JP2005326310A - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
JP2005326310A
JP2005326310A JP2004145442A JP2004145442A JP2005326310A JP 2005326310 A JP2005326310 A JP 2005326310A JP 2004145442 A JP2004145442 A JP 2004145442A JP 2004145442 A JP2004145442 A JP 2004145442A JP 2005326310 A JP2005326310 A JP 2005326310A
Authority
JP
Japan
Prior art keywords
weight
vibration
diaphragm
vibration sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145442A
Other languages
Japanese (ja)
Inventor
Mamoru Yasuda
護 安田
Yasuo Sugimori
康雄 杉森
Naoki Toyoda
直樹 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP2004145442A priority Critical patent/JP2005326310A/en
Publication of JP2005326310A publication Critical patent/JP2005326310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration sensor capable of preventing sensitivity for detecting vibration from being lowered, and having improved shock resistance. <P>SOLUTION: This vibration sensor is equipped with a fixed electrode 4, and a diaphragm 3 wherein the surface facing to the fixed electrode 4 functions as a vibrating electrode and a weight 1 is provided on the surface on the opposite side of the vibrating electrode. In the sensor, the weight 1 is displaced in the direction orthogonal to the surface of the diaphragm 3, and a vibration detection signal is outputted based on the change of a capacitance between the fixed electrode 4 and the diaphragm 3. The weight 1 is formed circularly, and the sensor is also equipped with a regulation member 2 in contact with the weight 1, for regulating displacement of the weight 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固定電極と、この固定電極に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘が設けられた振動板とを備え、前記振動板の面に直交する方向に前記錘が変位し、前記固定電極と前記振動板との間の静電容量の変化に基づいて振動検出信号を出力する振動センサに関する。   The present invention includes a fixed electrode and a vibration plate having a surface facing the fixed electrode functioning as a vibration electrode, and a weight provided on a surface opposite to the vibration electrode, and orthogonal to the surface of the vibration plate. The present invention relates to a vibration sensor that outputs a vibration detection signal based on a change in electrostatic capacitance between the fixed electrode and the diaphragm.

静電容量検出型、すなわちエレクトレットコンデンサマイクロホン(以下、「ECM」と称す)型の振動センサは、マイクロホンや歩数計をはじめ様々な用途に広く用いられている。例えば、特許文献1には、骨伝導振動を検知するイヤマイクロホンの技術が開示されている。この文献では、骨伝導振動という微小振動を良好に検知するために、可動電極(振動板に相当)に重り(錘)を付けて、実質的に可動電極の質量を大きくして、可動電極の振幅を大きくして感度を向上する方法が示されている。また、高域振動に対する追随性を良くするために可動電極を一端が固定された片状にしたり、年輪状のスリットを設けるなどして、周波数特性を改善する方法が示されている。   An electrostatic capacitance detection type, that is, an electret condenser microphone (hereinafter referred to as “ECM”) type vibration sensor is widely used in various applications including a microphone and a pedometer. For example, Patent Document 1 discloses a technique of an ear microphone that detects bone conduction vibration. In this document, in order to satisfactorily detect a minute vibration called bone conduction vibration, a weight (weight) is attached to the movable electrode (corresponding to a diaphragm), and the mass of the movable electrode is substantially increased. A method for increasing the sensitivity by increasing the amplitude is shown. In addition, in order to improve the followability to high-frequency vibration, a method for improving the frequency characteristics by making the movable electrode into a piece with one end fixed or providing an annual ring-like slit is shown.

また、特許文献2には、特に歩行時など低振動数(周波数)領域の振動を良好に検出するために、衝撃印加手段と、この衝撃印加手段によって与えられた衝撃によって振動する可動電極に重りを設ける構成が示されている。すなわち、衝撃印加手段によって低振動数の振動を可動電極へ伝え、可動電極は検知する振動数と比べて高い固有振動を有するように構成して、良好に歩行時などの低振動数領域の振動を検出することができるようにしている。   Further, in Patent Document 2, in order to satisfactorily detect vibration in a low frequency (frequency) region such as when walking, a weight is applied to an impact applying means and a movable electrode that vibrates due to the impact applied by the impact applying means. The structure which provides is shown. That is, the vibration applying means transmits the vibration at a low frequency to the movable electrode, and the movable electrode is configured so as to have a higher natural vibration than the detected frequency, so that the vibration in the low frequency region such as when walking is satisfactorily performed. To be able to detect.

