JP2005326128A - Heat exchanger using ground heat and air conditioner - Google Patents

Heat exchanger using ground heat and air conditioner Download PDF

Info

Publication number
JP2005326128A
JP2005326128A JP2004146954A JP2004146954A JP2005326128A JP 2005326128 A JP2005326128 A JP 2005326128A JP 2004146954 A JP2004146954 A JP 2004146954A JP 2004146954 A JP2004146954 A JP 2004146954A JP 2005326128 A JP2005326128 A JP 2005326128A
Authority
JP
Japan
Prior art keywords
heat
air
heat exchanger
ground
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004146954A
Other languages
Japanese (ja)
Inventor
Yasusato Kobayashi
庸悟 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004146954A priority Critical patent/JP2005326128A/en
Publication of JP2005326128A publication Critical patent/JP2005326128A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F5/005Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using energy from the ground by air circulation, e.g. "Canadian well"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger using ground heat, capable of efficiently extracting ground heat, and an air conditioner using it. <P>SOLUTION: In this heat exchanger using ground heat, air is distributed in an outer cylindrical tube 20 buried in a ground 14, whereby heat exchange is performed between the heat of the air and the ground heat. A film 22 containing a minute carbon material such as carbon nanotube is formed in at least a part of the inner wall surface of the outer cylindrical tube 20. An inner cylindrical tube 30 is inserted into the outer cylindrical tube 20. According to this, the heat exchange can be efficiently performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地熱を利用する熱交換器及び冷暖房装置に関する。より詳細には、地中に埋設された筒体の内部に流体を流通させることで、該流体に存する熱と地熱との間で熱交換をする地熱を利用する熱交換器、及びそれを利用した冷暖房装置に関する。   The present invention relates to a heat exchanger and an air conditioner using geothermal heat. More specifically, a heat exchanger that uses geothermal heat to exchange heat between the heat existing in the fluid and the geothermal heat by circulating the fluid inside the cylinder embedded in the ground, and using the heat exchanger It relates to the air conditioning apparatus.

エネルギーの消費を抑制する技術開発が重要なテーマとなっている。一つの解決策としては、地熱を利用することにある。所定深さ以上の地中では、その地温が年間を通じて15℃前後の一定温度となっている。また、地下の容積は莫大なものがあり、その土砂は極めて大きな蓄熱槽となっている。
この一定温度で且つ大容量の天然の熱源を利用すれば、夏は冷房に、冬は暖房におけるエネルギー消費量を削減することが可能である。
Technology development to reduce energy consumption is an important theme. One solution is to use geothermal heat. In the ground above a predetermined depth, the ground temperature is a constant temperature around 15 ° C throughout the year. In addition, the underground volume is enormous, and the earth and sand are extremely large heat storage tanks.
By using a natural heat source having a constant temperature and a large capacity, it is possible to reduce energy consumption in cooling in the summer and heating in the winter.

従来、地熱を利用する方法としては、地中と室内との間を流通する管路を設け、地下水を流通させる方法や、空気を流通させる方法がある。これらの方法では、熱媒体として流体を利用している。
また、地下水を利用した上で、空気を熱媒体として利用する方法も提案されている。(特許文献1参照)。
特開平5−223356号公報(第1頁)
Conventionally, as a method of using geothermal heat, there are a method of providing a pipeline that circulates between the underground and the room, and a method of circulating groundwater and a method of circulating air. In these methods, a fluid is used as a heat medium.
A method of using air as a heat medium after using groundwater has also been proposed. (See Patent Document 1).
JP-A-5-223356 (first page)

地熱を利用する熱交換器に関して解決しようとする問題点は、特に空気を熱媒体とする場合は、空気の熱伝導率が低いため、地熱を効率良く取り出すことが難しい点にある。その結果、所定の熱量を得るために、装置が大型化したり、複雑な形態となっていた。
そこで本発明の目的は、地熱を効率良く取り出すことができる地熱を利用する熱交換器、及びそれを利用した冷暖房装置を提供することにある。
The problem to be solved with respect to a heat exchanger that uses geothermal heat is that, particularly when air is used as a heat medium, it is difficult to efficiently extract geothermal heat because the thermal conductivity of air is low. As a result, in order to obtain a predetermined amount of heat, the apparatus has become large or complicated.
Then, the objective of this invention is providing the heat exchanger using the geothermal which can take out geothermal efficiently, and the air conditioning apparatus using the same.

本発明は、上記目的を達成するために次の構成を備える。
本発明にかかる地熱を利用する熱交換器の一形態によれば、地中に埋設された筒体の内部に流体を流通させることで、該流体に存する熱と地熱との間で熱交換をする地熱を利用する熱交換器において、前記筒体の内壁面の少なくとも一部にカーボンナノチューブ等の微細カーボン材を含有する被膜が形成されていることを特徴とする。
The present invention has the following configuration in order to achieve the above object.
According to one aspect of the heat exchanger using geothermal heat according to the present invention, heat is exchanged between the heat existing in the fluid and the geothermal heat by circulating the fluid through the cylindrical body embedded in the ground. In the heat exchanger using geothermal heat, a coating containing a fine carbon material such as carbon nanotube is formed on at least a part of the inner wall surface of the cylindrical body.

