JP2005331185A - Cover made from ceramics for use in setter - Google Patents

Cover made from ceramics for use in setter Download PDF

Info

Publication number
JP2005331185A
JP2005331185A JP2004150981A JP2004150981A JP2005331185A JP 2005331185 A JP2005331185 A JP 2005331185A JP 2004150981 A JP2004150981 A JP 2004150981A JP 2004150981 A JP2004150981 A JP 2004150981A JP 2005331185 A JP2005331185 A JP 2005331185A
Authority
JP
Japan
Prior art keywords
setter
fired
ceramic
plate portion
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150981A
Other languages
Japanese (ja)
Other versions
JP4625654B2 (en
Inventor
Hidetoshi Shimura
秀敏 志村
Motokazu Haga
幹知 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mino Ceramic Co Ltd
Original Assignee
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mino Ceramic Co Ltd filed Critical Mino Ceramic Co Ltd
Priority to JP2004150981A priority Critical patent/JP4625654B2/en
Publication of JP2005331185A publication Critical patent/JP2005331185A/en
Application granted granted Critical
Publication of JP4625654B2 publication Critical patent/JP4625654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel technique which can realize uniform and good firing or the like when microminiature parts such as a multilayer ceramic capacitor are manufactured, additionally, with significantly improved yield as compared with conventional techniques, and can provide a product excellent in economical efficiency. <P>SOLUTION: A ceramics cover to be used, in a heat treatment step or firing step to be carried out when microminiature parts are manufactured, in the state of covering a object to be fired on a setter, comprising a plate part comprising a ceramics sintered body having a flat surface having a plurality of through holes provided therein and a convex part comprising a ceramics sintered compact provided near the outer periphery of either surface of the plate part, wherein, when arranged on the setter, a gap having substantially the same interval is formed between the flat surface of the plate part and a surface on which the object to be fired is loaded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に、超微小なセラミックス系の電子デバイス部品等の超小型部品を製造する際に、セッター上に被焼成物を載せて熱処理又は焼成(以下「焼成等」という)を行う場合に、セッター上に載せた被焼成物の上に覆い被して使用するセラミックス製のカバーに関する。   In the present invention, in particular, when manufacturing ultra-small parts such as ultra-small ceramic-based electronic device parts, the object to be fired is placed on a setter and subjected to heat treatment or firing (hereinafter referred to as “firing etc.”). Furthermore, the present invention relates to a ceramic cover used by covering a fired object placed on a setter.

近年、積層セラミックコンデンサ等の電子デバイス部品が次々と開発されているが、その小型化・高性能化の達成は目覚ましいものがあり、例えば、大容量でありながら高さが数mm以下の低背型であり、しかも過酷な環境(特に高温)においても使用できる積層セラミックコンデンサが提供されている。このような積層セラミックコンデンサは、例えば、薄膜状のセラミック誘電体と金属の内部電極を交互に積層し、電気炉で焼成することで製造される。これらの電子デバイス部品では、非常に高い性能の製品が安定して供給されることが要求されるため、その製造には細心の注意が払われている。一方で、このような電子デバイス部品の製造コストの削減の達成は、上記積層セラミックコンデンサ等の部品を使用した種々の精密機械器具のコストの削減に直結するものであるため、効率よく、しかも歩留りよく、安定して高品質の電子デバイス部品が提供されることが要望されている。   In recent years, electronic device parts such as multilayer ceramic capacitors have been developed one after another. However, the achievement of miniaturization and high performance has been remarkable, for example, a low profile with a large capacity and a height of several millimeters or less. There is provided a multilayer ceramic capacitor which is a mold and can be used even in a harsh environment (especially high temperature). Such a multilayer ceramic capacitor is manufactured, for example, by alternately laminating thin-film ceramic dielectrics and metal internal electrodes and firing them in an electric furnace. Since these electronic device components are required to be supplied with a very high-performance product stably, great care is taken in the production thereof. On the other hand, the achievement of the reduction in the manufacturing cost of such electronic device parts is directly linked to the reduction in the cost of various precision machinery and equipment using the above-mentioned parts such as the multilayer ceramic capacitor. It is often desired to provide stable and high-quality electronic device components.

ここで、上記したような電子デバイス部品を製造する際の焼成等の工程においては、セッターと呼ばれる被焼成物の保持具が用いられ、多数の被焼成物を同時に熱処理することが行われている。特に、微小な部品の製造にあっては、セッターを使用することが不可欠となる。そして、高い品質が要求されるセラミックス製の電子デバイス部品等の製造に用いられるセッターとしては、耐熱性に優れ、セッター材料からの汚染やセッター材料との反応等が生じないセラミックス製のセッターが用いられている。具体的には、例えば、アルミナやアルミナ−シリカ(ムライト)を主たる構成相とする耐火物系材料をベースとし、これにジルコニアを溶射したセッターや、アルミナセラミックスの表面にジルコニアをコーティングしたセッター等が用いられている(特許文献1及び2参照)。   Here, in a process such as firing when manufacturing the electronic device component as described above, a holder for the object to be fired called a setter is used, and a number of objects to be fired are simultaneously heat-treated. . In particular, it is indispensable to use a setter in the manufacture of minute parts. And, as a setter used for manufacturing electronic device parts made of ceramics that require high quality, a ceramic setter that has excellent heat resistance and does not cause contamination or reaction with the setter material is used. It has been. Specifically, for example, there are setters based on a refractory material mainly composed of alumina or alumina-silica (mullite), which is sprayed with zirconia, or a setter whose surface is coated with zirconia on an alumina ceramic. Used (see Patent Documents 1 and 2).

出願人らは、近年の電子デバイス部品の生産性の向上、及び製品の品質の向上に対して、これ迄に、電子デバイス部品の成形工程で使用される有機系結合材をより効率よく除去でき、しかも共存する電極材料を安定に保った状態で焼成等を行うことが可能な、その開孔径が0.3〜1mmの範囲内にある微細な直線状の複数の貫通孔を有するセラミックセッターを提案している(特許文献3参照)。かかるセッターを用いれば、電子デバイス部品の積載量を増やした場合にも、焼成等に際しての高い均一な通気性が実現されて、均一な温度分布、雰囲気ガスの均一性の維持を達成でき、この結果、製造された電子デバイス部品の品質が均質に維持され、高度な機能性材料である電子デバイス部品が得られる。   Applicants have been able to more efficiently remove organic binders used in the molding process of electronic device parts so far in order to improve the productivity of electronic device parts and the quality of products in recent years. In addition, a ceramic setter having a plurality of fine linear through-holes having an opening diameter in the range of 0.3 to 1 mm, which can be fired in a state where the coexisting electrode material is kept stable, is provided. It has been proposed (see Patent Document 3). By using such a setter, even when the loading amount of the electronic device parts is increased, high uniform air permeability during firing is realized, and uniform temperature distribution and maintenance of the atmospheric gas uniformity can be achieved. As a result, the quality of the manufactured electronic device component is maintained uniformly, and an electronic device component that is a highly functional material is obtained.

特開昭61−24225号公報Japanese Patent Laid-Open No. 61-24225 特開平3−1090号公報Japanese Patent Laid-Open No. 3-1090 特開2002−145672公報JP 2002-145672 A

しかしながら、先に述べたように、積層セラミックコンデンサ等の電子デバイス部品の小型化は、mm単位から数百μm単位、更には数μm単位へと進んでおり、このような超小型部品であるがために、従来のセッターだけでは対処できない問題が生じてきた。先に述べたような貫通孔を有するセッターは、セッター上の複数の被焼成物に対して均一な条件での焼成を可能とし、安定した品質の製品を提供することができるものであるが、セラミックス焼結体からなるセッターに均一な貫通孔を形成するためには、製造上ある程度の大きさの開孔を有するものとなってしまう。このため、セッターに積載させる被焼成物が、前記した積層セラミックコンデンサ等のようにあまりに微小であると、これらの開孔から被焼成物がすり抜けてしまう場合があり、製品歩留りが低下するという問題が起こる。従って、超小型の部品に対しては、貫通孔が設けられていないセラミックス板からなるセッターが用いられている。   However, as described above, downsizing of electronic device parts such as multilayer ceramic capacitors has progressed from mm units to hundreds of μm units, and further to several μm units. For this reason, a problem that cannot be dealt with by a conventional setter alone has arisen. A setter having a through-hole as described above enables firing under uniform conditions for a plurality of objects to be fired on the setter, and can provide a stable quality product. In order to form a uniform through-hole in a setter made of a ceramic sintered body, it has an opening of a certain size in manufacturing. For this reason, if the material to be fired loaded on the setter is too small, such as the above-mentioned multilayer ceramic capacitor, the material to be fired may slip through these holes, resulting in a decrease in product yield. Happens. Therefore, a setter made of a ceramic plate not provided with a through hole is used for ultra-compact parts.