特開昭59−79700号公報(第2〜3図、第6図、第1〜第2頁上段、第3頁下左段)JP-A-59-79700 (FIGS. 2 to 3, FIG. 6, top of pages 1 and 2 and bottom left of page 3) 特開平10−9944号公報(第1図、0006〜0019段落)Japanese Patent Laid-Open No. 10-9944 (FIG. 1, paragraphs 0006 to 0019)

上記のような構成を採ることによって、慣性力を増加させてセンサの感度を高くすることが可能となる。しかし、慣性力が増加し、振幅も大きくなると、落下時などの耐衝撃性が損なわれる。すなわち、衝撃によって振動板が破損したり、変形する可能性が高くなる。この対策として、錘の過度な変位を規制するために規制部材を設ける方法がある。この場合、錘と規制部材との間のギャップを狭くしなければ、規制の効果が充分に得られず、振動板の破損や変形を許してしまう。しかし、ギャップを狭くしすぎると、必要な振幅をも規制してしまうので、このギャップは高精度に設ける必要がある。このため、組立にも精度を要し、その結果、組立性が悪くなり、組立誤差などから製品の性能ばらつきが大きくなってしまうという問題を有する。   By adopting the configuration as described above, it is possible to increase the inertial force and increase the sensitivity of the sensor. However, when the inertial force increases and the amplitude increases, the impact resistance during dropping is impaired. That is, there is a high possibility that the diaphragm is damaged or deformed by an impact. As a countermeasure, there is a method of providing a regulating member to regulate excessive displacement of the weight. In this case, unless the gap between the weight and the regulating member is narrowed, the regulating effect cannot be obtained sufficiently, and the diaphragm is allowed to be damaged or deformed. However, if the gap is made too narrow, the required amplitude is also restricted, so this gap needs to be provided with high accuracy. For this reason, accuracy is required for assembling. As a result, the assembling property is deteriorated, and there is a problem that the performance variation of the product becomes large due to an assembling error.

また、振動センサは小型化が進んでおり、センササイズが小さくなると、それに伴って、上記ギャップも小さくなる。そうすると、錘と規制板との間に存在する空気の逃げ道も狭くなり、この空気が錘の振動に抗するように作用する。これをエアダンピングと称し、センサが小型化するほど、このエアダンピングが錘(振動板)の振幅に及ぼす影響が大きくなる。   Further, the vibration sensor has been miniaturized, and as the sensor size is reduced, the gap is also reduced. If it does so, the escape route of the air which exists between a weight and a control board will also become narrow, and this air will act so that vibration of a weight may be resisted. This is called air damping, and the smaller the sensor, the greater the effect of this air damping on the amplitude of the weight (diaphragm).

本発明は上記課題に鑑みてなされたもので、振動を検知する感度を低下させないようにすると共に、耐衝撃性を向上させた振動センサを提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a vibration sensor with improved impact resistance while preventing the sensitivity of vibration detection from being lowered.

上記目的を達成するための本発明に係る振動センサの特徴構成は、固定電極と、この固定電極に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘が設けられた振動板とを備え、前記振動板の面に直交する方向に前記錘が変位し、前記固定電極と前記振動板との間の静電容量の変化に基づいて振動検出信号を出力するものであって、前記錘を環状に形成すると共に、前記錘に接触して、前記錘の変位量を規制する規制部材を備えた点にある。   The characteristic configuration of the vibration sensor according to the present invention for achieving the above object is that a fixed electrode and a surface facing the fixed electrode function as a vibration electrode, and a weight is provided on the surface opposite to the vibration electrode. The weight is displaced in a direction perpendicular to the surface of the diaphragm, and a vibration detection signal is output based on a change in capacitance between the fixed electrode and the diaphragm. In addition, the weight is formed in an annular shape, and a regulating member that regulates the amount of displacement of the weight in contact with the weight is provided.

この特徴構成によれば、錘を環状に形成するので、例えば錘を円柱状に形成した場合と比べて、同じ質量の錘で、振動センサ又は振動板の径方向に広がった錘を振動板に取り付けることができる。そして、錘の変位量を規制する規制部材に径方向のより外側で接触することができ、環状の錘が径を軸として過度な揺動を伴うような変位をした場合に、その変位をより好適に規制することができる。例えば、錘を円環状に設けた場合は、錘の径方向の外側までの長さが一定である。従って、振動板がどの方向に過度な揺動を伴う変位をした場合であっても、同じようにその過度な変位を規制することができる。その結果、振動板にかかる負荷が軽減され、振動板の破損や変形を防止することができる。   According to this characteristic configuration, since the weight is formed in an annular shape, for example, compared with a case where the weight is formed in a columnar shape, the weight having the same mass and the weight spreading in the radial direction of the vibration sensor or the vibration plate is used as the vibration plate. Can be attached. Then, it is possible to make contact with the regulating member that regulates the amount of displacement of the weight on the outer side in the radial direction, and when the annular weight is displaced with excessive oscillation about the diameter, the displacement is further reduced. It can regulate suitably. For example, when the weight is provided in an annular shape, the length to the outside in the radial direction of the weight is constant. Therefore, even if the diaphragm is displaced with excessive oscillation in any direction, the excessive displacement can be regulated in the same manner. As a result, the load applied to the diaphragm is reduced, and damage and deformation of the diaphragm can be prevented.

