JP2005324995A - Carbon particle, its manufacturing method and use - Google Patents

Carbon particle, its manufacturing method and use Download PDF

Info

Publication number
JP2005324995A
JP2005324995A JP2004145746A JP2004145746A JP2005324995A JP 2005324995 A JP2005324995 A JP 2005324995A JP 2004145746 A JP2004145746 A JP 2004145746A JP 2004145746 A JP2004145746 A JP 2004145746A JP 2005324995 A JP2005324995 A JP 2005324995A
Authority
JP
Japan
Prior art keywords
carbon
carbon particles
particles
particle
carbon particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145746A
Other languages
Japanese (ja)
Inventor
Kotaro Yano
幸太郎 矢野
Toshio Morita
利夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004145746A priority Critical patent/JP2005324995A/en
Publication of JP2005324995A publication Critical patent/JP2005324995A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon particle having high crystallinity, little in agglomeration, uniform in particle diameter, and capable of using as a display material for an electronic paper, an additive for a cell electrode, and a lubricant, and its manufacturing method. <P>SOLUTION: This carbon particle can be obtained by a method comprising a process in which an organic compound containing carbon is thermally decomposed in a vapor phase at a temperature not higher than 1,500°C to form a carbon particle, and a process in which the carbon particle is treated for graphitization at a temperature of not lower than 2,500°C, and the cross section of its primary particle is a polygon and it has substantially a concentric multilayered structure and an average particle diameter of 50-1,000 nm, and its manufacturing method is also presented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭素粒子、その製造方法及びその炭素粒子を含有する複合材料に関する。
本発明の炭素粒子は、潤滑材、研磨材、切削材、一次電池、二次電池、燃料電池等の電極材の添加剤、電子ペーパーの表示材料、電子放出源、ゴム・樹脂等のフィラーなどに用いられる。
The present invention relates to carbon particles, a production method thereof, and a composite material containing the carbon particles.
Carbon particles of the present invention include lubricants, abrasives, cutting materials, primary batteries, secondary batteries, additives for electrode materials such as fuel cells, electronic paper display materials, electron emission sources, fillers such as rubber and resin, etc. Used for.

電子ペーパーは書籍や文書の情報を薄い装置に表示するもので、帯電させた白または黒の粒子に電圧をかけ表面に移動させ文字を表示する。黒色粒子として従来のカーボンブラックでは、個々の一次粒子が繋がって凝集を形成しており、白い粒子と絡み合うために電子ペーパーの表示材料としては不適切であった。   Electronic paper displays information on books and documents on a thin device, and applies voltage to charged white or black particles to move them to the surface to display characters. In conventional carbon black as black particles, individual primary particles are connected to form aggregates, and are intertwined with white particles, and thus are inappropriate as display materials for electronic paper.

電池電極は一般に導電性が高いことが望まれ、例えばリチウムイオン二次電池の負極には、気相法炭素繊維など高導電性の添加剤が用いられている。   The battery electrode is generally desired to have high conductivity. For example, a highly conductive additive such as vapor grown carbon fiber is used for the negative electrode of a lithium ion secondary battery.

気相で炭化水素を熱分解し、炭素繊維を製造する製造方法の一つに気化法がある(特公平4−13448号公報:特許文献1)。この気化法は有機遷移金属化合物の溶解した有機物の溶液を気化させて加熱帯域中で高温反応させるものである。   One of the production methods for producing carbon fibers by pyrolyzing hydrocarbons in the gas phase is a vaporization method (Japanese Patent Publication No. 4-13448: Patent Document 1). In this vaporization method, an organic solution in which an organic transition metal compound is dissolved is vaporized and reacted at a high temperature in a heating zone.

一方、原料液滴を反応管壁面に吹き付ける方法により分岐状の炭素繊維が得られる方法がある(特許第2778434号明細書:特許文献2)。この方法では、原料液滴が反応管壁面に供給され、反応管壁面で繊維の成長が起こり、反応管を覆った後は、液滴が炭素繊維上に吹き付けられ、繊維上に触媒が生成し、繊維を基板として新たな繊維が成長し、分岐が起き、分岐状炭素繊維が高収率で得られる。
これらの炭素繊維の製造方法では、遷移金属化合物から生じる触媒が必要である。すなわち、触媒が核となり、それから炭素が繊維状に成長すると考えられている。
On the other hand, there is a method in which branched carbon fibers can be obtained by spraying raw material droplets onto the reaction tube wall surface (Japanese Patent No. 2778434: Patent Document 2). In this method, raw material droplets are supplied to the reaction tube wall surface, fiber growth occurs on the reaction tube wall surface, and after covering the reaction tube, the droplets are sprayed onto the carbon fiber, and a catalyst is generated on the fiber. A new fiber grows using the fiber as a substrate, branching occurs, and a branched carbon fiber is obtained in a high yield.
These carbon fiber production methods require a catalyst generated from a transition metal compound. That is, it is believed that the catalyst becomes the nucleus, and then the carbon grows in a fibrous form.

