JP2005330138A - Glass tube for discharge tube and discharge tube using the same - Google Patents

Glass tube for discharge tube and discharge tube using the same Download PDF

Info

Publication number
JP2005330138A
JP2005330138A JP2004148609A JP2004148609A JP2005330138A JP 2005330138 A JP2005330138 A JP 2005330138A JP 2004148609 A JP2004148609 A JP 2004148609A JP 2004148609 A JP2004148609 A JP 2004148609A JP 2005330138 A JP2005330138 A JP 2005330138A
Authority
JP
Japan
Prior art keywords
tube
glass tube
glass
discharge tube
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004148609A
Other languages
Japanese (ja)
Inventor
Tsurumi Shiraishi
鶴美 白石
Hiroyuki Yasuda
浩之 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2004148609A priority Critical patent/JP2005330138A/en
Publication of JP2005330138A publication Critical patent/JP2005330138A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass tube for a discharge tube excellent in thermal shock resistance, and to provide a discharge tube using the same. <P>SOLUTION: The glass tube for the discharge tube is prepared by immersing a glass tube(length of 18 mm× outer diameter of 2 mm× inner diameter of 1 mm) composed of glass (A) having the composition of 77 % of SiO<SB>2</SB>, 1 % of Al<SB>2</SB>O<SB>3</SB>, 16% of B<SB>2</SB>O<SB>3</SB>, 5% of Na<SB>2</SB>O and 1% of K<SB>2</SB>O by mass% at the treated temperature and for the treatment time of the table(not illustrated), conducting the ion exchange treatment and then washing/drying. The glass tube for the discharge tube has an ion-exchange layer with a thickness of at least 2 μm on the inner surface and is given by the compressive stress. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放電管用ガラス管およびそれを使用した放電管に関するものであり、特に、キセノンフラッシュランプ用のガラス管およびそれを使用したキセノンフラッシュランプに関するものである。   The present invention relates to a glass tube for a discharge tube and a discharge tube using the same, and more particularly to a glass tube for a xenon flash lamp and a xenon flash lamp using the same.

従来から、フラッシュ光源装置は、カメラに取り付けて使用されるか、カメラに内蔵して使用されている。近年、カメラの小型化に伴い、このようなフラッシュ光源装置も小型化されるようになった。そのため、フラッシュ光源装置に使用される放電管として、例えば、図1に示すような全長が20mm程度で、外径が2mm程度の小型の放電管1が使用されるようになってきた。この放電管1には、例えば、ガラス管2の両端部2a、2aにタングステンやコバール等の高融点の金属からなる主電極3、3が封止され、内部にXeガスが封入され、ガラス管2の外表面2bには、ITO膜からなるトリガー電極4が形成されている。   Conventionally, a flash light source device has been used by being attached to a camera or being incorporated in a camera. In recent years, with the miniaturization of cameras, such flash light source devices have been miniaturized. Therefore, as a discharge tube used in a flash light source device, for example, a small discharge tube 1 having an overall length of about 20 mm and an outer diameter of about 2 mm as shown in FIG. 1 has been used. In the discharge tube 1, for example, main electrodes 3 and 3 made of a high melting point metal such as tungsten or Kovar are sealed at both ends 2 a and 2 a of the glass tube 2, and Xe gas is sealed inside the glass tube 2. A trigger electrode 4 made of an ITO film is formed on the outer surface 2b.

この放電管1は、両主電極3、3間で瞬時に放電させて発光させるが、特に放電管1のサイズが小さくなれば、封入されたXeガスの量を増やしたり、主電極に印加する電気エネルギーを多くしたりしないと、同程度の発光エネルギー(ガイドナンバー)を得ることができない。そのため、放電管1のガラス管2の内表面2cは、放電時の熱衝撃によってダメージを受けやすく、クラックが発生したり、破損したりする現象が顕著になり、放電管の寿命が短くなるという問題があった。   The discharge tube 1 instantaneously discharges and emits light between the main electrodes 3 and 3, but when the size of the discharge tube 1 is reduced, the amount of Xe gas enclosed is increased or applied to the main electrode. If the electrical energy is not increased, the same level of emission energy (guide number) cannot be obtained. Therefore, the inner surface 2c of the glass tube 2 of the discharge tube 1 is easily damaged by thermal shock during discharge, and the phenomenon that cracks are generated or broken becomes remarkable, and the life of the discharge tube is shortened. There was a problem.