本発明者らの検討によれば、貫通孔のないセラミックス板であっても、厚さの薄いものを用いれば、複数の部品に均一な熱処理を行うことが可能であるが、被焼成物が超小型である場合には、下記のような別の課題があることがわかった。即ち、電子デバイス部品等を製造する際の焼成工程では、炉内は数百〜千度以上に昇温されるが、その場合に炉内に生じる熱の対流、更には炉内温度を均一にするために強制的に送られる熱ガスの流れによって、セッター上に置かれた超小型の被焼成物が舞い上がり、セッター上から消失してしまったり、熱ガス等が滞留して、全ての被処理物に対して均一な熱処理が行われなかったりして、電子デバイス部品等の製品歩留りの低下を生じることが起こる。   According to the study by the present inventors, even if a ceramic plate without a through hole is used, it is possible to perform a uniform heat treatment on a plurality of parts if a thin plate is used. In the case of ultra-compact, it has been found that there are other problems as follows. That is, in the firing process when manufacturing electronic device parts, etc., the temperature inside the furnace is raised to several hundred to 1,000 degrees or more, but in that case the convection of heat generated in the furnace, and further the temperature inside the furnace is made uniform Because of the flow of hot gas that is forcibly sent, the ultra-small fired object placed on the setter rises and disappears from the setter, or hot gas etc. stays and all the objects to be processed A uniform heat treatment may not be performed on an object, resulting in a decrease in product yield of electronic device parts and the like.

従って、本発明の目的は、上記した従来技術の課題を解決し、積層セラミックコンデンサ等の超小型部品を製造する場合に行われる焼成等を、均一で良好な状態で、しかも歩留りよく行って経済性に優れた製品を得ることを可能とする新規な技術を提供することにある。更に、本発明の目的は、上記した効果が得られる焼成工程等でセッターとともに用いるセラミックス製のカバーを提供することで、これを利用して製造される超小型部品の品質及び生産性の向上を達成し、ひいては、これらの超小型部品が使用されたセラミックス系電子デバイス製品の品質の向上、及び経済性の達成に寄与することにある。   Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art and perform firing and the like performed in the case of manufacturing a micro component such as a multilayer ceramic capacitor in a uniform and good state and with a high yield. The object is to provide a new technology that makes it possible to obtain a product with excellent properties. Furthermore, an object of the present invention is to provide a ceramic cover used together with a setter in a firing process or the like that can obtain the above-described effects, thereby improving the quality and productivity of a micro component manufactured using the cover. The object is to contribute to the improvement of the quality of ceramic-based electronic device products using these micro components and the achievement of economy.

上記の目的は、下記の本発明によって達成される。即ち、本発明は、超小型部品を製造する際に行われる熱処理工程や焼成工程において、セッター上の被焼成物に覆い被した状態で使用されるセラミックス製のカバーであって、複数の貫通孔が設けられた平坦面を有するセラミックス焼結体からなる板部と、該板部の一方の面の外周近傍に設けられたセラミックス焼結体からなる凸部とを有し、セッター上に配置された場合に、該凸部によって、上記板部の平坦面と、セッターの被焼成物が積載される面との間に実質的に同一の間隔を有する隙間が形成されるように構成されていることを特徴とするセラミックス製のカバーである。   The above object is achieved by the present invention described below. That is, the present invention is a ceramic cover used in a state of covering a fired object on a setter in a heat treatment process or a firing process performed when manufacturing a micro component, and includes a plurality of through holes. A plate portion made of a ceramic sintered body having a flat surface provided with a convex portion made of a ceramic sintered body provided near the outer periphery of one surface of the plate portion, and disposed on a setter. In this case, the convex portion is configured so that a gap having substantially the same interval is formed between the flat surface of the plate portion and the surface on which the firing object of the setter is stacked. This is a ceramic cover.

本発明によれば、積層セラミックコンデンサ等の超小型部品を製造する際に行う焼成等を、均一で良好な状態で、しかも歩留りよく行うことができるセラミックス製のカバーが提供される。更に、本発明によれば、このような優れたセラミックス製のカバーを利用することで、超小型部品の品質及び生産性の向上を達成し、超小型部品の経済性を高めることができ、ひいては、これらの超小型部品が使用されたセラミックス系電子デバイス製品の品質の向上、及び経済性の達成に寄与できる。   ADVANTAGE OF THE INVENTION According to this invention, the ceramic cover which can perform baking etc. performed when manufacturing micro components, such as a multilayer ceramic capacitor, in a uniform and favorable state and also with a sufficient yield is provided. Furthermore, according to the present invention, by using such an excellent ceramic cover, the quality and productivity of the micro component can be improved, and the economy of the micro component can be improved. Thus, it is possible to contribute to the improvement of the quality of ceramic electronic device products in which these ultra-small parts are used and the achievement of economic efficiency.

以下、好ましい実施の形態を挙げて本発明を更に詳細に説明する。本発明にかかるセラミックス製のカバー(以下、単にカバーという)は、超小型部品を製造する場合に行われる熱処理工程や焼成工程で用いられるが、図2に示したように、複数の貫通孔が設けられた平坦面を有する板部2と、該板部2の一方の面の外周近傍に設けられた凸部1とからなり、これらの板部2と凸部1とがセラミックス焼結体からなることを基本構成とする。そして、セッターSの被焼成物を載せるための面上に本発明にかかるカバーが置かれた場合に、凸部1によって、上記板部2の平坦面と、セッターSの被焼成物Bが積載される面との間に、実質的に同一の間隔を有する隙間3が形成されるように構成されていることを特徴とする(図1(b)参照)。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. A ceramic cover according to the present invention (hereinafter simply referred to as a cover) is used in a heat treatment step or a firing step performed when manufacturing a microminiature component. As shown in FIG. It comprises a plate portion 2 having a flat surface and a convex portion 1 provided in the vicinity of the outer periphery of one surface of the plate portion 2, and these plate portion 2 and the convex portion 1 are made of a ceramic sintered body. This is the basic configuration. Then, when the cover according to the present invention is placed on the surface of the setter S to be fired, the flat surface of the plate portion 2 and the fired material B of the setter S are stacked by the convex portion 1. It is characterized in that a gap 3 having substantially the same interval is formed between the surface to be formed (see FIG. 1B).

本発明にかかるカバーは、上記構造を有するため、使用時に、図1(a)に示したようにして、セッターS上の超小型の被焼成物Bを覆い被す状態で配置されると、図1(b)の部分拡大図に示したように、板部2と、セッターSの積載面との間に実質的に同一の間隔を有する狭い隙間3が形成され、該隙間3の部分に超小型の被焼成物Bが収納された状態となる。そして、この状態で焼成等がされるが、本発明にかかるカバーの板部2には複数の貫通孔5が設けられているため、図1(b)の部分拡大図に示したように、熱ガスは、狭い隙間3を自由に流れ、ガスが滞留することがなく、全ての被焼成物Bに対して熱偏析のない均一な焼成等が行われる。以下、本発明にかかるカバーを構成する板部2と凸部1について、更に詳細に説明する。   Since the cover according to the present invention has the above structure, when it is used, as shown in FIG. 1 (a), when it is arranged in a state of covering the ultra-small fired object B on the setter S, As shown in the partial enlarged view of FIG. 1B, a narrow gap 3 having substantially the same interval is formed between the plate portion 2 and the loading surface of the setter S, and the gap 3 is formed in the gap 3 portion. It will be in the state where ultra-small to-be-fired B was stored. And although baking etc. are carried out in this state, since a plurality of through holes 5 are provided in the plate portion 2 of the cover according to the present invention, as shown in the partially enlarged view of FIG. The hot gas flows freely through the narrow gap 3 so that the gas does not stay, and uniform firing without thermal segregation is performed on all the objects to be fired B. Hereinafter, the board part 2 and the convex part 1 which comprise the cover concerning this invention are demonstrated in detail.