また、本発明にかかる地熱を利用する熱交換器の一形態によれば、前記筒体が地中に実質的に垂直に立てられた外筒管として設けられ、該外筒管の内部に該管内の下部と地表上との間で流体を流通させるための内筒管が挿入されていることを特徴とすることができる。   Further, according to one aspect of the heat exchanger using geothermal heat according to the present invention, the cylindrical body is provided as an outer cylindrical tube standing substantially vertically in the ground, and the inner cylindrical tube includes the outer cylindrical tube. An inner tube for flowing fluid between the lower part in the tube and the ground surface is inserted.

また、本発明にかかる地熱を利用する熱交換器の一形態によれば、前記外筒管が金属材で設けられ、前記内筒管が樹脂材で設けられていることを特徴とすることができる。
また、本発明にかかる地熱を利用する熱交換器の一形態によれば、前記流体が空気であり、該空気を、外筒管の内壁面と内筒管の外壁面との間と、内筒管の内部において流通させる送風手段を具備することを特徴とすることができる。
Moreover, according to one form of the heat exchanger using the geothermal heat concerning this invention, the said outer cylinder pipe is provided with the metal material, The said inner cylinder pipe is provided with the resin material, It is characterized by the above-mentioned. it can.
According to one aspect of the heat exchanger using geothermal heat according to the present invention, the fluid is air, and the air is passed between the inner wall surface of the outer tube and the outer wall surface of the inner tube, It can be characterized by comprising air blowing means that circulates inside the tube.

また、本発明にかかる冷暖房装置の一形態によれば、上記の地熱を利用する熱交換器を用いて地熱を室内へ導入することで冷房又は暖房をすることを特徴とすることができる。   Moreover, according to one form of the air-conditioning apparatus concerning this invention, it can cool or heat by introducing geothermal heat into a room | chamber interior using the heat exchanger using said geothermal heat.

本発明の地熱を利用する熱交換器によれば、筒体の内壁面に形成されたカーボンナノチューブ等の微細カーボン材を含有する被膜によって極めて効率的に熱放射、或いは吸熱がなされ、熱交換の効率を飛躍的に高めることができる。
従って、地熱を利用して室内を好適に冷房することや、暖房することが可能となる。装置が大型化することや、複雑化することなく、安価に且つ好適に設けることができる。
According to the heat exchanger using the geothermal heat of the present invention, heat radiation or heat absorption is made extremely efficiently by the coating containing a fine carbon material such as carbon nanotubes formed on the inner wall surface of the cylindrical body. Efficiency can be improved dramatically.
Therefore, it becomes possible to cool or heat the room suitably using geothermal heat. The apparatus can be provided inexpensively and suitably without increasing its size and complexity.

以下、本発明にかかる地熱を利用する熱交換器及び冷暖房装置に係る最良の形態の一例を添付図面(図1)と共に詳細に説明する。図1は発明にかかる地熱を利用する熱交換器10及び冷暖房装置12について模式的に示す断面図である。
10は熱交換器であり、地中14に埋設された筒体(外筒管20)の内部に流体を流通させることで、その流体に存する熱と地熱との間で熱交換をする。図1では、空気を流通させる形態を示してある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an example of the best mode of a heat exchanger and a cooling / heating device using geothermal heat according to the present invention will be described in detail with reference to the accompanying drawings (FIG. 1). FIG. 1 is a cross-sectional view schematically showing a heat exchanger 10 and an air conditioner 12 using geothermal heat according to the invention.
A heat exchanger 10 circulates fluid through a cylinder (outer tube 20) embedded in the underground 14 to exchange heat between the heat existing in the fluid and the geothermal heat. In FIG. 1, the form which distribute | circulates air is shown.

22はカーボンナノチューブ等の微細カーボン材を含有する被膜(以下、単に「被膜22」ともいう)であり、外筒管20の内壁面の少なくとも一部に形成されている。本実施の形態では内壁面の全面に前記被膜22が形成されている。内底面25にも形成されている。
被膜22は熱伝導性と放熱性が高いため、一部に形成されるだけでも効果がある。外筒管20の下部の位置に相当する地中の深い部分では、所定の深さ以上になると、その地温が年中一定となっている。本発明では、その層の地熱を利用することを目的としており、被膜22を一部に形成する場合は、外筒管20の下部の内壁面が優先されるのは勿論のことである。
また、被膜22が全面に形成されれば、高い熱伝導性によって、外筒管20下部の熱が上部へ好適に伝導伝熱でき、実質的に広い表面積での熱交換が可能となる。この伝導伝熱を好適に利用するためには被膜22が厚い方がよい。但し、カーボンナノチューブ等の微細カーボン材は高価であり、また、表面積に依存する放熱性能には限界がある。従って、熱伝導性と放熱性との関係で最適な被膜22の厚さを設定することが可能である。
Reference numeral 22 denotes a coating containing a fine carbon material such as a carbon nanotube (hereinafter also simply referred to as “coating 22”), and is formed on at least a part of the inner wall surface of the outer tube 20. In the present embodiment, the coating 22 is formed on the entire inner wall surface. An inner bottom surface 25 is also formed.
Since the coating 22 has high thermal conductivity and heat dissipation, it is effective even if it is formed in a part. In a deep part of the underground corresponding to the position of the lower part of the outer tube 20, the ground temperature is constant throughout the year when it reaches a predetermined depth. In the present invention, the purpose is to use the geothermal heat of that layer, and when the coating 22 is formed in part, it is a matter of course that the lower inner wall surface of the outer tube 20 is given priority.
Further, if the coating 22 is formed on the entire surface, the heat in the lower part of the outer tube 20 can be suitably conducted to the upper part due to high thermal conductivity, and heat exchange with a substantially large surface area becomes possible. In order to utilize this conduction heat transfer suitably, the film 22 should be thick. However, fine carbon materials such as carbon nanotubes are expensive, and there is a limit to the heat dissipation performance depending on the surface area. Therefore, it is possible to set the optimum thickness of the coating film 22 in relation to the thermal conductivity and the heat dissipation.