また、上記構成において、前記規制部材が中央に孔を有する規制板であると好ましい。   Moreover, the said structure WHEREIN: It is preferable in the said control member being a control board which has a hole in the center.

振動センサが小型化されてくると、上述したようにエアダンピングの問題が顕在化してくるが、錘を環状にし、この錘の変位量を規制する規制板の中央にも孔を有するように構成すると、このエアダンピングの問題が軽減できる。例えば、規制部材が孔を有しないで構成されていると、規制部材と錘との間の空気は、この規制部材と錘との隙間と、径方向の外側で錘と振動センサのケースとの間の空間と、の間で移動する必要がある。しかし、規制部材としての規制板に孔を設けていれば、この規制板の孔を通って、空気が移動できる。このとき、錘が環状でなければ、錘が規制板の孔を塞ぐように変位するので、錘と規制板との間の空気の流れが、妨げられる部分が生じる。しかし、錘が環状に構成されていると、規制板の孔の部分には環状の錘の中央部の孔が対向するようになるので、空気は錘の中央部の孔と規制板の孔とに流れることもでき、空気の流れは妨げられない。その結果、エアダンピングによって振動板の振幅が制限される問題が軽減できる。   When the vibration sensor is downsized, the problem of air damping becomes obvious as described above. However, the weight is annular, and the center of the regulating plate that regulates the displacement of the weight is configured to have a hole. Then, this air damping problem can be reduced. For example, if the restricting member is configured without a hole, the air between the restricting member and the weight is caused by the gap between the restricting member and the weight, and the weight and the vibration sensor case on the outside in the radial direction. It is necessary to move between and between the spaces. However, if a hole is provided in the restriction plate as the restriction member, air can move through the hole in the restriction plate. At this time, if the weight is not annular, the weight is displaced so as to block the hole of the restricting plate, so that a portion where the air flow between the weight and the restricting plate is hindered occurs. However, when the weight is configured in an annular shape, the hole in the center of the weight is opposed to the hole in the center of the weight and the hole in the center of the weight and the hole in the restriction plate. The air flow is unhindered. As a result, the problem that the amplitude of the diaphragm is limited by air damping can be reduced.

また、前記振動板は、スリットを設けて、中央部に位置して前記錘が備えられる振動部と、周辺部に位置して前記振動板を固定する固定部と、前記振動部と前記固定部とを連結する弾性支持部とに分割形成されると好ましい。   In addition, the diaphragm is provided with a slit, and a vibration part located at a central part and provided with the weight, a fixing part located at a peripheral part and fixing the diaphragm, the vibration part and the fixing part It is preferable to be divided and formed into an elastic support portion that connects the two.

前記振動板が上記のように形成されると、前記弾性支持部がバネ構造を有するので、充分な振幅を得て感度を向上できる。   When the diaphragm is formed as described above, since the elastic support portion has a spring structure, sufficient amplitude can be obtained and sensitivity can be improved.

以下、本発明の実施例を図面に基づいて説明する。図1は、本発明に係る振動センサの一例を示す斜視図、図2は、図1に示す振動センサの断面図である。図1及び2に示すように、本発明の一つの実施形態に係る振動センサは、ハウジング5の内面にエレクトレット層6を形成した固定電極4と、この固定電極4に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘1が設けられた振動板3とを備え、振動板3の面に直交する方向に錘1が変位し、固定電極4と振動板3との間の静電容量の変化に基づいて振動検出信号を出力するものであって、錘1を環状に形成すると共に、錘1に接触して、錘の変位量を規制する規制板(規制部材)2を備えて構成されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an example of a vibration sensor according to the present invention, and FIG. 2 is a cross-sectional view of the vibration sensor shown in FIG. As shown in FIGS. 1 and 2, the vibration sensor according to one embodiment of the present invention includes a fixed electrode 4 in which an electret layer 6 is formed on the inner surface of a housing 5, and a surface facing the fixed electrode 4 as a vibration electrode. And a vibration plate 3 having a weight 1 provided on the surface opposite to the vibration electrode. The weight 1 is displaced in a direction perpendicular to the surface of the vibration plate 3, and the fixed electrode 4 and the vibration plate 3 A vibration detection signal is output based on a change in capacitance between the first and second weights. The weight 1 is formed in an annular shape, and the weight plate 1 is in contact with the weight 1 to restrict the displacement of the weight (a restriction member). ) 2.