先ず、本発明にかかるカバーの板部2について図を参照して説明する。図2は、本発明にかかるカバーの概略図であるが、図2(a)は、カバーをセッターの上に配置して使用状態とした際に、セッターの被焼成物を載せる面側から見た概略平面図、図2(b)は、その正面図、(c)は、その斜視図である。   First, the plate part 2 of the cover concerning this invention is demonstrated with reference to figures. FIG. 2 is a schematic view of a cover according to the present invention. FIG. 2 (a) is a view from the surface side of the setter on which the object to be fired is placed when the cover is placed on the setter and put into use. FIG. 2B is a front view thereof, and FIG. 2C is a perspective view thereof.

図2に示した例では、板部2の平坦面は正方形をしており、凸部1が3個、板部の外周近傍に設けられている。本発明において、板部2の形状は図示した正方形に限らず、カバーをセッター上に置いた場合に、セッター上に載せた複数の被焼成物を、板部2を構成する平坦面で覆い被すことができ、且つ、該板部2とセッターとの間に、実質的に同一の間隔を有する狭い隙間3が形成されるものであれば、いずれの形状のものであってもよい。従って、板部2の形状は、セッターの形状に合わせて適宜な形状のものとすることが好ましい。例えば、セッター上に配置した場合に、セッターの被焼成物を載せる部分の大半、例えば、80%以上、更には90%以上を覆うことができる形状のものとすれば、焼成等をより効率よくすることができる。具体的なものとしては、板部の平面積が50〜250cm2程度のものが挙げられる。 In the example shown in FIG. 2, the flat surface of the plate portion 2 has a square shape, and three convex portions 1 are provided in the vicinity of the outer periphery of the plate portion. In the present invention, the shape of the plate portion 2 is not limited to the illustrated square, and when a cover is placed on a setter, a plurality of objects to be fired placed on the setter are covered with a flat surface constituting the plate portion 2. Any shape may be used as long as the narrow gap 3 having substantially the same interval is formed between the plate portion 2 and the setter. Therefore, it is preferable that the shape of the plate portion 2 is an appropriate shape according to the shape of the setter. For example, when it is arranged on a setter, if the shape of the setter is such that it can cover most of the portion on which the object to be fired is placed, for example, 80% or more, and further 90% or more, firing and the like can be performed more efficiently. can do. As a concrete thing, the thing whose plane area of a board part is about 50-250 cm < 2 > is mentioned.

本発明にかかるカバーの特徴の一つは、上記したような板部2に、下記に述べるような複数の貫通孔5を設けた点にある(図1(b)及び図4(b)参照)。本発明にかかるカバーは、板部2に複数の貫通孔が設けられているため、これを用いることで、焼成等の工程中における超小型の被焼成物の消失を有効に防止すると同時に、被焼成物の周囲に、揮散ガスや熱ガスが滞留して、得られる複数の焼成物において熱偏析が生じることを有効に防止できる。この結果、製品の歩留りを格段に向上させることが達成される。   One of the features of the cover according to the present invention is that a plurality of through holes 5 as described below are provided in the plate portion 2 as described above (see FIGS. 1B and 4B). ). Since the cover according to the present invention is provided with a plurality of through holes in the plate portion 2, by using this, it is possible to effectively prevent the disappearance of the ultra-small fired object during the process such as firing. It is possible to effectively prevent the occurrence of thermal segregation in the plurality of fired products obtained due to the volatilization gas or the hot gas remaining around the fired product. As a result, it is possible to significantly improve the product yield.

板部2の平坦面部分に設ける略同一形状の複数の貫通孔5は、熱ガスが、該貫通孔5の間を容易に流通することができ、且つ、超小型の被焼成物が、熱ガスでセッター上から舞い上がった場合に孔から容易にすり抜けることが起こらないようにするため、開孔の大きさを、その最長部分が3.0mm以下であるように構成することが好ましい。貫通孔を3.0mmよりも大きくすると、被焼成物の大きさによっては、貫通孔から外部へと被焼成物がすり抜けることが起こる場合がある。   The plurality of through holes 5 having substantially the same shape provided in the flat surface portion of the plate portion 2 allow hot gas to easily flow between the through holes 5, and the ultra-small to-be-fired object is heated. In order to prevent the gas from soaking up from the setter with gas, it is preferable to configure the size of the opening so that the longest portion is 3.0 mm or less. If the through hole is larger than 3.0 mm, the material to be fired may slip through the through hole depending on the size of the material to be fired.

該貫通孔の形状は特に限定されず、正方形や円形等、いずれであってもよい。例えば、図4(b)に示したような、貫通孔の開孔形状が正方形のものは、開孔部を形作る周囲部分の面積を小さくすることができるため、セッター上にカバーを配置した状態であっても、該貫通孔が存在することによって、被焼成物からの揮散ガスや炉内に強制的に送り込まれた熱ガスが、セッター上に滞留することなく良好に流通できるものとなる。更に、最長部分が3.0mm以下であって、貫通孔の開孔形状が正方形のものは、超小型の被焼成物が、セッター上から舞い上がったとしても、被焼成物が孔に入り込んだり、孔から容易にすり抜けたりすることがないため、当該カバーを使用することで製品の歩留りを向上させることができる。上記したように、本発明にかかるカバーは、カバーを配置した状態で熱ガス等の流通が良好に行われるものとすることを要し、このためには、ガスの流通の妨げとなる板部に設けた貫通孔の開孔部を形作る周囲部分の面積ができるだけ小さくなるようにすることが好ましい。具体的には、セラミックス製であるため、製造上の困難さや、製品の強度等の点から、隣り合う貫通孔同士の間隔が0.1〜0.5mm程度となるようにして、複数の貫通孔を設けることが好ましい。   The shape of the through hole is not particularly limited, and may be any shape such as a square or a circle. For example, when the through hole has a square shape as shown in FIG. 4 (b), the area of the surrounding part that forms the opening can be reduced, so the cover is placed on the setter. Even so, the presence of the through-holes allows the volatilized gas from the object to be fired and the hot gas forced into the furnace to circulate well without staying on the setter. Furthermore, when the longest portion is 3.0 mm or less and the opening shape of the through-hole is a square, even if the ultra-small fired object is swollen from the setter, the fired object enters the hole, Since it does not easily slip through the hole, the yield of the product can be improved by using the cover. As described above, the cover according to the present invention requires that the circulation of the hot gas and the like be performed satisfactorily in a state in which the cover is disposed. For this purpose, the plate portion that hinders the circulation of the gas It is preferable that the area of the peripheral portion forming the opening portion of the through hole provided in is made as small as possible. Specifically, since it is made of ceramics, from the viewpoint of manufacturing difficulty, product strength, etc., the interval between adjacent through holes is set to about 0.1 to 0.5 mm, and a plurality of through holes It is preferable to provide a hole.

本発明にかかるカバーを構成する板部2の厚みは、熱効率及びガスの流通性から薄い方が好ましく、具体的には、2.0mm以下、好ましくは1.0mm以下とする。本発明にかかるカバーはセラミックス製であるため、使用するセラミックス材料にもよるが、製造上の困難さや製品の強度等の点を考慮すると、より具体的には、0.2mm以上1.0mm以下の厚みとすることが好ましい。   The thickness of the plate part 2 constituting the cover according to the present invention is preferably thinner from the viewpoint of thermal efficiency and gas flow, and specifically, 2.0 mm or less, preferably 1.0 mm or less. Since the cover according to the present invention is made of ceramics, it depends on the ceramic material to be used. However, in view of difficulties in manufacturing, product strength, and the like, more specifically, 0.2 mm to 1.0 mm. It is preferable to set it as thickness.

次に、上記したような複数の貫通孔5を有する板部2の一方の面の外周近傍に設けられたセラミックス焼結体からなる凸部1について説明する(図2参照)。本発明にかかるカバーを構成する凸部1は、セッター上にカバーを配置した場合に、上記した板部の平坦面と、セッターの被焼成物が積載される面との間に実質的に同一の間隔を有する隙間が形成されるようにするためのものである。   Next, the convex part 1 which consists of a ceramic sintered compact provided in the outer periphery vicinity of one surface of the board part 2 which has the above several through-holes 5 is demonstrated (refer FIG. 2). The convex part 1 which comprises the cover concerning this invention is substantially the same between the flat surface of an above-described board part, and the surface where the to-be-baked material of a setter is loaded, when a cover is arrange | positioned on a setter. This is for the purpose of forming a gap having an interval of.