ここで、カーボンナノチューブ等の微細カーボン材とは、総称としての「カーボンナノチューブ」の他、単層カーボンナノチューブ、多層カーボンナノチューブ、エンドーファイバー、カーボンナノホーン、カーボンマイクロコイル、及びフラーレン等のことである。この微細カーボン材は、結晶性カーボン材とも言えるし、ナノカーボン材と呼ばれることもある。これらは、熱伝導率が極めて高いなどの優れた物性を持つ微細材料として、ナノテクノロジーで生産が可能となった材料である。なお、現時点では、その性能及びコスト等の観点からもカーボンナノチューブを好適に利用することができる。   Here, the fine carbon material such as carbon nanotube is a single-walled carbon nanotube, a multi-walled carbon nanotube, an end fiber, a carbon nanohorn, a carbon microcoil, a fullerene and the like in addition to “carbon nanotube” as a generic name. This fine carbon material can be said to be a crystalline carbon material, and is sometimes called a nanocarbon material. These are materials that can be produced by nanotechnology as fine materials with excellent physical properties such as extremely high thermal conductivity. At the present time, carbon nanotubes can be suitably used from the viewpoints of performance and cost.

また、被膜とは、材料の表面に形成されるコーティング層のことであり、例えば塗料が塗布されて形成される塗膜のことである。本発明に係る被膜22は、周知の塗料に、カーボンナノチューブを適宜混合分散させ、それを金属材の表面に塗布することで形成することができる。これにより、カーボンナノチューブによる層を、金属材の表面に、均一に形成できる。カーボンナノチューブ等の微細カーボン材は、被膜22を形成する塗料の機能性添加剤として好適に作用する。
なお、その塗料について耐熱性や耐化学薬品性等が要求される場合には、それに対応する機能を有する周知の塗料、例えば有機溶剤を用いるものや、シリコーンゴム(シリコーン樹脂)系の塗布材を用いることができる。これらの塗布材にあっては、常温乾燥をするものもあるし、焼付けてその被膜の密着性、硬度等を向上させるなど、周知の技術を適宜応用すればよい。
Moreover, a coating film is a coating layer formed on the surface of a material, for example, a coating film formed by applying a paint. The coating film 22 according to the present invention can be formed by appropriately mixing and dispersing carbon nanotubes in a well-known paint and applying it to the surface of a metal material. Thereby, the layer by a carbon nanotube can be uniformly formed in the surface of a metal material. The fine carbon material such as carbon nanotubes preferably acts as a functional additive for the paint forming the coating 22.
When heat resistance, chemical resistance, etc. are required for the paint, a well-known paint having a function corresponding thereto, such as one using an organic solvent, or a silicone rubber (silicone resin) -based coating material is used. Can be used. Some of these coating materials may be dried at room temperature, or may be appropriately applied with known techniques such as baking to improve the adhesion and hardness of the coating.

また、カーボンナノチューブの塗料に対する混合比率は、カーボンナノチューブの量が多いほど性能を向上できると考えられるが、その分散性等を考慮して適宜設定すれば良い。
なお、カーボンナノチューブを重量比で10%混合した塗料を塗布して実験したところ、極めて高い放熱性能(冷却性能)を得ることができた。
これは、カーボンナノチューブの熱放射性が極めて高いことにも起因するものと考えられる。熱の射出という現象は、熱も一種の波動であるため、波動(一種の電磁波)の放散であると考えられる。つまり、種々の波長の放射であり、カーボンナノチューブは、一定以上厚く重なりあって存在することや、露出する必要はないと考えられる。カーボンナノチューブが、表面を均一に被覆する状態であれば良い。射出量は表面積に依存するからである。また、塗料の中に存在する形態でも、波動の射出が妨げられる要素は小さいものと考えられる。なお、透明性の高い塗料を用いることが適していると考えられる。
また、同様にカーボンナノチューブは高い吸熱性能を有する。
Further, the mixing ratio of the carbon nanotubes to the coating is considered to improve the performance as the amount of carbon nanotubes increases, but may be set as appropriate in consideration of the dispersibility and the like.
In addition, when an experiment was performed by applying a paint in which carbon nanotubes were mixed at a weight ratio of 10%, an extremely high heat radiation performance (cooling performance) could be obtained.
This is thought to be due to the extremely high thermal radiation of the carbon nanotubes. The phenomenon of heat emission is considered to be the dissipation of waves (a kind of electromagnetic wave) because heat is also a kind of wave. That is, it is radiation of various wavelengths, and it is considered that the carbon nanotubes do not need to be exposed or overlapped with a certain thickness. Any carbon nanotube may be used as long as the surface is uniformly coated. This is because the injection amount depends on the surface area. In addition, even in the form existing in the paint, it is considered that the element that prevents the wave emission is small. Note that it is considered suitable to use a highly transparent paint.
Similarly, carbon nanotubes have high endothermic performance.

