JP2005327880A - Connector structure for high speed/large capacity signal connection - Google Patents

Connector structure for high speed/large capacity signal connection Download PDF

Info

Publication number
JP2005327880A
JP2005327880A JP2004144154A JP2004144154A JP2005327880A JP 2005327880 A JP2005327880 A JP 2005327880A JP 2004144154 A JP2004144154 A JP 2004144154A JP 2004144154 A JP2004144154 A JP 2004144154A JP 2005327880 A JP2005327880 A JP 2005327880A
Authority
JP
Japan
Prior art keywords
light emitting
light
connector
electric circuit
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004144154A
Other languages
Japanese (ja)
Inventor
Takashi Shioda
剛史 塩田
Daisuke Suzuki
大介 鈴木
Naoyuki Kato
奈緒之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004144154A priority Critical patent/JP2005327880A/en
Publication of JP2005327880A publication Critical patent/JP2005327880A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connector for connecting high speed/large capacity signal connection by the rays of light when the speed of signal transfer is limited through electricity. <P>SOLUTION: This connector structure transfers a signal from a first electric circuit to a second electric circuit, by attachably/detachably fitting a first base mounted with a light emitting element for emitting a signal from the first electric circuit as an optical signal, and a second base mounted with a light receiving element for receiving the optical signal from the light emitting element, and for transmitting it to the second electric circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高速・大容量伝送の接続を実現するコネクター、このコネクターを内蔵する大容量記憶デバイス、パーソナルコンピュータ、動画像表示デバイスなどに関する。   The present invention relates to a connector that realizes high-speed and large-capacity transmission connection, a mass storage device incorporating the connector, a personal computer, a moving image display device, and the like.

近年、ギガを超えるCPU(中央演算ユニット)の処理速度の高速化や記憶装置デバイスの大容量化が進んでいる。メモリースティック(登録商標)やコンパクトフラッシュ(登録商標)、SDメモリーカード(登録商標)など、さらにはコンパクトディスク(CD)ドライブ、デジタルビデオディスク(DVD)ドライブなど百メガバイトや1ギガバイトを超える大容量記憶装置デバイスが商品化されている(非特許文献1)。しかしながら、これらのデバイスとパーソナルコンピュータ、カーナビ、動画像表示デバイスなどとの信号通信速度は、速くても数十メガビット毎秒であり、データのやりとりに時間がかかっている。多チャネルという手法も考えられるが、これらデバイスの小型化、薄型化という流れから、チャネル数にも限界がある。今後、更なる大容量メモリーデバイスが開発されたとき、この通信速度の低さは問題となる。これは、電気接続部のノイズや電磁輻射などが原因であり、従来の簡易な接続方式では、百メガビット毎秒の伝送も困難であった。   In recent years, the processing speed of CPUs (central processing units) exceeding Giga and the capacity of storage devices have been increasing. Mass storage devices exceeding 100 megabytes and 1 gigabyte such as memory stick (registered trademark), compact flash (registered trademark), SD memory card (registered trademark), compact disc (CD) drive, digital video disc (DVD) drive, etc. Devices have been commercialized (Non-patent Document 1). However, the signal communication speed between these devices and personal computers, car navigation systems, moving image display devices, and the like is several tens of megabits per second at the maximum, and it takes time to exchange data. Although a multi-channel approach is also conceivable, the number of channels is limited due to the trend toward smaller and thinner devices. In the future, when further large-capacity memory devices are developed, this low communication speed becomes a problem. This is due to noise in the electrical connection portion, electromagnetic radiation, and the like, and with the conventional simple connection method, transmission at 100 megabits per second was difficult.