本発明にかかるカバーの好ましい実施形態としては、板部2の一方の面の外周近傍の3箇所に凸部を設け、且つ、凸部1の形状を、板部2の平坦面とセッターSの積載面とによって形成される実質的に同一の間隔を有する隙間3が、3.0mm以下、焼成等する被焼成物の大きさによっては1.0mm以下の狭い間隔のものになるようにしたものが挙げられる。即ち、セッターSと板部2の平坦面とで形成される隙間3は、セッター上の被焼成物が熱ガス等の流れによって消失することがなく、且つ、良好な焼成等を実現するために熱ガス等の流れができるだけ妨げないものとすることが好ましい。このためには、図2に示したように、隙間3を部分的に塞ぐことになる凸部1の形状を、隙間3の間隔が狭くなり、しかも、隙間3において凸部が占める部分ができるだけ小さくなるように、その高さを低く、且つセッター及び板部と接触する部分ができるだけ狭くなるようにする。   As a preferred embodiment of the cover according to the present invention, convex portions are provided at three locations near the outer periphery of one surface of the plate portion 2, and the shape of the convex portion 1 is changed between the flat surface of the plate portion 2 and the setter S. The gap 3 having substantially the same interval formed by the loading surface is 3.0 mm or less and, depending on the size of the object to be baked, has a narrow interval of 1.0 mm or less. Is mentioned. In other words, the gap 3 formed between the setter S and the flat surface of the plate portion 2 is provided so that the object to be fired on the setter is not lost by the flow of hot gas or the like, and good firing or the like is realized. It is preferable that the flow of hot gas or the like is not disturbed as much as possible. For this purpose, as shown in FIG. 2, the shape of the convex portion 1 that partially closes the gap 3 is made so that the gap 3 has a narrow interval, and the portion occupied by the convex portion in the gap 3 is as small as possible. In order to reduce the height, the height is lowered, and the portion in contact with the setter and the plate portion is made as narrow as possible.

凸部1の形状を上記したようにすることで、板部2とセッターSの積載面とによって形成される隙間3の間隔は非常に狭いものとなるため、熱ガスによって被焼成物BがセッターS上から舞い上がったとしても、隙間3から被焼成物Bがセッター外部へと飛ばされたり、セッター上からこぼれ落ちてしまうことが有効に防止される。この結果、先に説明した板部2に設けた複数の貫通孔の存在と相まって、本発明にかかるカバーを使用することで、被焼成物に対する焼成等を均一で効率よく行うことができ、しかも製品の歩留りを格段に向上させることができる。   By making the shape of the convex portion 1 as described above, the gap 3 formed by the plate portion 2 and the loading surface of the setter S becomes very narrow. Even if it soars from above S, it is effectively prevented that the object B is blown out of the setter from the gap 3 or spills off from the setter. As a result, in combination with the presence of the plurality of through holes provided in the plate portion 2 described above, by using the cover according to the present invention, it is possible to uniformly and efficiently perform firing on the object to be fired, Product yield can be significantly improved.

図2に示した本発明にかかるカバーの例では、上記で述べたような構造を有する凸部1を正方形の板部2の一方の面の外周近傍の3箇所に設けているが、本発明は、これに限定されるものでなく、板部2の平坦面と、セッターの被焼成物が積載される面との間に実質的に同一の間隔を有する隙間3を形成できるものであれば、いずれのものでもよい。しかし、セッター上にカバーを配置した場合のカバーの安定性と、熱ガス等が良好に流通できることを両立させるためには、先に述べたように、熱ガス等の流通を遮ることになる凸部1の隙間3に占める割合をできるだけ少なくすることが好ましい。そのためには、小さい凸部1を、板部2の外周近傍の3箇所に設けるようにすることが有効である。そして、セッター上にカバーを配置した場合の安定性をより高めるためには、3箇所に設けらる凸部の位置関係が、各凸部を結んでできる三角形の重心が該板部の中心近傍となるようにするとよい。具体的には、例えば、図3に示したような位置に、四角柱状(図2及び図3(a)〜(c)参照)或いは円柱状(図3(d)〜(f)参照)の凸部1を設ければ、安定したカバーが得られる。図3中において、二重丸で示したのは板部の中心であり、黒丸は、3箇所にある凸部を結んでできる三角形の重心を示している。   In the example of the cover according to the present invention shown in FIG. 2, the convex portions 1 having the structure described above are provided at three locations near the outer periphery of one surface of the square plate portion 2. Is not limited to this, as long as the gap 3 having substantially the same interval can be formed between the flat surface of the plate portion 2 and the surface of the setter to be fired. Any of these may be used. However, in order to achieve both the stability of the cover when the cover is placed on the setter and the good circulation of hot gas, etc., as described above, the convexity that blocks the circulation of hot gas, etc. It is preferable to reduce the proportion of the portion 1 in the gap 3 as much as possible. For this purpose, it is effective to provide the small convex portions 1 at three locations near the outer periphery of the plate portion 2. In order to further improve the stability when the cover is arranged on the setter, the positional relationship of the convex portions provided at the three locations is such that the center of gravity of the triangle formed by connecting the convex portions is near the center of the plate portion. It is recommended that Specifically, for example, at a position as shown in FIG. 3, a rectangular column shape (see FIGS. 2 and 3 (a) to (c)) or a cylindrical shape (see FIGS. 3 (d) to (f)). If the convex part 1 is provided, a stable cover can be obtained. In FIG. 3, the double circle indicates the center of the plate portion, and the black circle indicates the center of gravity of a triangle formed by connecting the convex portions at three locations.

又、例えば、凸部の形状を、設置した場合の安定性や製造のし易さを重視して図2に示したような四角柱とする場合には、3箇所に設けるこれらの凸部の向きを、図3(b)に示したように、全てが熱ガス流と同じ方向を向いた状態となるようにすることが好ましい。このようにすれば、凸部1によって、より熱ガスの流れを遮ることがない。本発明にかかるカバーを構成する凸部の形状は、勿論、例示したものに限定されないが、全ての被焼成物に対して、焼結等が熱偏析のない良好な状態で行われるようにするために、板部2の平坦面と、セッターの被焼成物が積載される面との間に形成される隙間3が、実質的に同一の間隔を有するものとなるようにする必要がある。このため、板部2が平坦面を有するものであることと同時に、該板部2の外周近傍に設ける3個の凸部1の高さを実質的に同一とすることが必要となる。このようにすることで、セッター上にカバーを被せた場合に、セッター面とカバーを構成している板部の平坦面との間に、均一の高さを有する狭い隙間が形成された状態で、カバーが安定に保持される。   In addition, for example, in the case where the shape of the convex portion is a quadrangular prism as shown in FIG. 2 with an emphasis on stability when installed and ease of manufacture, these convex portions provided at three places are arranged. As shown in FIG. 3 (b), it is preferable that the directions are all in the same direction as the hot gas flow. If it does in this way, the flow of a hot gas will not be blocked | interrupted by the convex part 1 more. Of course, the shape of the convex portions constituting the cover according to the present invention is not limited to the exemplified ones, but all the objects to be fired are sintered in a good state without thermal segregation. Therefore, it is necessary to make the gap 3 formed between the flat surface of the plate portion 2 and the surface on which the setter firing object is stacked have substantially the same spacing. For this reason, it is necessary to make the height of the three convex portions 1 provided in the vicinity of the outer periphery of the plate portion 2 substantially the same as the plate portion 2 having a flat surface. In this way, when a cover is put on the setter, a narrow gap having a uniform height is formed between the setter surface and the flat surface of the plate part constituting the cover. The cover is kept stable.

更に、本発明においては、凸部の形状をセッターと接触する部分の面積が200mm2以下と狭い範囲になるように構成することが好ましい。カバーの形状をこのようにすることで、セッター上に被せた場合に、平坦面を有する板部を十分に支えてセッターとの間に均一な高さの隙間を安定して形成することができ、しかも揮散ガスや熱ガスの通り道を遮る障害となる部分を極めて少なくすることができる。凸部の形状の具体的なものとしては、対象とする被焼成物の大きさにもよるが、例えば、高さが1.5〜3.0mm程度、幅が3〜6mm程度、長さが20〜30mm程度の四角柱状のものや、高さが0.5〜1.0mm程度、幅が3〜6mm程度、長さが8〜16mm程度の四角柱状のものが挙げられる。勿論、円柱状や多角柱状のものであってもよい。 Furthermore, in the present invention, it is preferable that the convex portion is configured so that the area of the portion in contact with the setter is in a narrow range of 200 mm 2 or less. By covering the setter in this way, when the cover is placed on the setter, it is possible to stably form a uniform height gap with the setter by sufficiently supporting the plate portion having a flat surface. In addition, it is possible to extremely reduce the part that obstructs the passage of the volatile gas and the hot gas. As a concrete thing of the shape of a convex part, although depending also on the magnitude | size of the to-be-baked object made into object, for example, height is about 1.5-3.0 mm, width is about 3-6 mm, and length is Examples include a rectangular column shape having a height of about 20 to 30 mm, and a rectangular column shape having a height of about 0.5 to 1.0 mm, a width of about 3 to 6 mm, and a length of about 8 to 16 mm. Of course, it may be cylindrical or polygonal.