20は外筒管であり、地中に実質的に垂直に立てられた筒体として設けられている。
この外筒管20は、金属材で設けられている。ここで金属材とは、樹脂材等の他の素材と比較して熱伝導率が高い材料であって、構造材として一定の強度を有するものであれば、特に限定されることはない。例えば、アルミニウム材、ステンレススチール材、銅材、鉄鋼材等を適宜選択的に用いればよい。熱伝導性能を考慮すれば銅材が良いが、耐腐食性を考慮すればステンレススチール材を採用すればよい。
Reference numeral 20 denotes an outer cylindrical tube, which is provided as a cylindrical body standing substantially vertically in the ground.
The outer tube 20 is made of a metal material. Here, the metal material is not particularly limited as long as it is a material having a higher thermal conductivity than other materials such as a resin material and has a certain strength as a structural material. For example, an aluminum material, a stainless steel material, a copper material, a steel material, or the like may be selectively used as appropriate. A copper material is good in consideration of heat conduction performance, but a stainless steel material may be adopted in consideration of corrosion resistance.

本形態の外筒管20は、金属パイプであり、土圧に耐え得る好適な強度を確保できる。また、土砂よりも熱伝導性能が高く、地熱を好適に取り出すことができる。
また、本形態では、外筒管20の底が底板21によって塞がれた状態となっている。地下水の流入等を防止するためである。なお、設置場所の条件又は用途によっては外筒管20の底を塞ぐことを要しない。
The outer tube 20 of this embodiment is a metal pipe and can secure a suitable strength that can withstand earth pressure. Moreover, the heat conduction performance is higher than earth and sand, and geothermal heat can be taken out suitably.
In this embodiment, the bottom of the outer tube 20 is closed by the bottom plate 21. This is to prevent inflow of groundwater. Note that it is not necessary to close the bottom of the outer tube 20 depending on the conditions of the installation place or the application.

30は内筒管であり、外筒管20の内部に挿入されている。この内筒管30は樹脂材で設けられている。この内筒管30によれば、外筒管20内の下部24と地表上16との間で流体を好適に流通させることができる。
図1に示すように、外筒管20と内筒管30の二重管構造となっている。また、内筒管30は、その下端31が、外筒管20の下端(内底面25)との間に所定の間隔を置いて位置するように、図示しない支持材によって適宜固定されている。
これにより、外筒管20の内壁面と内筒管30の外壁面と間に、流体(本形態では空気)の流路となる所定の空間(第1流路40)を得ることができる。また、外筒管20の下端部の内空間26が、空気流の反転空間となる。また、内筒管30の内空間が、空気の流路(第2流路42)となっている。
Reference numeral 30 denotes an inner tube, which is inserted into the outer tube 20. The inner tube 30 is made of a resin material. According to the inner tube 30, it is possible to suitably distribute the fluid between the lower part 24 in the outer tube 20 and the ground surface 16.
As shown in FIG. 1, it has a double tube structure of an outer tube 20 and an inner tube 30. In addition, the inner tube 30 is appropriately fixed by a support material (not shown) so that the lower end 31 thereof is positioned at a predetermined distance from the lower end (inner bottom surface 25) of the outer tube 20.
Thereby, a predetermined space (first flow path 40) serving as a flow path for fluid (in this embodiment, air) can be obtained between the inner wall surface of the outer tube 20 and the outer wall surface of the inner tube 30. Further, the inner space 26 at the lower end portion of the outer tube 20 becomes an air flow reversal space. The inner space of the inner tube 30 is an air flow path (second flow path 42).

本形態の内筒管30は、樹脂パイプであり、熱伝導性能が低い材質で形成されている。例えば、塩化ビニールの管を用いることができる。このように熱伝導率の低い管を用いることで、地中の深い位置で好適に熱交換された流体(空気)を好適に流通させることができる。一旦熱交換されて空気に吸収された熱(冷却された場合の負の熱も含む意味)の発散を防止できるためである。   The inner tube 30 in this embodiment is a resin pipe and is formed of a material having low heat conduction performance. For example, a vinyl chloride tube can be used. In this way, by using a pipe having a low thermal conductivity, a fluid (air) that is suitably heat-exchanged at a deep position in the ground can be suitably circulated. This is because it is possible to prevent the heat once exchanged by heat and absorbed in the air (including the negative heat when cooled) from being emitted.

50は送風手段であり、内筒管30に接続される。(なお、配管の形状等は適宜設計できるものであり、詳細は図示しない。)例えば、軸流ファンを用いることができる。この送風手段50によれば、空気を、外筒管の内壁面と内筒管の外壁面との間(第1流路40)と、内筒管の内部(第2流路42)において流通させることができる。図1では、矢印のように、空気を室内60側から第1流路40及び第2流路42を通過させる状態を示している。この場合は、送風手段50は、空気を吸引するように送風する。   Reference numeral 50 denotes air blowing means, which is connected to the inner tube 30. (Note that the shape and the like of the piping can be designed as appropriate, and details are not shown.) For example, an axial fan can be used. According to this blower means 50, air is circulated between the inner wall surface of the outer tube and the outer wall surface of the inner tube (first flow path 40) and inside the inner tube (second flow path 42). Can be made. FIG. 1 shows a state in which air passes through the first flow path 40 and the second flow path 42 from the indoor 60 side as indicated by arrows. In this case, the blower 50 blows air so as to suck air.