一方、高速対応の電気コネクターはさまざま開発されているが、同軸形状であり、嵩高い構造である。また、アースの設計が重要となり、ピン数も増えてしまう。また、高い加工精度が要求され、金メッキされたSUSや真鍮などを用いるため、コスト高となってしまう。これらのデバイスの小型化、低コスト化の流れからすると、高速対応の電気コネクターを適用するのは困難になると考えられる。
トランジスタ技術 CQ出版社 2002年1月号
On the other hand, various high-speed electrical connectors have been developed, but they are coaxial and have a bulky structure. In addition, the design of the ground becomes important, and the number of pins increases. In addition, high processing accuracy is required, and gold-plated SUS, brass, or the like is used, resulting in high costs. Considering the trend toward miniaturization and cost reduction of these devices, it will be difficult to apply high-speed compatible electrical connectors.
Transistor Technology CQ Publisher January 2002 Issue

本発明の目的は、上記の問題を回避すべく、高速・大容量信号接続部を光で接続するコネクターを提案することにある。  An object of the present invention is to propose a connector for connecting a high-speed, large-capacity signal connection portion with light so as to avoid the above-described problems.

本発明者は、鋭意検討した結果、信号接続を光で行える受発光素子内臓のコネクターを用いることにより、ノイズや電磁輻射の影響がほとんど無くなることを見出し、本発明を完成させた。  As a result of intensive studies, the present inventor has found that there is almost no influence of noise and electromagnetic radiation by using a connector with a built-in light receiving and emitting element that can perform signal connection with light, and has completed the present invention.

すなわち本発明は、第1の電気回路からの信号を第2の電気回路に伝送するために、第1の電気回路からの信号を光信号として発光する発光素子を搭載する第1の基台と、発光素子からの光信号を受光して第2の電気回路に伝送する受光素子を搭載する第2の基台とが着脱可能に勘合されているコネクタ構造である。
これにより2つの電気回路間で10 GHzを超える高速信号の転送が可能となる。
That is, the present invention includes a first base on which a light-emitting element that emits light from a signal from the first electric circuit as an optical signal in order to transmit a signal from the first electric circuit to the second electric circuit; In this connector structure, a second base on which a light receiving element that receives an optical signal from the light emitting element and transmits it to the second electric circuit is detachably fitted.
As a result, high-speed signals exceeding 10 GHz can be transferred between the two electric circuits.

この第1または第2の基台に発光素子または受光素子への電力供給用の電気的接続部が同時に備えられていることが好ましい。
基台としてはパッケージ形状でもよいし、板状でもよい。
It is preferable that the first or second base is simultaneously provided with an electrical connection portion for supplying power to the light emitting element or the light receiving element.
The base may be package-shaped or plate-shaped.

本発明によるコネクターを用いることにより、コネクタ部に電気接点を持たないため各種デバイス間を高速・大容量信号を通信できるようになる。  By using the connector according to the present invention, since there is no electrical contact in the connector portion, high-speed and large-capacity signals can be communicated between various devices.

以下、本発明を詳細に説明する。ここでは、エポキシ成形材を用いたコネクターを例に挙げて説明するが、その他の樹脂やセラミックスなどの焼結体などを用いることももちろん可能である。
図1に示すようにエポキシ樹脂組成物を用いて、中空パッケージに成形する。このとき、該成形体1には発光素子、受光素子が搭載できる空間を設ける。また、QFP(クワッドフラットパッケージ)やDIP(デュアルインパッケージ)のように、リードフレーム2を組み込んで一体成形してもよい(図1(a))。次に、該成形体に受発光素子を駆動するための電気配線(図示せず)を施す。これには、リフトオフ法や、表面粗化とめっき法など様々な方法が考えられる。次に、光素子として発光ダイオードチップ8など、面受光素子チップ9などをそれぞれ一つずつはんだ実装し、リードフレームとの間をワイヤボンディングで電気的に接続した(図1(b))。その後、透明エポキシ樹脂10でディップ部を埋め込み、紫外線照射により硬化させた。
Hereinafter, the present invention will be described in detail. Here, a connector using an epoxy molding material will be described as an example, but it is of course possible to use other sintered bodies such as resins and ceramics.
As shown in FIG. 1, an epoxy resin composition is used to mold into a hollow package. At this time, the molded body 1 is provided with a space in which the light emitting element and the light receiving element can be mounted. Further, the lead frame 2 may be incorporated and integrally formed, such as QFP (quad flat package) or DIP (dual in package) (FIG. 1 (a)). Next, electrical wiring (not shown) for driving the light emitting / receiving element is applied to the molded body. For this, various methods such as a lift-off method, a surface roughening method and a plating method are conceivable. Next, each of the light emitting diode chip 8 and the surface light receiving element chip 9 as an optical element was solder-mounted one by one and electrically connected to the lead frame by wire bonding (FIG. 1 (b)). Thereafter, the dip portion was embedded with a transparent epoxy resin 10 and cured by ultraviolet irradiation.