そこで、これを解決するために、例えば、放電管に使用するガラス管を、420〜450℃に保った硝酸セシウムの融液に0.5〜2時間浸漬し強化した放電管用強化ガラス管が開示されている(例えば、特許文献1参照。)。
特開2000−072490号公報
In order to solve this, for example, a tempered glass tube for a discharge tube is disclosed in which a glass tube used for a discharge tube is reinforced by immersing it in a cesium nitrate melt maintained at 420 to 450 ° C. for 0.5 to 2 hours. (For example, refer to Patent Document 1).
JP 2000-072490 A

しかしながら、実際には、特許文献1に記載の放電管用ガラス管を用いても、放電時の耐熱衝撃性を充分に向上させることができなかった。   However, actually, even when the glass tube for a discharge tube described in Patent Document 1 is used, the thermal shock resistance during discharge cannot be sufficiently improved.

本発明の目的は、耐熱衝撃性に優れる放電管用ガラス管及びそれを使用した放電管を提供することにある。   An object of the present invention is to provide a glass tube for a discharge tube having excellent thermal shock resistance and a discharge tube using the same.

本発明者等は、放電時の熱衝撃によって、ガラス管の内面に引張応力が加わり、それによってクラックが発生することをつきとめ、ガラス管の内面に引張応力が入りにくいように、ガラス管の内表面にイオン交換処理を施し、所定の厚みのイオン交換層を形成すれば、放電管用ガラス管の耐熱衝撃性が向上することを見出し、本発明として提案するものである。   The inventors of the present invention have determined that a tensile stress is applied to the inner surface of the glass tube due to a thermal shock during discharge, and that cracks are generated thereby, so that the inner surface of the glass tube is less likely to receive a tensile stress. It has been found that the thermal shock resistance of a glass tube for a discharge tube is improved by subjecting the surface to an ion exchange treatment to form an ion exchange layer having a predetermined thickness, which is proposed as the present invention.

すなわち、本発明の放電管用ガラス管は、内表面に2μm以上の厚みのイオン交換層を有し、圧縮応力が付与されてなることを特徴とする。   That is, the glass tube for a discharge tube according to the present invention has an ion exchange layer having a thickness of 2 μm or more on the inner surface, and is provided with a compressive stress.

また、本発明の放電管は、内表面に2μm以上の厚みのイオン交換層を有し、圧縮応力が付与されてなる放電管用ガラス管を用いてなることを特徴とする。   The discharge tube of the present invention is characterized by using a glass tube for a discharge tube having an ion exchange layer having a thickness of 2 μm or more on the inner surface and applied with compressive stress.

また、本発明の放電管用ガラス管の製造方法は、カリウム化合物を、その融点以上且つガラス管の歪点以下の温度で溶融し、その中にガラス管を5〜100時間浸漬することによってイオン交換処理することを特徴とする。   Further, the method for producing a glass tube for a discharge tube according to the present invention comprises ion exchange by melting a potassium compound at a temperature not lower than the melting point and not higher than a strain point of the glass tube and immersing the glass tube in the glass tube for 5 to 100 hours. It is characterized by processing.

本発明の放電管用ガラス管は、内表面に2μm以上の厚みのイオン交換層を有し、圧縮応力を付与してなるため、耐熱衝撃性に優れる。すなわち、ガラス管内表面に圧縮応力を付与してなるため、放電時の熱衝撃によってガラス管内表面にクラックが入りにくく、たとえクラックが入っても2μm以上の厚みのイオン交換層によってクラックが伝搬しにくく破損しにくいからである。このような放電管用ガラス管を使用した放電管は、放電時の熱衝撃によってダメージを受けにくく、クラックが発生したり、破損したりする現象を抑制でき、放電管の寿命が長くなる。イオン交換層の厚みの好ましい範囲は、5〜80μmである。   The glass tube for a discharge tube of the present invention has an ion exchange layer having a thickness of 2 μm or more on the inner surface and is provided with a compressive stress, and thus has excellent thermal shock resistance. That is, since a compressive stress is applied to the inner surface of the glass tube, cracks are not easily generated on the inner surface of the glass tube due to thermal shock during discharge, and even if cracks are generated, cracks are not easily propagated by the ion exchange layer having a thickness of 2 μm or more. This is because it is difficult to break. A discharge tube using such a glass tube for a discharge tube is not easily damaged by a thermal shock at the time of discharge, can suppress the occurrence of cracks or breakage, and increases the life of the discharge tube. A preferable range of the thickness of the ion exchange layer is 5 to 80 μm.

