JP2005325936A - Contents support method of pressure vessel and pressure vessel - Google Patents

Contents support method of pressure vessel and pressure vessel Download PDF

Info

Publication number
JP2005325936A
JP2005325936A JP2004145219A JP2004145219A JP2005325936A JP 2005325936 A JP2005325936 A JP 2005325936A JP 2004145219 A JP2004145219 A JP 2004145219A JP 2004145219 A JP2004145219 A JP 2004145219A JP 2005325936 A JP2005325936 A JP 2005325936A
Authority
JP
Japan
Prior art keywords
support member
auxiliary support
built
pressure vessel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004145219A
Other languages
Japanese (ja)
Other versions
JP4199155B2 (en
Inventor
Akiko Kumano
明子 熊野
Hideto Kubo
秀人 久保
Takashi Fuji
敬司 藤
Daigoro Mori
大五郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2004145219A priority Critical patent/JP4199155B2/en
Publication of JP2005325936A publication Critical patent/JP2005325936A/en
Application granted granted Critical
Publication of JP4199155B2 publication Critical patent/JP4199155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the axis of a hydrogen storage unit eccentric to the axis of a hydrogen tank, to assemble the hydrogen storage unit to the hydrogen tank without a hindrance even if the unit is inclined, and to support the hydrogen storage unit on the inner surface of the hydrogen tank. <P>SOLUTION: The hydrogen tank 11 stores the hydrogen storage unit 13 in the vessel body 12 with one end thereof supported. The hydrogen storage unit 13 is supported on the container body 12 with a clearance Δ up to the inner peripheral surface of the vessel body 12 of the hydrogen tank 11. An auxiliary support member 29 tubular and filled with a filler 30 is disposed in the clearance Δ. While the auxiliary support member 29 is filled with pressurized filler 30, the auxiliary support member 29 is supported in the pressure contact with the peripheral surface of the hydrogen storage unit 13 and the inner peripheral surface of the container body 12. The auxiliary support member 29 and the filler 30 are formed of an elastic body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は圧力容器の内蔵物支持方法及び圧力容器に係り、詳しくは内部に熱交換器等の組立品が内蔵物として収容されている圧力容器の内蔵物支持方法及び圧力容器に関する。   The present invention relates to a pressure vessel built-in material support method and a pressure vessel, and more particularly to a pressure vessel built-in material support method and a pressure vessel in which an assembly such as a heat exchanger is housed as a built-in material.

水素エネルギーは太陽熱エネルギーと並んでクリーンエネルギーとして注目されている。水素の貯蔵、輸送の方法として、ある温度、圧力の条件のもとで水素を吸蔵して水素化物になり、必要時に別の温度、圧力の条件のもとで水素を放出する「水素吸蔵合金(以下、MHという)」といわれる金属の利用が着目されている。そして、水素の供給をMHを使用して行う水素エンジンや燃料電池電気自動車、あるいはMHが水素を吸蔵・放出するときの発熱・吸熱を利用するヒートポンプ等の研究が行われている。   Hydrogen energy is attracting attention as clean energy along with solar thermal energy. As a method of storing and transporting hydrogen, a hydrogen storage alloy that stores hydrogen under certain temperature and pressure conditions to form a hydride, and releases hydrogen when necessary under different temperature and pressure conditions. (Hereinafter referred to as MH) "is attracting attention. Research has been conducted on hydrogen engines and fuel cell electric vehicles that use MH to supply hydrogen, or heat pumps that use heat generation and heat absorption when MH absorbs and releases hydrogen.

そして、MHを充填した圧力容器(タンク)では、MHによる水素の吸蔵・放出を円滑に行うため、タンク内に熱交換器が内蔵されている。(例えば、特許文献1参照)。特許文献1には、熱交換器の周囲を水素吸蔵合金とともに断熱性のケースで囲み、該断熱ケースを圧力容器の内面に点状又は線状に接触する支持部材で支持した圧力容器が開示されている。   In the pressure vessel (tank) filled with MH, a heat exchanger is built in the tank in order to smoothly absorb and release hydrogen by MH. (For example, refer to Patent Document 1). Patent Document 1 discloses a pressure vessel in which a heat exchanger is surrounded by a heat-insulating case together with a hydrogen storage alloy, and the heat-insulating case is supported by a support member that contacts the inner surface of the pressure vessel in a dotted or linear manner. ing.

また、特許文献1には、図5に示す構成の圧力容器51も開示されている。即ち、ステンレス鋼製の圧力容器51内には、多数の小孔52aが形成された収納ケース52が内装され、収納ケース52内にMHの粉末とともに熱交換器53が収納されている。圧力容器51の内面と収納ケース52の外面との間にはグラスウールのように通気性の有る断熱材54が充填されている。熱交換器53は熱媒体(熱媒)を流す熱媒管55に複数のフィン56が設けられた構造である。そして、熱媒管55が収納ケース52及び圧力容器51の両端を貫通した状態で圧力容器51に支持されることにより、収納ケース52及び水素吸蔵合金が熱媒管55を介して圧力容器51に支持されている。
特開2000−249425号公報(明細書の段落[0012],[0016]、図1,図3)
Patent Document 1 also discloses a pressure vessel 51 configured as shown in FIG. That is, a storage case 52 having a large number of small holes 52a is housed inside a stainless steel pressure vessel 51, and a heat exchanger 53 is stored in the storage case 52 together with MH powder. Between the inner surface of the pressure vessel 51 and the outer surface of the storage case 52, a heat insulating material 54 having air permeability such as glass wool is filled. The heat exchanger 53 has a structure in which a plurality of fins 56 are provided in a heat medium pipe 55 through which a heat medium (heat medium) flows. Then, the heat medium pipe 55 is supported by the pressure container 51 in a state of penetrating both ends of the storage case 52 and the pressure container 51, so that the storage case 52 and the hydrogen storage alloy are transferred to the pressure container 51 through the heat medium pipe 55. It is supported.
JP 2000-249425 A (paragraphs [0012], [0016], FIGS. 1 and 3 of the specification)

水素エンジンや燃料電池電気自動車の燃料の供給源として水素貯蔵タンクを自動車に搭載する場合は、水素貯蔵タンクの軽量化が重要になる。圧力容器内にMHを充填した場合は、同じ圧力及び同じ容積における水素の貯蔵量を多くできる。しかし、MHは水素吸蔵時に膨張するため、圧力容器内全部にMHを充填した場合は、MHの膨張の圧力が圧力容器に直接加わる。従って、圧力容器を内圧及びMHの膨張力の両方に対向する強度とする必要があり、MHの重量増加分だけでなく圧力容器の強度を高めるための重量増加分との双方の影響で、圧力容器全体の重量が重くなりすぎるという問題がある。   When a hydrogen storage tank is mounted on a vehicle as a fuel supply source for a hydrogen engine or a fuel cell electric vehicle, it is important to reduce the weight of the hydrogen storage tank. When MH is filled in the pressure vessel, the amount of hydrogen stored at the same pressure and the same volume can be increased. However, since MH expands at the time of storing hydrogen, when the entire pressure vessel is filled with MH, the pressure of MH expansion is directly applied to the pressure vessel. Therefore, it is necessary to make the pressure vessel have a strength opposite to both the internal pressure and the expansion force of MH. The pressure vessel is affected not only by the weight increase of MH but also by the weight increase to increase the strength of the pressure vessel. There is a problem that the weight of the entire container becomes too heavy.

前記の問題を解消するため、圧力容器内に水素吸蔵合金が充填され、かつ熱交換機能を有する水素吸蔵用ユニットを、圧力容器の内面と水素吸蔵用ユニットの外面との間に空間を設けた状態で収容することが考えられる。この構成では、圧力容器の内圧を調整することで、圧力容器と水素吸蔵用ユニットとの間に貯蔵される水素量が調整され、圧力容器全体の重量当たりの水素貯蔵量を多くすることができる。   In order to solve the above problem, a hydrogen storage unit filled with a hydrogen storage alloy in a pressure vessel and having a heat exchange function is provided with a space between the inner surface of the pressure vessel and the outer surface of the hydrogen storage unit. It can be considered to be housed in a state. In this configuration, by adjusting the internal pressure of the pressure vessel, the amount of hydrogen stored between the pressure vessel and the hydrogen storage unit is adjusted, and the amount of hydrogen stored per weight of the entire pressure vessel can be increased. .

しかし、圧力容器の内面と水素吸蔵用ユニットの外面との間に空間を設けた状態で水素吸蔵用ユニットを収容すると、水素吸蔵用ユニットを片持ち状態あるいは、図5に示すように水素吸蔵用ユニットをその両端で支持する構成となる。水素吸蔵用ユニットを片持ち状態で支持する構成では、支持部に大きな力が加わるため、支持部を頑丈に製作する必要があり、水素貯蔵タンクの軽量化が難しくなる。また、両端で支持する構成であっても、図5に示すように、熱交換器53が細い熱媒管55において圧力容器51に支持される構成では、熱媒管55の支持部に応力が集中するため耐久性が悪くなる。熱交換器以外の内蔵物を備えた圧力容器においても同様な問題がある。   However, if the hydrogen storage unit is accommodated in a state where a space is provided between the inner surface of the pressure vessel and the outer surface of the hydrogen storage unit, the hydrogen storage unit cantilevered or as shown in FIG. The unit is supported at both ends. In the configuration in which the hydrogen storage unit is supported in a cantilevered state, a large force is applied to the support portion. Therefore, it is necessary to make the support portion sturdy and it is difficult to reduce the weight of the hydrogen storage tank. Further, even in a configuration in which both ends are supported, as shown in FIG. 5, in a configuration in which the heat exchanger 53 is supported by the pressure vessel 51 in the thin heat medium tube 55, stress is applied to the support portion of the heat medium tube 55. Durability deteriorates due to concentration. There is a similar problem in a pressure vessel having a built-in material other than a heat exchanger.

この問題を解消する方法として、熱交換器53の収納ケース52の外面と圧力容器51の内面との間にOリングのようなゴム体を介在させて、熱交換器53を収納ケース52とともに圧力容器の内面で支持する方法が考えられる。この場合、収納ケース52の外面と圧力容器51の内面との隙間に合わせてつぶし代を設計する。しかし、収納ケース52の中心線が圧力容器51の中心線に対して偏心したり、傾斜したりしている場合、圧力容器51と収納ケース52との隙間にバラツキが生じ、つぶし代が大きくなり過ぎる部分が生じて、組み付けられなくなるか組付けが非常に困難になる。   As a method for solving this problem, a rubber body such as an O-ring is interposed between the outer surface of the storage case 52 of the heat exchanger 53 and the inner surface of the pressure vessel 51 so that the heat exchanger 53 is pressured together with the storage case 52. A method of supporting on the inner surface of the container is conceivable. In this case, the crushing allowance is designed according to the gap between the outer surface of the storage case 52 and the inner surface of the pressure vessel 51. However, when the center line of the storage case 52 is eccentric or inclined with respect to the center line of the pressure vessel 51, the gap between the pressure vessel 51 and the storage case 52 varies, and the crushing cost increases. The part which passes is generated, and it becomes impossible to assemble or the assembling becomes very difficult.

本発明の目的は、内部に熱交換器等の組立品が内蔵物として収容されている圧力容器において、内蔵物の中心線が圧力容器の中心線に対して偏心したり、傾斜したりしても支障無く内蔵物を圧力容器に組み付けることができるとともに、内蔵物を圧力容器の内面で支持することができる圧力容器の内蔵物支持方法及び圧力容器を提供することにある。   An object of the present invention is to provide a pressure vessel in which an assembly such as a heat exchanger is accommodated as a built-in object, and the center line of the built-in object is eccentric or inclined with respect to the center line of the pressure vessel. Another object of the present invention is to provide a built-in material support method for a pressure vessel and a pressure vessel that can assemble the built-in material to the pressure vessel without any trouble and can support the built-in material on the inner surface of the pressure vessel.