このように送風手段50によって送風された空気は、室内60に開放しても良いし、二点鎖線で示した経路(配管72)で循環させても良い。70は地上での熱交換部であり、例えば、ワインセラー、保存庫(保冷庫、保温庫)、冷却ユニット、放熱ユニット等とすることができる。
このように以上に説明した熱交換器10を用いれば、地熱を室内へ導入することで冷房又は暖房をする冷暖房装置12を好適に構成できる。
熱交換された空気を直接室内60に導入する場合は、熱損失が少なく、効率よく室内60を空調できる。地熱という天然のエネルギー源を用いるため、送風機を運転するエネルギーは必要とするが、エネルギーコストを大きく低減することができる。空気を熱媒体とすることができるため、扱いやすく、安全且つ安定的で費用がかからない利点もある。
Thus, the air blown by the blowing means 50 may be opened to the room 60, or may be circulated through a path (pipe 72) indicated by a two-dot chain line. Reference numeral 70 denotes a heat exchange unit on the ground, which can be, for example, a wine cellar, a storage (cold storage, heat storage), a cooling unit, a heat dissipation unit, or the like.
Thus, if the heat exchanger 10 demonstrated above is used, the air conditioning apparatus 12 which cools or heats by introducing geothermal heat indoors can be comprised suitably.
When the heat-exchanged air is directly introduced into the room 60, there is little heat loss and the room 60 can be efficiently air-conditioned. Since a natural energy source called geothermal is used, energy for operating the blower is required, but the energy cost can be greatly reduced. Since air can be used as a heat medium, there is an advantage that it is easy to handle, safe, stable, and inexpensive.

また、51は他の送風手段であって、空気を押し込むことで、上記と同様の空気流を得ることができる。(なお、配管の形状等は適宜設計できるものであり、詳細は図示しない。) 本形態では、第1流路40が給気流路となっており、第2流路42が排気管路となっている。なお、フィルタを通して空気を送風するようにすれば、外筒管20の内壁面を汚すことがなく、好適な熱交換性能を維持できる。
また、空気の送風方向を、図1に示した矢印の方向と反対方向にしても、好適な熱交換性能を得ることが可能である。
なお、熱交換された空気の熱は、蓄熱槽に蓄えてもよいし、室内に設置した熱交換器を介して室内の冷暖房や水の温度調整に用いることもできる。
また、以上に説明した熱交換器10を逆に利用し、屋根や壁面で集めた太陽エネルギーを地中に送れば、地中の土砂に好適に蓄熱できる。冬場、日中に蓄熱して、その熱を夜間暖房として利用できる。
Reference numeral 51 denotes another air blowing means, which can obtain an air flow similar to the above by pushing air. (Note that the shape and the like of the piping can be designed as appropriate, and details are not shown.) In this embodiment, the first flow path 40 is an air supply flow path, and the second flow path 42 is an exhaust pipe path. ing. Note that if air is blown through the filter, the inner wall surface of the outer tube 20 is not soiled, and a suitable heat exchange performance can be maintained.
Moreover, it is possible to obtain suitable heat exchange performance even when the air blowing direction is opposite to the direction of the arrow shown in FIG.
The heat of the air subjected to heat exchange may be stored in a heat storage tank, or may be used for indoor air conditioning or water temperature adjustment through a heat exchanger installed indoors.
Moreover, if the heat exchanger 10 demonstrated above is reversely utilized and the solar energy collected on the roof and the wall surface is sent in the ground, it can be suitably stored in the earth and sand. In winter, heat can be stored during the day and used as nighttime heating.

80は断熱部材であり、地表近くの土砂からの熱的影響を低減させるために設けられている。本形態では、外筒管20の上部の外周面を取り巻くように設けられている。例えば、図1に示すように、樹脂管を外筒管20の上部外側に嵌め込む状態に設けることができる。樹脂管としては、例えば、塩化ビニールの管を用いることができる。
これによれば、被膜22及び金属管(外筒管20)によって地中深くから伝導伝熱される熱が、地表に近い層の土砂に散逸されることを防止できる。従って、効率よく熱交換をすることができる。
Reference numeral 80 denotes a heat insulating member, which is provided to reduce the thermal influence from the earth and sand near the ground surface. In this form, it is provided so that the outer peripheral surface of the upper part of the outer cylinder pipe 20 may be surrounded. For example, as shown in FIG. 1, the resin tube can be provided in a state of being fitted to the upper outer side of the outer tube 20. As the resin tube, for example, a vinyl chloride tube can be used.
According to this, it is possible to prevent the heat conducted and transferred from the deep underground by the coating 22 and the metal tube (the outer tube 20) from being dissipated to the earth and sand in the layer close to the ground surface. Therefore, heat can be exchanged efficiently.