また、内表面のレターデーションが圧縮応力方向で10〜1000nm/cmであり、あるいは内表面の圧縮応力が0.5〜30MPaであると、内表面にクラックが入りにくいため好ましい。内表面のレターデーションが圧縮応力方向で10nm/cmよりも小さい、或いは内表面の圧縮応力が0.5MPaよりも小さいと、放電時に内表面に付与される引張応力を抑制することができない。また、レターデーションが1000nm/cmよりも大きい、或いは圧縮応力が30MPaよりも大きいと、その圧縮応力によってガラス管が破損しやすくなる。レターデーションの好ましい範囲は、30〜700nm/cmであり、圧縮応力の好ましい範囲は、1〜20MPaである。   Moreover, it is preferable that the retardation of the inner surface is 10 to 1000 nm / cm in the direction of compressive stress, or that the compressive stress of the inner surface is 0.5 to 30 MPa because cracks are unlikely to occur on the inner surface. If the retardation of the inner surface is smaller than 10 nm / cm in the direction of compressive stress or the compressive stress of the inner surface is smaller than 0.5 MPa, the tensile stress applied to the inner surface during discharge cannot be suppressed. On the other hand, if the retardation is greater than 1000 nm / cm or the compressive stress is greater than 30 MPa, the glass tube tends to be damaged by the compressive stress. A preferable range of retardation is 30 to 700 nm / cm, and a preferable range of compressive stress is 1 to 20 MPa.

尚、レターデーション(R)は、セナルモン法によって測定し、圧縮応力は、レターデーションと光弾性係数から求めた応力値を用いた。   The retardation (R) was measured by the Senarmont method, and the stress value obtained from the retardation and photoelastic coefficient was used as the compressive stress.

また、ガラス管の外表面も内表面と同様にイオン交換されてなり、圧縮応力が付与されてなると、取扱い時にキズが入っても破損し難く好ましい。   Further, it is preferable that the outer surface of the glass tube is ion-exchanged in the same manner as the inner surface and is given a compressive stress because it is difficult to break even if scratched during handling.

本発明において使用するガラス管は、ホウケイ酸塩ガラスからなると、電極材料であるタングステンやコバールと熱膨張係数が同じ又は熱膨張係数の差が小さく、電極材料を封着してもガラス管が破損しにくいため好ましい。   When the glass tube used in the present invention is made of borosilicate glass, the thermal expansion coefficient is the same as the electrode material tungsten or Kovar, or the difference in thermal expansion coefficient is small, and the glass tube is broken even if the electrode material is sealed. It is preferable because it is difficult to do.

また、本発明の放電管用ガラス管の製造方法は、カリウム化合物を、その融点以上且つガラス管の歪点以下の温度で溶融した溶融塩中に、ガラス管を5〜100時間浸漬することによってイオン交換処理するため、管内表面に2μm以上の厚みのイオン交換層を有し、圧縮応力が付与された放電管用ガラス管が得られる。浸漬時間の好ましい範囲は10〜80時間である。   The method for producing a glass tube for a discharge tube according to the present invention comprises immersing a glass tube in a molten salt melted at a temperature not lower than the melting point and not higher than the strain point of the glass tube for 5 to 100 hours. In order to perform the exchange treatment, a glass tube for a discharge tube having an ion exchange layer having a thickness of 2 μm or more on the inner surface of the tube and having a compressive stress applied thereto is obtained. The preferable range of the immersion time is 10 to 80 hours.

またイオン交換が、Liイオン及び/又はNaイオンと、カリウム化合物中のKイオンとのイオン交換であると、Kイオンのイオン半径(1.33Å)がLiイオンのイオン半径(0.60Å)やNaイオンのイオン半径(0.95Å)よりも大きいため、イオン交換によりガラス管の内表面に圧縮応力が付与される。また、Kイオンのイオン半径が、Csイオンのイオン半径(1.69Å)よりも小さいため、Kイオンがガラス表面深くまで入り込みやすく、厚いイオン交換層を形成しやすい。   If the ion exchange is an ion exchange between Li ions and / or Na ions and K ions in the potassium compound, the ion radius of K ions (1.33 Å) is the ion radius of Li ions (0.60 Å) Since it is larger than the ion radius of Na ions (0.95 Å), compressive stress is applied to the inner surface of the glass tube by ion exchange. In addition, since the ion radius of K ions is smaller than the ion radius of Cs ions (1.69 Å), K ions can easily enter deep into the glass surface and a thick ion exchange layer can be easily formed.