前記の目的を達成するため、請求項1に記載の発明は、筒状の圧力容器に外形が筒状の内蔵物が少なくとも一端で支持された状態で収容される圧力容器の内蔵物支持方法である。前記内蔵物を一端が開放された状態の容器本体に対して、前記内蔵物の周面と前記容器本体の内周面との間に隙間を有する状態で開放端と反対側の端部において支持する。そして、その状態で袋状又はチューブ状の補助支持部材を前記隙間に配置し、その補助支持部材内に加圧しながら充填物を充填して前記補助支持部材を前記内蔵物の周面と前記容器本体の内周面とに圧接した状態にし、前記内蔵物を支持する。ここで「外形が筒状」とは外形を筒状の部材(例えば断面が円の円筒部材や断面が四角の筒部材)で構成されていることのみを意味するのではなく、内蔵物が組みあがった状態で外形が筒状の形状であればよい。例えば、同じ大きさの円盤を間隔を空けて並べることで形成される外形(円筒状)や、同じ大きさの四角の板を間隔を空けて並べることで形成される外形(四角の筒状)といった筒状の部材がない場合をも含む。   In order to achieve the above object, the invention according to claim 1 is a method for supporting a built-in object of a pressure vessel in which a cylindrical built-in object is accommodated in a state where the cylindrical built-in object is supported at least at one end. is there. The built-in object is supported at the end opposite to the open end with a gap between the peripheral surface of the built-in object and the inner peripheral surface of the container body with respect to the container body with one end open. To do. Then, in this state, a bag-like or tube-like auxiliary support member is disposed in the gap, and the auxiliary support member is filled while filling the auxiliary support member while pressurizing the auxiliary support member. The internal structure is pressed against the inner peripheral surface of the main body to support the built-in object. Here, “the outer shape is cylindrical” does not only mean that the outer shape is constituted by a cylindrical member (for example, a cylindrical member having a circular cross section or a cylindrical member having a square cross section). The outer shape may be a cylindrical shape in the raised state. For example, an outer shape (cylindrical shape) formed by arranging disks of the same size at intervals, or an outer shape formed by arranging square plates of the same size at intervals (square cylindrical shapes) This includes the case where there is no cylindrical member.

従って、この発明では、容器本体の内面と内蔵物の周面との間に配置されて内蔵物を容器本体に支持する補助支持部材は、充填物が充填されていない状態で前記隙間に配置され、その後、充填物が加圧されながら充填される。従って、組み付け誤差等により、内蔵物の中心線が容器本体の中心線に対して偏心したり、傾斜したりして前記隙間にバラツキが生じても、補助支持部材は設定された位置に容易に配置されるとともに、内蔵物の周面と前記容器本体の内周面とに圧接した状態に支持される。その結果、圧力容器に径方向の振動が加わっても、内蔵物を端部で支持する支持部に大きな曲げ応力が作用するのが回避され、耐久性が向上する。   Therefore, in the present invention, the auxiliary support member that is disposed between the inner surface of the container main body and the peripheral surface of the built-in object and supports the built-in object on the container main body is disposed in the gap in a state in which the filler is not filled. Thereafter, the filling is filled while being pressurized. Therefore, even if the center line of the built-in object is decentered or inclined with respect to the center line of the container body due to an assembly error or the like, the auxiliary support member can be easily placed at the set position. It arrange | positions and it is supported in the state press-contacted to the surrounding surface of the built-in thing, and the internal peripheral surface of the said container main body. As a result, even when a radial vibration is applied to the pressure vessel, it is possible to avoid a large bending stress from acting on the support portion that supports the built-in object at the end portion, thereby improving durability.

請求項2に記載の発明は、請求項1に記載の発明において、前記補助支持部材及び前記充填物の少なくとも一方が弾性体で構成されている。この発明では、圧力容器に径方向の振動が加わった際、補助支持部材及び充填物の両方が非弾性体の構成に比較して、内蔵物に加わる衝撃が小さくなり耐久性が向上する。   According to a second aspect of the present invention, in the first aspect of the present invention, at least one of the auxiliary support member and the filler is made of an elastic body. In the present invention, when the vibration in the radial direction is applied to the pressure vessel, the impact applied to the built-in object is reduced and the durability is improved as compared with the configuration in which both the auxiliary support member and the filler are inelastic.

請求項3に記載の発明は、請求項2に記載の発明において、前記補助支持部材が弾性体であり、前記充填物の充填時に前記弾性体が前記容器本体の膨張代を有するように加圧される。ここで、「容器本体の膨張代を有する」とは、充填物の充填後、容器本体が熱膨張あるいは圧力容器に貯蔵される気体の圧力により膨張した状態においても、その膨張に追随して変形し、補助支持部材の内蔵物の周面と容器本体の内周面とに対する圧接状態を確保可能であることを意味する。従って、この発明では、圧力容器に気体が高圧で貯蔵されて容器本体が膨張しても、補助支持部材による内蔵物の支持が確保される。   The invention according to claim 3 is the invention according to claim 2, wherein the auxiliary support member is an elastic body, and the elastic body is pressurized so as to have an expansion allowance of the container body when the filling is filled. Is done. Here, “having an expansion allowance of the container body” means that the container body is deformed following the expansion even when the container body is expanded due to thermal expansion or the pressure of the gas stored in the pressure container after filling. This means that it is possible to ensure a pressure contact state between the peripheral surface of the built-in auxiliary support member and the inner peripheral surface of the container body. Therefore, in the present invention, even if the gas is stored in the pressure vessel at a high pressure and the container main body expands, the support of the built-in object by the auxiliary support member is ensured.

請求項4に記載の発明は、請求項2に記載の発明において、前記充填物の充填後、前記補助支持部材に対して前記圧力容器の軸方向に押付力を加えて前記弾性体が前記容器本体の膨張代を有するように支持する。この発明では、前記膨張代の確保が、充填物を充填する際の充填圧力ではなく、充填物の充填後、補助支持部材を押付けることにより補助支持部材及び充填物を変形させることにより行われる。従って、充填物の充填時に大きな圧力を加える必要がない。   According to a fourth aspect of the present invention, in the second aspect of the present invention, after the filling, the elastic body is applied to the auxiliary support member by applying a pressing force in the axial direction of the pressure vessel. It supports so that it may have the expansion allowance of a main body. In this invention, securing of the expansion allowance is performed by deforming the auxiliary support member and the filling material by pressing the auxiliary support member after filling the filling material, not the filling pressure at the time of filling the filling material. . Therefore, it is not necessary to apply a large pressure when filling the filling.

請求項5に記載の発明は、外形が筒状の内蔵物が少なくとも一端で支持された状態で収容された筒状の圧力容器である。前記内蔵物は前記圧力容器の容器本体の内周面との間に隙間が存在する状態で容器本体に対して支持され、袋状又はチューブ状で充填物を充填可能な補助支持部材が前記隙間に配置されている。そして、その補助支持部材内に充填物が加圧された状態で充填されて前記補助支持部材が前記内蔵物の周面と前記容器本体の内周面とに圧接した状態で前記内蔵物が支持されている。また、前記補助支持部材及び充填物の少なくとも一方が弾性体で構成されている。   The invention according to claim 5 is a cylindrical pressure vessel in which a built-in object having a cylindrical outer shape is accommodated in a state where it is supported at least at one end. The built-in object is supported with respect to the container body in a state where there is a gap between the inner peripheral surface of the container body of the pressure vessel, and an auxiliary support member that can be filled with a filling material in a bag shape or a tube shape. Is arranged. The auxiliary support member is filled in a pressurized state, and the auxiliary support member is supported by the auxiliary support member in pressure contact with the peripheral surface of the internal component and the inner peripheral surface of the container body. Has been. Further, at least one of the auxiliary support member and the filler is made of an elastic body.

この発明では、圧力容器に径方向の振動が加わっても、内蔵物を端部で支持する支持部に大きな曲げ応力が作用するのが回避され、耐久性が向上する。また、補助支持部材及び充填物の両方が非弾性体の構成に比較して、内蔵物に加わる衝撃が小さくなり耐久性がより向上する。   In this invention, even if radial vibration is applied to the pressure vessel, it is possible to avoid a large bending stress from acting on the support portion that supports the built-in object at the end portion, thereby improving durability. In addition, the impact applied to the built-in object is reduced and the durability is further improved as compared with the configuration in which the auxiliary support member and the filler are both inelastic.

請求項6に記載の発明は、請求項5に記載の発明において、前記充填物は前記弾性体が前記容器本体の膨張代を有するように加圧されている。この発明では、圧力容器に気体が高圧で貯蔵されて容器本体が膨張しても、補助支持部材による内蔵物の支持が確保される。   The invention according to claim 6 is the invention according to claim 5, wherein the filler is pressurized so that the elastic body has an expansion allowance of the container body. In this invention, even if gas is stored in the pressure vessel at a high pressure and the container body expands, the support of the built-in object by the auxiliary support member is ensured.

請求項7に記載の発明は、請求項5又は請求項6に記載の発明において、前記補助支持部材は直線状のチューブ状に形成され、前記隙間に前記容器本体の軸方向に延びるように配置されている。この発明では、内蔵物をその長手方向の端部及び中間部の一部と対応する位置で補助支持部材により支持する際、環状の補助支持部材を使用する場合に比較して、組み付けが容易になる。   According to a seventh aspect of the present invention, in the invention according to the fifth or sixth aspect, the auxiliary support member is formed in a straight tube shape, and is disposed so as to extend in the axial direction of the container body in the gap. Has been. In the present invention, when the built-in object is supported by the auxiliary support member at a position corresponding to the end portion in the longitudinal direction and a part of the intermediate portion, it is easier to assemble than when the annular auxiliary support member is used. Become.

請求項8に記載の発明は、請求項5〜請求項7のいずれか一項に記載の発明において、前記内蔵物は、水素吸蔵物質が充填された水素吸蔵用ユニットである。この発明では、圧力容器を水素貯蔵タンクとして好適に使用できる。   The invention according to claim 8 is the invention according to any one of claims 5 to 7, wherein the built-in material is a hydrogen storage unit filled with a hydrogen storage material. In the present invention, the pressure vessel can be suitably used as a hydrogen storage tank.

本発明によれば、内部に熱交換器等の組立品が内蔵物として収容されている圧力容器において、内蔵物の中心線が圧力容器の中心線に対して偏心したり、傾斜したりしても支障無く内蔵物を圧力容器に組み付けることができるとともに、内蔵物を圧力容器の内面で支持することができる。   According to the present invention, in a pressure vessel in which an assembly such as a heat exchanger is accommodated as a built-in item, the center line of the built-in item is eccentric or inclined with respect to the center line of the pressure vessel. However, the built-in object can be assembled to the pressure vessel without hindrance, and the built-in object can be supported by the inner surface of the pressure vessel.

(第1の実施形態)
以下、本発明を圧力容器としての水素貯蔵タンク(以下、単に水素タンクと称す)に具体化した第1の実施形態を図1及び図2に従って説明する。図1(a)は水素タンクの模式断面図、図1(b)は図1(a)の鎖線で囲んだ部分の拡大図、図2(a)〜(c)は補助支持部材の組み付け手順を示す模式断面図である。
(First embodiment)
A first embodiment in which the present invention is embodied in a hydrogen storage tank (hereinafter simply referred to as a hydrogen tank) as a pressure vessel will be described below with reference to FIGS. 1A is a schematic cross-sectional view of a hydrogen tank, FIG. 1B is an enlarged view of a portion surrounded by a chain line in FIG. 1A, and FIGS. 2A to 2C are procedures for assembling an auxiliary support member. It is a schematic cross section which shows.