ここで、熱処理工程で本発明にかかるカバーを用いる対象となる超小型の被焼成物(部品)としては、均質で高い品質の製品に使用される微小形状の超小型のセラミックス製の機能性材料全般が挙げられる。より具体的には、先に挙げた積層コンデンサや、圧電素子、フェライト素子、高周波セラミックス等の各種のセラミックス系電子デバイスに用いられる、様々なセラミックス製の薄膜(テープ或いはシート)、バルク(一定の大きさを有したもの)等の、種々の超小型部品の製造に際に利用できる。例えば、体積が3mm3以下、更には体積が0.5mm3以下の超小型の部品に対して非常に有用である。具体的には、長さ×幅×高さがそれぞれ、0.4×0.2×0.2(mm)、0.6×0.3×0.3(mm)、1.0×0.6×0.5(mm)、2.0×1.25×1.25以下(mm)、等のもの、更には、近年、開発されているこれよりも小さな超小型のセラミックコンデンサ等に対して有効に使用できる。 Here, as an ultra-small to-be-fired object (part) for which the cover according to the present invention is used in the heat treatment process, a micro-shaped ultra-small ceramic functional material used for a homogeneous and high-quality product General. More specifically, various ceramic thin films (tapes or sheets), bulk (constant, etc.) used for various ceramic electronic devices such as multilayer capacitors, piezoelectric elements, ferrite elements, high frequency ceramics, etc. It can be used in the manufacture of various micro components such as those having a size. For example, volume of 3 mm 3 or less, more volume is very useful for 0.5 mm 3 The following very small parts. Specifically, length × width × height are 0.4 × 0.2 × 0.2 (mm), 0.6 × 0.3 × 0.3 (mm), and 1.0 × 0, respectively. .6 x 0.5 (mm), 2.0 x 1.25 x 1.25 or less (mm), and more It can be used effectively.

上記したような超小型部品の製造工程における焼成等は、焼きムラを生じることなく均一に行われ、焼成等の段階で、これらの部品に対しての汚染を防止するのは勿論のこと、経済性に優れる製品を得るためには高い歩留りが要求される。従って、被焼成物やセッター等からの揮散ガスが被焼成物が置かれている部分に滞留したり、炉内に強制的に送り込んだ熱ガスの流れが妨げられることで均一な焼成等が行われないことによって生じる製品間のバラツキや、更には、炉内に強制的に送り込む熱ガス等の流れによって超小型の被焼成物がセッター上から消失することを、有効に防止する必要がある。   Firing, etc. in the manufacturing process of the above-described microminiature parts is performed uniformly without causing uneven firing, and it is natural to prevent contamination of these parts at the stage of firing, etc. A high yield is required to obtain a product with excellent properties. Therefore, the volatilization gas from the object to be fired or setter stays in the part where the object to be fired is placed, or the flow of the hot gas forced into the furnace is hindered to perform uniform firing or the like. It is necessary to effectively prevent variations in the products caused by not being broken, and further disappearance of the ultra-small fired product from the setter due to the flow of hot gas or the like forced into the furnace.

これに対し、本発明にかかるカバーを用いれば、前記したように、焼成等の工程において、セッター上の全ての被焼成物に対して、均一で効率のよい焼成等ができ、しかも被焼成物がセッター上から消失してしまうことを有効に防止でき、この結果、焼成後に得られる超小型部品の品質維持と、製品の歩留りの向上が同時に達成される。   On the other hand, if the cover according to the present invention is used, as described above, uniform and efficient firing or the like can be performed on all the objects to be fired on the setter in the process of firing and the like. Can be effectively prevented from disappearing from the setter. As a result, it is possible to simultaneously maintain the quality of the microminiature parts obtained after firing and improve the product yield.

上記のような形状の本発明にかかるカバーは、例えば、以下のような方法で容易に形成できる。先ず、下記に挙げるようなセラミックス粉末に少なくともバインダーを添加して混合して、セラミックス粉末に保形性を付与して、複数の貫通孔を有するブロック状の成形物を作製する。次に、該成形物を乾燥後、焼成してブロック状のセラミックス焼結体とし、その後に、該焼成体を薄い板状に切断して、板部と凸部とを別々に形成する。次に、板部の所望の3箇所に、後述するような無機系の接着剤を使用して所望の形状の凸部を接着し、その後に焼成することで一体化し、3箇所に凸部が設けられた本発明にかかるカバーを得る。   The cover according to the present invention having the above shape can be easily formed by the following method, for example. First, at least a binder is added to and mixed with ceramic powder as described below, and shape retention is imparted to the ceramic powder to produce a block-shaped molded product having a plurality of through holes. Next, the molded product is dried and then fired to obtain a block-shaped ceramic sintered body, and then the fired body is cut into a thin plate to separately form a plate portion and a convex portion. Next, the desired shape of the convex portion is bonded to the desired three locations of the plate portion using an inorganic adhesive as will be described later, and then integrated by firing, and the convex portions are located at the three locations. The provided cover according to the present invention is obtained.

本発明にかかるセラミックス焼結体からなるカバーを製造する際に使用するセラミックス粉末としては、下記に挙げるものを用いることができる。例えば、アルミナ、ジルコニア、シリカ、マグネシア、ムライト、コージェライト、窒化ケイ素、炭化ケイ素等、またはこれらを主成分とする複合材料等のセラミックス粉末が使用できる。これらは、単独で使用しても、2種以上の材料を適宜な組成で混合して使用してもよい。本発明においては、特に、被焼成部品に対する焼成等の時に揮散ガス等によって被焼成部品に悪影響を与えることのない材料を使用することが好ましい。   As the ceramic powder used when manufacturing the cover made of the ceramic sintered body according to the present invention, the following can be used. For example, ceramic powder such as alumina, zirconia, silica, magnesia, mullite, cordierite, silicon nitride, silicon carbide, or a composite material containing these as a main component can be used. These may be used alone or as a mixture of two or more materials with an appropriate composition. In the present invention, it is particularly preferable to use a material that does not adversely affect the part to be fired by the volatilization gas or the like when firing the part to be fired.

又、例えば、アルミナ製のカバーを形成する場合には、70質量%以上のアルミナを含有する材料を用いればよいが、カバーが使用される状況に合わせて、形成材料を適宜に選択して使用することが好ましい。例えば、高温で使用する用途においては、アルミナ含有量を78〜85質量%とし、他にシリカを含有混合させた、焼成後の構成相がムライト−アルミナとなる形成材料を用いることが好適である。具体的な材料としては、例えば、昭和電工製のアルミナ含有量が99質量%の粉末や、ミノセラミック商事(株)から出されているアルミナ含有量が80質量%及びシリカ含有量が20質量%の、焼成後の構成相がムライト−アルミナとなるような混合粉末等が挙げられる。   In addition, for example, when forming an alumina cover, a material containing 70% by mass or more of alumina may be used. However, a forming material is appropriately selected and used according to the situation in which the cover is used. It is preferable to do. For example, in an application to be used at a high temperature, it is preferable to use a forming material in which the alumina content is 78 to 85% by mass and silica is contained and mixed, and the constituent phase after firing is mullite-alumina. . Specific materials include, for example, a powder with an alumina content of 99% by mass made by Showa Denko, an alumina content of 80% by mass and a silica content of 20% by mass provided by Mino Ceramics Corporation. And a mixed powder in which the constituent phase after firing is mullite-alumina.