また、ガラス管がLiO及び/又はNaOを2〜10質量%含有するガラスからなると、ガラス中のLiイオン及び/又はNaイオンと、溶融塩中のKイオンとのイオン交換処理が容易になり、内表面にイオン交換層が形成され、圧縮応力を付与しやすいため好ましい。 Further, the glass tube is made of glass containing 2-10 wt% of Li 2 O and / or Na 2 O, ion exchange treatment of the Li-ion and / or Na ion in the glass, and K ions in the molten salt This is preferable because an ion exchange layer is formed on the inner surface and compressive stress is easily applied.

また、ガラス管がKOを2質量%以下含有するガラスからなると、ガラスと溶融塩中のKイオンの濃度差が大きくなり、イオン交換反応が進行しやすいため好ましい。 In addition, it is preferable that the glass tube is made of glass containing 2% by mass or less of K 2 O because a difference in the concentration of K ions in the glass and the molten salt becomes large and the ion exchange reaction easily proceeds.

また、カリウム化合物が硝酸カリウムであると、硝酸カリウムの融点が約335℃と低く、例えば360〜400℃程度の低温でイオン交換処理を施すことが可能であり、イオン交換層の応力緩和が発生しにくいため、圧縮応力値を高くすることができる。また、硝酸カリウムの比重が約2.1とガラスの比重よりも小さいため、ガラス管が溶融塩の表面に浮くことがなく、均一なイオン交換が可能である。   Further, when the potassium compound is potassium nitrate, the melting point of potassium nitrate is as low as about 335 ° C., and for example, ion exchange treatment can be performed at a low temperature of about 360 to 400 ° C., and stress relaxation of the ion exchange layer hardly occurs. Therefore, the compressive stress value can be increased. In addition, since the specific gravity of potassium nitrate is about 2.1, which is smaller than the specific gravity of glass, the glass tube does not float on the surface of the molten salt, and uniform ion exchange is possible.

以下に、本発明を実施例に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1は、本発明の実施例1〜3及び比較例1、2を示す。   Table 1 shows Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention.

まず、質量%で、SiO 77%、Al 1%、B 16%、NaO 5%、KO 1%の組成を有するガラス(A)からなるガラス管(長さ18mm×外径2mm×内径1mm)と質量%で、SiO 68%、Al 3%、B 19%、LiO 1%、NaO 1%、KO 8%の組成を有するガラス(B)からなるガラス管(長さ18mm×外径2mm×内径1mm)を準備した。 First, a glass tube (long) composed of glass (A) having a composition of SiO 2 77%, Al 2 O 3 1%, B 2 O 3 16%, Na 2 O 5%, K 2 O 1% by mass%. 18 mm × outer diameter 2 mm × inner diameter 1 mm) and mass%, SiO 2 68%, Al 2 O 3 3%, B 2 O 3 19%, Li 2 O 1%, Na 2 O 1%, K 2 O 8 A glass tube (length 18 mm × outer diameter 2 mm × inner diameter 1 mm) made of glass (B) having a% composition was prepared.

次いで、表1に示す溶融塩中に、両端を開放したガラス管を表1の処理温度−処理時間浸漬し、イオン交換処理を行った後、水洗・乾燥を行い、実施例1〜3及び比較例2の放電管用ガラス管を作製した。尚、比較例1は、イオン交換処理は行わなかった。   Then, after immersing the glass tube whose both ends were opened in the molten salt shown in Table 1 for the treatment temperature-treatment time shown in Table 1 and performing the ion exchange treatment, washing and drying were performed. A glass tube for a discharge tube of Example 2 was produced. In Comparative Example 1, no ion exchange treatment was performed.

次に、実施例1〜3及び比較例1、2の各10本の放電管用ガラス管を、0℃の氷水に15分間浸漬後すぐに500℃の電気炉で15分間保持するという工程を連続で10サイクル行った後、クラックの発生又は破損が見られたガラス管の本数をカウントし、耐熱衝撃性を評価した。   Next, the process of holding each of the 10 glass tubes for discharge tubes of Examples 1 to 3 and Comparative Examples 1 and 2 in an electric furnace at 500 ° C. for 15 minutes immediately after being immersed in 0 ° C. ice water for 15 minutes is continued. After 10 cycles, the number of glass tubes in which cracking or breakage was observed was counted, and the thermal shock resistance was evaluated.