このようにして、光接続が可能なコネクターが作成された(図1(c))。それぞれの成形体から出ているリードフレームを受発光素子を駆動する電気回路を含むFR-4ガラスエポキシ製プリント配線板や回路加工13が施されている成形体14などの上にはんだ付けによって導通・固定した(図2)。図1のコネクター形状に追加してさらに外周に突起部を設けたものを別に作成し、図1のコネクタと雄雌勘合することにより着脱可能に面同士をつき合せて、それぞれに設置されている受発光素子間で信号の伝送を行なうコネクター構造が実現できる。その勘合の状況を図4で断面図で示す。ここでは位置合わせピン32と受けの孔33を設けている。  In this way, a connector capable of optical connection was created (FIG. 1 (c)). Lead frame from each molded body is connected by soldering on FR-4 glass epoxy printed wiring board including electric circuit that drives light emitting / receiving element, molded body 14 with circuit processing 13 etc. Fixed (Figure 2). In addition to the connector shape of FIG. 1, a member having a protrusion on the outer periphery is prepared separately, and the connectors of FIG. A connector structure for transmitting signals between light emitting and receiving elements can be realized. The state of the fitting is shown in a sectional view in FIG. Here, an alignment pin 32 and a receiving hole 33 are provided.

次に、図3にメモリーボードの電気接続ポートの一部を光接続にする例を示す。これは従来から用いられるメモリチップなどのチップを搭載したメモリボードを他のボード上のコネクタとしてのスリットに固定する形を一部援用するものである。図3において電気回路やメモリチップなどのチップ23が搭載され電気端子34が配されたメモリーボード24の、スリットから露出する箇所に受光または発光素子35を設け、そこから電気端子の列の高さまで貼り付けられた両端に45°ミラーが形成された光導波路フィルム36によって光学的に接続される。このとき、スリット側にはスリットの内面に発光または受光素子を埋め込んで設けるか、あるいは両端に45°ミラーが形成された光導波路フィルムでスリット側の任意の場所に設けられた発光または受光素子まで接続する。具体的にはメモリボードに貫通孔を設け、その貫通孔に受光部または発光部がかかるように受光素子または発光素子35を固定する。受光素子または発光素子が固定された反対の面に両端に45°ミラーが形成された光導波路フィルム36(図3では裏面であるため点線で示す)を貼り付ける。その導波路フィルムの一端が貫通孔にかかり、受光素子または発光素子から一端に形成された45°ミラーで直角に曲げられて光導波路に至る光路が形成される。また光導波路フィルムの他端側の45°ミラーで直角に曲げられてスリット内面に設けられた発光素子または受光素子あるいはそこに導かれる別の光導波路の45°ミラーに向けて光路が形成される。ボードがスリットから容易に抜けないようにするには通常用いられている着脱レバー(図示せず)を設ければよい。。   Next, FIG. 3 shows an example in which a part of the electrical connection port of the memory board is optically connected. This partially uses a form in which a memory board on which a chip such as a memory chip conventionally used is mounted is fixed to a slit as a connector on another board. In FIG. 3, a light receiving or light emitting element 35 is provided at a location exposed from the slit of the memory board 24 in which the chip 23 such as an electric circuit or a memory chip is mounted and the electric terminal 34 is arranged, and is pasted to the height of the electric terminal row. They are optically connected by an optical waveguide film 36 in which 45 ° mirrors are formed at both ends. At this time, on the slit side, a light emitting or light receiving element is embedded in the inner surface of the slit, or the light emitting or light receiving element provided at any position on the slit side with an optical waveguide film having 45 ° mirrors formed at both ends. Connecting. Specifically, a through hole is provided in the memory board, and the light receiving element or the light emitting element 35 is fixed so that the light receiving part or the light emitting part covers the through hole. An optical waveguide film 36 (indicated by a dotted line because it is the back side in FIG. 3) is attached to the opposite surface to which the light receiving element or the light emitting element is fixed. One end of the waveguide film is applied to the through hole, and an optical path is formed from the light receiving element or the light emitting element to the optical waveguide by being bent at a right angle by a 45 ° mirror formed at one end. Further, an optical path is formed toward a light emitting element or a light receiving element provided on the inner surface of the slit by a 45 ° mirror on the other end side of the optical waveguide film or toward a 45 ° mirror of another optical waveguide guided to the light emitting element. . In order to prevent the board from easily coming out of the slit, a commonly used detachable lever (not shown) may be provided. .