図1(a)に示すように、水素タンク11は、筒状(この実施形態では円筒状)の容器本体12内に、内蔵物としての水素吸蔵用ユニット13が収容されている。
容器本体12は、細長い中空状のライナ14と、ライナ14の外面の略全域を覆う繊維強化樹脂層15とを備えている。ライナ14は例えばアルミニウム合金を材質とし、水素タンク11の気密性を確保している。ライナ14は円筒状の胴部14aと、その両端に形成されたドーム部14bとを備えている。ライナ14は両端が分割式となっており、胴部14aの一端側(図1(a)における左端側)の開口部16aを覆う蓋部17aと、他端側の開口部16bを覆う蓋部17bとを備えており、蓋部17a,17bがドーム部14bを構成している。蓋部17aには、水素吸蔵用ユニット13が組み付けられている。
As shown in FIG. 1A, the hydrogen tank 11 includes a hydrogen storage unit 13 as a built-in object in a tubular (cylindrical in this embodiment) container body 12.
The container body 12 includes an elongated hollow liner 14 and a fiber reinforced resin layer 15 that covers substantially the entire outer surface of the liner 14. The liner 14 is made of an aluminum alloy, for example, and ensures the airtightness of the hydrogen tank 11. The liner 14 includes a cylindrical body portion 14a and dome portions 14b formed at both ends thereof. Both ends of the liner 14 are divided, and a lid portion 17a that covers the opening portion 16a on one end side (the left end side in FIG. 1A) of the body portion 14a and a lid portion that covers the opening portion 16b on the other end side. 17b, and the lid portions 17a and 17b constitute the dome portion 14b. The hydrogen storage unit 13 is assembled to the lid portion 17a.

繊維強化樹脂層15は、この実施形態では炭素繊維を強化繊維としたCFRP(Carbon Fiber Reinforced Plastics )で構成され、水素タンク11の耐圧性(機械的強度)を確保している。繊維強化樹脂層15は、樹脂(例えば不飽和ポリエステル樹脂、エポキシ樹脂等)が含浸された炭素繊維束を、ヘリカル巻層及びフープ巻層を有するようにライナ14に巻き付け、樹脂を熱硬化することによって形成されている。   In this embodiment, the fiber reinforced resin layer 15 is made of CFRP (Carbon Fiber Reinforced Plastics) using carbon fibers as reinforced fibers, and ensures the pressure resistance (mechanical strength) of the hydrogen tank 11. The fiber reinforced resin layer 15 is formed by winding a carbon fiber bundle impregnated with a resin (for example, unsaturated polyester resin, epoxy resin, etc.) around the liner 14 so as to have a helical winding layer and a hoop winding layer, and thermosetting the resin. Is formed by.

水素吸蔵用ユニット13は熱交換器19を備えており、熱交換器19は水素タンク11の長手方向(図1(a)の左右方向)に延びるとともに、略U字状に折り曲げられたパイプからなり、熱媒が流通する熱媒管20と、蓋部17aへの取付け部となる略円板形状のヘッダ部21とを備えている。この実施形態では熱媒管20は複数本設けられ、端部がロウ付けや溶接等によってヘッダ部21に固着されている。ヘッダ部21には各熱媒管20の上流側端部と、蓋部17aに形成された後記する通路26aとを連通させる流路(図示せず)と、各熱媒管20の下流側端部と、蓋部17aに形成された後記する通路26bとを連通させる流路(図示せず)とが形成されている。   The hydrogen storage unit 13 includes a heat exchanger 19. The heat exchanger 19 extends in the longitudinal direction of the hydrogen tank 11 (the left-right direction in FIG. 1A) and from a pipe bent into a substantially U shape. The heat medium pipe | tube 20 through which a heat medium distribute | circulates, and the substantially disc shaped header part 21 used as the attaching part to the cover part 17a are provided. In this embodiment, a plurality of heat medium tubes 20 are provided, and the end portions are fixed to the header portion 21 by brazing, welding, or the like. In the header portion 21, a flow path (not shown) for communicating an upstream end portion of each heat medium pipe 20 and a passage 26 a formed later in the lid portion 17 a and a downstream end of each heat medium pipe 20. A flow path (not shown) is formed to communicate the portion and a passage 26b described later formed in the lid portion 17a.

熱媒管20には略円板状のフィン22がライナ14の軸方向に沿って等間隔に複数固着されている。フィン22の間には水素吸蔵物質としての粉末状のMH(図示せず)がフィン22と接触する状態で収容されている。フィン22の径方向端部には全てのフィン22を覆う状態で、MHの通過を阻止し水素を透過可能な円筒状のフィルタ23が設けられている。この実施形態では、フィルタ23は多数の孔(図示せず)が形成された金属製の円筒で形成されている。水素吸蔵用ユニット13はその外周面(即ち、フィルタ23の外周面)と、ライナ14の内周面との間に隙間Δが存在するように外径が設定されている。容器本体12の径が200mm程度の場合で、隙間Δの大きさきはmmのオーダーである。   A plurality of substantially disc-shaped fins 22 are fixed to the heat medium pipe 20 at equal intervals along the axial direction of the liner 14. Between the fins 22, powdery MH (not shown) as a hydrogen storage material is accommodated in contact with the fins 22. A cylindrical filter 23 capable of blocking the passage of MH and permeating hydrogen is provided at the radial end of the fin 22 so as to cover all the fins 22. In this embodiment, the filter 23 is formed of a metal cylinder having a large number of holes (not shown). The outer diameter of the hydrogen storage unit 13 is set so that a gap Δ exists between the outer peripheral surface (that is, the outer peripheral surface of the filter 23) and the inner peripheral surface of the liner 14. When the diameter of the container body 12 is about 200 mm, the size of the gap Δ is on the order of mm.

蓋部17aはヘッダ部21が嵌合固定される凹部24と、開口部16a、即ち胴部14aの端部に嵌合される嵌合部25とを備えている。嵌合部25は段差部25aを有し、その段差部25aにおいて胴部14aの端部に嵌合され、胴部14aの端面が段差部25aの端面に当接することにより、胴部14aの長手方向に対する蓋部17a,17bの位置決めがなされるようになっている。凹部24は円柱状に形成され、その周面と、ヘッダ部21の周面との間にシールリング(図示せず)が介装されている。また、嵌合部25の周面と開口部16aの内面との間に、ライナ14の分割部分のシール性(気密性)を確保するためのシールリング(図示せず)が介装されている。蓋部17aには通路26a,26bが形成され、通路26a,26bには図示しない熱媒供給部に連通するパイプが接続され、熱媒管20には熱媒供給部から熱媒としての水(冷水又は加熱水)が通路26a,26bを介して供給可能に構成されている。この実施の形態では通路26aが上流側、通路26bが下流側となっている。   The lid portion 17a includes a recess 24 to which the header portion 21 is fitted and fixed, and an opening portion 16a, that is, a fitting portion 25 to be fitted to the end portion of the trunk portion 14a. The fitting part 25 has a step part 25a, and the step part 25a is fitted to the end part of the body part 14a. The lid portions 17a and 17b are positioned with respect to the direction. The recess 24 is formed in a cylindrical shape, and a seal ring (not shown) is interposed between the peripheral surface thereof and the peripheral surface of the header portion 21. Further, a seal ring (not shown) is provided between the peripheral surface of the fitting portion 25 and the inner surface of the opening portion 16a to ensure the sealability (airtightness) of the divided portion of the liner 14. . Passages 26a and 26b are formed in the lid portion 17a, pipes communicating with a heat medium supply unit (not shown) are connected to the passages 26a and 26b, and water (as a heat medium from the heat medium supply unit ( Cold water or heated water) can be supplied through the passages 26a and 26b. In this embodiment, the passage 26a is on the upstream side and the passage 26b is on the downstream side.

水素吸蔵用ユニット13はヘッダ部21(基端)が凹部24に嵌合された状態で、蓋部17aに組み付けられている。そして、通路26aから熱媒管20に加熱水が供給されると水素吸蔵用ユニット13を構成するMHが加熱され、通路26aから熱媒管20に冷水が供給されるとMHが冷却されるようになっている。   The hydrogen storage unit 13 is assembled to the lid portion 17 a with the header portion 21 (base end) fitted in the recess 24. Then, when heated water is supplied from the passage 26a to the heat medium pipe 20, the MH constituting the hydrogen storage unit 13 is heated, and when cold water is supplied from the passage 26a to the heat medium pipe 20, the MH is cooled. It has become.

蓋部17bも蓋部17aと同様に開口部16bに嵌合される嵌合部25を備え、嵌合部25が開口部16bに嵌合されている。蓋部17bには水素の導入、排出用の気体通路用開口部18が設けられ、気体通路用開口部18にはバルブ27が螺合されている。バルブ27はレギュレータを内蔵するとともに、水素タンク11の使用状態が水素放出状態と水素充填状態とに切換可能となっている。水素放出状態とは、水素タンク11内の水素をバルブ27を介して外部へ放出可能、かつ外部から水素タンク11内への水素の供給が不能な状態を意味する。また、水素充填状態とは、水素タンク11内の水素をバルブ27を介して外部へ放出不能、かつ外部から水素タンク11内への水素の供給が可能な状態を意味する。バルブ27と蓋部17bの端面との間にはシールリング(図示せず)が介装されている。   Similarly to the lid portion 17a, the lid portion 17b includes a fitting portion 25 fitted into the opening portion 16b, and the fitting portion 25 is fitted into the opening portion 16b. The lid portion 17 b is provided with a gas passage opening 18 for introducing and discharging hydrogen, and a valve 27 is screwed into the gas passage opening 18. The valve 27 has a built-in regulator, and the use state of the hydrogen tank 11 can be switched between a hydrogen release state and a hydrogen filling state. The hydrogen release state means a state in which hydrogen in the hydrogen tank 11 can be discharged to the outside through the valve 27 and hydrogen cannot be supplied into the hydrogen tank 11 from the outside. Further, the hydrogen filling state means a state in which hydrogen in the hydrogen tank 11 cannot be discharged to the outside through the valve 27 and hydrogen can be supplied into the hydrogen tank 11 from the outside. A seal ring (not shown) is interposed between the valve 27 and the end surface of the lid portion 17b.

フィルタ23の長手方向の両端部と対応する位置には、周方向に沿って延びる環状の収容溝28が形成されている。収容溝28内には、弾性体製(この実施形態ではゴム製)で環状のチューブ状の補助支持部材29が配置されている。補助支持部材29は充填物30が充填可能に構成され、補助支持部材29内には充填物30が加圧された状態で充填されており、補助支持部材29はフィルタ23の周面と容器本体12の内周面とに圧接した状態に支持されている。この実施形態では補助支持部材29は、水素吸蔵用ユニット13の基端側(図1(a)の左側)では蓋部17aの嵌合部25の内周面に、水素吸蔵用ユニット13の先端側では胴部14aの内周面にそれぞれ圧接されている。水素吸蔵用ユニット13の先端側に配置された補助支持部材29は、水素吸蔵用ユニット13の基端側に配置された補助支持部材29より大きく形成されている。また、この実施形態では充填物30として液状のゴムが使用されている。即ち、水素吸蔵用ユニット13は、熱媒管20を介して蓋部17aに片持ち状態で支持されるとともに、フィルタ23の周面と容器本体12の内周面との隙間Δに配置されたチューブ状の補助支持部材29によっても支持されている。   An annular housing groove 28 extending along the circumferential direction is formed at a position corresponding to both ends of the filter 23 in the longitudinal direction. An annular tube-shaped auxiliary support member 29 made of an elastic material (made of rubber in this embodiment) is disposed in the accommodation groove 28. The auxiliary support member 29 is configured to be able to be filled with a filler 30, and the auxiliary support member 29 is filled in a state where the filler 30 is pressurized, and the auxiliary support member 29 includes the peripheral surface of the filter 23 and the container body. 12 is supported in pressure contact with the inner peripheral surface. In this embodiment, the auxiliary support member 29 is provided on the inner peripheral surface of the fitting portion 25 of the lid portion 17a on the proximal end side (left side in FIG. 1A) of the hydrogen storage unit 13 and on the distal end of the hydrogen storage unit 13. On the side, they are in pressure contact with the inner peripheral surface of the body portion 14a. The auxiliary support member 29 disposed on the distal end side of the hydrogen storage unit 13 is formed larger than the auxiliary support member 29 disposed on the proximal end side of the hydrogen storage unit 13. In this embodiment, liquid rubber is used as the filler 30. That is, the hydrogen storage unit 13 is supported by the lid portion 17a in a cantilever state via the heat medium pipe 20, and is disposed in the gap Δ between the peripheral surface of the filter 23 and the inner peripheral surface of the container body 12. It is also supported by a tube-shaped auxiliary support member 29.