尚、イオン交換層厚さは、管の断面をEPMAによって線分析して測定した。   The ion exchange layer thickness was measured by performing a line analysis on the cross section of the tube with EPMA.

また、レターデーション(R)は、546nmの波長を有する光源を用い、セナルモン法によって測定した。また、圧縮応力(ρ)は、レターデーションの値を用い、次式によって求めた。この時、光弾性係数(C)として36nm/cm/MPaを用いた。   Retardation (R) was measured by the Senarmon method using a light source having a wavelength of 546 nm. The compressive stress (ρ) was determined by the following equation using the retardation value. At this time, 36 nm / cm / MPa was used as the photoelastic coefficient (C).

圧縮応力(ρ)=R/(C×L)
ここで、Lはガラス管の肉厚(1mm)である。
Compressive stress (ρ) = R / (C × L)
Here, L is the thickness (1 mm) of the glass tube.

表1に示すように、実施例1〜3は、ガラス管の内面にイオン交換層を有し、圧縮応力が付与されてなるため、耐熱衝撃性に優れていた。   As shown in Table 1, Examples 1-3 were excellent in thermal shock resistance because they had an ion exchange layer on the inner surface of the glass tube and were given a compressive stress.

一方、比較例1は、イオン交換処理を行っていないため、圧縮応力が付与されておらず、耐熱衝撃性が低かった。また、比較例2は、イオン交換処理を行ったものの、全くイオン交換層が形成されておらず、圧縮応力が付与されていなかったため、耐熱衝撃性が低かった。   On the other hand, since the comparative example 1 did not perform the ion exchange process, the compressive stress was not provided and the thermal shock resistance was low. Moreover, although the comparative example 2 performed the ion exchange process, since the ion exchange layer was not formed at all and the compressive stress was not provided, the thermal shock resistance was low.

以上説明したように、本発明のガラス管は、耐熱衝撃性が高く、放電管用ガラス管として、特にタングステンやコバールを主電極として用いたキセノンフラッシュランプ用のガラス管として好適である。   As described above, the glass tube of the present invention has high thermal shock resistance and is suitable as a glass tube for a discharge tube, particularly as a glass tube for a xenon flash lamp using tungsten or Kovar as a main electrode.

放電管の縦断面図を示す。The longitudinal cross-sectional view of a discharge tube is shown.

符号の説明Explanation of symbols

1 放電管
2 ガラス管
2a 端部
2b 外表面
2c 内表面
3 主電極
4 トリガー電極
1 discharge tube 2 glass tube 2a end 2b outer surface 2c inner surface 3 main electrode 4 trigger electrode

Claims (9)