上記固定電極4は、エレクトレット層6が内面に形成され、一端が開放された筒状のハウジング5の底部に設けられている。この底部に、リング状の樹脂製スペーサ7と、振動板3とを取り付け、このスペーサ7の厚みで、静電容量の変化を検出するコンデンサ部の所定の間隔を設けている。振動板3に錘1を取り付け、振動板3の面方向(以下、「横方向」)への錘1の変位を規制可能な規制リング8と、振動板3の面に直交する方向(以下、「縦方向」)への錘1の変位を規制可能な規制板2と、ゲートリング9と、を順次重ねる。そして、振動検出信号の出力回路が実装された基板10で蓋をして、ハウジング5に止め付けて振動センサを組み立てる構造になっている。この構造において、振動板3はスペーサ7と規制リング8とによって周囲を挟まれて固定支持されている。また、ハウジング5と、規制リング8と、ゲートリング9とは、金属製である。尚、規制リング8は、振動板3の面に直交する方向に変位する錘1が充分な振幅を得るための間隔を形成するための嵩上げリングとしての役割を兼ねている。   The fixed electrode 4 is provided at the bottom of a cylindrical housing 5 having an electret layer 6 formed on the inner surface and one end opened. A ring-shaped resin spacer 7 and the diaphragm 3 are attached to the bottom, and a predetermined interval of the capacitor portion for detecting a change in capacitance is provided by the thickness of the spacer 7. A weight 1 is attached to the diaphragm 3, a regulating ring 8 capable of regulating displacement of the weight 1 in the surface direction of the diaphragm 3 (hereinafter, “lateral direction”), and a direction orthogonal to the surface of the diaphragm 3 (hereinafter, The regulating plate 2 capable of regulating the displacement of the weight 1 in the “vertical direction”) and the gate ring 9 are sequentially stacked. Then, the structure is such that the vibration sensor is assembled by covering the substrate 10 on which the output circuit of the vibration detection signal is mounted and fastening it to the housing 5. In this structure, the diaphragm 3 is fixedly supported by being sandwiched between a spacer 7 and a regulating ring 8. Moreover, the housing 5, the regulation ring 8, and the gate ring 9 are made of metal. The regulating ring 8 also serves as a raising ring for forming an interval for obtaining a sufficient amplitude for the weight 1 that is displaced in a direction orthogonal to the surface of the diaphragm 3.

上記振動板3は、ステンレス、タングステン、42アロイ、Ti−Cu、Be−CuやSK材を使用することができる。特に落下衝撃への耐性を考慮して、Ti−Cu、Be−CuやSK材などの硬めの材料を用いた場合には、横方向への過剰な変位を考慮する必要がなくなり、規制リング8はもっぱら嵩上げリングとしての機能を受け持つこととなる。   For the diaphragm 3, stainless steel, tungsten, 42 alloy, Ti-Cu, Be-Cu, or SK material can be used. In particular, when a hard material such as Ti—Cu, Be—Cu, or SK material is used in consideration of resistance to drop impact, there is no need to consider excessive displacement in the lateral direction. Will be solely responsible for the function of the raised ring.

図3は、本発明に係る振動センサの振動板を分割形成する一例を示す図である。図3に示すように、振動板3は、スリット11を設けて、中央部に位置して錘1が備えられる振動部33と、周辺部に位置して振動板3を固定する固定部31と、振動部33と固定部31とを連結する弾性支持部32とに分割形成されている。また、錘1は、この振動板3の振動部33に、真中に孔13を有して環状に形成されている。錘1をこのように環状に形成することにより、例えば円柱状に錘1を形成した場合と比べて、同じ質量の錘1で、振動板3の径方向に広く錘1を取り付けることができる。その結果、図4(a)に示すように、錘1が振動板3の径を軸として過度な揺動を伴う変位をした場合に、径のより外側で、規制板2に接触する。すなわち、振動板3の面方向のぶれがより小さな角度である状態で規制板2に接触する。その結果、錘1の径を軸とした揺動を効果的に抑制でき、錘1の過度な変位を好適に抑制することができ、振動板3の破損や変形を防ぐことができる。   FIG. 3 is a diagram showing an example of dividing and forming the diaphragm of the vibration sensor according to the present invention. As shown in FIG. 3, the diaphragm 3 is provided with slits 11, a vibration part 33 provided at the center and provided with the weight 1, and a fixing part 31 located at the periphery and fixing the diaphragm 3. The elastic support portion 32 that connects the vibration portion 33 and the fixed portion 31 is divided. Further, the weight 1 is formed in an annular shape with a hole 13 in the middle in the vibrating portion 33 of the diaphragm 3. By forming the weight 1 in an annular shape in this way, the weight 1 can be attached wider in the radial direction of the diaphragm 3 with the same weight 1 as compared with the case where the weight 1 is formed in a columnar shape, for example. As a result, as shown in FIG. 4A, when the weight 1 is displaced with excessive oscillation about the diameter of the diaphragm 3, it comes into contact with the regulating plate 2 on the outer side of the diameter. That is, the vibration plate 3 comes into contact with the regulating plate 2 in a state where the shake in the surface direction is a smaller angle. As a result, the swing about the diameter of the weight 1 can be effectively suppressed, the excessive displacement of the weight 1 can be preferably suppressed, and the breakage and deformation of the diaphragm 3 can be prevented.