なお、補助支持部材29には一部にボールの空気導入部と同様な材質で形成された針挿入部を備えており、充填物30を充填する際は、針挿入部に挿入された針から液状ゴムが充填される。   The auxiliary support member 29 is provided with a needle insertion part formed of the same material as the air introduction part of the ball in part, and when filling the filler 30, the needle inserted from the needle insertion part is used. Filled with liquid rubber.

充填物30は、補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように加圧されている。容器本体12の膨張代とは、充填物30の充填後、容器本体12が熱膨張あるいは水素圧力により膨張した状態においても、補助支持部材29及び充填物30がその膨張に追随して変形し、フィルタ23の周面と容器本体12の内周面とに対する補助支持部材29の圧接状態を確保可能であることを意味する。膨張代は、水素タンク11の使用条件に合わせて試験又は計算により求められ、その値を満足するように充填物30の充填量及び加圧状態が設定される。   The filling 30 is pressurized so that the auxiliary support member 29 and the elastic body constituting the filling 30 have an expansion allowance for the container body 12. The expansion allowance of the container body 12 means that the auxiliary support member 29 and the filler 30 are deformed following the expansion even when the container body 12 is expanded by thermal expansion or hydrogen pressure after the filling 30 is filled, This means that the pressure contact state of the auxiliary support member 29 against the peripheral surface of the filter 23 and the inner peripheral surface of the container body 12 can be ensured. The expansion allowance is obtained by a test or calculation in accordance with the use conditions of the hydrogen tank 11, and the filling amount and the pressurized state of the filling 30 are set so as to satisfy the values.

次に前記のように構成された水素タンク11の製造方法を説明する。水素タンク11を製造する際は、周りに複数のフィン22が固着された熱媒管20を有し、その外周を覆うフィルタ23に囲まれるとともに、内部に水素吸蔵合金が収容された熱交換器19を用意する。そして、図2(a)に示すように、充填物30が充填されていない状態の補助支持部材29を、両収容溝28内に配置する。なお、図2(a)〜(c)は、フィルタ23の蓋部17a側端部の一部のみを表している。そして、熱媒管20の端部(上流側端部及び下流側端部)を、ロウ付け又は溶接によってヘッダ部21に固着して、熱交換器19とヘッダ部21とが一体化された水素吸蔵用ユニット13を製造する。   Next, a method for manufacturing the hydrogen tank 11 configured as described above will be described. When manufacturing the hydrogen tank 11, a heat exchanger having a heat medium pipe 20 around which a plurality of fins 22 are fixed, surrounded by a filter 23 covering the outer periphery thereof, and containing a hydrogen storage alloy therein. 19 is prepared. Then, as shown in FIG. 2A, the auxiliary support member 29 that is not filled with the filler 30 is disposed in both the housing grooves 28. 2A to 2C show only a part of the end portion of the filter 23 on the lid portion 17a side. Then, the end portions (upstream end portion and downstream end portion) of the heat medium pipe 20 are fixed to the header portion 21 by brazing or welding, and the heat exchanger 19 and the header portion 21 are integrated with each other. The storage unit 13 is manufactured.

続いて、蓋部17aの内面とヘッダ部21との間にシール材が介装され、ヘッダ部21が凹部24に嵌合される状態で、熱交換器19を蓋部17aに組み付ける。この状態では水素吸蔵用ユニット13は、フィルタ23の周面と容器本体12の内周面を構成する嵌合部25の内周面との間に隙間Δを有する状態で支持されている。そして、図2(b)に示すように、収容溝28内に収容された補助支持部材29は、容器本体12の内周面と対応する位置に配置される。その状態で補助支持部材29内の針挿入部へ針を挿入して充填物30の充填が行われる。充填物30の充填は、加圧しながら充填物30(液状ゴム)を充填(注入)することにより行われる。そして、図2(c)に示すように、補助支持部材29をフィルタ23の周面と容器本体12の内周面とに圧接した状態に支持する。充填物30の充填時に補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように加圧される。充填物30の充填後、針が抜かれても、針の抜き跡は自然に塞がれる。   Subsequently, a seal material is interposed between the inner surface of the lid portion 17 a and the header portion 21, and the heat exchanger 19 is assembled to the lid portion 17 a in a state where the header portion 21 is fitted into the recess 24. In this state, the hydrogen storage unit 13 is supported in a state where there is a gap Δ between the peripheral surface of the filter 23 and the inner peripheral surface of the fitting portion 25 constituting the inner peripheral surface of the container body 12. As shown in FIG. 2B, the auxiliary support member 29 accommodated in the accommodation groove 28 is disposed at a position corresponding to the inner peripheral surface of the container body 12. In this state, the filling material 30 is filled by inserting a needle into the needle insertion portion in the auxiliary support member 29. The filling material 30 is filled by filling (injecting) the filling material 30 (liquid rubber) while applying pressure. Then, as shown in FIG. 2C, the auxiliary support member 29 is supported in a state in which it is in pressure contact with the peripheral surface of the filter 23 and the inner peripheral surface of the container body 12. When the filling 30 is filled, the auxiliary support member 29 and the elastic body constituting the filling 30 are pressurized so as to have an expansion allowance for the container body 12. Even if the needle is pulled out after the filling 30 is filled, the trace of the needle is naturally blocked.

充填物30の充填は、充填物30を充填する前の状態において、補助支持部材29内に空気が殆どない状態から行うのが好ましい。補助支持部材29内に空気が多量に存在する場合は、充填物30を充填する際に補助支持部材29内から余分の空気を抜く必要があるため、作業が面倒である。図2(a),(b)において、図示の都合上、充填物30が充填される前の補助支持部材29内に多量の空気が存在する状態で描いているが、実際は補助支持部材29内に空気が殆どない状態である。補助支持部材29内の空気を抜く方法としては、例えば、針を補助支持部材29に刺した状態でポンプで補助支持部材29内の空気を抜く方法がある。   The filling of the filling material 30 is preferably performed from a state in which there is almost no air in the auxiliary support member 29 in a state before the filling material 30 is filled. When a large amount of air is present in the auxiliary support member 29, it is necessary to remove excess air from the auxiliary support member 29 when filling the filling material 30, and the work is troublesome. In FIGS. 2A and 2B, for the convenience of illustration, the auxiliary support member 29 is filled with a large amount of air before the filling 30 is filled. There is almost no air. As a method for extracting air from the auxiliary support member 29, for example, there is a method of extracting air from the auxiliary support member 29 with a pump while a needle is inserted into the auxiliary support member 29.

次に、水素吸蔵用ユニット13を胴部14aの内部に収容する。フィルタ23の周面と胴部14aの内周面との間にも隙間Δが生じる。収容溝28内に収容された補助支持部材29は、容器本体12の胴部14a内周面と対応する位置に配置される。その状態で先ほどと同様に補助支持部材29内への充填物30の充填が行われ、補助支持部材29をフィルタ23の周面と胴部14aの内周面とに圧接した状態に支持する。充填物30の充填時に補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように加圧される。充填物30の充填後、針が抜かれても、針の抜き跡は自然に塞がれる。   Next, the hydrogen storage unit 13 is accommodated in the body portion 14a. A gap Δ is also generated between the peripheral surface of the filter 23 and the inner peripheral surface of the body portion 14a. The auxiliary support member 29 accommodated in the accommodation groove 28 is disposed at a position corresponding to the inner peripheral surface of the body portion 14 a of the container body 12. In this state, the filling material 30 is filled into the auxiliary support member 29 in the same manner as described above, and the auxiliary support member 29 is supported in a state of being pressed against the peripheral surface of the filter 23 and the inner peripheral surface of the body portion 14a. When the filling 30 is filled, the auxiliary support member 29 and the elastic body constituting the filling 30 are pressurized so as to have an expansion allowance for the container body 12. Even if the needle is pulled out after the filling 30 is filled, the trace of the needle is naturally blocked.

次に蓋部17bを胴部14aに、蓋部17aと同様に嵌合部25において嵌合固定する。この作業により分割式のライナ14が一体化される。
次に、一体化されたライナ14をフィラメントワインディング装置(図示省略)にセットして、フィラメントワインディングを行い、ライナ14の外面に樹脂含浸繊維束をヘリカル巻層及びフープ巻層が所定層数形成されるまで巻き付ける。フープ巻層は主にライナ14の胴部14aに形成される。次に、樹脂含浸繊維束が巻き付けられたライナ14をフィラメントワインディング装置から取り外し、加熱炉に入れて、樹脂を加熱硬化させる。次にバリ等の除去を行った後、蓋部17bの気体通路用開口部18の雌ねじ部にバルブ27が螺合されて水素タンク11の製造が完了する。
Next, the lid portion 17b is fitted and fixed to the body portion 14a at the fitting portion 25 in the same manner as the lid portion 17a. By this operation, the split liner 14 is integrated.
Next, the integrated liner 14 is set in a filament winding apparatus (not shown), and filament winding is performed. A resin-impregnated fiber bundle is formed on the outer surface of the liner 14 with a predetermined number of helical winding layers and hoop winding layers. Wrap until The hoop winding layer is mainly formed on the body portion 14 a of the liner 14. Next, the liner 14 around which the resin-impregnated fiber bundle is wound is removed from the filament winding apparatus and placed in a heating furnace to cure the resin by heating. Next, after removing burrs and the like, the valve 27 is screwed into the female thread portion of the gas passage opening 18 of the lid portion 17b to complete the manufacture of the hydrogen tank 11.

次に、前記のように構成された水素タンク11の作用を、燃料電池搭載電気自動車に使用する場合を例に説明する。
水素タンク11は通路26a,26bに熱媒供給部から供給される熱媒としての水(冷水又は加熱水)が流れるパイプが接続され、バルブ27が燃料電池に繋がるパイプ(図示せず)に接続された状態で使用される。容器本体12内には高圧状態で水素が充填されている。
Next, the case where the operation of the hydrogen tank 11 configured as described above is used in an electric vehicle equipped with a fuel cell will be described as an example.
The hydrogen tank 11 is connected to passages 26a and 26b with pipes through which water (cold water or heated water) as a heat medium supplied from the heat medium supply unit flows, and a valve 27 is connected to a pipe (not shown) connected to the fuel cell. It is used in the state that was done. The container body 12 is filled with hydrogen at a high pressure.

バルブ27が水素放出状態に保持された状態において燃料極で水素ガスが使用されると、バルブ27を介して水素タンク11から水素ガスが放出されて燃料極に供給される。水素タンク11内から水素ガスが放出されると、MHの水素吸蔵・放出反応が放出側へ移動してMHから水素ガスが放出される。   When hydrogen gas is used at the fuel electrode while the valve 27 is held in the hydrogen releasing state, the hydrogen gas is released from the hydrogen tank 11 via the valve 27 and supplied to the fuel electrode. When hydrogen gas is released from the hydrogen tank 11, the hydrogen storage / release reaction of MH moves to the release side, and hydrogen gas is released from MH.

水素が放出された水素タンク11に再び水素ガスを充填、即ちMHに水素ガスを吸蔵させる場合は、バルブ27を水素充填状態に切り換えてバルブ27から水素タンク11に水素ガスを供給する。水素タンク11内に供給された水素ガスは、MHと反応して水素化物となってMHに吸蔵される。   When the hydrogen tank 11 from which hydrogen has been released is filled again with hydrogen gas, that is, when MH is occluded with hydrogen, the valve 27 is switched to a hydrogen-filled state and the hydrogen gas is supplied from the valve 27 to the hydrogen tank 11. The hydrogen gas supplied into the hydrogen tank 11 reacts with MH to become a hydride and is stored in MH.