別の形態として、メモリーボードの電気接続ポートの一部を光接続化するために、先に述べた受発光素子内臓の成形体をはんだ付けにより固定すれば良い。このとき、コネクター構造のスリット凹側にはその成形体の大きさに相当する凹みを作りこむ。
さらに別の形態で、メモリーボードの多層プリント配線板の一部の上層を取り除き、あるいはあらかじめ除かれた形にプリント配線板加工を施し、そのできたディップに直接、発光素子や受光素子を実装、ワイヤボンディングする方法もある
As another form, in order to optically connect a part of the electrical connection port of the memory board, the above-described molded body with a built-in light emitting / receiving element may be fixed by soldering. At this time, a recess corresponding to the size of the molded body is formed on the slit recess side of the connector structure.
In another form, remove the upper layer of a part of the multilayer printed wiring board of the memory board, or apply printed wiring board processing to a previously removed shape, and mount the light emitting element and light receiving element directly on the resulting dip, wire There is also a method of bonding

勘合構造による光接続においては、受光素子と発光素子の位置合せ精度が重要となる。一般的に、高速応答可能な受光素子の受光径は100μmから500μm程度、発光素子は10μm程度となる。そのための別のコネクタ構造を図5に示す。受光素子5と発光素子4が埋め込まれた基板を勘合させる構造である。ここで位置合せのための勘合ピン21、それを受けるガイドとなる勘合穴22を設けるとよい。このピンは、成形体として始めから埋め込まれても構わないし、後から穴をあけそこにピンを埋め込んでも構わない。図5(a)は垂直方向に押し込んで勘合する型、図5(b)は水平方向に押し込んで勘合するものである。   In the optical connection by the fitting structure, the alignment accuracy of the light receiving element and the light emitting element is important. Generally, the light receiving diameter of a light receiving element capable of high-speed response is about 100 μm to 500 μm, and the light emitting element is about 10 μm. Another connector structure for this purpose is shown in FIG. In this structure, the substrate in which the light receiving element 5 and the light emitting element 4 are embedded is fitted. Here, it is preferable to provide a fitting pin 21 for alignment and a fitting hole 22 as a guide for receiving it. This pin may be embedded from the beginning as a molded body, or a hole may be formed later and the pin embedded therein. FIG. 5 (a) shows a die that is pushed in and fitted in the vertical direction, and FIG. 5 (b) is a die that is pushed in and fitted in the horizontal direction.

