiment device for researching structural characteristics of hydrate-containing deposit velocity profile
CN102839641A (en) * 2012-08-27 2012-12-26 东南大学 Nuclear density pore pressure static cone penetration test probe for testing density of soil mass
CN102953363A (en) * 2012-11-14 2013-03-06 东南大学 Resistivity detector for quantitatively evaluating change of soil porosity
CN104141294A (en) * 2014-07-24 2014-11-12 中国电建集团华东勘测设计研究院有限公司 Judgment method for soil body seepage failure caused by foundation pit supporting water stopping body defect
JP2016156209A (en) * 2015-02-25 2016-09-01 株式会社地盤試験所 Foundation liquefaction determination method
CN107016204A (en) * 2017-04-14 2017-08-04 中铁第四勘察设计院集团有限公司 A kind of method for determining lateral loading test horizontal foundation modulus
CN107016204B (en) * 2017-04-14 2019-10-08 中铁第四勘察设计院集团有限公司 A kind of method of determining lateral loading test horizontal foundation modulus

Similar Documents

Publication Publication Date Title
Maxwell et al. Microseismic deformation rate monitoring
JP2005331288A (en) Display method of soil constitution based on cone penetration test
Jia et al. Nonstationary background seismicity rate and evolution of stress changes in the Changning salt mining and shale‐gas hydraulic fracturing region, Sichuan Basin, China
CN108252707B (en) Enhanced display processing method for electric imaging logging image
JP2002168964A (en) Earthquake motion amplitude estimation method, device thereof and storage medium storing program thereof
Suleimenova et al. Comparative study of acid fracturing and propped hydraulic fracturing for a tight carbonate formation
Bignardi et al. OpenHVSR-Processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content
Bazin et al. Improvement in the characterization of the acid wormholing by" in situ" X-ray CT visualizations
Causse et al. Calibrating median and uncertainty estimates for a practical use of empirical Green’s functions technique
Meyers et al. Optimal model parameters for multi-objective large-eddy simulations
CN112363242A (en) Reservoir fluid identification method and device based on logging fusion
Forestieri et al. Strength anisotropy in building granites
Maghsoudi et al. Identification and characterization of growing large-scale en-echelon fractures in a salt mine
Tsuji et al. Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity
Hai-cheng et al. A quantitative approach to characterize porosity structure from borehole electrical images and its application in a carbonate reservoir in the Tazhong area, Tarim basin
Peng et al. Application of a Threshold‐Based Earthquake Early Warning Method to the M w 6.6 Lushan Earthquake, Sichuan, China
Sunseri et al. Site interiography and geophysical scanning: Interpreting the texture and form of archaeological deposits with ground-penetrating radar
Dan et al. Physical characteristics of boulders formed in the tropically weathered granite
Jinguuji et al. A case study of liquefaction risk analysis based on the thickness and depth of the liquefaction layer using CPT and electric resistivity data in the Hinode area, Itako City, Ibaraki Prefecture, Japan
Avery et al. Asymmetry in growth and decay of the geomagnetic dipole revealed in seafloor magnetization
Singh et al. Shear strength evaluation of lower sand in Nakdong river delta
Asadi et al. Characterization of the jet perforation crushed zone by SEM and image analysis
Damen et al. Assessment of the Impact of Land Subsidence, Sea Level Rise and Coastal Change in the city of Semarang, Java, Indonesia
Gleeson et al. NMR imaging of pore structures in limestones
Özmen et al. Microtremor exploration for shallow S-wave velocity profiles at stations in local strong motion network in Bursa, Yalova, and Kocaeli in north-western Turkey