本発明にかかる地熱を利用する熱交換器放熱器について、実施例1を添付図面(図2)に基づいて説明する。図2は、発明にかかる地熱を利用する熱交換器10について模式的に示す断面図である。
90はフィンであり、内筒管30の外壁面に形成されている(図2では左側に図示)。内筒管30の外部に向かって突き出るように形成されている。このフィン90によれば、流通する空気流を好適に乱すことができる。これにより、乱流による伝熱がなされることになり、熱交換効率が向上する。フィン90の形状は、通気抵抗を低減するために渦状の旋回流や螺旋状の流れを発生させるように傾斜した羽根状とすることができる。なお、外壁面なのでフィン90を形成し易いメリットもある。
A heat exchanger radiator using geothermal heat according to the present invention will be described with reference to Example 1 (FIG. 2). FIG. 2 is a cross-sectional view schematically showing the heat exchanger 10 using geothermal heat according to the invention.
Reference numeral 90 denotes a fin, which is formed on the outer wall surface of the inner tube 30 (shown on the left side in FIG. 2). It is formed so as to protrude toward the outside of the inner tube 30. According to the fin 90, it is possible to suitably disturb the flowing air flow. Thereby, heat transfer by turbulent flow is performed, and the heat exchange efficiency is improved. The shape of the fin 90 can be a blade shape inclined so as to generate a spiral swirl flow or a spiral flow in order to reduce the airflow resistance. In addition, since it is an outer wall surface, there also exists an advantage which is easy to form the fin 90. FIG.

また、フィン90は、外筒管20の内壁面に形成してもよい(図2では右側に図示)。外筒管20の内部へ突き出るように形成されている。これによれば、熱交換をするための放熱面又は吸熱面の表面積を広くできるので、熱交換性能を向上できる。
なお、フィン90のみを別に形成して、外筒管20の内壁面と内筒管30の外壁面との間に挿入するようにしてもよい。この場合、別体のフィン90を金属材で形成して、その表面に被膜22を設け、外筒管20の内壁面の被膜22に接触させるようにしてもよい。実質的に熱交換のための表面積を広げ、熱交換性能を向上できる。
また、いずれの形態にしても、フィン90は、第1流路40を好適に設けるためのスペーサーとしても機能させることができる。
Further, the fin 90 may be formed on the inner wall surface of the outer tube 20 (shown on the right side in FIG. 2). It is formed so as to protrude into the outer tube 20. According to this, since the surface area of the heat radiating surface or the heat absorbing surface for heat exchange can be increased, the heat exchange performance can be improved.
Note that only the fin 90 may be separately formed and inserted between the inner wall surface of the outer tube 20 and the outer wall surface of the inner tube 30. In this case, the separate fin 90 may be formed of a metal material, the coating 22 may be provided on the surface thereof, and the coating may be brought into contact with the coating 22 on the inner wall surface of the outer tube 20. The surface area for heat exchange can be substantially expanded and the heat exchange performance can be improved.
In any form, the fin 90 can also function as a spacer for suitably providing the first flow path 40.

92はポンプであり、外筒管20に結露等によって溜まった水を排出するために用いることができる。センサーを設置して所定の量の水が溜まったときのみに作動するようにしておけばよい。
また、94は調湿剤であり、外筒管20の底部に堆積させてある。空気を冷却した場合に上昇する湿気を除去するなど、湿度を調整することができる。
Reference numeral 92 denotes a pump, which can be used to discharge water accumulated in the outer tube 20 due to condensation or the like. It is only necessary to install a sensor so that it operates only when a predetermined amount of water has accumulated.
Reference numeral 94 denotes a humidity control agent, which is deposited on the bottom of the outer tube 20. The humidity can be adjusted, for example, by removing moisture that rises when the air is cooled.

外筒管20を地中に埋設するには、周知のボーリング技術や、杭を地中に打ち込む技術を用いればよい。外筒管20を地中に打つ込む施工方法を用いる場合は、外筒管20の下端28を図2に示すように尖らせた形態とすることができる。
本発明では、外筒管20及び内筒管30の地中に配設する部分が真直ぐな管(直管)であり、比較的簡単且つ安価に設置できる。また、比較的簡単且つ安価に製造できる利点がある。
外筒管20と土砂18との伝導伝熱の効率を向上させるには、外筒管20の外壁面と土砂18とを密着させるとよい。ベントナイトなどの密着材を挿入、介在させてもよい。
In order to embed the outer tube 20 in the ground, a well-known boring technique or a technique for driving a pile into the ground may be used. When the construction method of driving the outer tube 20 into the ground is used, the lower end 28 of the outer tube 20 can be sharpened as shown in FIG.
In the present invention, the portions disposed in the ground of the outer tube 20 and the inner tube 30 are straight tubes (straight tubes), and can be installed relatively easily and inexpensively. Further, there is an advantage that it can be manufactured relatively easily and inexpensively.
In order to improve the efficiency of conduction heat transfer between the outer tube 20 and the earth and sand 18, the outer wall surface of the outer tube 20 and the earth and sand 18 may be brought into close contact with each other. An adhesive material such as bentonite may be inserted and interposed.

以上、本発明につき好適な実施例を挙げて種々説明してきたが、本発明はこの実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのは勿論のことである。   As described above, the present invention has been described in various ways with reference to preferred embodiments. However, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. That is.