特に、発光ダイオードなど広がり角の大きい発光素子を使用した場合、アレイ上に受光素子が配列していると隣接受光素子で受光してしまい、クロストークを引き起こすことが考えられる。このような場合、このクロストークを避けるために、図6に示すように、封止樹脂の表面に遮光マスクとして光遮蔽薄膜31を形成するとよい。   In particular, when a light emitting element having a large divergence angle such as a light emitting diode is used, if the light receiving elements are arranged on the array, the light is received by the adjacent light receiving elements, which may cause crosstalk. In such a case, in order to avoid this crosstalk, it is preferable to form a light shielding thin film 31 as a light shielding mask on the surface of the sealing resin as shown in FIG.

今まで述べた実施の形態においては、ディップ部を樹脂で封止していた。しかしながら封止をせず中空パッケージのように、受発光素子の前面に透明蓋をする形態でも構わない。このとき図7に示すように、集光させるためのレンズ51が形成されている蓋41を用いても良い。さらに、レンズではなく光導波路としてもよい。   In the embodiments described so far, the dip portion is sealed with resin. However, a form in which a transparent lid is provided on the front surface of the light emitting / receiving element, such as a hollow package without sealing, may be used. At this time, as shown in FIG. 7, a lid 41 on which a lens 51 for condensing light is formed may be used. Furthermore, an optical waveguide may be used instead of a lens.

金型に厚さ0.2mmのリードフレームを設置し、エポキシ樹脂組成物を用いて樹脂パッケージを成形した。使用したエポキシ樹脂組成物は、三井化学(株)製TM-250Gを用いた。このとき、サイズは5mm×5mmで、厚さ2mmの成形体であった。また、同時に成形体の中心付近に光素子などの実装用に2mm×2mm、深さ1mmのディップを設けた。次に、貫通穴を含んだリードフレーム全体をニッケルめっき(5μm)、金めっき(0.3μm)の順にめっきし、前述のリードフレームに予め形成してある貫通穴上で外部端子とリードフレームを切断して、個片化されたコネクター成形体を得た。同様の成形体を二つ作成する。このとき、光接続する位置合せのため、かつ、コネクター同士を機械的に勘合させるために、片方に直径1mm、高さ1mmの凸形状、もう片方に直径1.5mm、深さ1.5mmの溝を成形にて形成しておくことにより、±0.25mmの位置合せ精度で位置決めできる。受光素子が300μmの受光径の場合、この精度で十分光接続が可能である。   A lead frame having a thickness of 0.2 mm was placed on the mold, and a resin package was molded using the epoxy resin composition. The epoxy resin composition used was TM-250G manufactured by Mitsui Chemicals. At this time, the size was 5 mm × 5 mm and the molded body had a thickness of 2 mm. At the same time, a dip having a size of 2 mm × 2 mm and a depth of 1 mm was provided near the center of the molded body for mounting an optical element or the like. Next, the entire lead frame including the through hole is plated in the order of nickel plating (5 μm) and gold plating (0.3 μm), and the external terminals and the lead frame are placed on the through holes previously formed in the lead frame. By cutting, an individual connector molded body was obtained. Create two similar shaped bodies. At this time, in order to align the optical connection and to mechanically fit the connectors together, a convex shape with a diameter of 1 mm and a height of 1 mm on one side, a diameter of 1.5 mm and a depth of 1.5 mm on the other side. By forming the groove by molding, positioning can be performed with an alignment accuracy of ± 0.25 mm. When the light receiving element has a light receiving diameter of 300 μm, sufficient optical connection is possible with this accuracy.