水素吸蔵用ユニット13は熱媒管20の両端がヘッダ部21に固着された状態でライナ14に片持ち状態で支持されるとともに、フィルタ23の長手方向両端周面が補助支持部材29を介して容器本体12に支持されている。従って、水素タンク11に振動が加わっても、水素吸蔵用ユニット13は水素タンク11と共に全体が振動する状態となり、補助支持部材29が存在しない構成と異なり、熱媒管20の基端にのみ局所的に曲げ応力が加わる状態を回避することができ、耐久性が向上する。   The hydrogen storage unit 13 is supported in a cantilevered state by the liner 14 with both ends of the heat medium pipe 20 fixed to the header portion 21, and both longitudinal circumferential surfaces of the filter 23 are interposed via auxiliary support members 29. The container body 12 is supported. Therefore, even if vibration is applied to the hydrogen tank 11, the entire hydrogen storage unit 13 vibrates together with the hydrogen tank 11. Unlike the configuration in which the auxiliary support member 29 does not exist, only the proximal end of the heat medium pipe 20 is locally present. In particular, a state in which bending stress is applied can be avoided, and durability is improved.

補助支持部材29内に気体を充填した場合は、水素タンク11内が高圧(数十MPa)になると、補助支持部材29がその圧力で圧縮されてフィルタ23の周面と容器本体12の内周面との間に隙間が生じて支持部材の役割を果たさなくなる。しかし、補助支持部材29は内部に気体以外の充填物30が充填されているため、水素タンク11内が高圧(数十MPa)になっても、補助支持部材29はフィルタ23の周面と容器本体12の内周面とに圧接された状態に支持され、支持部材の役割を果たす。従って、熱媒管20の支持部をさほど頑丈に形成する必要はない。   When the gas is filled in the auxiliary support member 29, when the pressure in the hydrogen tank 11 becomes high (several tens of MPa), the auxiliary support member 29 is compressed by the pressure and the peripheral surface of the filter 23 and the inner periphery of the container body 12 are filled. A gap is formed between the surface and the support member. However, since the auxiliary support member 29 is filled with a filler 30 other than gas, even if the inside of the hydrogen tank 11 is at a high pressure (several tens of MPa), the auxiliary support member 29 is connected to the peripheral surface of the filter 23 and the container. It is supported in a state of being pressed against the inner peripheral surface of the main body 12 and serves as a support member. Therefore, it is not necessary to form the support portion of the heat medium pipe 20 so firmly.

この実施の形態では以下の効果を有する。
(1)外形が筒状の水素吸蔵用ユニット13は、容器本体12内に、容器本体12の内面との間に隙間Δが存在する状態で容器本体12内に収容され、熱媒管20の一端において容器本体12に対して支持されている。そして、チューブ状で充填物30を充填可能な補助支持部材29が前記隙間Δに配置され、その補助支持部材29内に充填物30が加圧された状態で充填されて補助支持部材29が水素吸蔵用ユニット13の周面と容器本体12の内周面とに圧接した状態に支持されている。従って、水素タンク11に径方向の振動が加わっても、水素吸蔵用ユニット13を端部で支持する熱媒管20に大きな曲げ応力が作用するのが回避され、耐久性が向上する。
This embodiment has the following effects.
(1) The hydrogen storage unit 13 having a cylindrical outer shape is accommodated in the container main body 12 with a gap Δ between the container main body 12 and the inner surface of the container main body 12. The container body 12 is supported at one end. An auxiliary support member 29 that is tubular and can be filled with the filler 30 is disposed in the gap Δ, and the auxiliary support member 29 is filled with the filler 30 in a pressurized state so that the auxiliary support member 29 is hydrogenated. It is supported in a state in which it is pressed against the peripheral surface of the occlusion unit 13 and the inner peripheral surface of the container body 12. Therefore, even if radial vibration is applied to the hydrogen tank 11, it is possible to avoid a large bending stress from acting on the heat medium pipe 20 that supports the hydrogen storage unit 13 at the end, and the durability is improved.

(2)補助支持部材29は、水素タンク11の製造時に、水素吸蔵用ユニット13が片側が開放された状態のライナ14に固定され、水素吸蔵用ユニット13の周面と容器本体12の周面との隙間Δに配置された状態で充填物30を充填することが可能である。従って、水素吸蔵用ユニット13の中心線が水素タンク11の中心線に対して偏心したり、傾斜したりしても支障無く水素吸蔵用ユニット13を水素タンク11内面で支持することができる。   (2) When the hydrogen tank 11 is manufactured, the auxiliary support member 29 is fixed to the liner 14 with the hydrogen storage unit 13 open on one side, and the peripheral surface of the hydrogen storage unit 13 and the peripheral surface of the container body 12 It is possible to fill the filler 30 in a state of being disposed in the gap Δ. Therefore, even if the center line of the hydrogen storage unit 13 is eccentric or inclined with respect to the center line of the hydrogen tank 11, the hydrogen storage unit 13 can be supported on the inner surface of the hydrogen tank 11 without any problem.

(3)補助支持部材29及び充填物30が弾性体で構成されている。従って、補助支持部材29及び充填物30の両方が非弾性体の構成に比較して、水素吸蔵用ユニット13に加わる衝撃が小さくなり耐久性がより向上する。その結果、燃料電池自動車や水素エンジン自動車等に搭載されて使用される燃料タンクとして好適に使用できる。   (3) The auxiliary support member 29 and the filler 30 are made of an elastic body. Therefore, the impact applied to the hydrogen storage unit 13 is reduced and the durability is further improved as compared with the configuration in which both the auxiliary support member 29 and the filler 30 are inelastic. As a result, it can be suitably used as a fuel tank that is mounted and used in a fuel cell vehicle or a hydrogen engine vehicle.

(4)充填物30は、補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように加圧されている。従って、水素タンク11の使用時に容器本体12が水素ガスの圧力で膨張したり、あるいは熱膨張で膨張したりしても、その膨張に補助支持部材29及び充填物30が追随して変形でき、補助支持部材29が常に水素吸蔵用ユニット13の周面と容器本体12の周面とに圧接された状態に支持される。その結果、水素タンク11が膨張した場合でも、補助支持部材29による支持力が確保される。   (4) The filling 30 is pressurized so that the auxiliary support member 29 and the elastic body constituting the filling 30 have an expansion allowance for the container body 12. Therefore, even when the container main body 12 expands due to the pressure of hydrogen gas or expands due to thermal expansion when the hydrogen tank 11 is used, the auxiliary support member 29 and the filling 30 can be deformed following the expansion. The auxiliary support member 29 is always supported in a state where it is pressed against the peripheral surface of the hydrogen storage unit 13 and the peripheral surface of the container body 12. As a result, even when the hydrogen tank 11 expands, the support force by the auxiliary support member 29 is ensured.

(5)補助支持部材29は環状に形成され、水素吸蔵用ユニット13の周方向全体にわたって接触しているため、水素タンク11に径方向の振動が加わっても、水素吸蔵用ユニット13が良好に支持される。従って、自動車に搭載した場合等、水素タンク11に径方向の振動が加わる状態での使用においても、水素吸蔵用ユニット13がより安定した状態で支持される。   (5) Since the auxiliary support member 29 is formed in an annular shape and is in contact with the entire circumferential direction of the hydrogen storage unit 13, the hydrogen storage unit 13 is excellent even when radial vibration is applied to the hydrogen tank 11. Supported. Accordingly, the hydrogen storage unit 13 is supported in a more stable state even when used in a state where radial vibration is applied to the hydrogen tank 11 such as when mounted in an automobile.

(6)容器本体12を構成するライナ14が分割式に構成され、胴部14aに水素吸蔵用ユニット13を挿入可能な開口部16aが設けられ、開口部16aを覆う蓋部17aに水素吸蔵用ユニット13が一体に組み付けられている。従って、水素吸蔵用ユニット13を蓋部17aに固定した後、ドーム部14bを構成する蓋部17aをライナ14の胴部14aに組み付けることで、水素吸蔵用ユニット13をライナ14に収容した状態に組み付けることができるため、胴部14a及びドーム部14bが分割不能な構成に比較して組み付けが容易になる。   (6) The liner 14 constituting the container body 12 is configured in a split type, the body 14a is provided with an opening 16a into which the hydrogen storage unit 13 can be inserted, and the lid 17a covering the opening 16a is used for storing hydrogen. The unit 13 is assembled integrally. Therefore, after fixing the hydrogen storage unit 13 to the lid portion 17a, the lid portion 17a constituting the dome portion 14b is assembled to the body portion 14a of the liner 14 so that the hydrogen storage unit 13 is accommodated in the liner 14. Since it can assemble | attach, an assembly | attachment becomes easy compared with the structure which the trunk | drum 14a and the dome part 14b cannot be divided | segmented.

(7)容器本体12はライナ14と繊維強化樹脂層15との二重構造のため、全体を金属で構成した場合に比較して、軽量化を図ることができる。
(8)ライナ14の他端側に水素の導入、排出用の通路としての気体通路用開口部18が設けられているため、熱媒の供給及び排出と、水素の導入及び排出とを同じ側から行う構成に比較して、構造が簡単になる。
(7) Since the container main body 12 has a double structure of the liner 14 and the fiber reinforced resin layer 15, the weight can be reduced as compared with the case where the entire body is made of metal.
(8) Since the gas passage opening 18 is provided on the other end side of the liner 14 as a passage for introducing and discharging hydrogen, the supply and discharge of the heat medium and the introduction and discharge of hydrogen are on the same side. Compared to the configuration performed from the above, the structure becomes simple.

(第2の実施形態)
次に第2の実施形態を図3(a),(b)に従って説明する。図3(a)は水素タンク11の模式断面図、(b)は水素タンク11の中心線と直交する面で切断した場合の拡大部分断面図である。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. FIG. 3A is a schematic cross-sectional view of the hydrogen tank 11, and FIG. 3B is an enlarged partial cross-sectional view when cut along a plane orthogonal to the center line of the hydrogen tank 11.

この実施形態ではフィルタ23の周面と容器本体12の内周面との隙間Δに配置されて水素吸蔵用ユニット13を支持する補助支持部材29が直線状のチューブ状に形成されている点が前記第1の実施形態に比較して大きく異なっている。補助支持部材29は一端に針挿入部が形成されている。補助支持部材29は、隙間Δに容器本体12の軸方向に延びるように、かつ針挿入部が蓋部17b側の端部に位置するように配置されている。補助支持部材29は蓋部17a,17bと干渉しない範囲においてフィルタ23のほぼ全長にわたって延びるように配置されている。補助支持部材29は、複数本(好ましくは3本以上)がフィルタ23の周方向にほぼ等間隔で配置されている。   In this embodiment, the auxiliary support member 29 that is disposed in the gap Δ between the peripheral surface of the filter 23 and the inner peripheral surface of the container body 12 and supports the hydrogen storage unit 13 is formed in a linear tube shape. Compared to the first embodiment, it is greatly different. The auxiliary support member 29 has a needle insertion portion at one end. The auxiliary support member 29 is arranged so as to extend in the axial direction of the container body 12 in the gap Δ, and so that the needle insertion portion is located at the end portion on the lid portion 17b side. The auxiliary support member 29 is disposed so as to extend over almost the entire length of the filter 23 as long as it does not interfere with the lid portions 17a and 17b. A plurality (preferably three or more) of auxiliary support members 29 are arranged at substantially equal intervals in the circumferential direction of the filter 23.