本発明は、高気密高断熱住宅、空気循環式の住宅、その他の建築物の室内の冷暖房に活用できる。いずれの場合も熱交換された空気を直接室内に導入することが可能である。
また、空気や水等の流体を熱媒体として循環させ、室内に設けた熱交換器を介して空調することも可能である。
さらに、熱交換された空気を循環させる方法には、建物の壁内や天井裏を流通させることも含まれる。これによれば、他の装置による冷暖房を好適に補助できる。
また、促成栽培用の温室、ビニールハウス、きのこ栽培用の施設等の温度管理が必要な農業用施設にも好適に利用できる。
さらに、その他の省エネルギーが必要な用途で好適に活用することができる。
INDUSTRIAL APPLICABILITY The present invention can be used for indoor air conditioning of a highly airtight and highly insulated house, an air circulation type house, and other buildings. In either case, the heat-exchanged air can be directly introduced into the room.
It is also possible to circulate a fluid such as air or water as a heat medium and perform air conditioning through a heat exchanger provided in the room.
Further, the method of circulating the heat-exchanged air includes circulating the inside of the building or the back of the ceiling. According to this, the air conditioning by another apparatus can be assisted suitably.
Moreover, it can utilize suitably also for the agricultural facilities which require temperature control, such as the greenhouse for promotion cultivation, a greenhouse, and the facility for mushroom cultivation.
Furthermore, it can be suitably used in other applications that require energy saving.

本発明の一形態の地熱を利用する熱交換器及び冷暖房装置を示す断面図である。It is sectional drawing which shows the heat exchanger and air-conditioning apparatus using the geothermal heat of one form of this invention. 本発明の実施例1を示す断面図である。It is sectional drawing which shows Example 1 of this invention.

符号の説明Explanation of symbols

10 熱交換器
12 冷暖房装置
14 地中
20 外筒管
22 被膜
30 内筒管
40 第1流路
42 第2流路
50 送風手段
60 室内
80 断熱部材
90 フィン
DESCRIPTION OF SYMBOLS 10 Heat exchanger 12 Air-conditioning / heating apparatus 14 Underground 20 Outer cylinder pipe 22 Coating 30 Inner cylinder pipe 40 1st flow path 42 2nd flow path 50 Blowing means 60 Indoor 80 Heat insulation member 90 Fin

Claims (5)

地中に埋設された筒体の内部に流体を流通させることで、該流体に存する熱と地熱との間で熱交換をする地熱を利用する熱交換器において、
前記筒体の内壁面の少なくとも一部にカーボンナノチューブ等の微細カーボン材を含有する被膜が形成されていることを特徴とする地熱を利用する熱交換器。
In a heat exchanger that uses geothermal heat to exchange heat between the heat existing in the fluid and the geothermal heat by circulating the fluid inside the cylinder embedded in the ground,
A heat exchanger using geothermal heat, wherein a coating containing a fine carbon material such as a carbon nanotube is formed on at least a part of the inner wall surface of the cylindrical body.
前記筒体が地中に実質的に垂直に立てられた外筒管として設けられ、該外筒管の内部に該管内の下部と地表上との間で流体を流通させるための内筒管が挿入されていることを特徴とする請求項1記載の地熱を利用する熱交換器。   The cylindrical body is provided as an outer cylindrical pipe standing substantially vertically in the ground, and an inner cylindrical pipe for allowing fluid to flow between the lower portion of the pipe and the ground surface is provided inside the outer cylindrical pipe. The heat exchanger using geothermal heat according to claim 1, wherein the heat exchanger is inserted. 前記外筒管が金属材で設けられ、前記内筒管が樹脂材で設けられていることを特徴とする請求項2記載の地熱を利用する熱交換器。   The heat exchanger using geothermal heat according to claim 2, wherein the outer tube is made of a metal material, and the inner tube is made of a resin material. 前記流体が空気であり、該空気を、外筒管の内壁面と内筒管の外壁面との間と、内筒管の内部において流通させる送風手段を具備することを特徴とする請求項2又は3記載の地熱を利用する熱交換器。   3. The air according to claim 2, further comprising air blowing means for circulating the air between the inner wall surface of the outer tube and the outer wall surface of the inner tube, and inside the inner tube. Or a heat exchanger using the geothermal heat described in 3. 請求項1乃至4記載の地熱を利用する熱交換器を用いて地熱を室内へ導入することで冷房又は暖房をすることを特徴とする冷暖房装置。   An air-conditioning apparatus that performs cooling or heating by introducing geothermal heat into a room using a heat exchanger that uses geothermal heat according to claim 1.
JP2004146954A 2004-05-17 2004-05-17 Heat exchanger using ground heat and air conditioner Pending JP2005326128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146954A JP2005326128A (en) 2004-05-17 2004-05-17 Heat exchanger using ground heat and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146954A JP2005326128A (en) 2004-05-17 2004-05-17 Heat exchanger using ground heat and air conditioner

Publications (1)

Publication Number Publication Date
JP2005326128A true JP2005326128A (en) 2005-11-24

Family

ID=35472612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146954A Pending JP2005326128A (en) 2004-05-17 2004-05-17 Heat exchanger using ground heat and air conditioner

Country Status (1)