本発明に係る振動センサの規制部材による錘の規制作用の一例を図4に示す。上述したように、本例では、環状の錘1を有しているので、例えば円柱状の錘1と比べて、径方向に大きな形状となっている。そのため、錘1の変位量を規制する規制板2に径方向の外側で接触することができ、錘1が径を軸として過度な揺動を伴う変位をした場合に、その変位をより好適に規制することができる。すなわち、錘1が過度な揺動を生じた場合に、規制板2に錘1の一部が接触して成す角度A(図4(a)参照)は、円柱状の錘1が過度な揺動を生じた場合に、規制板2に錘1の一部が接触して成す角度B(図4(b)参照)に比べて小さくなる。その結果、振動板3、特に弾性支持部32にかかる負荷が軽減され、振動板3の破損や変形を防止することができる。また、例えば、錘を円環状に設けた場合は、錘の径方向の外側までの長さが一定である。従って、振動板がどの方向に過度な揺動を伴う変位をした場合であっても、同じようにその過度な変位を規制することができるので好適である。   An example of the weight regulating action by the regulating member of the vibration sensor according to the present invention is shown in FIG. As described above, in this example, since the annular weight 1 is provided, the shape is larger in the radial direction than the cylindrical weight 1, for example. Therefore, it is possible to contact the regulating plate 2 that regulates the amount of displacement of the weight 1 on the outer side in the radial direction, and when the weight 1 is displaced with excessive oscillation about the diameter, the displacement is more suitably performed. Can be regulated. That is, when the weight 1 is excessively swung, an angle A (see FIG. 4A) formed by a part of the weight 1 coming into contact with the restriction plate 2 is an excessive swing of the cylindrical weight 1. When the movement occurs, the angle is smaller than an angle B (see FIG. 4B) formed by a part of the weight 1 contacting the restriction plate 2. As a result, the load on the diaphragm 3, particularly the elastic support portion 32 is reduced, and the diaphragm 3 can be prevented from being damaged or deformed. For example, when the weight is provided in an annular shape, the length to the outside in the radial direction of the weight is constant. Therefore, even if the diaphragm is displaced with excessive swinging in any direction, it is preferable because the excessive displacement can be similarly controlled.

また、錘1が中央に孔13を有する環状であり、この錘1に接触して錘1の変位量を規制する規制部材が、中央に孔12を有する規制板2であるので、錘1が縦方向に変位した場合に、規制板2と錘1との間に存在する空気が、これらの孔13及び12を介して円滑に移動できる。本発明に係る振動センサの規制部材と錘との間の空気の流れの一例を図5に示す。図5(b)は、錘1を円柱状に形成した場合の例である。この場合、錘1が環状でないので、規制板2の中央部に孔12を設けていても、円柱状の錘1によってこの孔12を塞ぐように変位する。その結果、図中に矢印で示したように空気の流れは悪くなる。そして、錘1の変位によるエアダンピングが振動板3の振幅に影響を及ぼす。
しかし、図5(a)に示すように、錘1が環状に形成されている場合は、規制板2の孔12の部分には環状の錘1の孔13が対向するようになるので、空気は錘1の孔13と規制板2の孔12とに流れることができ、空気の流れは妨げられない。すなわち、錘1の孔13と規制板2の孔12とを介して、図中に矢印で示したように空気が円滑に流れる。その結果、錘1の変位によるエアダンピングが振動板3の振幅に与える影響が軽減される。
Further, since the weight 1 has an annular shape having a hole 13 in the center, and the restriction member that contacts the weight 1 and restricts the amount of displacement of the weight 1 is the restriction plate 2 having the hole 12 in the center, the weight 1 When displaced in the vertical direction, air existing between the regulating plate 2 and the weight 1 can smoothly move through the holes 13 and 12. An example of the air flow between the regulating member and the weight of the vibration sensor according to the present invention is shown in FIG. FIG.5 (b) is an example at the time of forming the weight 1 in the column shape. In this case, since the weight 1 is not annular, even if the hole 12 is provided in the central portion of the regulating plate 2, it is displaced so as to close the hole 12 by the columnar weight 1. As a result, the air flow becomes worse as indicated by the arrows in the figure. Air damping due to the displacement of the weight 1 affects the amplitude of the diaphragm 3.
However, as shown in FIG. 5 (a), when the weight 1 is formed in an annular shape, the hole 13 of the annular weight 1 is opposed to the hole 12 portion of the restricting plate 2. Can flow through the hole 13 of the weight 1 and the hole 12 of the restricting plate 2, and the air flow is not hindered. That is, air smoothly flows through the hole 13 of the weight 1 and the hole 12 of the restriction plate 2 as shown by the arrows in the drawing. As a result, the influence of air damping due to the displacement of the weight 1 on the amplitude of the diaphragm 3 is reduced.

振動センサのサイズが小さくなると、それに伴って、錘1と規制板2とのギャップも小さくなり、エアダンピングが振動板3の振幅に与える影響が大きくなるが、上記のように構成することで、このエアダンピングの問題を良好に改善できる。   When the size of the vibration sensor is reduced, the gap between the weight 1 and the restriction plate 2 is also reduced accordingly, and the influence of air damping on the amplitude of the vibration plate 3 is increased. By configuring as described above, This problem of air damping can be improved satisfactorily.

図3には、固定部31側に位置する外軌道と、振動部33側に位置する内軌道と、これら外軌道と内軌道とを連結する略S字型の連結軌道と、から構成される形状のスリット11を例示した。そして、このスリット11によって、振動板3の弾性支持部32は、固定部31との境界部分である一方の端部32aと、振動部33との境界部分である他方の端部32bと、この両端部の間に位置してこの両端部よりも狭幅の中央部32cとから成る梁状体に形成されることとなる。   FIG. 3 includes an outer track positioned on the fixed portion 31 side, an inner track positioned on the vibrating portion 33 side, and a substantially S-shaped connecting track connecting the outer track and the inner track. The shape slit 11 was illustrated. And by this slit 11, the elastic support part 32 of the diaphragm 3 has one end part 32a that is a boundary part with the fixed part 31 and the other end part 32b that is a boundary part with the vibration part 33, and this It will be formed in the beam-like body which consists of the center part 32c located between both ends and narrower than this both ends.

振動板3の振幅、すなわち振動部33の振幅は、この梁状体の弾性支持部32の中央部32cの弾性によって与えられる。従って、この弾性効果を多く得るためには、弾性支持部は細長く形成されることが好ましい。しかし、弾性支持部32と、固定部31又は振動部33との境界部分である弾性支持部32の端部32a及び32bは、弾性運動する弾性支持部32の支点として働くことから、ある程度の強度を保持できるように形成されることが好ましい。振動による亀裂などの破損や、ねじれなどによる変形を起こし難くするためである。従って、弾性支持部32の両端部32a及び32bが、中央部32cよりも太く形成されるようなスリット形状とすることで、振動板3は、弾性効果を多く得られると共に、強度を強くし、良好な振幅を長期に亘って得ることができる。   The amplitude of the diaphragm 3, that is, the amplitude of the vibrating portion 33 is given by the elasticity of the central portion 32 c of the elastic support portion 32 of the beam-like body. Therefore, in order to obtain a large amount of this elastic effect, the elastic support portion is preferably formed to be elongated. However, since the end portions 32a and 32b of the elastic support portion 32, which is a boundary portion between the elastic support portion 32 and the fixed portion 31 or the vibration portion 33, serve as fulcrums of the elastic support portion 32 that is elastically moved, a certain degree of strength. It is preferable to be formed so as to be able to hold. This is to make it difficult to cause breakage such as cracks due to vibration and deformation due to torsion. Therefore, the diaphragm 3 has a slit shape such that both end portions 32a and 32b of the elastic support portion 32 are formed thicker than the central portion 32c, so that the diaphragm 3 can obtain a lot of elastic effects and increase the strength. Good amplitude can be obtained over a long period of time.

また、振動板3は図3に示した形状に限らず、別の形状に形成することもできる。すなわち、振動板3を固定部31と弾性支持部32と振動部33とに分割形成するスリット11は、固定部31から振動部33へ向かって連続して形成され、隣り合う各スリット11の固定部31側と振動部33側とが径方向に重なり合うように周方向に沿って等間隔に設けられて、弾性支持部32が周方向に等間隔に複数形成されればよいので、別の形状に形成することもできる。   Further, the diaphragm 3 is not limited to the shape shown in FIG. 3, but may be formed in another shape. That is, the slit 11 that divides and forms the diaphragm 3 into the fixing portion 31, the elastic support portion 32, and the vibrating portion 33 is formed continuously from the fixing portion 31 toward the vibrating portion 33, and the adjacent slits 11 are fixed. Since the part 31 side and the vibration part 33 side are provided at equal intervals along the circumferential direction so as to overlap with each other in the radial direction, a plurality of elastic support portions 32 may be formed at equal intervals in the circumferential direction. It can also be formed.

図6に示すように、固定部31側から振動部33の中心へと向かう螺旋軌道に沿って形成されるスリット11とすることもできる。螺旋軌道は、中心部ほど軌道の曲率が大きく(曲率半径が小さく)なり、周辺部ほど曲率が小さく(曲率半径が大きく)なる。すなわち、螺旋軌道に沿ったスリット11は、振動部33側の端部が中心側へ入り込み、固定部31側の端部が周辺部へと広がって形成される。従って、各スリットの振動部33側の端部又は固定部31側の端部が、それぞれ隣り合うスリットとの間で形成する各弾性支持部32の振動部33側の端部32b又は固定部31側の端部32aは、各弾性支持部32の中央部32cに比べて広い幅を持つように形成される。また、この場合は、スリット11が一連の曲線軌道で形成されるので、振動板3の面方向への衝撃に対する歪に抗する力もより強くなる。このため、充分な振幅を得て感度を向上することができると共に、衝撃が加わった場合でも、破損や変形に強い構造とすることができる。   As shown in FIG. 6, the slit 11 may be formed along a spiral trajectory from the fixed portion 31 side toward the center of the vibrating portion 33. In the spiral track, the curvature of the track becomes larger (the radius of curvature is smaller) toward the center, and the curvature becomes smaller (the radius of curvature is larger) toward the periphery. That is, the slit 11 along the spiral trajectory is formed such that the end portion on the vibrating portion 33 side enters the center side and the end portion on the fixed portion 31 side extends to the peripheral portion. Therefore, the end portion 32b or the fixed portion 31 on the vibrating portion 33 side of each elastic support portion 32 formed between the end portion on the vibrating portion 33 side or the end portion on the fixed portion 31 side of each slit formed between the adjacent slits. The side end portion 32 a is formed to have a wider width than the central portion 32 c of each elastic support portion 32. Further, in this case, since the slit 11 is formed by a series of curved orbits, the force that resists distortion against an impact in the surface direction of the diaphragm 3 is further increased. For this reason, sufficient amplitude can be obtained and sensitivity can be improved, and even when an impact is applied, a structure that is resistant to breakage and deformation can be obtained.

また、別のスリット11の形状(弾性支持部32の形状)の例を示す。図7に示す振動板3に設けるスリット11は、固定部31側に位置する外軌道と、振動部33側に位置する内軌道と、これら外軌道と内軌道とを径方向の軌道で鉤型に連結する連結軌道とから構成されている。このように構成すると、外軌道と内軌道とを径方向の軌道で鉤型に連結するので、例えば、外軌道と内軌道とをそれぞれ異なる径を持つ円弧などで形成することができる。スリットの形状を簡単に設計でき、形成される弾性支持部の弾性や強度の計算も容易に行うことができる。   Moreover, the example of the shape (shape of the elastic support part 32) of another slit 11 is shown. The slit 11 provided in the diaphragm 3 shown in FIG. 7 is a saddle type with an outer track positioned on the fixed portion 31 side, an inner track positioned on the vibrating portion 33 side, and the outer track and the inner track in a radial track. And a connecting track connected to the. If comprised in this way, since an outer track and an inner track are connected in a saddle shape with a track in the radial direction, for example, the outer track and the inner track can be formed by arcs having different diameters. The shape of the slit can be easily designed, and the elasticity and strength of the formed elastic support portion can be easily calculated.

以上、説明したような実施形態によって、振動を検知する感度を低下させないようにすると共に、耐衝撃性を向上させた振動センサを提供することができる。   As described above, according to the embodiment as described above, it is possible to provide a vibration sensor in which the sensitivity for detecting vibration is not lowered and the impact resistance is improved.

本発明に係る振動センサの一例を示す斜視図The perspective view which shows an example of the vibration sensor which concerns on this invention 図1に示す振動センサの断面図Sectional view of the vibration sensor shown in FIG. 本発明に係る振動センサの振動板を分割形成する第一の例を示す図The figure which shows the 1st example which divides and forms the diaphragm of the vibration sensor which concerns on this invention. 本発明に係る振動センサの規制部材による錘の規制作用の一例を示す図The figure which shows an example of the control effect | action of the weight by the control member of the vibration sensor which concerns on this invention 本発明に係る振動センサの規制部材と錘との間の空気の流れの一例を示す図The figure which shows an example of the flow of the air between the control member of the vibration sensor which concerns on this invention, and a weight. 本発明に係る振動センサの振動板を分割形成する第二の例を示す図The figure which shows the 2nd example which divides and forms the diaphragm of the vibration sensor which concerns on this invention. 本発明に係る振動センサの振動板を分割形成する第三の例を示す図The figure which shows the 3rd example which divides and forms the diaphragm of the vibration sensor which concerns on this invention.

符号の説明Explanation of symbols

1 錘
2 規制板
3 振動板
4 固定電極
1 Weight 2 Regulating plate
3 Diaphragm 4 Fixed electrode

Claims (3)

固定電極と、この固定電極に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘が設けられた振動板とを備え、
前記振動板の面に直交する方向に前記錘が変位し、
前記固定電極と前記振動板との間の静電容量の変化に基づいて振動検出信号を出力する振動センサであって、
前記錘を環状に形成すると共に、
前記錘に接触して、前記錘の変位量を規制する規制部材を備えた振動センサ。
A fixed electrode, and a surface facing the fixed electrode functions as a vibration electrode, and a vibration plate provided with a weight on a surface opposite to the vibration electrode,
The weight is displaced in a direction perpendicular to the surface of the diaphragm;
A vibration sensor that outputs a vibration detection signal based on a change in capacitance between the fixed electrode and the diaphragm,
And forming the weight in an annular shape,
A vibration sensor comprising a regulating member that contacts the weight and regulates a displacement amount of the weight.
前記規制部材が、中央に孔を有する規制板である請求項1に記載の振動センサ。   The vibration sensor according to claim 1, wherein the restriction member is a restriction plate having a hole in the center. 前記振動板は、スリットを設けて、
中央部に位置して前記錘が備えられる振動部と、周辺部に位置して前記振動板を固定する固定部と、前記振動部と前記固定部とを連結する弾性支持部とに分割形成される請求項1又は2に記載の振動センサ。
The diaphragm is provided with a slit,
It is divided into a vibration part located in the central part and provided with the weight, a fixing part located in the peripheral part and fixing the diaphragm, and an elastic support part connecting the vibration part and the fixing part. The vibration sensor according to claim 1 or 2.
JP2004145442A 2004-05-14 2004-05-14 Vibration sensor Pending JP2005326310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145442A JP2005326310A (en) 2004-05-14 2004-05-14 Vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145442A JP2005326310A (en) 2004-05-14 2004-05-14 Vibration sensor

Publications (1)

Publication Number Publication Date
JP2005326310A true JP2005326310A (en) 2005-11-24

Family

ID=35472773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145442A Pending JP2005326310A (en) 2004-05-14 2004-05-14 Vibration sensor

Country Status (1)

Country Link
JP (1) JP2005326310A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187494A (en) * 2006-01-12 2007-07-26 Mitsutoyo Corp Vibration detector
JP2012529207A (en) * 2009-06-03 2012-11-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Element having micromechanical microphone structure and method for manufacturing element having micromechanical microphone structure
JP2013213754A (en) * 2012-04-03 2013-10-17 Seiko Epson Corp Gyro sensor, and electronic apparatus using the same
JP2014233059A (en) * 2013-05-30 2014-12-11 新日本無線株式会社 MEMS element
JP2017203683A (en) * 2016-05-11 2017-11-16 内外ゴム株式会社 Capacitance type triaxial acceleration sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187494A (en) * 2006-01-12 2007-07-26 Mitsutoyo Corp Vibration detector
JP2012529207A (en) * 2009-06-03 2012-11-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Element having micromechanical microphone structure and method for manufacturing element having micromechanical microphone structure
US8637945B2 (en) 2009-06-03 2014-01-28 Robert Bosch Gmbh Component having a micromechanical microphone structure, and method for its production
JP2014090514A (en) * 2009-06-03 2014-05-15 Robert Bosch Gmbh Device with micromechanical microphone structure and manufacturing method of device with micromechanical microphone structure
JP2013213754A (en) * 2012-04-03 2013-10-17 Seiko Epson Corp Gyro sensor, and electronic apparatus using the same
CN103363980A (en) * 2012-04-03 2013-10-23 精工爱普生株式会社 Gyro sensor and electronic device employing the same
CN103363980B (en) * 2012-04-03 2017-05-31 精工爱普生株式会社 Gyrosensor and the electronic equipment of the gyrosensor is used
JP2014233059A (en) * 2013-05-30 2014-12-11 新日本無線株式会社 MEMS element
JP2017203683A (en) * 2016-05-11 2017-11-16 内外ゴム株式会社 Capacitance type triaxial acceleration sensor

Similar Documents

Publication Publication Date Title
WO2005111555A1 (en) Vibration sesor
CN110545514B (en) Piezoelectric MEMS microphone
JP4782114B2 (en) Seismometer
US20200132742A1 (en) Audio spectrum analyzer and method of arranging resonators included therein
JP5324049B2 (en) Balance for timepiece movement
JP6309944B2 (en) Tuning frequency damper
US7212647B2 (en) Vibration actuator device of portable terminal
JP2006084219A (en) Acceleration sensor
CN102853825B (en) Angular velocity sensor
KR102193337B1 (en) MEMS structure and capacitive sensor, piezoelectric sensor, acoustic sensor with MEMS structure
JP4073382B2 (en) Vibration sensor
US20140083276A1 (en) Cymbal silencer
WO2013179988A1 (en) Load detection device
US9207254B2 (en) Accelerometer with low sensitivity to thermo-mechanical stress
JP2005326310A (en) Vibration sensor
US20060150739A1 (en) Vibration sensor
US20120297876A1 (en) Micromechanical component having a damping device
US10178472B1 (en) Omnidirectional acoustic sensor
JP2006292673A (en) Acceleration sensor
CN111137843B (en) MEMS membrane and MEMS sensor chip
CN103477115B (en) Enclosed-fluid vibration-control device
KR20150018081A (en) Acoustic Transducer
US11821414B2 (en) Fluid control apparatus
US11698067B2 (en) Fluid control device
JP2005098726A (en) Vibration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Effective date: 20070712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071108