次に、光素子として赤色発光ダイオードチップ、面受光素子チップをそれぞれ一つずつはんだ実装し、リードフレームとの間をワイヤボンディングで電気的に接続した。その後、透明エポキシ樹脂でディップ部を埋め込み、紫外線を30mW/cm2で10分間照射し、硬化させた。面を平坦化するため、およびコネクター面(成形樹脂面)を表面に出すために、研磨を施した。このようにして、光接続が可能なコネクターが作成された。それぞれのコネクターから出ているリードフレームを受発光素子の駆動する回路を含むFR-4ガラスエポキシ製プリント配線板上にはんだ付けした。二つのコネクターをガイドとなる凹凸形状部を勘合し、発光ダイオードに200メガビット毎秒の変調信号を送り、光でもう一方のコネクター側に送信したところ、受信側の受光素子では、良好なアイの開いたパターンが観測できた。 Next, one red light emitting diode chip and one surface light receiving element chip were solder-mounted as optical elements, and the lead frame was electrically connected by wire bonding. Thereafter, the dip portion was embedded with a transparent epoxy resin and cured by irradiation with ultraviolet rays at 30 mW / cm 2 for 10 minutes. Polishing was performed to flatten the surface and to bring out the connector surface (molded resin surface) on the surface. In this way, a connector capable of optical connection was created. The lead frame coming out of each connector was soldered onto a printed wiring board made of FR-4 glass epoxy including a circuit for driving the light emitting / receiving element. By fitting the concave and convex portions that serve as the guides for the two connectors, sending a modulation signal of 200 megabits per second to the light emitting diode and transmitting it to the other connector side with light, the receiving element on the receiving side opens a good eye Pattern was observed.

本発明のコネクター製造工程の一例を示す図。The figure which shows an example of the connector manufacturing process of this invention. 本発明のコネクター構造の一例を示す図。The figure which shows an example of the connector structure of this invention. 本発明のコネクター構造の一例を示す図。The figure which shows an example of the connector structure of this invention. 本発明のコネクター構造の勘合部断面を示す図。The figure which shows the fitting part cross section of the connector structure of this invention. 本発明のコネクター構造の細部断面を示す図。The figure which shows the detailed cross section of the connector structure of this invention. 本発明のコネクター構造の細部断面を示す図。The figure which shows the detailed cross section of the connector structure of this invention. 本発明のマイクロレンズ搭載コネクター構造の一例を示す図The figure which shows an example of the connector structure mounted with the micro lens of this invention

符号の説明Explanation of symbols

1:成形体、 2:リードフレーム、 3:電気配線、
4:発光素子、 5:受光素子、 7:プリント配線板、
8:発光ダイオードチップ、 9:面受光素子チップ
10:エポキシ樹脂 11:電気接続部、
21:勘合ピン、 22:勘合穴、 23:チップ
24:メモリーボード 31:光遮蔽薄膜、
41:蓋、 51:レンズ、
1: molded body, 2: lead frame, 3: electrical wiring,
4: Light emitting element, 5: Light receiving element, 7: Printed wiring board,
8: Light emitting diode chip, 9: Surface light receiving element chip, 10: Epoxy resin, 11: Electrical connection part,
21: mating pin 22: mating hole 23: chip 24: memory board 31: light shielding thin film,
41: Lid, 51: Lens,

Claims (2)

第1の電気回路からの信号を第2の電気回路に伝送するために、第1の電気回路からの信号を光信号として発光する発光素子を搭載する第1の基台と、発光素子からの光信号を受光して第2の電気回路に伝送する受光素子を搭載する第2の基台とが着脱可能に勘合されていることを特徴とするコネクタ構造。 In order to transmit a signal from the first electric circuit to the second electric circuit, a first base on which a light emitting element that emits light as a signal from the first electric circuit is mounted; A connector structure, wherein a second base on which a light receiving element for receiving an optical signal and transmitting it to a second electric circuit is detachably fitted. 第1または第2の基板に発光素子または受光素子への電力供給用の電気的接続部が同時に備えられていることを特徴とする請求項1に記載のコネクター構造。
2. The connector structure according to claim 1, wherein the first or second substrate is simultaneously provided with an electrical connection for supplying power to the light emitting element or the light receiving element.
JP2004144154A 2004-05-13 2004-05-13 Connector structure for high speed/large capacity signal connection Pending JP2005327880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144154A JP2005327880A (en) 2004-05-13 2004-05-13 Connector structure for high speed/large capacity signal connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144154A JP2005327880A (en) 2004-05-13 2004-05-13 Connector structure for high speed/large capacity signal connection