又、ジルコニアを用いた場合は、他の材料と比べて厚みを薄くしても強度に優れたものが得られるという利点がある。純粋なジルコニアを用いた場合は、焼成時に生じる上記体積膨張によって亀裂を生じることがあるので、耐久性に優れたものにするためには、ジルコニアとしては、CaO、MgO、Y23等の添加物を添加した部分安定化ジルコニア或いは安定化ジルコニアを使用することが好ましい。ジルコニアは、アルミナやシリカに比べて高価であるので、経済性の点からは、アルミナとシリカの混合粉末を用いることが好ましい。使用するセラミックス粉末の粒度としては、平均粒径が0.3〜3μmのものが挙げられる。 Further, when zirconia is used, there is an advantage that a material having excellent strength can be obtained even if the thickness is reduced as compared with other materials. When pure zirconia is used, cracks may occur due to the above volume expansion that occurs during firing. Therefore, in order to achieve excellent durability, as zirconia, CaO, MgO, Y 2 O 3, etc. It is preferable to use partially stabilized zirconia or stabilized zirconia to which an additive has been added. Since zirconia is more expensive than alumina and silica, it is preferable to use a mixed powder of alumina and silica from the viewpoint of economy. Examples of the particle size of the ceramic powder used include those having an average particle size of 0.3 to 3 μm.

上記したようなセラミックス粉末に保形性を付与させるためのバインダーとしては、上記に挙げたような粉末材料に適度な保形性を付与することで、セラミックス粉末から所望の形状を有する成形物を形成することができ、更に、その後に該成形物を乾燥させた場合に割れ等を生じることなく、その形状を保持できるものであればいずれのものでもよい。更に、成形物を焼成する焼成工程で、成形物からバインダーを除去することが容易にできるものを使用することが好ましい。バインダーの添加割合は、セラミックス粉末材料に対して、2〜10質量%程度とすることが好ましい。   As a binder for imparting shape retention to the ceramic powder as described above, a molded product having a desired shape can be obtained from the ceramic powder by imparting appropriate shape retention to the powder material as mentioned above. Any material can be used as long as it can be formed and can maintain its shape without causing cracks when the molded product is dried thereafter. Furthermore, it is preferable to use what can easily remove the binder from the molded product in the firing step of firing the molded product. The addition ratio of the binder is preferably about 2 to 10% by mass with respect to the ceramic powder material.

具体的なバインダーとしては、加熱時に溶融して適度な粘性を示し、加熱・焼成して焼成体とした後に残留しないような特性を有する有機化合物を使用すればよい。このようなものとしては、分子中に酸素原子が多く含まれているポリエステルやセルロースの誘導体、更には、適宜な重合度のポリエチレンオキシドやポリプロピレンオキシド、プロピレンオキシドに任意の量のエチレンオキシドを共重合させたポリエーテルを用いることが好ましい。特に、セルロースの誘導体である水溶性セルロースエーテルを用いることが好ましいが、その中でも、メチルセルロースを用いることが好ましい。メチルセルロースは、従来よりファインセラミックス製品の押出し成形時にバインダーとして用いられており、本発明においても好適に用いることができる。   As a specific binder, an organic compound which has a characteristic that it melts during heating and exhibits an appropriate viscosity and does not remain after being heated and fired to obtain a fired body may be used. This includes polyesters and cellulose derivatives containing many oxygen atoms in the molecule, as well as any amount of ethylene oxide copolymerized with polyethylene oxide, polypropylene oxide, or propylene oxide having an appropriate degree of polymerization. It is preferable to use a polyether. In particular, it is preferable to use a water-soluble cellulose ether which is a derivative of cellulose. Among them, it is preferable to use methylcellulose. Methyl cellulose has been conventionally used as a binder during extrusion molding of fine ceramic products, and can be suitably used in the present invention.

セラミックス焼結体からなる平坦面を有する板部と、セラミックス焼結体からなる3個の凸部とを一体化するための無機接着剤としては、例えば、アルミナ等のセラミックス粉末と、メチルセルロース等のバインダーと、樹脂分散剤等からなる原料に水を加えて混合したものを用いることができる。   As an inorganic adhesive for integrating a plate portion having a flat surface made of a ceramic sintered body and three convex portions made of a ceramic sintered body, for example, ceramic powder such as alumina and methyl cellulose A material prepared by adding water to a raw material composed of a binder and a resin dispersant can be used.

本発明にかかるカバーを構成する板部と凸部を製造する具体的な方法としては、下記の方法が挙げられる。先ず、先に述べたような原料からなる保形性が付与されたセラミックス材料を用いてブロック状の成形物を作製し、これを焼成してブロック状の焼成体とする。次に、該焼成体を、好ましくは2.0mm以下の所望の厚みに切断して、平坦面を有する板部を形成する。ブロック状の成形物の形状は、薄く切断して板部を形成した場合に、セッター上を覆い被すことのできるものであれば、いずれのものであってもよい。例えば、その断面積が、円や楕円、三角、四角、五角等の多角形が挙げられる。ブロック状の成形物を製造する方法も限定されないが、複数の貫通孔を有するものとするためには、押出し成形によってブロック状の成形物を形成することが好ましい。尚、凸部は、板部を形成した端材から適宜に得ることができる。   The following method is mentioned as a specific method of manufacturing the plate part and the convex part constituting the cover according to the present invention. First, a block-shaped molded product is prepared using a ceramic material made of the raw material as described above and provided with shape retention, and this is fired to obtain a block-shaped fired body. Next, the fired body is preferably cut to a desired thickness of 2.0 mm or less to form a plate portion having a flat surface. The shape of the block-shaped molded product may be any as long as it can cover the setter when it is cut thinly to form a plate portion. For example, the cross-sectional area may be a polygon such as a circle, an ellipse, a triangle, a square, or a pentagon. The method for producing the block-shaped molded product is not limited, but in order to have a plurality of through holes, it is preferable to form the block-shaped molded product by extrusion molding. In addition, a convex part can be suitably obtained from the end material which formed the board part.

押出し成形によってブロック状の成形物を形成する具体的な方法としては、先ず、原料となるセラミックス粉末に、バインダーを加え、押し出し成形機で、充分に混合・混練し、得られた混練物をダイを介して押し出せば、容易に棒状の成形物が得られる。この際に、所望形状の開孔を有する直線状の貫通孔が複数設けられている成形物が得られるようなダイを用いて押し出し成形をする。又、上記で得たブロック状の成形物から焼結体を得る場合には、成形物を、例えば、先ず30〜80℃程度の温度で乾燥し、乾燥後の成形物を1400〜1700℃で焼成することが好ましい。   As a specific method for forming a block-shaped molded product by extrusion molding, first, a binder is added to a raw material ceramic powder, and the resulting kneaded product is mixed and kneaded with an extrusion molding machine. If it extrudes via, a rod-shaped molding can be obtained easily. At this time, extrusion molding is performed using a die that can obtain a molded product in which a plurality of linear through-holes having openings of a desired shape are provided. Moreover, when obtaining a sintered compact from the block-shaped molded object obtained above, for example, a molded object is first dried at the temperature of about 30-80 degreeC, and the molded object after drying is 1400-1700 degreeC. It is preferable to fire.

上記のようにして得られた焼成体を切断して、板部或いは凸部用の部材を得る方法としては、下記に挙げるような切断機で焼成体を切断して板状の板部に加工する。この際に使用する切断機としては、内周スライサー、マルチワイヤーソー、バンドソーのいずれか、より好ましくは、内周スライサーやマルチワイヤーソーを用いる。例えば、内周スライサーやマルチワイヤーソーは、インゴットからシリコンウェハを切り出す際の精密切断に使用されており、特に、薄いカバーを作製する場合に有効である。内周スライサー等を使用して、図4に示したブロック状の焼成物を、図中に示した破線の位置を水平に切断することで、複数の貫通孔を有する薄いプレート状の板部(図2(b)参照)を容易に作製できる。   As a method of cutting the fired body obtained as described above to obtain a member for a plate part or a convex part, the fired body is cut with a cutting machine as described below and processed into a plate-like plate part. To do. As a cutting machine used at this time, any of an inner circumference slicer, a multi-wire saw, and a band saw, more preferably, an inner circumference slicer or a multi-wire saw is used. For example, an inner circumference slicer or a multi-wire saw is used for precision cutting when a silicon wafer is cut out from an ingot, and is particularly effective in producing a thin cover. A thin plate-like plate portion having a plurality of through-holes by horizontally cutting the position of the broken line shown in the drawing of the block-like fired product shown in FIG. 4 using an inner circumferential slicer or the like ( 2B) can be easily manufactured.