この水素タンク11を製造する場合も第1の実施形態の場合と同様に、先ず水素吸蔵用ユニット13を製造し、次にその水素吸蔵用ユニット13を蓋部17aに組み付ける。次に補助支持部材29をフィルタ23の周面に、その長手方向に沿って延び、かつ針挿入部が熱交換器19のヘッダ部21と反対側の端部寄りに位置する状態で所定位置に粘着テープ等などで仮止めする。この仮止めは水素吸蔵用ユニット13を胴部14aに挿通する際、補助支持部材29が胴部14aと干渉せずに所定位置に支持するために行う。次に水素吸蔵用ユニット13を胴部14aに挿通するとともに蓋部17aを嵌合部25において胴部14aの一端に固定する。この状態では水素吸蔵用ユニット13は、フィルタ23の周面と容器本体12の内周面(即ち、胴部14aの内周面)との間に隙間Δを有する状態でライナ14の一端(蓋部17a)に片持ち状態で支持されている。また、蓋部17bはまだ胴部14aに固定されていない。   When the hydrogen tank 11 is manufactured, as in the case of the first embodiment, the hydrogen storage unit 13 is first manufactured, and then the hydrogen storage unit 13 is assembled to the lid portion 17a. Next, the auxiliary support member 29 is extended in the circumferential direction of the filter 23 along the longitudinal direction thereof, and the needle insertion portion is positioned at a predetermined position in a state of being located near the end portion opposite to the header portion 21 of the heat exchanger 19. Temporarily fix with adhesive tape. This temporary fixing is performed in order to support the auxiliary support member 29 in a predetermined position without interfering with the body part 14a when the hydrogen storage unit 13 is inserted into the body part 14a. Next, the hydrogen storage unit 13 is inserted into the body portion 14 a and the lid portion 17 a is fixed to one end of the body portion 14 a at the fitting portion 25. In this state, the hydrogen storage unit 13 has one end (the lid) of the liner 14 with a gap Δ between the peripheral surface of the filter 23 and the inner peripheral surface of the container body 12 (that is, the inner peripheral surface of the body portion 14a). Part 17a) is supported in a cantilevered state. Moreover, the cover part 17b is not yet fixed to the trunk | drum 14a.

その状態で各補助支持部材29内への充填物30の充填が行われる。充填物30の充填は、蓋部17aが固定された側と反対側の胴部14aとフィルタ23との隙間から針を挿入して補助支持部材29の針挿入部に刺し、加圧しながら充填物30(液状ゴム)を充填(注入)することにより行われる。そして、図3(b)に示すように、補助支持部材29をフィルタ23の周面と容器本体12の内周面とに圧接した状態に支持する。充填物30の充填時に補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように加圧される。充填物30の充填後、針が抜かれても、針の抜き跡は自然に塞がれる。   In this state, each auxiliary support member 29 is filled with the filler 30. The filling material 30 is filled by inserting a needle through the gap between the body portion 14a opposite to the side to which the lid portion 17a is fixed and the filter 23, piercing the needle insertion portion of the auxiliary support member 29, and applying pressure while filling. It is carried out by filling (injecting) 30 (liquid rubber). And as shown in FIG.3 (b), the auxiliary | assistant support member 29 is supported in the state press-contacted to the surrounding surface of the filter 23, and the internal peripheral surface of the container main body 12. As shown in FIG. When the filling 30 is filled, the auxiliary support member 29 and the elastic body constituting the filling 30 are pressurized so as to have an expansion allowance for the container body 12. Even if the needle is pulled out after the filling 30 is filled, the trace of the needle is naturally blocked.

各補助支持部材29への充填物30の充填が完了後、開口部16bを覆う状態で蓋部17bを胴部14aに固定し、分割式のライナ14を一体化する。次に、一体化されたライナ14をフィラメントワインディング装置(図示省略)にセットして、前記第1の実施形態と同様に繊維強化樹脂層15を形成し、蓋部17bにバルブ27が螺合されて水素タンク11の製造が完了する。   After the filling of the filling material 30 into each auxiliary support member 29 is completed, the lid portion 17b is fixed to the body portion 14a so as to cover the opening portion 16b, and the split liner 14 is integrated. Next, the integrated liner 14 is set in a filament winding apparatus (not shown), the fiber reinforced resin layer 15 is formed as in the first embodiment, and the valve 27 is screwed to the lid portion 17b. Thus, the manufacture of the hydrogen tank 11 is completed.

この実施形態においては、前記第1の実施形態の(1)〜(4),(6)〜(8)と同様な効果が得られる他に、次の効果が得られる。
(9)補助支持部材29は直線状のチューブ状に形成され、隙間Δに容器本体12の軸方向に延びるように配置されている。従って、水素吸蔵用ユニット13をその長手方向の端部及び中間と対応する位置で補助支持部材29により支持する際、環状の補助支持部材29を使用する場合に比較して、組み付けが容易になる。
In this embodiment, in addition to the same effects as (1) to (4) and (6) to (8) of the first embodiment, the following effects can be obtained.
(9) The auxiliary support member 29 is formed in a linear tube shape, and is disposed in the gap Δ so as to extend in the axial direction of the container body 12. Therefore, when the hydrogen storage unit 13 is supported by the auxiliary support member 29 at a position corresponding to the end and the middle in the longitudinal direction, the assembly is facilitated as compared with the case where the annular auxiliary support member 29 is used. .

実施形態は前記に限定されるものではなく、例えば、次のように構成してもよい。
〇 環状の補助支持部材29を使用する場合、補助支持部材29をフィルタ23の他端側、即ち蓋部17b寄りの端部にのみ設けてもよい。補助支持部材29をフィルタ23の他端側に設ける場合、補助支持部材29を収容溝28に収容する構成に代えて、例えば、図4(a)に示すように、フィルタ23は、他端に段差部32及び雄ねじ部33が連続して設けられた構成とする。そして、段差部32に、充填物30が充填された補助支持部材29が配置されるとともに、雄ねじ部33に螺合するナット34により、補助支持部材29に押付力が加えられた状態で支持する構成とする。ナット34は端面に凹部34aが複数(例えば2個)形成されている。凹部34aはナット34をフィルタ23の雄ねじ部33に螺合させるときに使用する図示しない工具の係止部を係止させるためのものである。
The embodiment is not limited to the above, and may be configured as follows, for example.
In the case where the annular auxiliary support member 29 is used, the auxiliary support member 29 may be provided only on the other end side of the filter 23, that is, on the end portion near the lid portion 17b. When the auxiliary support member 29 is provided on the other end side of the filter 23, for example, as shown in FIG. 4A, the filter 23 is disposed at the other end instead of the configuration in which the auxiliary support member 29 is accommodated in the accommodation groove 28. The step portion 32 and the male screw portion 33 are continuously provided. Then, the auxiliary support member 29 filled with the filler 30 is disposed in the stepped portion 32, and is supported in a state in which a pressing force is applied to the auxiliary support member 29 by the nut 34 screwed into the male screw portion 33. The configuration. The nut 34 has a plurality of (for example, two) recesses 34a formed on the end surface. The recess 34 a is for locking a locking portion of a tool (not shown) used when the nut 34 is screwed into the male thread portion 33 of the filter 23.

この実施形態の構成では、蓋部17bが胴部14aに固定される前の状態で、充填物30が充填される前の補助支持部材29が段差部32に配置され、充填物30の充填後、ナット34が雄ねじ部33に螺合される。そして、補助支持部材29に対して水素タンク11の軸方向に押付力が加えられて、補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように変形された状態で支持される。その後、蓋部17bが胴部14aに固定され、前記実施形態と同様にして、フィラメントワインディング等の後行程が行われる。即ち、容器本体12の膨張代の確保が、充填物30を充填する際の充填圧力ではなく、充填物30の充填後、補助支持部材29を容器本体12の軸方向に押付けて、補助支持部材29及び充填物30を変形させることにより行われる。従って、充填物30の充填時に大きな圧力を加える必要がない。なお、ナット34をフィルタ23の雄ねじ部33に螺合させるときに使用する工具の係止部を係止させるための構成は凹部34aに限らず、溝、凸部、凸条であってもよい。それらの形状に合った係止部を備えた工具がナット34の螺合に使用される。   In the configuration of this embodiment, the auxiliary support member 29 before being filled with the filling 30 is arranged in the stepped portion 32 in a state before the lid portion 17b is fixed to the trunk portion 14a, and after the filling 30 is filled. The nut 34 is screwed into the male screw portion 33. Then, a pressing force is applied to the auxiliary support member 29 in the axial direction of the hydrogen tank 11, and the elastic bodies constituting the auxiliary support member 29 and the filling 30 are deformed to have an expansion allowance for the container body 12. Supported in state. Thereafter, the lid portion 17b is fixed to the body portion 14a, and a post-process such as filament winding is performed in the same manner as in the above embodiment. That is, securing of the expansion allowance of the container body 12 is not the filling pressure when filling the filling material 30, but after filling the filling material 30, the auxiliary support member 29 is pressed in the axial direction of the container body 12, 29 and the filling 30 are deformed. Therefore, it is not necessary to apply a large pressure when filling the filling 30. The configuration for locking the locking portion of the tool used when the nut 34 is screwed into the male screw portion 33 of the filter 23 is not limited to the concave portion 34a, and may be a groove, a convex portion, or a convex line. . A tool having a locking portion that matches these shapes is used for screwing the nut 34.

○ 補助支持部材29に対する充填物30の充填後、補助支持部材29に対して圧力容器の軸方向に押付力を加えて補助支持部材29及び充填物30を構成する弾性体が容器本体12の膨張代を有するように支持する構成は次のようにしてもよい。図4(b)に示すように、フィルタ23の端部に段差部32を設け、雄ねじ部33は設けない。充填物30が充填された後、補助支持部材29をナット34で押付ける代わりに、蓋部17bに補助支持部材29を押圧する環状部35を設ける。また、胴部14aの他端には雌ねじ部36を設け、蓋部17bにはその雌ねじ部36に螺合する雄ねじ部37を設ける。そして、蓋部17bを胴部14aに螺合することにより、充填物30の充填された補助支持部材29に対して圧力容器の軸方向に押付力を加えた状態に支持する。蓋部17bは繊維強化樹脂層15により被覆されるため、ナット34による押付の場合に比較して、長期使用後にも押付力が弛み難い。   After the filling material 30 is filled in the auxiliary support member 29, the elastic body constituting the auxiliary support member 29 and the filling material 30 is expanded by applying a pressing force to the auxiliary support member 29 in the axial direction of the pressure vessel. The configuration for supporting the margin may be as follows. As shown in FIG. 4B, the step portion 32 is provided at the end of the filter 23, and the male screw portion 33 is not provided. After the filling 30 is filled, instead of pressing the auxiliary support member 29 with the nut 34, an annular portion 35 for pressing the auxiliary support member 29 is provided on the lid portion 17b. Further, a female screw portion 36 is provided at the other end of the body portion 14a, and a male screw portion 37 that is screwed into the female screw portion 36 is provided at the lid portion 17b. Then, the lid portion 17b is screwed into the body portion 14a to support the auxiliary support member 29 filled with the filling 30 in a state where a pressing force is applied in the axial direction of the pressure vessel. Since the lid portion 17 b is covered with the fiber reinforced resin layer 15, the pressing force is less likely to loosen even after long-term use compared to the case of pressing with the nut 34.

○ 直線状の補助支持部材29を使用する場合でも、補助支持部材29をフィルタ23の長手方向に沿ってほぼ全長にわたって延びる長さのものを使用する代わりに、短い直線状の補助支持部材29を周方向にほぼ等間隔で配置する構成としてもよい。また、円弧状のチューブ状の補助支持部材29を周方向に沿って間隔を開けて配置してもよい。これら場合も、水素タンク11に径方向の振動が加わっても、水素タンク11が良好に支持される。   Even when the linear auxiliary support member 29 is used, instead of using the auxiliary support member 29 having a length extending substantially over the entire length along the longitudinal direction of the filter 23, a short linear auxiliary support member 29 is used. It is good also as a structure arrange | positioned at equal intervals in the circumferential direction. Moreover, you may arrange | position the arcuate tube-shaped auxiliary | assistant support member 29 at intervals along the circumferential direction. In these cases, the hydrogen tank 11 is well supported even when radial vibration is applied to the hydrogen tank 11.