Publications (1)

Publication Number Publication Date
JP2005327880A true JP2005327880A (en) 2005-11-24

Family

ID=35473978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144154A Pending JP2005327880A (en) 2004-05-13 2004-05-13 Connector structure for high speed/large capacity signal connection

Country Status (1)

Country Link
JP (1) JP2005327880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063551A (en) * 2007-09-10 2009-03-26 Rohm Co Ltd Semiconductor sensor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101249U (en) * 1985-12-17 1987-06-27
JPH10282371A (en) * 1997-04-03 1998-10-23 Fuji Xerox Co Ltd Optical data bus and signal processor
JP2000081524A (en) * 1998-09-07 2000-03-21 Sony Corp Light transmitter-receiver system
JP2001324649A (en) * 2000-03-09 2001-11-22 Toyo Commun Equip Co Ltd Active optical connector for large diameter optical fiber
JP2003098402A (en) * 2001-09-25 2003-04-03 Konica Corp Optical mounting substrate
JP2003232966A (en) * 2002-02-08 2003-08-22 Aica Kogyo Co Ltd Photoelectric back plane board and information processor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101249U (en) * 1985-12-17 1987-06-27
JPH10282371A (en) * 1997-04-03 1998-10-23 Fuji Xerox Co Ltd Optical data bus and signal processor
JP2000081524A (en) * 1998-09-07 2000-03-21 Sony Corp Light transmitter-receiver system
JP2001324649A (en) * 2000-03-09 2001-11-22 Toyo Commun Equip Co Ltd Active optical connector for large diameter optical fiber
JP2003098402A (en) * 2001-09-25 2003-04-03 Konica Corp Optical mounting substrate
JP2003232966A (en) * 2002-02-08 2003-08-22 Aica Kogyo Co Ltd Photoelectric back plane board and information processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063551A (en) * 2007-09-10 2009-03-26 Rohm Co Ltd Semiconductor sensor device

Similar Documents

Publication Publication Date Title
JP4425936B2 (en) Optical module
US9488791B2 (en) Optoelectronic module
JP4138689B2 (en) LSI package with interface module and LSI package
JP3807385B2 (en) OPTICAL MODULE AND ITS MANUFACTURING METHOD, OPTICAL COMMUNICATION DEVICE, ELECTRONIC DEVICE
US20030026556A1 (en) Optical sub-assembly for optoelectronic modules
JP2009536362A (en) Optical effective integrated circuit package
JP2012182491A (en) Glass cap molding package, method of manufacturing thereof, and camera module
US9103999B2 (en) Optical data communication module having EMI cage
JP2005539274A (en) Electro-optic assembly
JP2005257879A (en) Optical module, method of manufacturing thereof, protecting member and protecting member with electric wiring
CN110326172A (en) Slim type connector plug and the active optical cable assembly for utilizing it
KR102206368B1 (en) Connector Plug and Active Optical Cable Assembly Using the Same
US8940563B2 (en) Method for manufacturing optoelectronic module
CN103809253B (en) Photopolymer substrate, the manufacture method of photopolymer substrate and optical module
KR101964853B1 (en) Semiconductor Chip Package Having Optical Interface
EP2083609A2 (en) Optical communication device and method of manufacturing the same
JP3543189B2 (en) Semiconductor element package and semiconductor device
JP2004286835A (en) Optical element mounted device, its manufacturing method, and wiring board with the optical element mounted device
JP2005327880A (en) Connector structure for high speed/large capacity signal connection
JP2001044452A (en) Optical communication module
US7226216B2 (en) Optoelectronic transmission and/or reception arrangement
KR100901445B1 (en) Flexible optical interconnection module coupled with connector and manufacturing method thereof
JP2013152286A (en) Optical module and method of manufacturing the same
JP2004309570A (en) Optical communication module, optical communication equipment and method for manufacturing the module
JP2006147916A (en) Optical device and optical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316