次に、上記のようにして得た薄いプレート状の板部の、使用する場合にセッターと対峙する側の面の外周近傍の所望する3箇所に、上記のようにして得た凸部用の部材を前記した無機接着剤を用いて取り付ける。その後、1500℃程度の温度で焼成することで、板部と凸部とを接着して一体化し、板部の片面上の外周近傍の3箇所に凸部が設けられた本発明にかかるカバーを得る。   Next, in the thin plate-like plate portion obtained as described above, in the desired three locations near the outer periphery of the surface facing the setter when used, for the convex portion obtained as described above. The member is attached using the inorganic adhesive described above. After that, by baking at a temperature of about 1500 ° C., the plate portion and the convex portion are bonded and integrated, and the cover according to the present invention in which the convex portions are provided at three locations near the outer periphery on one side of the plate portion. obtain.

以下、実施例及び比較例を挙げて、本発明を更に具体的に説明する。
<実施例1及び2>
本実施例では、形成材料に、焼成後の構成相がムライト−アルミナとなるようなアルミナ含有量80質量%、シリカ含有量20質量%の、平均粒径が1.5μmの粉末を用いた。又、該粉末に保形性を付与するために、メチルセルロースを粉体に対して5質量%の割合で含有させた。そして、押出し成形機(高浜工業(株)社製)で、これらの材料を混合・混練して保形性を有する混練物を得、これに引き続いて、上記の押出し成形機で、上記混練物からなるサイズの異なる円柱状の成形物を2種類形成した。該円柱状の成形物は、厚みが100mm程度であり、円柱の高さ方向に貫通した微小な孔を複数有するものである。上記貫通孔の形状は、孔の断面が一辺が0.6或いは0.8mmの正方形とした。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
<Examples 1 and 2>
In this example, a powder having an average particle size of 1.5 μm and an alumina content of 80% by mass and a silica content of 20% by mass was used as the forming material so that the constituent phase after firing was mullite-alumina. In order to impart shape retention to the powder, methylcellulose was contained at a ratio of 5% by mass with respect to the powder. Then, these materials are mixed and kneaded by an extrusion molding machine (manufactured by Takahama Kogyo Co., Ltd.) to obtain a kneaded product having shape retention. Subsequently, the above kneaded product is obtained by the above extrusion molding machine. Two types of cylindrical shaped products having different sizes were formed. The cylindrical shaped product has a thickness of about 100 mm and has a plurality of minute holes penetrating in the height direction of the cylinder. The shape of the through hole was a square whose cross section was 0.6 or 0.8 mm on one side.

次に、上記で得られた各成形物を100℃で10時間乾燥した後、60℃/時間の条件で1,550℃まで昇温し、その温度で120分間焼成してムライト−アルミナ焼成物を得た。次に、得られた複数の貫通孔を有する円柱状のムライト−アルミナ焼成物の周囲を、切断装置として(株)東京精密社製の内周スライサーを用いて垂直に切断して角柱状とした。次に、同様の切断装置を用いて、厚みが略一定となるように水平に切断し、表1に示した、サイズの異なる板部をそれぞれ作製した。又、板部を作製した際の端材で、表1に示した形状の異なる凸部を作製した。   Next, after drying each molded product obtained above at 100 ° C. for 10 hours, the temperature was raised to 1,550 ° C. at 60 ° C./hour, and firing was performed at that temperature for 120 minutes to obtain a mullite-alumina fired product. Got. Next, the periphery of the obtained cylindrical mullite-alumina fired product having a plurality of through-holes was cut vertically using an inner circumference slicer manufactured by Tokyo Seimitsu Co., Ltd. as a cutting device to form a prismatic shape. . Next, using the same cutting apparatus, it cut | disconnected horizontally so that thickness might become substantially constant, and produced the board part from which size shown in Table 1 differs, respectively. Moreover, the convex part from which the shape shown in Table 1 differs in the end material at the time of producing a board part was produced.

次に、上記のようにして得た各板部に対して、それぞれ表1に示した各サイズの凸部を組み合わせて、図2に示した3箇所に、下記の組成からなる無機スラリーを用いて接着した。次に、これを1500℃まで昇温して加熱処理して、各板部に、それぞれ3個の凸部が一体的に設けられてなる本実施例のカバーを得た。表1に得られたカバーのサイズをまてめて示した。
・アルミナ 60%
・メチルセルロース(バインダー) 8%
・樹脂分散剤 1%
・水 31%
Next, for each plate part obtained as described above, the convex portions of each size shown in Table 1 are combined, and an inorganic slurry having the following composition is used at three locations shown in FIG. And glued. Next, this was heated up to 1500 ° C. and heat-treated to obtain a cover of this example in which each plate portion was integrally provided with three convex portions. Table 1 shows the cover sizes obtained.
・ Alumina 60%
・ Methylcellulose (binder) 8%
Resin dispersant 1%
・ Water 31%

Figure 2005331185
Figure 2005331185

[評価]
図1に示した形状の、99質量%のアルミナ製のセッターSと、表1に示した形状の各実施例にかかるカバーとを用いて、超小型部品を製造する際に行う焼成を行った。又、比較のために、カバーを使用せずに同様の焼成を行なった。この際、焼成後のサイズが0.4×0.2×0.2mmである超小型の積層セラミックコンデンサを得るための被焼成物を、各セッター上に10万個ずつ載せて、通常の焼成を行った。
[Evaluation]
Using the setter S made of alumina of 99% by mass having the shape shown in FIG. 1 and the cover according to each example having the shape shown in Table 1, firing was performed when manufacturing a microminiature component. . For comparison, similar firing was performed without using a cover. At this time, 100,000 to be fired on each setter to obtain an ultra-small multilayer ceramic capacitor having a size after firing of 0.4 × 0.2 × 0.2 mm is used for normal firing. Went.

上記で使用したセッターは、図1に示した形状のものであるが、被焼成物を載せる積載面の部分が、実施例1は152×152mm、実施例2は130×130mmの正方形であって厚みが4mmであり、更に、積載面側の外周部分に、被焼成物を載せる面からの立ち上がりが1mmであって幅が5mm程度の外縁を有している。この外縁によって、セッター上に載せた超小型の被焼成物は、容易にはセッター面から転がり落ちることはない。又、この外縁の四隅には、25×5×4mmのセッターを重ねるための台が設けられており、図1(c)に示したように、同様の形状のセッターを複数重ねることができるようになっている。更に、図1に示したセッターは、セッターを重ねた状態で安定になるように、セッターの積載面と反対側の四隅に浅い凹部が設けられている。この凹部は、セッターを重ねるための台の最上部が、この浅い凹部の中に嵌り込むように構成されている。このようにすることで、図1(c)に示したように、複数のセッターは、安定した状態で重ね合わされる。   The setter used above has the shape shown in FIG. 1, but the portion of the stacking surface on which the object to be fired is placed is a square of 152 × 152 mm in Example 1 and 130 × 130 mm in Example 2. The thickness is 4 mm, and the outer peripheral portion on the stacking surface side has an outer edge with a rise of 1 mm from the surface on which the object to be fired is placed and a width of about 5 mm. Due to this outer edge, the ultra-small fired article placed on the setter does not easily roll off from the setter surface. In addition, the four corners of the outer edge are provided with platforms for stacking 25 × 5 × 4 mm setters, so that a plurality of setters having the same shape can be stacked as shown in FIG. It has become. Furthermore, the setter shown in FIG. 1 is provided with shallow recesses at the four corners on the opposite side to the setter loading surface so that the setter is stable when the setters are stacked. The recess is configured such that the uppermost part of the table for stacking the setter is fitted into the shallow recess. By doing in this way, as shown in FIG.1 (c), several setters are piled up in the stable state.

評価は、上記した状態の板状のセッターを3段重ね、各セッターの積載面上に各実施例のカバーを各被焼成物に覆い被した状態で置き、この状態で通常の焼成を行った。又、比較例では、カバーを使用せずにセッターのみで焼成を行った場合について試験した。この結果、表1に示したように、カバーを使用しない比較例の場合と比べて、実施例にかかるカバーを使用した場合には、いずれの場合も製品歩留りにおいて格段に向上することが確認できた。又、焼成後に得られた積層セラミックコンデンサは、いずれも良好な状態に焼成されており、優れた品質のものであることが確認できた。   In the evaluation, the plate-like setters in the above-described state were stacked in three stages, placed on the stacking surface of each setter with the cover of each example covered by each object to be fired, and normal firing was performed in this state. . Moreover, in the comparative example, it tested about the case where it baked only with a setter, without using a cover. As a result, as shown in Table 1, it can be confirmed that when the cover according to the example is used, the product yield is significantly improved in any case as compared with the comparative example in which the cover is not used. It was. In addition, the multilayer ceramic capacitors obtained after firing were all fired in a good state, and it was confirmed that they were of excellent quality.