○ 補助支持部材29の配置位置は特に限定されないが、フィルタ23の他端側で水素吸蔵用ユニット13を支持する部分を設ける方が好ましい。
○ 補助支持部材29及び充填物30の両者が弾性体で構成される必要はない。例えば、充填物30の充填後、補助支持部材29に対して押付力を加えて容器本体12の膨張代を有するようにする構成では、少なくともどちらか一方が弾性体で構成されていればよい。補助支持部材29のみ弾性体の場合は、押付力によって補助支持部材29の肉厚分変形して膨張代となる。一方、充填物30のみ弾性体の場合は、押付力によって充填物30が変形し(補助支持部材29はその変形に追従した形となり)膨張代となる。また、充填物30の充填時に容器本体12の膨張代を有するようにする構成では、少なくとも補助支持部材29を弾性体で構成してもよい。補助支持部材29のみ弾性体の場合は、充填物30の加圧充填により補助支持部材29の肉厚分変形して膨張代となる。これらの構成においても、水素タンク11が膨張した場合でも、補助支持部材29による支持力が確保される。
The arrangement position of the auxiliary support member 29 is not particularly limited, but it is preferable to provide a portion for supporting the hydrogen storage unit 13 on the other end side of the filter 23.
○ It is not necessary that both the auxiliary support member 29 and the filler 30 are made of an elastic body. For example, in the configuration in which after the filling material 30 is filled, a pressing force is applied to the auxiliary support member 29 so that the container body 12 has an expansion allowance, it is sufficient that at least one of them is made of an elastic body. When only the auxiliary support member 29 is an elastic body, the auxiliary support member 29 is deformed by the thickness of the auxiliary support member 29 due to the pressing force, resulting in an expansion allowance. On the other hand, in the case where only the filler 30 is an elastic body, the filler 30 is deformed by the pressing force (the auxiliary support member 29 has a shape following the deformation), resulting in an expansion allowance. In the configuration in which the container body 12 has an expansion allowance when the filling material 30 is filled, at least the auxiliary support member 29 may be formed of an elastic body. When only the auxiliary support member 29 is an elastic body, the filling of the filler 30 is deformed by the thickness of the auxiliary support member 29 to cause an expansion allowance. Also in these configurations, even when the hydrogen tank 11 expands, the supporting force by the auxiliary support member 29 is ensured.

○ 充填物30として使用する弾性体は液状ゴムに限らない。弾性体は少なくとも充填時において液状であればよく、充填後は固体となってもよい。例えば、充填物30として補助支持部材29に悪影響を与えない温度で溶融する弾性体を使用し、加熱溶融状態で充填してもよい。   O The elastic body used as the filler 30 is not limited to liquid rubber. The elastic body may be liquid at least at the time of filling, and may be solid after filling. For example, an elastic body that melts at a temperature that does not adversely affect the auxiliary support member 29 may be used as the filling material 30 and filled in a heated and melted state.

○ 補助支持部材29には必ずしも、針の抜き跡が自然に塞がる針挿入部を備えていなくてもよい。
○ 圧力容器の用途によっては容器本体12の膨張代を有する構成とする必要はない。例えば、高圧気体が貯蔵された状態においても膨張し難い剛体で圧力容器が構成され、温度変化が少ない環境で使用される場合は、膨張代を有する必要はない。この場合、補助支持部材29及び充填物30を非弾性体で構成してもよい。補助支持部材29及び充填物30を非弾性体とする構成としては、補助支持部材29をフィルム製のチューブとし、充填物30として液体あるいは充填後に硬化可能な樹脂を使用する。この場合も、組み付け誤差等により、水素吸蔵用ユニット13の中心線が容器本体12の中心線に対して偏心したり、傾斜したりして隙間Δにバラツキが生じても、補助支持部材29は設定された位置に容易に配置される。また、充填物30が充填された状態では、水素吸蔵用ユニット13の周面と容器本体12の内周面とに圧接した状態に支持される。その結果、水素タンク11に径方向の振動が加わっても、水素吸蔵用ユニット13を端部で支持する熱媒管20に大きな曲げ応力が作用するのが回避され、耐久性が向上する。
The auxiliary support member 29 does not necessarily have to include a needle insertion portion that naturally closes the trace of the needle.
O It is not necessary to make the structure which has the expansion allowance of the container main body 12 depending on the use of a pressure vessel. For example, when the pressure vessel is made of a rigid body that does not easily expand even in a state where high-pressure gas is stored and is used in an environment with little temperature change, it is not necessary to have an expansion allowance. In this case, you may comprise the auxiliary | assistant support member 29 and the filler 30 with an inelastic body. As a configuration in which the auxiliary support member 29 and the filler 30 are inelastic, the auxiliary support member 29 is a film tube, and a liquid or a curable resin after filling is used as the filler 30. Even in this case, even if the center line of the hydrogen storage unit 13 is eccentric or inclined with respect to the center line of the container body 12 due to an assembly error or the like, the auxiliary support member 29 is not Easily placed at the set position. Further, in a state in which the filling material 30 is filled, the filling material 30 is supported in a state of being in pressure contact with the peripheral surface of the hydrogen storage unit 13 and the inner peripheral surface of the container body 12. As a result, even if radial vibration is applied to the hydrogen tank 11, it is possible to avoid a large bending stress from acting on the heat medium pipe 20 that supports the hydrogen storage unit 13 at the end, and the durability is improved.

○ 直線状の補助支持部材29を使用する場合、充填物30として充填する際から固体状態のものを充填してもよい。例えば、弾性体製の補助支持部材29に棒状体を充填物30として挿入してもよい。   When using the linear auxiliary support member 29, the solid auxiliary material 29 may be filled from the time of filling as the filling material 30. For example, a rod-shaped body may be inserted as the filler 30 in the auxiliary support member 29 made of an elastic body.

○ 補助支持部材29はチューブ状に限らず袋状であってもよい。
○ 環状の補助支持部材29を配置する収容溝28あるいは段差部32は、フィルタ23側ではなく、蓋部17a,17b側あるいは胴部14a側に設けてもよい。この場合は水素吸蔵用ユニット13を胴部14aに挿入する際に、補助支持部材29が水素吸蔵用ユニット13と干渉しないように胴部14a側に仮止めした状態で行う。
The auxiliary support member 29 is not limited to a tube shape and may be a bag shape.
The receiving groove 28 or the stepped portion 32 in which the annular auxiliary support member 29 is disposed may be provided not on the filter 23 side but on the lid portions 17a, 17b side or the trunk portion 14a side. In this case, when the hydrogen storage unit 13 is inserted into the body portion 14 a, the auxiliary support member 29 is temporarily fixed to the body portion 14 a side so as not to interfere with the hydrogen storage unit 13.

○ 補助支持部材29は全て同一の材質に限らない。例えば、収容溝28或いは段差部32に対応する部分と圧接する部分を別の材質として、収容溝28或いは段差部32に対応する部分を変形しにくい材質としても良い。この場合充填物30の充填前の状態でも補助支持部材29が収容溝28或いは段差部32から外れにくく、ライナ14を組み立てやすい。また補助支持部材29の断面も円形に限らない。   ○ All the auxiliary support members 29 are not limited to the same material. For example, the portion corresponding to the receiving groove 28 or the stepped portion 32 may be made of a different material, and the portion corresponding to the receiving groove 28 or the stepped portion 32 may be made of a material that is difficult to deform. In this case, the auxiliary support member 29 is unlikely to be detached from the receiving groove 28 or the stepped portion 32 even before the filling material 30 is filled, and the liner 14 can be easily assembled. The cross section of the auxiliary support member 29 is not limited to a circle.

○ ライナ14は水素吸蔵用ユニット13が固定される側のみ蓋部17aを有する構成としてもよい。例えば、蓋部17aが設けられる側と反対側は、補助支持部材29の配置及び充填物30の充填終了後、ライナ14の絞り加工を行ってドーム部14bを構成してもよい。また、ライナ14を、一方のドーム部14bを構成する蓋部17aと、他方のドーム部14bが一体に形成された胴部14aとで構成してもよい。   (Circle) the liner 14 is good also as a structure which has the cover part 17a only in the side by which the unit 13 for hydrogen storage is fixed. For example, on the side opposite to the side where the lid portion 17 a is provided, the dome portion 14 b may be configured by drawing the liner 14 after the placement of the auxiliary support member 29 and the filling of the filler 30. Further, the liner 14 may be composed of a lid portion 17a constituting one dome portion 14b and a body portion 14a in which the other dome portion 14b is integrally formed.

○ ライナ14は蓋部を備えず、両側とも絞り加工で形成する構成としてもよい。例えば、ライナの一方の側を絞り加工した状態で水素吸蔵用ユニット13を組み付けた後、補助支持部材29への充填物30の充填を行い、その後、ライナの他方の側を絞り加工する。その後、フィラメントワインディング及び加熱硬化により繊維強化樹脂層15を形成する。   The liner 14 may not be provided with a lid and may be formed by drawing both sides. For example, after assembling the hydrogen storage unit 13 with one side of the liner being drawn, the auxiliary support member 29 is filled with the filler 30 and then the other side of the liner is drawn. Thereafter, the fiber reinforced resin layer 15 is formed by filament winding and heat curing.

○ 熱交換器19は熱媒管20を介して片持ち状態でライナ14に支持される構成に限らず、従来技術のように熱媒管が容器本体12を貫通するとともに、熱媒管の両端で容器本体12に支持される構成のものであってもよい。   The heat exchanger 19 is not limited to the configuration supported by the liner 14 in a cantilever state via the heat medium pipe 20, and the heat medium pipe penetrates the container body 12 as in the prior art, and both ends of the heat medium pipe The structure supported by the container body 12 may be used.

○ 水素吸蔵用ユニット13の形状はほぼ円筒状に限らず、例えば、断面多角形状であってもよい。熱媒管20に固着されるフィン22の形状を、四角形にすれば四角形の筒状となり、六角形とすれば六角形の筒状となる。   The shape of the hydrogen storage unit 13 is not limited to a substantially cylindrical shape, and may be, for example, a polygonal cross section. If the shape of the fin 22 fixed to the heat transfer medium tube 20 is a quadrangle, the shape is a quadrangular cylinder, and if the fin 22 is a hexagon, the shape is a hexagonal cylinder.

○ 水素吸蔵用ユニット13は、熱媒管20にフィン22を備えずに、単に熱媒を流す構成とし、フィルタ23で囲まれた収容空間に、MH粉末を充填したり、水素吸蔵合金成形体を収容したりする構成としてもよい。   ○ The hydrogen storage unit 13 does not include the fins 22 in the heat medium tube 20 and simply allows the heat medium to flow. The housing space surrounded by the filter 23 is filled with MH powder or a hydrogen storage alloy molded body. It is good also as a structure which accommodates.

○ 水素吸蔵用ユニット13として、フィラメントワインディング及び加熱硬化により繊維強化樹脂層15が形成された後、バルブ27を取り付ける前に、フィルタ23で囲まれた収容空間にMH粉末を充填する構成としてもよい。   The hydrogen storage unit 13 may be configured to fill the accommodation space surrounded by the filter 23 with MH powder after the fiber reinforced resin layer 15 is formed by filament winding and heat curing and before the valve 27 is attached. .

○ 水素タンク11は燃料電池搭載電気自動車の水素源として搭載されて使用するものに限らず、例えば、水素エンジンの水素源やヒートポンプ等に適用してもよい。また、家庭用電源の燃料電池の水素源として使用してもよい。   The hydrogen tank 11 is not limited to the one used as a hydrogen source of an electric vehicle equipped with a fuel cell, and may be applied to a hydrogen source of a hydrogen engine, a heat pump, or the like, for example. Moreover, you may use as a hydrogen source of the fuel cell of a household power supply.