Country Link
JP (1) JP2005326128A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183024A (en) * 2006-01-05 2007-07-19 Geo Power System:Kk Underground heat exchanger and its corrosion preventing method
JP2007321383A (en) * 2006-05-31 2007-12-13 Tekken Constr Co Ltd Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
GB2442803A (en) * 2006-10-12 2008-04-16 Cannon Piling Ltd Multiple depth subterranean heat exchanger and installation method
KR100868099B1 (en) 2008-01-18 2008-11-11 조희남 Ground heat returning device for improving underground heat exchange efficiency by connecting with empty pipes installed to the bottom of groundwater core
JP2009127982A (en) * 2007-11-27 2009-06-11 Sekisui Chem Co Ltd Geothermal heat using system
KR101309162B1 (en) * 2012-03-14 2013-09-23 전재강 Geothermal exchanger
KR101314334B1 (en) * 2011-12-29 2013-10-02 주식회사 린텍 Heat exchanger for high performance ground source heat pump
CN103673169A (en) * 2012-09-25 2014-03-26 台湾珈诚超导能源科技股份有限公司 Compound tube type temperature control device
CN105423585A (en) * 2015-11-20 2016-03-23 浙江陆特能源科技股份有限公司 Efficient soil heat exchange and transmission device
KR101797520B1 (en) * 2016-08-23 2017-11-15 ㈜산하이앤씨 underground heat exchanger which has different material double pipe
CN111442549A (en) * 2020-03-10 2020-07-24 甘肃省建材科研设计院有限责任公司 Method for enhancing heat exchange
JP2021008964A (en) * 2019-06-28 2021-01-28 株式会社Ihi建材工業 Underground heat utilizing system
JP2021131223A (en) * 2020-02-18 2021-09-09 株式会社リビエラ Geothermal heat utilization device and method for using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183024A (en) * 2006-01-05 2007-07-19 Geo Power System:Kk Underground heat exchanger and its corrosion preventing method
JP2007321383A (en) * 2006-05-31 2007-12-13 Tekken Constr Co Ltd Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
GB2442803A (en) * 2006-10-12 2008-04-16 Cannon Piling Ltd Multiple depth subterranean heat exchanger and installation method
JP2009127982A (en) * 2007-11-27 2009-06-11 Sekisui Chem Co Ltd Geothermal heat using system
KR100868099B1 (en) 2008-01-18 2008-11-11 조희남 Ground heat returning device for improving underground heat exchange efficiency by connecting with empty pipes installed to the bottom of groundwater core
KR101314334B1 (en) * 2011-12-29 2013-10-02 주식회사 린텍 Heat exchanger for high performance ground source heat pump
KR101309162B1 (en) * 2012-03-14 2013-09-23 전재강 Geothermal exchanger
CN103673169A (en) * 2012-09-25 2014-03-26 台湾珈诚超导能源科技股份有限公司 Compound tube type temperature control device
CN105423585A (en) * 2015-11-20 2016-03-23 浙江陆特能源科技股份有限公司 Efficient soil heat exchange and transmission device
CN105423585B (en) * 2015-11-20 2019-01-18 浙江陆特能源科技股份有限公司 Soil heat exchange transmitting device
KR101797520B1 (en) * 2016-08-23 2017-11-15 ㈜산하이앤씨 underground heat exchanger which has different material double pipe
JP2021008964A (en) * 2019-06-28 2021-01-28 株式会社Ihi建材工業 Underground heat utilizing system
JP2021139370A (en) * 2019-06-28 2021-09-16 株式会社Ihi建材工業 Underground heat utilization system
JP2021143821A (en) * 2019-06-28 2021-09-24 株式会社Ihi建材工業 Earth thermal utilization system
JP7004686B2 (en) 2019-06-28 2022-02-04 株式会社Ihi建材工業 Geothermal utilization system
JP7149376B2 (en) 2019-06-28 2022-10-06 株式会社Ihi建材工業 Geothermal heat utilization system
JP2021131223A (en) * 2020-02-18 2021-09-09 株式会社リビエラ Geothermal heat utilization device and method for using the same
CN111442549A (en) * 2020-03-10 2020-07-24 甘肃省建材科研设计院有限责任公司 Method for enhancing heat exchange

Similar Documents

Publication Publication Date Title
JP2005326128A (en) Heat exchanger using ground heat and air conditioner
JP2007032910A (en) Ground heat exchanger and air conditioner
JP2008116191A (en) Subterranean heat utilizing air conditioning system and its purification heat exchange apparatus
Yan et al. Utilization of ground heat exchangers: a review
JP2014040951A (en) Heat storage type radiation heating and cooling system utilizing heat pump air conditioner
JP2006084093A (en) Heat pump type air conditioner
Vlad et al. Thermoeconomic design of an earth to air heat exchanger used to preheat ventilation air in low energy buildings
CN2823922Y (en) Geothermal exchanger with internal and external pipes
JP2006010098A (en) House air conditioning equipment utilizing geothermal-heat
CN103868137A (en) Novel solar heat pipe heat collecting and storing floor radiation heating system
CN204629673U (en) Radiator
JP2012251677A (en) Heat storage air-conditioning system
CN206399263U (en) A kind of reinforced air radiator
CN210658781U (en) Solar heat absorption heat preservation wall
CN206362021U (en) A kind of new-type hot dry rock heat source heat pump set
CN107166599A (en) A kind of ground source heating networked in length and breadth, adopt cooling system
JP2013148255A (en) Heat exchanger and heat exchanger module
JP2003343884A (en) Circulating type cooling and heating method of building using geothermal power
US20150083361A1 (en) Heat transfer system and method
CN2393068Y (en) Turble heat-conductive pipe
CN104823864A (en) Low-energy-consumption hog house temperature-control equipment
CN205191973U (en) Dry -type electronic refrigerating device
JP2014081088A (en) Heat exchanging apparatus
CN206488339U (en) A kind of S types warm-air drier
KR200289968Y1 (en) Heating and air-conditioning device by subterranean heat