内表面に2μm以上の厚みのイオン交換層を有し、圧縮応力が付与されてなることを特徴とする放電管用ガラス管。 A glass tube for a discharge tube, comprising an ion exchange layer having a thickness of 2 μm or more on an inner surface and applied with compressive stress. 内表面のレターデーションが圧縮応力方向で10〜1000nm/cmであることを特徴とする請求項1に記載の放電管用ガラス管。 The glass tube for a discharge tube according to claim 1, wherein the retardation of the inner surface is 10 to 1000 nm / cm in the direction of compressive stress. 内表面の圧縮応力が0.5〜30MPaであることを特徴とする請求項1又は2に記載の放電管用ガラス管。 The glass tube for a discharge tube according to claim 1 or 2, wherein the compressive stress of the inner surface is 0.5 to 30 MPa. 請求項1〜3のいずれかに記載の放電管用ガラス管を用いてなることを特徴とする放電管。 A discharge tube comprising the glass tube for a discharge tube according to claim 1. カリウム化合物を、その融点以上且つガラス管の歪点以下の温度で溶融した溶融塩中に、ガラス管を5〜100時間浸漬することによってイオン交換処理することを特徴とする放電管用ガラス管の製造方法。 Manufacture of a glass tube for a discharge tube, characterized in that an ion exchange treatment is performed by immersing the glass tube in a molten salt melted at a temperature not lower than the melting point and not higher than the strain point of the glass tube for 5 to 100 hours. Method. イオン交換が、ガラス中のLiイオン及び/又はNaイオンと、カリウム化合物中のKイオンとのイオン交換であることを特徴とする請求項5に記載の放電管用ガラス管の製造方法。 6. The method for producing a glass tube for a discharge tube according to claim 5, wherein the ion exchange is an ion exchange between Li ions and / or Na ions in the glass and K ions in the potassium compound. ガラス管がLiO及び/又はNaOを2〜10質量%含有するガラスからなることを特徴とする請求項5又は6に記載の放電管用ガラス管。 Glass tube for a discharge tube according to claim 5 or 6 glass tube is characterized in that it consists of glass containing 2-10 wt% of Li 2 O and / or Na 2 O. ガラス管がKOを2質量%以下含有するガラスからなることを特徴とする請求項5〜7のいずれかに記載の放電管用ガラス管。 Glass tube for a discharge tube according to claim 5, the glass tube is characterized in that it consists of glass containing more than 2 wt% of K 2 O. カリウム化合物が硝酸カリウムであることを特徴とする請求項5〜8のいずれかに記載の放電管用ガラス管の製造方法。 The method for producing a glass tube for a discharge tube according to any one of claims 5 to 8, wherein the potassium compound is potassium nitrate.
JP2004148609A 2004-05-19 2004-05-19 Glass tube for discharge tube and discharge tube using the same Pending JP2005330138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148609A JP2005330138A (en) 2004-05-19 2004-05-19 Glass tube for discharge tube and discharge tube using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148609A JP2005330138A (en) 2004-05-19 2004-05-19 Glass tube for discharge tube and discharge tube using the same

Publications (1)

Publication Number Publication Date
JP2005330138A true JP2005330138A (en) 2005-12-02

Family

ID=35485051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148609A Pending JP2005330138A (en) 2004-05-19 2004-05-19 Glass tube for discharge tube and discharge tube using the same

Country Status (1)

Country Link
JP (1) JP2005330138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098852A (en) * 2009-11-05 2011-05-19 Nippon Electric Glass Co Ltd Envelope for flash lamp
CN109896741A (en) * 2017-12-08 2019-06-18 辽宁省轻工科学研究院 A kind of overlength, the preparation method of high-accuracy boron-containing glass pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098852A (en) * 2009-11-05 2011-05-19 Nippon Electric Glass Co Ltd Envelope for flash lamp
CN109896741A (en) * 2017-12-08 2019-06-18 辽宁省轻工科学研究院 A kind of overlength, the preparation method of high-accuracy boron-containing glass pipe

Similar Documents

Publication Publication Date Title
JP3299615B2 (en) Glass composition for electric lights
JPH03237036A (en) Thin plate type borosilicate glass for alumina package
US20130011607A1 (en) High refractive index glass
JP2009230867A (en) Excimer lamp
JP6474041B2 (en) Glass manufacturing method and glass
US3687799A (en) Glass lasers of increased heat dissipation capability made by ion exchange treatment of the laser glass
JPS6311316B2 (en)
CN1308366A (en) CRT with glass panel and its manufacture
CN113912288B (en) Microchannel plate glass and preparation method thereof
KR102585674B1 (en) Borosilicate glass and method for producing the same
JP2005330138A (en) Glass tube for discharge tube and discharge tube using the same
JP2006160546A (en) Flat surface-type display device
JPS6021928B2 (en) Glass product manufacturing method
JP2004067443A (en) Process for treating glass
JPWO2016010050A1 (en) Anti-glare processing glass and anti-glare glass using the same
JP4862859B2 (en) Glass substrate
JPH11509514A (en) Glass compositions suitable for use in fluorescent lamps, lamp vessels made from glass of said compositions, and fluorescent lamps comprising glass lamp vessels of said composition
CN108147681B (en) Laser glass ion exchange enhancement method
JP2009259813A (en) Method for preventing or reducing helium leakage through metal halide lamp envelopes
WO2012093525A1 (en) Method for manufacturing reinforced glass material
JP4437769B2 (en) Nickel composition and solder joint member provided with nickel composition
KR20090113764A (en) External electrode fluorescent lamp and manufacturing method of the same
KR20170099885A (en) Fiber device and method for amplifying pulses of laser light
BR0305423B1 (en) electric lamp, rod for an electric lamp, lamp housing, mercury vapor discharge lamp, and, glass.
JPS60105160A (en) Fluorescent lamp