本発明の活用例としては、積層セラミックコンデンサ等の超小型部品を製造する際の焼成等を、良好な状態で、しかも歩留りよく行うことができるセラミックス製のカバーが挙げられる。更に、このようなカバーを利用することで、超小型部品の品質及び生産性を向上できるため、これらの超小型部品が使用されたセラミックス系電子デバイス製品の品質の向上、及び経済性の向上に寄与できる。   As an application example of the present invention, there is a ceramic cover that can perform firing and the like when manufacturing a microminiature component such as a multilayer ceramic capacitor in a good state and with a high yield. Furthermore, the use of such a cover can improve the quality and productivity of ultra-small parts, thereby improving the quality of ceramic electronic device products using these micro-parts and improving the economic efficiency. Can contribute.

本発明のセラミックス製のカバーの使用状態及び作用を説明するための図である。It is a figure for demonstrating the use condition and effect | action of the ceramic-made covers of this invention. 本発明のセラミックス製のカバーの一例を示す模式図である。It is a schematic diagram which shows an example of the ceramic-made covers of this invention. 板部に取り付ける3個の凸部の位置を模式的に示す図である。It is a figure which shows typically the position of the three convex parts attached to a board part. 本発明のセラミックス製のカバーの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the ceramic-made covers of this invention.

符号の説明Explanation of symbols

1:凸部
2:板部
3:隙間
4:切断予定の線
5:貫通孔
S:セッター
B:被焼成物
1: Convex part 2: Plate part 3: Gap 4: Line to be cut 5: Through hole S: Setter B: Baking object

Claims (6)

超小型部品を製造する際に行われる熱処理工程や焼成工程において、セッター上の被焼成物に覆い被した状態で使用されるセラミックス製のカバーであって、複数の貫通孔が設けられた平坦面を有するセラミックス焼結体からなる板部と、該板部の一方の面の外周近傍に設けられたセラミックス焼結体からなる凸部とを有し、セッター上に配置された場合に、該凸部によって、上記板部の平坦面と、セッターの被焼成物が積載される面との間に実質的に同一の間隔を有する隙間が形成されるように構成されていることを特徴とするセラミックス製のカバー。   A ceramic cover used in a heat treatment process or firing process performed when manufacturing microminiature parts and covered with an object to be fired on a setter, and a flat surface provided with a plurality of through holes And a convex portion made of a ceramic sintered body provided in the vicinity of the outer periphery of one surface of the plate portion and disposed on the setter, the convex portion The gap is formed so that a gap having substantially the same interval is formed between the flat surface of the plate portion and the surface of the setter to be fired. Made of cover. 前記貫通孔は、前記板部の全面に渡って設けられており、その開孔の最長部分が3.0mm以下である請求項1に記載のセラミックス製のカバー。   2. The ceramic cover according to claim 1, wherein the through hole is provided over the entire surface of the plate portion, and the longest portion of the opening is 3.0 mm or less. 前記間隔が3.0mm以下である請求項1又は2に記載のセラミックス製のカバー。   The ceramic cover according to claim 1 or 2, wherein the distance is 3.0 mm or less. 前記凸部は、前記板部の一方の面の外周近傍の3箇所に設けられており、且つ、これらの凸部の位置関係が、各凸部を結んでできる三角形の重心が該板部の中心近傍となるように構成されている請求項1〜3のいずれか1項に記載のセラミックス製のカバー。   The convex portions are provided at three locations in the vicinity of the outer periphery of one surface of the plate portion, and the positional relationship between these convex portions is a triangular center of gravity formed by connecting the convex portions. The ceramic cover according to any one of claims 1 to 3, wherein the cover is configured to be near the center. 前記板部の形状が、厚みが2.0mm以下の四角形である請求項1〜4のいずれか1項に記載のセラミックス製のカバー。   The ceramic cover according to any one of claims 1 to 4, wherein a shape of the plate portion is a square having a thickness of 2.0 mm or less. 前記凸部のセッターと接触する部分の各面積が、200mm2以下である請求項1〜5のいずれか1項に記載のセラミックス製のカバー。 Each area of the part which contacts the setter of the said convex part is 200 mm < 2 > or less, The ceramic-made covers of any one of Claims 1-5.
JP2004150981A 2004-05-20 2004-05-20 Ceramic cover for setter Active JP4625654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150981A JP4625654B2 (en) 2004-05-20 2004-05-20 Ceramic cover for setter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150981A JP4625654B2 (en) 2004-05-20 2004-05-20 Ceramic cover for setter

Publications (2)

Publication Number Publication Date
JP2005331185A true JP2005331185A (en) 2005-12-02
JP4625654B2 JP4625654B2 (en) 2011-02-02

Family

ID=35485970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150981A Active JP4625654B2 (en) 2004-05-20 2004-05-20 Ceramic cover for setter

Country Status (1)

Country Link
JP (1) JP4625654B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051845A (en) * 2013-03-18 2015-11-11 因太金属株式会社 Grain boundary diffusion process jig, and container for grain boundary diffusion process jig
JP2016211043A (en) * 2015-05-11 2016-12-15 株式会社アテクト Method for producing turbine wheel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510997U (en) * 1991-07-17 1993-02-12 株式会社村田製作所 Vase for firing ceramics
JPH05139849A (en) * 1991-11-15 1993-06-08 Matsushita Electric Ind Co Ltd Production of ceramic multilayer substrate
JP2001141373A (en) * 1999-11-18 2001-05-25 Murata Mfg Co Ltd Tool for burning ceramics
JP2005016912A (en) * 2003-06-30 2005-01-20 Tdk Corp Baking tool and method of manufacturing electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510997U (en) * 1991-07-17 1993-02-12 株式会社村田製作所 Vase for firing ceramics
JPH05139849A (en) * 1991-11-15 1993-06-08 Matsushita Electric Ind Co Ltd Production of ceramic multilayer substrate
JP2001141373A (en) * 1999-11-18 2001-05-25 Murata Mfg Co Ltd Tool for burning ceramics
JP2005016912A (en) * 2003-06-30 2005-01-20 Tdk Corp Baking tool and method of manufacturing electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051845A (en) * 2013-03-18 2015-11-11 因太金属株式会社 Grain boundary diffusion process jig, and container for grain boundary diffusion process jig
EP2978000A4 (en) * 2013-03-18 2016-05-11 Intermetallics Co Ltd Grain boundary diffusion process jig, and container for grain boundary diffusion process jig
JP2016211043A (en) * 2015-05-11 2016-12-15 株式会社アテクト Method for producing turbine wheel

Also Published As

Publication number Publication date
JP4625654B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
EP2366970A2 (en) Method of drying a honeycomb formed body
US9561985B2 (en) Method for manufacturing ceramic honeycomb fired body
EP2514576A1 (en) A method of producing ceramic substrates
JP2002114579A (en) Sintering setter
WO2003082537A1 (en) Method for manufacturing honeycomb structure
JP4625654B2 (en) Ceramic cover for setter
KR20100053464A (en) Method of manufacturing ceramic board and electronic device
JPH1179853A (en) Setter for baking and its production
JP4358777B2 (en) Zirconia setter and method for manufacturing ceramic substrate
JP6810075B2 (en) Firing jig
JP2014148436A (en) Method for manufacturing burned tool
JP6067394B2 (en) Firing jig
JP4509541B2 (en) Manufacturing method of ceramic plate and ceramic plate
JP4542378B2 (en) Manufacturing method of ceramic plate for setter
JP4493904B2 (en) Manufacturing method of zirconia setter
JP7253081B2 (en) Firing jig
WO2018173711A1 (en) Honeycomb structure production method
JPH06265276A (en) Sagger for baking ceramic
JPH10218672A (en) Baking for ceramic sheet
JP4457750B2 (en) Method for firing ceramic molded body
JP2023093979A (en) firing setter
JPH05310481A (en) Porous sheetlike refractory and its production
JP5937800B2 (en) Method for manufacturing honeycomb fired body
JP2003163438A (en) Method of manufacturing ceramic substrate
JPH05270923A (en) Sagger for burning use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Ref document number: 4625654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250