○ 圧力容器として水素を貯蔵する水素タンクに限らず、例えば窒素、圧縮天然ガス等の他のガスを貯蔵する圧力容器に適用してもよい。
○ 繊維強化樹脂の強化繊維は炭素繊維に限らず、ガラス繊維や炭化ケイ素系セラミック繊維やアラミド繊維等の一般に高弾性・高強度といわれるその他の繊維を強化繊維として使用してもよい。
O It may apply not only to the hydrogen tank which stores hydrogen as a pressure vessel but to a pressure vessel which stores other gas, such as nitrogen and compressed natural gas, for example.
The reinforcing fiber of the fiber reinforced resin is not limited to the carbon fiber, and other fibers generally called high elasticity and high strength such as glass fiber, silicon carbide ceramic fiber, and aramid fiber may be used as the reinforcing fiber.

○ ライナ14の材質はアルミニウム合金に限らず、気密性を確保可能でアルミニウムと同程度の比重の金属や、金属に限らずポリアミド、高密度ポリエチレン等の合成樹脂であってもよい。   The material of the liner 14 is not limited to an aluminum alloy, but may be a metal having a specific gravity similar to that of aluminum that can ensure airtightness, or a synthetic resin such as polyamide or high-density polyethylene.

〇 容器本体12はライナ14と繊維強化樹脂層15との複層構造に限らず、全体が金属製であってもよい。
以下の技術的思想(発明)は前記実施の形態から把握できる。
The container body 12 is not limited to the multilayer structure of the liner 14 and the fiber reinforced resin layer 15, and may be entirely made of metal.
The following technical idea (invention) can be understood from the embodiment.

(1)請求項1〜請求項3のいずれか一項に記載の発明において、前記補助支持部材は環状のチューブ状に形成され、少なくとも前記内蔵物の他端寄りに配置される。
(2)請求項1〜請求項3のいずれか一項に記載の発明において、前記補助支持部材は直線状のチューブ状に形成され、前記隙間に前記容器本体の軸方向に延びるように配置される。
(1) In the invention according to any one of claims 1 to 3, the auxiliary support member is formed in an annular tube shape, and is disposed at least near the other end of the built-in object.
(2) In the invention according to any one of claims 1 to 3, the auxiliary support member is formed in a straight tube shape, and is arranged to extend in the axial direction of the container body in the gap. The

(3)請求項1〜請求項8及び技術的思想(1),(2)のいずれか一項に記載の発明において、前記充填物は少なくとも充填時に液状のゴムである。
(4)請求項1〜請求項8及び技術的思想(1)〜(3)のいずれか一項に記載の発明において、前記圧力容器は水素を燃料とする自動車の燃料タンクとして使用される。
(3) In the invention according to any one of claims 1 to 8 and technical ideas (1) and (2), the filler is a liquid rubber at least at the time of filling.
(4) In the invention according to any one of claims 1 to 8 and technical ideas (1) to (3), the pressure vessel is used as a fuel tank of an automobile using hydrogen as fuel.

(5)請求項1〜請求項8及び前記技術的思想(1)〜(4)のいずれか一項に記載の発明において、前記圧力容器の容器本体は、中空状のライナと、該ライナの外面を覆う繊維強化樹脂層とを備え、前記ライナは他端側が開口部と蓋部とに分割されている。   (5) In the invention according to any one of claims 1 to 8 and the technical ideas (1) to (4), the container body of the pressure vessel includes a hollow liner, and the liner A fiber reinforced resin layer covering an outer surface, and the other end of the liner is divided into an opening and a lid.

(6)請求項8に記載の発明において、前記水素吸蔵ユニットは熱交換器を備え、該熱交換器の熱媒管への熱媒の導入、排出が前記容器本体の一端側から行われる。   (6) In the invention described in claim 8, the hydrogen storage unit includes a heat exchanger, and introduction and discharge of the heat medium to and from the heat medium pipe of the heat exchanger are performed from one end side of the container body.

(a)は第1の実施形態の水素貯蔵タンクの模式断面図、(b)はその部分拡大図。(A) is a schematic cross section of the hydrogen storage tank of 1st Embodiment, (b) is the elements on larger scale. (a)〜(c)は補助支持部材の組み付け手順を示す模式断面図。(A)-(c) is a schematic cross section which shows the assembly | attachment procedure of an auxiliary | assistant support member. (a)は第2の実施形態の水素貯蔵タンクの模式断面図、(b)は拡大部分断面図。(A) is a schematic cross section of the hydrogen storage tank of the second embodiment, (b) is an enlarged partial cross section. (a),(b)は別の実施形態の部分模式断面図。(A), (b) is a partial schematic cross section of another embodiment. 従来の圧力容器の模式断面図。The schematic cross section of the conventional pressure vessel.

符号の説明Explanation of symbols

Δ…隙間、11…圧力容器としての水素タンク、12…容器本体、13…内蔵物としての水素吸蔵用ユニット、29…補助支持部材、30…充填物。   Δ ... gap, 11 ... hydrogen tank as pressure vessel, 12 ... container body, 13 ... hydrogen storage unit as built-in material, 29 ... auxiliary support member, 30 ... filling.

Claims (8)

筒状の圧力容器に外形が筒状の内蔵物が少なくとも一端で支持された状態で収容される圧力容器の内蔵物支持方法であって、
前記内蔵物を一端が開放された状態の容器本体に対して、前記内蔵物の周面と前記容器本体の内周面との間に隙間を有する状態で開放端と反対側の端部において支持し、その状態で袋状又はチューブ状の補助支持部材を前記隙間に配置し、その補助支持部材内に加圧しながら充填物を充填して前記補助支持部材を前記内蔵物の周面と前記容器本体の内周面とに圧接した状態にし、前記内蔵物を支持する圧力容器の内蔵物支持方法。
A built-in object support method for a pressure vessel that is accommodated in a state in which a cylindrical built-in object is supported at least at one end in a cylindrical pressure container,
The built-in object is supported at the end opposite to the open end with a gap between the peripheral surface of the built-in object and the inner peripheral surface of the container body with respect to the container body with one end open. In this state, a bag-like or tube-like auxiliary support member is arranged in the gap, and the auxiliary support member is filled with a filling while being pressurized, and the auxiliary support member is placed in the peripheral surface of the built-in object and the container. A built-in object support method for a pressure vessel, which is in pressure contact with an inner peripheral surface of a main body and supports the built-in object.
前記補助支持部材及び前記充填物の少なくとも一方が弾性体で構成されている請求項1に記載の圧力容器の内蔵物支持方法。   The method for supporting a built-in object in a pressure vessel according to claim 1, wherein at least one of the auxiliary support member and the filler is formed of an elastic body. 前記補助支持部材が弾性体であり、前記充填物の充填時に前記弾性体が前記容器本体の膨張代を有するように加圧される請求項2に記載の圧力容器の内蔵物支持方法。   The method for supporting a built-in object in a pressure vessel according to claim 2, wherein the auxiliary support member is an elastic body, and the elastic body is pressurized so as to have an expansion allowance of the container main body when the filling is filled. 前記充填物の充填後、前記補助支持部材に対して前記圧力容器の軸方向に押付力を加えて前記弾性体が前記容器本体の膨張代を有するように支持する請求項2に記載の圧力容器の内蔵物支持方法。   3. The pressure vessel according to claim 2, wherein after the filling, the pressing force is applied to the auxiliary support member in the axial direction of the pressure vessel so that the elastic body has an expansion allowance of the vessel body. Built-in support method. 外形が筒状の内蔵物が少なくとも一端で支持された状態で収容された筒状の圧力容器であって、前記内蔵物は前記圧力容器の容器本体の内周面との間に隙間が存在する状態で容器本体に対して支持され、袋状又はチューブ状で充填物を充填可能な補助支持部材が前記隙間に配置され、その補助支持部材内に充填物が加圧された状態で充填されて前記補助支持部材が前記内蔵物の周面と前記容器本体の内周面とに圧接した状態で、前記内蔵物が支持されており、前記補助支持部材及び充填物の少なくとも一方が弾性体で構成されている圧力容器。   A cylindrical pressure vessel accommodated in a state where a cylindrical built-in object is supported at least at one end, and there is a gap between the built-in object and the inner peripheral surface of the container body of the pressure container An auxiliary support member that is supported with respect to the container body in a state and can be filled with a filling in a bag shape or a tube shape is disposed in the gap, and the auxiliary support member is filled in a pressurized state. The built-in object is supported in a state where the auxiliary support member is in pressure contact with the peripheral surface of the built-in object and the inner peripheral surface of the container body, and at least one of the auxiliary support member and the filler is formed of an elastic body. Pressure vessel. 前記充填物は前記弾性体が前記容器本体の膨張代を有するように加圧されている請求項5に記載の圧力容器。   The pressure container according to claim 5, wherein the filler is pressurized so that the elastic body has an expansion allowance of the container body. 前記補助支持部材は直線状のチューブ状に形成され、前記隙間に前記容器本体の軸方向に延びるように配置されている請求項5又は請求項6に記載の圧力容器。   The pressure container according to claim 5 or 6, wherein the auxiliary support member is formed in a straight tube shape and is disposed in the gap so as to extend in an axial direction of the container main body. 前記内蔵物は、水素吸蔵物質が充填された水素吸蔵用ユニットである請求項5〜請求項7のいずれか一項に記載の圧力容器。   The pressure vessel according to any one of claims 5 to 7, wherein the built-in material is a hydrogen storage unit filled with a hydrogen storage material.
JP2004145219A 2004-05-14 2004-05-14 Method for supporting built-in object of pressure vessel and pressure vessel Expired - Fee Related JP4199155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145219A JP4199155B2 (en) 2004-05-14 2004-05-14 Method for supporting built-in object of pressure vessel and pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145219A JP4199155B2 (en) 2004-05-14 2004-05-14 Method for supporting built-in object of pressure vessel and pressure vessel

Publications (2)

Publication Number Publication Date
JP2005325936A true JP2005325936A (en) 2005-11-24
JP4199155B2 JP4199155B2 (en) 2008-12-17

Family

ID=35472447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145219A Expired - Fee Related JP4199155B2 (en) 2004-05-14 2004-05-14 Method for supporting built-in object of pressure vessel and pressure vessel

Country Status (1)

Country Link
JP (1) JP4199155B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112256A (en) * 2019-01-16 2020-07-27 トヨタ自動車株式会社 Pressure container
KR20230095149A (en) * 2021-12-21 2023-06-29 주식회사 에테르씨티 Pressure vessel with outer shell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112256A (en) * 2019-01-16 2020-07-27 トヨタ自動車株式会社 Pressure container
KR20230095149A (en) * 2021-12-21 2023-06-29 주식회사 에테르씨티 Pressure vessel with outer shell
KR102632593B1 (en) * 2021-12-21 2024-02-05 주식회사 에테르씨티 Pressure vessel with outer shell

Also Published As

Publication number Publication date
JP4199155B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US7169214B2 (en) High pressure tank
US7326281B2 (en) Hydrogen storage tank
US8051977B2 (en) Hydrogen storage tank
JP4741718B2 (en) How to replace the open / close valve
US7322398B2 (en) Pressure tank
US7946446B2 (en) Gas storage tank and method of manufacturing the same
JP2010065845A (en) Apparatus for gas storage
WO2014150691A1 (en) Threaded insert for compact cryogenic-capable pressure vessels
JP4219194B2 (en) Pressure vessel
JP4199155B2 (en) Method for supporting built-in object of pressure vessel and pressure vessel
JP4393155B2 (en) Pressure vessel
JP4575107B2 (en) Pressure vessel
WO2015078565A1 (en) Device for storing gas
JP4314037B2 (en) High pressure tank
JP4213512B2 (en) Pressure vessel
JP2008196575A (en) Hydrogen storage tank
JP4370115B2 (en) Hydrogen storage tank and manufacturing method thereof
JP4511851B2 (en) High pressure tank and manufacturing method thereof
JP2006097785A (en) Hydrogen storage tank and cap
JP4675619B2 (en) Pressure vessel
JP2008095730A (en) Gas storage device
JP2024070745A (en) Gas bottles
JP2023114362A (en) Manufacturing method for tank
JP2023072536A (en) high pressure tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees