JP2005326220A - Foreign matter inspection device - Google Patents

Foreign matter inspection device Download PDF

Info

Publication number
JP2005326220A
JP2005326220A JP2004143667A JP2004143667A JP2005326220A JP 2005326220 A JP2005326220 A JP 2005326220A JP 2004143667 A JP2004143667 A JP 2004143667A JP 2004143667 A JP2004143667 A JP 2004143667A JP 2005326220 A JP2005326220 A JP 2005326220A
Authority
JP
Japan
Prior art keywords
light
conveyor
foreign matter
optical system
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143667A
Other languages
Japanese (ja)
Inventor
Naoto Watanabe
直人 渡辺
Yasuo Saito
保雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JT Engineering Inc
Original Assignee
JT Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JT Engineering Inc filed Critical JT Engineering Inc
Priority to JP2004143667A priority Critical patent/JP2005326220A/en
Publication of JP2005326220A publication Critical patent/JP2005326220A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foreign matter inspection device of a simple structure realized at a low cost and easily maintained. <P>SOLUTION: This device is equipped with: an optical system (objective lens system) equipped with an infrared light source (straight-pipe infrared lamp) for uniformly illuminating the whole of a conveyor in its width direction by near-infrared light including specific wavelengths and a deflection mechanism (polygon mirror) for optically scanning an illuminated area on the conveyor by the near-infrared light in the width direction of the conveyor in order to partially view an illuminated area by the infrared-light; and a light detection element for detecting, via the optical system, the intensity of reflected light of the specific wavelength by raw material placed on the conveyor and/or by foreign matter getting mixed in the raw material. The optical system for guiding reflected light reflected from an inspecting object to the detection element is separated from an illumination system for illuminating the inspecting object by light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンベア上に載置されて搬送される原料中に混入している異物を、例えばたばこ刻中に混入しているゴム等の同色系異物を光学的に検出するに好適な簡易な構造の異物検査装置に関する。   The present invention is a simple and suitable for optically detecting foreign matter mixed in a raw material placed and conveyed on a conveyor, for example, same-colored foreign matter such as rubber mixed in tobacco engraving. The present invention relates to a foreign matter inspection apparatus having a structure.

たばこ刻や中骨、ラミナ等のたばこ原料への異物の混入を検査し、その異物の排除に用いられる異物検査装置は、専ら、その検査対象物の色に着目して異物検出を行っている。具体的には検査対象物を撮像して求められるカラー画像の色成分を求め、その色成分が検査対象物が持つ正常な色成分であるか、或いは検査対象物に混入する虞のある異物が持つ異常な色成分であるかをそれぞれ判定することで異物検出を行っている(例えば特許文献1を参照)。   Foreign matter inspection devices used to inspect foreign materials in tobacco raw materials such as cigarettes, bones, and lamina, and to eliminate such foreign matter, exclusively detect foreign matter by focusing on the color of the inspection object. . Specifically, the color component of the color image obtained by imaging the inspection object is obtained, and the color component is a normal color component possessed by the inspection object, or there is a foreign substance that may be mixed into the inspection object. Foreign matter detection is performed by determining whether each is an abnormal color component (see, for example, Patent Document 1).

しかしながらたばこ葉(たばこ原料)は農産物であり、品種や産地、生産時期等に依存して多様な色成分を持つ。またたばこ原料に混入する異物は、通常、たばこ葉の梱包に使用される包材や紐等があり、中でも人体に有害なガスを発生するゴムや石油系異物はたばこ原料と同色系の色成分を持つことも多い。この為、上述したカラー画像から異物を確実に検出することが困難である。そこで検査対象物に赤外線を照射した際、その反射光における特定波長の強度がたばこ原料と異物とによって異なることに着目して異物検査を行うことが提唱されている(例えば特許文献2を参照)。
特開2000−3532号公報 国際公開第WO00/74504A1号のパンフレット
However, tobacco leaves (cigarette raw materials) are agricultural products, and have various color components depending on the variety, production area, production time, and the like. In addition, foreign materials mixed in tobacco materials usually include packaging materials and strings used for packing tobacco leaves. Among them, rubber and petroleum-based foreign materials that generate gas harmful to the human body are the same color components as tobacco materials. I often have. For this reason, it is difficult to reliably detect foreign matter from the color image described above. Therefore, it has been proposed that when the inspection object is irradiated with infrared rays, the foreign object inspection is performed by paying attention to the fact that the intensity of the specific wavelength in the reflected light differs depending on the tobacco raw material and the foreign object (for example, see Patent Document 2). .
JP 2000-3532 A Pamphlet of International Publication No. WO00 / 74504A1

しかしながら特定波長の赤外線を検査対象物に照射し、その反射光の強度を検出して異物検査を行うに際して、例えばカメラを用いて検査対象物を撮像する場合には、高価な赤外線カメラ等が必要となり、その構成が大掛かりとなると言う不具合がある。またポリゴンミラーを用いて検査対象物を光学的に走査しながら赤外線を照射し、その赤外線の照射光路を逆に辿って前記検査対象物からの反射光を検出するように構成した場合には、例えば指向性の鋭いレーザ光を用いたり、光をビーム状に絞り込むための大掛かりなレンズ系を必要とするので装置全体の構成が複雑化することが否めない。しかもポリゴンミラーを介する光照射系(投光系)と受光系との光軸を合わせるための調整やメインテナンスが煩雑になる等の問題がある。   However, when an object to be inspected by irradiating an inspection object with infrared light of a specific wavelength and detecting the intensity of the reflected light, for example, when an inspection object is imaged using a camera, an expensive infrared camera or the like is required. Therefore, there is a problem that the configuration becomes large. In addition, when the infrared ray is irradiated while optically scanning the inspection object using a polygon mirror, and the reflected light from the inspection object is detected by tracing back the irradiation light path of the infrared ray, For example, since a laser beam with a sharp directivity is used or a large lens system for narrowing the light into a beam shape is required, the configuration of the entire apparatus cannot be denied. In addition, there is a problem that adjustment and maintenance for aligning the optical axes of the light irradiation system (light projection system) and the light receiving system via the polygon mirror become complicated.

本発明はこのような事情を考慮してなされたもので、その目的は、簡易な構成で安価に実現することができ、しかもメンテナンスが容易な異物検査装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a foreign substance inspection apparatus that can be realized at a low cost with a simple configuration and that is easy to maintain.

本発明はコンベア上に載置されて搬送される原料中に混入している異物を光学的に検出する従来一般的な異物検査装置において、装置構成の複雑化と高価格化の要因、およびそのメンテナンスの煩雑化の要因が、主として検査対象物に照射する光を光学的に走査しながらその反射光を検出する上での構成に起因することに着目している。
そこで本発明に係る異物検査装置は、上述した目的を達成するべく
<a> 特定波長を含む近赤外線光を前記コンベアの幅方向全域に亘って一様に照射する赤外線光源と、
<b> 前記コンベア上の前記近赤外線光の照射領域を該コンベアの幅方向に光学的に走査する偏向機構を備えて前記近赤外線光の照射領域を局部的に視野する光学系と、
<c> この光学系を介して前記コンベア上に載置された原料および/または該原料中に混入している異物による反射光の特定波長の強度を検出する光検出素子と
を備えたことを特徴としている。
The present invention relates to a conventional general foreign matter inspection apparatus that optically detects foreign matter mixed in a raw material that is placed on a conveyor and transported. It is focused on the fact that the maintenance complexity is mainly due to the configuration in which the reflected light is detected while optically scanning the light irradiated on the inspection object.
Therefore, the foreign matter inspection apparatus according to the present invention is intended to achieve the above-described object.
<a> An infrared light source that uniformly irradiates near infrared light including a specific wavelength over the entire width direction of the conveyor;
<b> An optical system that includes a deflection mechanism that optically scans the irradiation region of the near infrared light on the conveyor in the width direction of the conveyor, and locally views the irradiation region of the near infrared light;
<c> A light detection element for detecting the intensity of a specific wavelength of reflected light caused by a raw material placed on the conveyor and / or a foreign substance mixed in the raw material via the optical system. It is a feature.

即ち、本発明に係る異物検査装置は、例えば直管型の赤外線ランプのような、コンベアの幅方向全域に亘って特定波長を含む近赤外線光を一様に照射する赤外線光源を用いることで、例えば大出力のレーザ光を偏向して光学的に走査したり、検査対象物に照射する光をビーム状に絞り込む等の処理を不要とし、
一方、前記コンベア上の前記近赤外線光の照射領域を偏向機構を備えた光学系を介して前記コンベア上を局部的に視野する領域を該コンベアの幅方向に光学的に走査するようにし、この光学系を介してフォトダイオード等の光検出素子を用いて前記コンベア上に載置された原料および/または該原料中に混入している異物による反射光の特定波長の強度を検出するようにしたことを特徴としている。
That is, the foreign matter inspection apparatus according to the present invention uses an infrared light source that uniformly irradiates near infrared light including a specific wavelength over the entire width direction of the conveyor, such as a straight tube type infrared lamp, For example, it is not necessary to perform processing such as deflecting high-power laser light to optically scan, or narrowing the light irradiated to the inspection object into a beam,
On the other hand, an area in which the near-infrared light irradiation area on the conveyor is viewed locally on the conveyor via an optical system provided with a deflection mechanism is optically scanned in the width direction of the conveyor. The intensity of a specific wavelength of the reflected light caused by the raw material placed on the conveyor and / or the foreign matter mixed in the raw material is detected using a light detection element such as a photodiode through an optical system. It is characterized by that.

好ましくは請求項2に記載するように前記光学系は、前記コンベアに対峙させて設けられて視野角を制限する対物レンズ系および前記光検出素子への像焦点を調整する結像レンズ系を備えて構築される。また前記偏向機構は、前記対物レンズ系と結像レンズ系との間に介挿されて前記対物レンズ系が形成した前記光検出素子の視野の向き偏向する可動ミラー、例えば回転駆動されるポリゴンミラーやガルバノミラーとして実現される。   Preferably, the optical system includes an objective lens system that is provided facing the conveyor and limits a viewing angle, and an imaging lens system that adjusts an image focus on the light detection element. Built. The deflection mechanism is a movable mirror that is inserted between the objective lens system and the imaging lens system and deflects the field of view of the light detection element formed by the objective lens system, for example, a polygon mirror that is rotationally driven. And realized as a galvanometer mirror.

また請求項3に記載するように前記光学系を、前記コンベア上を視野して得られる反射光を分光する分光器を備えたものとし、この分光器により分光された複数の光路に前記光検出素子をそれぞれ設けて、互いに異なる複数の特定波長の反射光強度を個別に検出するように構成することも有用である。この場合、上記分光器としては、反射光を単純に複数の光路に分岐するもののみならず、上記反射光を波長に応じて複数の光路に分波する分波器としての機能を備えたものであっても良い。   According to a third aspect of the present invention, the optical system is provided with a spectroscope that splits reflected light obtained by viewing the conveyor, and the light detection is performed in a plurality of optical paths dispersed by the spectroscope. It is also useful to provide each element so that the reflected light intensities of a plurality of different specific wavelengths are individually detected. In this case, the spectroscope is not only a device that simply branches the reflected light into a plurality of optical paths, but also has a function as a demultiplexer that demultiplexes the reflected light into a plurality of optical paths according to the wavelength. It may be.

上述した構成の異物検査装置によれば、例えば直管型の赤外線ランプのような赤外線光源を用いて、前記コンベアの幅方向全域に亘って特定波長を含む近赤外線光を一様に照射するるだけなので、大出力のレーザ光を偏向して光学的に走査したり、検査対象物に照射する光をビーム状に絞り込むための大掛かりで複雑な光学系が不要である。そしてポリゴンミラー等の偏向機構を備えた光学系を介して前記コンベア上を局部的に視野する領域を該コンベアの幅方向に光学的に走査するだけなので、上記光学系を簡易に構成することができる。更には局部的に視野した上記領域からの反射光をフォトダイオード等の光検出素子を用いて受光してその強度を検出するだけで良いので、安価な光学部品(レンズ等)や電気部品(光検出素子)を用いて反射光の検出系を簡易に構成することができる。   According to the foreign substance inspection apparatus having the above-described configuration, for example, an infrared light source such as a straight tube type infrared lamp is used to uniformly irradiate near infrared light including a specific wavelength over the entire width direction of the conveyor. Therefore, there is no need for a large-scale and complicated optical system for deflecting high-power laser light and optically scanning it, or narrowing light to be irradiated onto an inspection object into a beam shape. Then, the optical system is simply configured because the region to be locally viewed on the conveyor is optically scanned in the width direction of the conveyor via an optical system having a deflection mechanism such as a polygon mirror. it can. Furthermore, it is only necessary to detect the intensity of the reflected light from the above-mentioned region viewed locally, using a photodetection element such as a photodiode, so that inexpensive optical components (lenses, etc.) and electrical components (light The detection system of the reflected light can be easily configured using the detection element.

また上述した構成であれば従来の異物検査装置に見られるように、例えば検査対象物に対して光を照射する照射系(投光系)と、上記検査対象物からの反射光を光検出素子に導く為の受光系との光軸を合わせる必要がないので、その調整やメンテナンスの大幅な容易化を図ることが可能となる。   In addition, as in the conventional foreign matter inspection apparatus having the above-described configuration, for example, an irradiation system (light projection system) for irradiating light to the inspection object and reflected light from the inspection object as a light detection element Therefore, it is not necessary to align the optical axis with the light receiving system for guiding to the light source, so that the adjustment and maintenance can be greatly facilitated.

以下、図面を参照して本発明の一実施形態について、たばこ刻(原料)中に混入した紙片等の異物を検出する異物検査装置を例に説明する。
図1はこの実施形態に係る異物検査装置の腰部概略構成図であり、1は検査対象物であるたばこ刻(図示せず)を載置して搬送するベルトコンベアである。このベルトコンベア1の上方位置には該ベルトコンベア1上に載置されて搬送される検査対象物(たばこ刻)に向けて後述する特定波長を含む近赤外線光を照射する直管型の赤外線ランプ(赤外線光源)2が設けられている。特にこの直管型の赤外線ランプ2は、ベルトコンベア1をその幅方向に横切るように設けられており、該ベルトコンベア1の幅方向の全域に亘って上記近赤外線光を一様に照射するものとなっている。この結果、ベルトコンベア1上に載置された検査対象物(たばこ刻)は、赤外線ランプ2からの近赤外線光のベルトコンベア1の全幅に亘る照射領域を通過して搬送されるようになっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings by taking, as an example, a foreign matter inspection apparatus that detects foreign matters such as paper pieces mixed in a cigarette (raw material).
FIG. 1 is a schematic diagram of a waist part of a foreign substance inspection apparatus according to this embodiment, and reference numeral 1 denotes a belt conveyor on which a tobacco stamp (not shown) as an inspection object is placed and conveyed. A straight tube type infrared lamp that irradiates near-infrared light including a specific wavelength, which will be described later, toward an inspection object (tobacco engraving) placed and transported on the belt conveyor 1 above the belt conveyor 1 (Infrared light source) 2 is provided. In particular, the straight tube type infrared lamp 2 is provided so as to cross the belt conveyor 1 in the width direction, and uniformly irradiates the near infrared light over the entire width direction of the belt conveyor 1. It has become. As a result, the inspection object (cigarette engraving) placed on the belt conveyor 1 is conveyed through the irradiation region of the near-infrared light from the infrared lamp 2 over the entire width of the belt conveyor 1. Yes.

尚、前記赤外線ランプ2とベルトコンベア1との間には、近赤外線だけを透過する光学フィルタ(熱カットフィルタ)3が設けられており、前記赤外線ランプ2から発せられる遠赤外線によって前記検査対象物(たばこ刻)が加熱されることがないように工夫されている。また特に図示しないが前記赤外線ランプ2には冷却装置が設けられており、この冷却装置にて前記赤外線ランプ2自体の発熱を抑えることで、その熱が前記検査対象物(たばこ刻)に加わることがないように配慮されている。   An optical filter (heat cut filter) 3 that transmits only near infrared rays is provided between the infrared lamp 2 and the belt conveyor 1, and the inspection object is detected by far infrared rays emitted from the infrared lamp 2. It has been devised so that the cigarette is not heated. Although not specifically shown, the infrared lamp 2 is provided with a cooling device, and heat generated by the infrared lamp 2 itself is suppressed by the cooling device so that the heat is applied to the inspection object (cigarette). There are no considerations.

一方、前記ベルトコンベア1の上方位置には、前記近赤外線光の照射領域に対峙させて対物レンズ系10が設けられており、更にこの対物レンズ系10を介して前記ベルトコンベア1上の上記近赤外線光の照射領域を視野する位置にはポリゴンミラー(可動ミラー)11が設けられている。このポリゴンミラー11は、回転に伴ってその外周面に形成した複数枚のミラーの前記ベルトコンベア1に対する対向角度を順次変えることで、後述する結像レンズ系30を介して光検出素子20が視野する前記ベルトコンベア1上の局所領域を該ベルトコンベア1の幅方向に光学的に走査する偏向機構としての役割を担う。   On the other hand, an objective lens system 10 is provided at an upper position of the belt conveyor 1 so as to face the irradiation region of the near infrared light, and further, the near lens on the belt conveyor 1 is interposed via the objective lens system 10. A polygon mirror (movable mirror) 11 is provided at a position for viewing the irradiation region of the infrared light. As the polygon mirror 11 rotates, the opposing angle of the plurality of mirrors formed on the outer peripheral surface of the polygon mirror 11 with respect to the belt conveyor 1 is sequentially changed, so that the light detection element 20 can be viewed through the imaging lens system 30 described later. It plays a role as a deflection mechanism for optically scanning a local area on the belt conveyor 1 in the width direction of the belt conveyor 1.

尚、前述した赤外線ランプ2は、上記対物レンズ系10によるベルトコンベア1の視野を妨げることがないように、例えば対物レンズ系10の視野領域を斜め上方から照明するように前記ベルトコンベア1の搬送方向に若干位置をずらして設けられている。これによってベルトコンベア1上での前記赤外線ランプ2からの近赤外線の照射領域におけるベルトコンベア1の幅方向の全域に亘って前記対物レンズ系10が視野し得るように、その光学的配置が設定されている。   In addition, the infrared lamp 2 mentioned above conveys the said belt conveyor 1 so that the visual field area of the objective lens system 10 may be illuminated from diagonally upward, for example so that the visual field of the belt conveyor 1 by the said objective lens system 10 may not be disturbed. The position is slightly shifted in the direction. As a result, the optical arrangement is set so that the objective lens system 10 can view the entire area in the width direction of the belt conveyor 1 in the near infrared irradiation region from the infrared lamp 2 on the belt conveyor 1. ing.

また前記対物レンズ系10には、ポリゴンミラー11による前記光検出素子20の視野領域の光学的な偏向走査に伴う光路長の変化等を補正するための補正レンズ系(図示せず)が組み込まれる。この補正レンズ系により、例えばポリゴンミラー11による偏向角速度が一定の場合であっても、ベルトコンベア1上での視野領域の偏向走査速度が一定となるように補正される。また補正レンズ系により、例えば結像レンズ系30を介する光検出素子20の視野領域の前記ベルトコンベア1上における大きさが、前記ポリゴンミラー11による上記視野領域の偏向走査に拘わらず一定に保たれる。   In addition, the objective lens system 10 incorporates a correction lens system (not shown) for correcting a change in optical path length and the like associated with optical deflection scanning of the visual field region of the light detection element 20 by the polygon mirror 11. . For example, even when the deflection angular velocity by the polygon mirror 11 is constant, the correction lens system corrects the deflection scanning speed of the visual field region on the belt conveyor 1 to be constant. Further, the size of the field area of the light detection element 20 through the imaging lens system 30 on the belt conveyor 1 is kept constant by the correction lens system regardless of the deflection scanning of the field area by the polygon mirror 11, for example. It is.

さて上記光検出素子20は、GaAsやInGaAs等の化合物半導体を用いたフォトダイオード(光電変換素子)からなり、その受光面に入射した(受光した)光の強度に応じた電気信号(電圧または電流)を出力する、いわゆる単機能素子からなる。前記結像レンズ系30は、このような光検出素子20の受光面に対峙して設けられて該光検出素子20の視野角を制限し、例えばその光学的中心軸に沿って入射するビーム状の光だけを光検出素子20に導く役割を担う。   The light detection element 20 is composed of a photodiode (photoelectric conversion element) using a compound semiconductor such as GaAs or InGaAs, and an electric signal (voltage or current) corresponding to the intensity of light incident (received) on the light receiving surface. ) Is output from the so-called single function element. The imaging lens system 30 is provided so as to face the light receiving surface of the photodetecting element 20 so as to limit the viewing angle of the photodetecting element 20, for example, a beam shape incident along the optical center axis thereof. It plays a role of guiding only the light to the light detecting element 20.

特に前記結像レンズ系30は、前述したポリゴンミラー(可動ミラー)11に対してその光軸中心が常に一定位置となるように定められており、例えばポリゴンミラー11が所定の回転角度位置にあるとき、該ポリゴンミラー11の反射面を介して前記ベルトコンベア1の幅方向の中心位置を局部的に視野するように設定されている。このようなポリゴンミラー11を回転させて前記結像レンズ系30の光軸中心に対する反射面の角度を変化させることで、前記結像レンズ系30がポリゴンミラー11の反射面を介して視野する向きが偏向される。これによって前記結像レンズ系30を光学的に固定した状態のまま該結像レンズ系30が視野する向きが、つまり前記光検出素子20が結像レンズ系30を介して視野する向きが前記ベルトコンベア1の幅方向に、特にその幅方向の全域に亘って連続して偏向走査されるようになっている。   In particular, the imaging lens system 30 is determined such that the optical axis center thereof is always at a fixed position with respect to the polygon mirror (movable mirror) 11 described above. For example, the polygon mirror 11 is at a predetermined rotational angle position. At this time, the central position in the width direction of the belt conveyor 1 is set to be viewed locally through the reflecting surface of the polygon mirror 11. By rotating the polygon mirror 11 and changing the angle of the reflecting surface with respect to the optical axis center of the imaging lens system 30, the imaging lens system 30 can be viewed through the reflecting surface of the polygon mirror 11. Is deflected. As a result, the direction in which the imaging lens system 30 is viewed with the imaging lens system 30 being optically fixed, that is, the direction in which the light detection element 20 is viewed through the imaging lens system 30 is the belt. Deflection scanning is continuously performed in the width direction of the conveyor 1, particularly over the entire width direction.

尚、この実施形態においては前記光検出素子20が3個設けられており、これらの3個の光検出素子20(20a,20b,20c)のそれぞれに対応して3組の結像レンズ系30(30a,30b,30c)が設けられている。そして前述した対物レンズ系10からポリゴンミラー11を介して受光される前記ベルトコンベア1上からの反射光は、第1のダイクロイックミラー31を介して2つの光路に分光(分波)され、分光された一方の反射光は更に第2のダイクロイックミラー32を介して2つの光路に分光(分波)されることで計3個の光路に分光(分波)されるようになっている。そしてこれらの第1および第2のダイクロイックミラー31,32を介して分光(分波)された反射光は、集光レンズ系30(30a,30b,30c)をそれぞれ介して3個の光検出素子20(20a,20b,20c)により導かれて受光されるようになっている。   In this embodiment, three light detection elements 20 are provided, and three sets of imaging lens systems 30 corresponding to each of the three light detection elements 20 (20a, 20b, 20c). (30a, 30b, 30c) are provided. Then, the reflected light from the belt conveyor 1 received from the objective lens system 10 via the polygon mirror 11 is split (divided) into two optical paths via the first dichroic mirror 31 and split. The other reflected light is further split (demultiplexed) into two optical paths via the second dichroic mirror 32, so that it is split (demultiplexed) into a total of three optical paths. Then, the reflected light separated (demultiplexed) through the first and second dichroic mirrors 31 and 32 is converted into three photodetectors through the condenser lens system 30 (30a, 30b, and 30c), respectively. 20 (20a, 20b, 20c) is guided and received.

またこの図1に示す例においては、ポリゴンミラー11から導かれる反射光を全反射ミラー33を介して第1のダイクロイックミラー31に導き、また第1および第2のダイクロイックミラー31,32にて分光(分波)された全反射ミラー34,35を介して反射光を光検出素子20a,20cにそれぞれ導くようにその光学系を設定している。しかし全反射ミラー33,34,35を用いてその光軸を折り返して設定した光学系は、前述した光検出素子20(20a,20b,20c)や結像レンズ系30(30a,30b,30c)の配置(レイアウト)を考慮してそのコンパクト化を図ったものであり、必ずしも必要なものではない。   In the example shown in FIG. 1, the reflected light guided from the polygon mirror 11 is guided to the first dichroic mirror 31 via the total reflection mirror 33, and the first and second dichroic mirrors 31, 32 are used for the spectroscopic analysis. The optical system is set so that the reflected light is guided to the photodetecting elements 20a and 20c through the (demultiplexed) total reflection mirrors 34 and 35, respectively. However, the optical system set by turning back the optical axis using the total reflection mirrors 33, 34, and 35 is the above-described photodetector 20 (20a, 20b, 20c) and imaging lens system 30 (30a, 30b, 30c). The arrangement (layout) is taken into consideration in order to reduce the size, and is not always necessary.

換言すれば上述した光学系は、前記各結像レンズ系30(30a,30b,30c)がそれぞれ形成する光路、つまり前記各光検出素子20a,20b,20cの視野領域を2つのダイクロイックミラー31,32を順に介してその光軸を一致させた1本の光路(視野領域)に合成するものである。従っていずれの光検出素子20a,20b,20cにおいても前記ベルトコンベア1上の同一領域を局部的に視野するようになっている。そしてポリゴンミラー11の回転によりその視野領域をベルトコンベア1の幅方向の全域に亘って偏向走査することで、その局部的な視野領域からの反射光を前記各光検出素子20a,20b,20cのそれぞれにおいて受光するものとなっている。   In other words, in the optical system described above, the optical paths formed by the respective imaging lens systems 30 (30a, 30b, 30c), that is, the visual field regions of the respective light detection elements 20a, 20b, 20c, are divided into two dichroic mirrors 31, This is combined into a single optical path (viewing field region) whose optical axes coincide with each other through 32. Therefore, in any of the light detection elements 20a, 20b, and 20c, the same area on the belt conveyor 1 is locally viewed. The field of view is deflected and scanned over the entire width of the belt conveyor 1 by the rotation of the polygon mirror 11, so that the reflected light from the local field of view is reflected by each of the light detection elements 20a, 20b, 20c. Each receives light.

さて上述した如く設けられた3個の光検出素子20a,20b,20cは、例えば図2に示すように互いに異なる特定波長、例えば800nm、1450nm、および1950nmの各波長帯域の反射光をそれぞれ受光してその強度を検出するように構成される。このような波長選択性は、例えば前述したダイクロイックミラー31,32による光透過・反射特性によって、更には各光路中に介挿された光学フィルタ21a,21b,21cによって付与されるものである。   Now, the three photodetectors 20a, 20b, and 20c provided as described above receive reflected light of specific wavelengths different from each other, for example, 800 nm, 1450 nm, and 1950 nm, as shown in FIG. Configured to detect its intensity. Such wavelength selectivity is given by, for example, the light transmission / reflection characteristics of the dichroic mirrors 31 and 32 described above, and further by the optical filters 21a, 21b, and 21c inserted in the respective optical paths.

ちなみに図2に示す特性は、2種類の原料と、この原料中に混入する異物の近赤外光線の波長に対する吸光率(反射光量の指標)の違いを対比して示したものである。この図2に示す特性からは、800nm帯の近赤外線光に対する原料の吸光率に比較して異物の吸光率が高く、また1450nm帯および1950nm帯の近赤外線光に対する原料の吸光率に比較して異物の吸光率が低いと言う性質があることが示される。このような近赤外線光の波長に対する原料と異物との吸光率(反射率)の違いを利用して異物検査を行うべく、この異物検査装置においては前述した3個の光検出素子20a,20b,20cを用いて上述した各特定波長での反射光の強度をそれぞれ検出し、その検出結果に基づいて異物判定を行うものとなっている。   Incidentally, the characteristics shown in FIG. 2 are shown by comparing the difference in absorbance (index of reflected light amount) with respect to the wavelength of near-infrared rays of two kinds of raw materials and foreign matters mixed in the raw materials. From the characteristics shown in FIG. 2, the absorbance of foreign materials is higher than that of raw materials for near-infrared light in the 800 nm band, and compared to the absorbance of raw materials for near-infrared light in the 1450 nm band and 1950 nm band. It shows that there is a property that the extinction coefficient of the foreign matter is low. In order to inspect the foreign matter using the difference in the light absorbency (reflectance) between the raw material and the foreign matter with respect to the wavelength of the near infrared light, in this foreign matter inspection apparatus, the above-described three photodetectors 20a, 20b, The intensity of the reflected light at each of the specific wavelengths described above is detected using 20c, and foreign matter determination is performed based on the detection result.

具体的にはマイクロプロセッサ等により実現される信号処理部40においては、前記各光検出素子20a,20b,20cの出力から反射光中の特定波長での反射光強度をそれぞれ検出し(強度検出手段41)、その検出結果を相互に比較判定することで前記光検出素子20a,20b,20cが局部的に視野したベルトコンベア1上の領域からの反射光が原料によるものであるか、或いは原料中に混入した異物によるものであるかを判定している(異物判定手段42)。そしてその反射光が異物によるものであると判定された場合には、前記ポリゴンミラー11の回転角度に応じて、前記ベルトコンベア1上を光学的に偏向走査している視野領域の位置、つまりベルトコンベア1の幅方向の位置を特定し(位置検出手段43)、当該位置に存在する異物を排除するべく排除指令を発するものとなっている。   Specifically, in the signal processing unit 40 realized by a microprocessor or the like, the reflected light intensity at a specific wavelength in the reflected light is detected from the output of each of the light detection elements 20a, 20b, and 20c (intensity detection means). 41) The reflected light from the region on the belt conveyor 1 viewed locally by the light detection elements 20a, 20b, and 20c is due to the raw material by comparing the detection results with each other, or in the raw material It is determined whether it is due to foreign matter mixed in (foreign matter determination means 42). If it is determined that the reflected light is due to foreign matter, the position of the field of view that is optically deflected and scanned on the belt conveyor 1 according to the rotation angle of the polygon mirror 11, that is, the belt The position in the width direction of the conveyor 1 is specified (position detection means 43), and an exclusion command is issued to exclude foreign substances present at the position.

この指令に基づく異物の排除は、例えばベルトコンベア1による検査対象物(原料および混入した異物)の搬送に同期して、該ベルトコンベア1の端部から払い出される検査対象物に対して前記検出位置で特定される部位に向けて局部的に圧縮空気を吹き付けることで、上述した如く検出された異物とその周囲に存在する若干の原料とをその搬送経路から排除することによって行われる。尚、圧縮空気の吹きつけによる異物の排除(吹き飛ばし)については、例えばベルトコンベア1の端部に、その幅方向に沿って所定のピッチで複数の圧縮空気の吹出しノズルを配列しておき、前述した如く検出した位置情報に応じて上記吹出しノズルから択一的に圧縮空気を吹き付けるようにすれば良い。   The removal of foreign matter based on this command is performed, for example, by detecting the detection position with respect to the inspection object dispensed from the end of the belt conveyor 1 in synchronization with the conveyance of the inspection object (raw material and mixed foreign matter) by the belt conveyor 1. This is done by blowing the compressed air locally toward the part specified in (1), thereby removing foreign substances detected as described above and some raw materials existing around the foreign substance from the conveying path. Regarding the removal (blowing off) of foreign matters by blowing compressed air, for example, a plurality of compressed air blowing nozzles are arranged at a predetermined pitch along the width direction at the end of the belt conveyor 1, for example. The compressed air may be alternatively blown from the blowing nozzle according to the position information detected as described above.

かくして上述した如く構成された異物検査装置によれば、ベルトコンベア1上に載置された搬送される検査対象物(原料および原料に混入した異物)に対して直管型赤外線ランプ2を用いて、上記ベルトコンベア1の幅方向の全域に亘って一様に近赤外線光を照射しているだけなので、その照明光源の構成が非常に簡単である。特にレーザ光を用いてベルトコンベア1上を照明するものとは異なり、大掛かりな装置や光学系を用いることなく検査対象物に簡易に近赤外線光を照射することができる。しかも近赤外線光の照射部位(領域)を走査することがないので、その照射系の構成を大幅に簡素化することができる。   Thus, according to the foreign substance inspection apparatus configured as described above, the straight tube type infrared lamp 2 is used for the inspection object (the raw material and the foreign substance mixed in the raw material) carried on the belt conveyor 1. Since the near-infrared light is only uniformly irradiated over the entire width direction of the belt conveyor 1, the construction of the illumination light source is very simple. In particular, unlike the case of illuminating the belt conveyor 1 using laser light, the near-infrared light can be easily irradiated on the inspection object without using a large-scale apparatus or optical system. In addition, since the irradiation site (region) of near infrared light is not scanned, the configuration of the irradiation system can be greatly simplified.

ちなみにレーザ光を偏向走査して検査対象物に上記レーザ光を照射する場合には、その偏向走査に伴う光路長の変化に起因して、例えばベルトコンベア1の中央部とその両端縁側とにおいて照射光量に差異が生じるので、これを補正することが必要となる。しかし本装置によれば照射光を走査することがなく、前述したように直管型の赤外線ランプ1を用いてベルトコンベア1上をその幅方向の全域に亘って一様に照射するだけなので、照射光量のムラが生じることがない等の利点がある。   Incidentally, when the laser beam is deflected and scanned to irradiate the inspection target with the laser beam, the irradiation is performed, for example, at the central portion of the belt conveyor 1 and its both end edges due to the change in the optical path length accompanying the deflection scanning. Since there is a difference in the amount of light, it is necessary to correct this. However, according to the present apparatus, the irradiation light is not scanned, and as described above, the straight line type infrared lamp 1 is used to irradiate the belt conveyor 1 uniformly over the entire width direction. There are advantages such as non-uniformity in the amount of irradiation light.

そして近赤外線光を照射した検査対象物からの反射光を検出するに際しては、光検出素子20による局部的な視野領域を前記ベルトコンベア1の幅方向に光学的に偏向走査するだけであり、その光学系の簡素化を図ることができる。また前述したように上記視野領域の偏向走査に連動させて近赤外線光の照射領域を偏向走査する必要もないので、例えば従来のように近赤外線光の照射光学系と、反射光の検出光学系とを1つの光学系として実現する必要がない。また上記照射光学系と反射光の検出光学系との光軸を精度良く合わせる等の調整も不要であり、更には照射光学系と反射光の検出光学系とを分離する為の工夫も必要がない。   When detecting the reflected light from the inspection object irradiated with near-infrared light, it is only necessary to optically deflect and scan the local visual field region by the light detection element 20 in the width direction of the belt conveyor 1, The optical system can be simplified. In addition, as described above, there is no need to deflect and scan the near-infrared light irradiation area in conjunction with the deflection scanning of the visual field area. For example, the near-infrared light irradiation optical system and the reflected light detection optical system are conventionally used. Need not be realized as one optical system. In addition, it is not necessary to adjust the optical axes of the irradiation optical system and the reflected light detection optical system with high accuracy, and further, a device for separating the irradiation optical system and the reflected light detection optical system is also required. Absent.

換言すれば照射光学系と反射光検出光学系とをまとめて1つの光学系を構築した場合には、照射光学系からの光が反射光検出光学系に回り込むことがないように、例えばその光路中に光サーキュレータやハーフミラー等の光学素子を介挿することが必要となる。しかし上述した如く構成された異物検出装置によれば、近赤外線光の照射系とは独立して、単に反射光を検出する為の光学系を構成するだけで良いので、その光学系を安価に、しかもシンプルに構築することができる。またその光学系の調整やメンテナンスの容易化を図ることができる等の効果が奏せられる。   In other words, when the irradiation optical system and the reflected light detection optical system are combined to construct one optical system, for example, the optical path is set so that the light from the irradiation optical system does not enter the reflected light detection optical system. It is necessary to insert an optical element such as an optical circulator or a half mirror inside. However, according to the foreign object detection apparatus configured as described above, it is only necessary to configure an optical system for detecting reflected light independently of the near-infrared light irradiation system. And it can be built simply. In addition, effects such as adjustment and maintenance of the optical system can be achieved.

尚、本発明は上述した実施形態に限定されるものではない。例えば直管型の赤外線ランプ2については、対物レンズ系10を間にしてベルトコンベア1の上流側と下流側とにそれぞれ設け、ポリゴンミラー11を介して偏向走査される光検出素子20の視野領域を前記ベルトコンベア1の上流側および下流側の上方位置からそれぞれ近赤外線光を照射するようにしても良い。また前記対物レンズ系10については、光検出素子20が視野する前記ベルトコンベア1上における領域の大きさが直径1mm程度となるように絞り込むようにその光学系を設定しておけば、その検出分解能を十分に高めることができる。   The present invention is not limited to the embodiment described above. For example, the straight tube type infrared lamp 2 is provided on the upstream side and the downstream side of the belt conveyor 1 with the objective lens system 10 therebetween, and the field area of the light detection element 20 that is deflected and scanned via the polygon mirror 11. May be irradiated with near-infrared light from the upper positions on the upstream side and the downstream side of the belt conveyor 1, respectively. Further, for the objective lens system 10, if the optical system is set so that the size of the area on the belt conveyor 1 where the light detection element 20 views is reduced to about 1 mm in diameter, the detection resolution can be obtained. Can be increased sufficiently.

更には赤外線ランプ2として近赤外線光だけを発するものを用いれば、前述した熱源カットフィルタ3を省略することも可能である。また光検出素子20を用いて検出する反射光の波長については、検出対象物の特性に応じて定めれば良いものであり、その波長に応じた検出特性を有する光検出素子20を選定し、光学フィルタを用いて特定波長を選択するようにすれば良い。また前述したダイクロイックミラー31,32に代えてハーフミラーを用いて検査対象物からの反射光を分光するようにしても良い。但し、この場合には、分光による光量低減が生じることが否めないので、信号処理部40において受光量補正する等の対策が必要となる。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Furthermore, if the infrared lamp 2 that emits only near-infrared light is used, the heat source cut filter 3 described above can be omitted. Further, the wavelength of the reflected light detected using the light detection element 20 may be determined according to the characteristics of the detection target, and the light detection element 20 having the detection characteristics corresponding to the wavelength is selected. A specific wavelength may be selected using an optical filter. Further, instead of the dichroic mirrors 31 and 32 described above, a half mirror may be used to split the reflected light from the inspection object. However, in this case, since it is unavoidable that the light amount is reduced due to spectroscopy, it is necessary to take measures such as correcting the amount of received light in the signal processing unit 40. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係る異物検査装置の要部概略構成図。The principal part schematic block diagram of the foreign material inspection apparatus which concerns on one Embodiment of this invention. 検査対象物に含まれる原料と異物の照射光の波長に対する吸光率の違いを対比して示す図。The figure which contrasts and shows the difference of the light absorbency with respect to the wavelength of the irradiation light of the raw material contained in a test target object and a foreign material.

符号の説明Explanation of symbols

1 ベルトコンベア
2 直管型赤外線ランプ(赤外線光源)
3 熱源カットフィルタ
10 対物レンズ系
11 ポリゴンミラー(偏向機構)
20 光検出素子
21 光学フィルタ
30 結像レンズ系
31,32 ダイクロイックミラー
40 信号処理部
1 Belt conveyor 2 Straight tube type infrared lamp (infrared light source)
3 Heat source cut filter 10 Objective lens system 11 Polygon mirror (deflection mechanism)
DESCRIPTION OF SYMBOLS 20 Photodetector 21 Optical filter 30 Imaging lens system 31,32 Dichroic mirror 40 Signal processing part

Claims (3)

コンベア上に載置されて搬送される原料中に混入している異物を光学的に検出する異物検査装置であって、
特定波長を含む近赤外線光を前記コンベアの幅方向全域に亘って一様に照射する赤外線光源と、
前記コンベア上の前記近赤外線光の照射領域を該コンベアの幅方向に光学的に走査する偏向機構を備えて前記近赤外線光の照射領域を局部的に視野する光学系と、
この光学系を介して前記コンベア上に載置された原料および/または該原料中に混入している異物による反射光の特定波長の強度を検出する光検出素子と
を具備したことを特徴とする異物検査装置。
A foreign matter inspection apparatus for optically detecting foreign matter mixed in a raw material placed and conveyed on a conveyor;
An infrared light source that uniformly irradiates near-infrared light including a specific wavelength over the entire width direction of the conveyor;
An optical system that locally includes a deflection mechanism that optically scans the irradiation area of the near infrared light on the conveyor in the width direction of the conveyor; and
And a light detection element for detecting the intensity of a specific wavelength of the reflected light caused by the raw material placed on the conveyor and / or the foreign matter mixed in the raw material via the optical system. Foreign matter inspection device.
前記光学系は、前記コンベアに対峙させて設けられて視野角を制限する対物レンズ系および前記光検出素子への像焦点を調整する結像レンズ系を備えて構築されるものであって、
前記偏向機構は、前記対物レンズ系と結像レンズ系との間に介挿されて前記対物レンズ系が形成した前記光検出素子の視野の向き偏向する可動ミラーからなる請求項1に記載の異物検査装置。
The optical system is constructed to include an objective lens system that is provided opposite to the conveyor to limit a viewing angle and an imaging lens system that adjusts an image focus on the light detection element,
2. The foreign object according to claim 1, wherein the deflection mechanism includes a movable mirror that is interposed between the objective lens system and the imaging lens system and deflects the field of view of the light detection element formed by the objective lens system. Inspection device.
前記光学系は、前記コンベア上を視野して得られる反射光を分光する分光器を備え、
前記光検出素子は、上記分光器により分光された複数の光路にそれぞれ設けられて、互いに異なる複数の特定波長の反射光強度を個別に検出することを特徴とする請求項1に記載の異物検査装置。
The optical system includes a spectroscope that splits reflected light obtained by viewing the conveyor.
The foreign object inspection according to claim 1, wherein the light detection element is provided in each of a plurality of optical paths separated by the spectroscope and individually detects reflected light intensities having a plurality of different specific wavelengths. apparatus.
JP2004143667A 2004-05-13 2004-05-13 Foreign matter inspection device Pending JP2005326220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143667A JP2005326220A (en) 2004-05-13 2004-05-13 Foreign matter inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143667A JP2005326220A (en) 2004-05-13 2004-05-13 Foreign matter inspection device

Publications (1)

Publication Number Publication Date
JP2005326220A true JP2005326220A (en) 2005-11-24

Family

ID=35472697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143667A Pending JP2005326220A (en) 2004-05-13 2004-05-13 Foreign matter inspection device

Country Status (1)

Country Link
JP (1) JP2005326220A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178407A (en) * 2005-12-28 2007-07-12 Yamatake Corp Foreign matter intrusion inspection method for inspection object, and device used therefor
JP2008209211A (en) * 2007-02-26 2008-09-11 Hitachi High-Tech Control Systems Corp Foreign matter inspection apparatus and method
CN102608119A (en) * 2012-02-28 2012-07-25 澳门理工学院 Device and method for detecting moving foreign matters in medicinal liquid in pipeline
JP2013501561A (en) * 2009-08-10 2013-01-17 オプトス ピーエルシー Improvements in or related to laser scanning systems
CN103206922A (en) * 2013-03-19 2013-07-17 中国科学院光电技术研究所 Rapid measuring device of width of tobacco shred
JP2016014673A (en) * 2008-12-23 2016-01-28 ビューラー ソーテックス リミテッドBuhler Sortex Ltd Sorting method and apparatus
US9978140B2 (en) 2016-04-26 2018-05-22 Optos Plc Retinal image processing
US10010247B2 (en) 2016-04-26 2018-07-03 Optos Plc Retinal image processing
JP2019133764A (en) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 Inspection method of laminate for all-solid battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178407A (en) * 2005-12-28 2007-07-12 Yamatake Corp Foreign matter intrusion inspection method for inspection object, and device used therefor
JP2008209211A (en) * 2007-02-26 2008-09-11 Hitachi High-Tech Control Systems Corp Foreign matter inspection apparatus and method
JP2016014673A (en) * 2008-12-23 2016-01-28 ビューラー ソーテックス リミテッドBuhler Sortex Ltd Sorting method and apparatus
JP2013501561A (en) * 2009-08-10 2013-01-17 オプトス ピーエルシー Improvements in or related to laser scanning systems
US9271644B2 (en) 2009-08-10 2016-03-01 Optos Plc Laser scanning systems
US9788717B2 (en) 2009-08-10 2017-10-17 Optos Plc Laser scanning system and method
US10178951B2 (en) 2009-08-10 2019-01-15 Optos Plc Laser scanning system and method
CN102608119A (en) * 2012-02-28 2012-07-25 澳门理工学院 Device and method for detecting moving foreign matters in medicinal liquid in pipeline
CN103206922A (en) * 2013-03-19 2013-07-17 中国科学院光电技术研究所 Rapid measuring device of width of tobacco shred
US9978140B2 (en) 2016-04-26 2018-05-22 Optos Plc Retinal image processing
US10010247B2 (en) 2016-04-26 2018-07-03 Optos Plc Retinal image processing
JP2019133764A (en) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 Inspection method of laminate for all-solid battery

Similar Documents

Publication Publication Date Title
EP3066456B1 (en) Inspection apparatus
KR20170063938A (en) Tdi sensor in a darkfield system
JP5860882B2 (en) Apparatus and method for inspecting an object
CN108778532B (en) Inspection machine and inspection method for inspecting a logistics travel object
US6832843B2 (en) Illumination for inspecting surfaces of articles
JP5489186B2 (en) Surface inspection device
WO2000074504A1 (en) Apparatus for detecting foreign matter in raw material and method of detecting the same
JP6209536B2 (en) Apparatus, system and method for detecting substances
JP2005326220A (en) Foreign matter inspection device
US20150177155A1 (en) Optimized Spatial Resolution for a Spectroscopic Sensor
JP2008203416A (en) Laser microscope
JP2007205991A (en) Light source device and spectrophotometry system
JP2006177890A (en) Foreign substance inspection device
RU2521215C1 (en) Fibre-optic laser-based sorting machine
WO2022004232A1 (en) Foreign substance/defect inspection device, image generation device in foreign substance/defect inspection, and foreign substance/defect inspection method
JP2011134687A (en) Lighting system
JP2005017127A (en) Interferometer and shape measuring system
JP7199945B2 (en) optical measuring device
EP4102283B1 (en) Confocal scanner, confocal scanner system, and confocal microscope system
JP2022155138A (en) identification device
JP2830430B2 (en) Foreign matter inspection device
JPH11183151A (en) Transparent sheet inspecting equipment
JPH08240765A (en) Automatic focus detector
US20100201973A1 (en) Apparatus for characterizing a surface structure
JPH04297851A (en) Particle size distribution measuring apparatus