また、炭素粒子としては、無定形炭素質からなるサブミクロン微粒子のカーボンブラックなどが良く知られているが、結晶化度は低く、凝集しやすい。これを熱処理によって結晶化度を高めた黒鉛化カーボンブラックも知られているが、大きさが不揃いで、形状もまちまちであり、黒鉛の基底面が表面に並ぶ、中心に空洞が生じた構造となる(図3)。   As the carbon particles, submicron fine particle carbon black made of amorphous carbon is well known, but the degree of crystallinity is low and the carbon particles tend to aggregate. Graphitized carbon black, which has a higher degree of crystallinity by heat treatment, is also known, but the size is uneven, the shape varies, and the base of the graphite is aligned on the surface. (FIG. 3).

特公平4−13448号公報Japanese Examined Patent Publication No. 4-13448 特許第2778434号明細書Japanese Patent No. 2778434

本発明の目的の一つは、電子ペーパー用表示材料や電池電極添加剤や潤滑剤に用いることができる、結晶性が高く、凝集が少ない、粒径の揃った炭素粒子及びその製造方法を提供することにある。   One of the objects of the present invention is to provide carbon particles having high crystallinity, low aggregation, uniform particle size, and a method for producing the same, which can be used for display materials for electronic paper, battery electrode additives, and lubricants. There is to do.

[1]一次粒子の断面が多角形であり、実質的に同心状の多層構造を有し、平均粒子径が50〜1000nmであることを特徴とする炭素粒子。
[2]中心部を二個以上有する複数核の炭素粒子を30質量%以下含む前記1に記載の炭素粒子。
[3]ラマン散乱スペクトルの1341〜1360cm-1のバンド(dライン)のピーク高さ(Id)及び1570〜1580cm-1のバンド(gライン)のピーク高さ(Ig)の比(Id/Ig)が0.3以下である前記1または2に記載の炭素粒子。
[4]ラマン散乱スペクトルのgラインの半値幅が、40cm-1以下である前記1乃至3のいずれかに記載の炭素粒子。
[5]X線回折法による(002)面の平均面間隔d002が、0.335〜0.340nmである前記1乃至4のいずれかに記載の炭素粒子。
[6]炭素を含む有機化合物を気相で熱分解し炭素粒子を生成する工程、及び得られた炭素粒子を黒鉛化処理する工程を含む前記1乃至5のいずれかに記載の炭素粒子の製造方法。
[7]熱分解により炭素粒子を生成する工程における熱分解温度が1500℃以下である前記6記載の炭素粒子の製造方法。
[8]黒鉛化処理する工程が、2500℃以上の温度で熱処理することにより行われる前記6に記載の炭素粒子の製造方法。
[9]前記1乃至5のいずれかに記載の炭素粒子を用いた表示材料。
[10]前記1乃至5のいずれかに記載の炭素粒子を用いた電極材料。
[11]前記9の表示材料を表示部に用いたディスプレー。
[12]前記10の電極材料を用いた電池用電極。
[13]前記12の電池用電極を用いた電池。
[1] Carbon particles, wherein the primary particles have a polygonal cross section, a substantially concentric multilayer structure, and an average particle diameter of 50 to 1000 nm.
[2] The carbon particle as described in 1 above, comprising 30% by mass or less of multinuclear carbon particles having two or more central parts.
[3] Ratio of peak height (Id) of 1341-1360 cm −1 band (d line) and peak height (Ig) of 1570-1580 cm −1 band (g line) of the Raman scattering spectrum (Id / Ig 3) The carbon particle according to 1 or 2 above, which is 0.3 or less.
[4] The carbon particle as described in any one of 1 to 3 above, wherein the half width of the g line of the Raman scattering spectrum is 40 cm −1 or less.
[5] The average spacing d 002 of the X-ray diffraction (002) plane, the carbon particle according to any one a is of 1 to 4 0.335~0.340nm.
[6] The production of carbon particles according to any one of 1 to 5 including a step of pyrolyzing an organic compound containing carbon in a gas phase to generate carbon particles, and a step of graphitizing the obtained carbon particles. Method.
[7] The method for producing carbon particles as described in 6 above, wherein the pyrolysis temperature in the step of producing carbon particles by pyrolysis is 1500 ° C. or lower.
[8] The method for producing carbon particles as described in 6 above, wherein the graphitizing step is performed by heat treatment at a temperature of 2500 ° C. or higher.
[9] A display material using the carbon particles according to any one of 1 to 5 above.
[10] An electrode material using the carbon particles according to any one of 1 to 5 above.
[11] A display using the display material of 9 above for a display unit.
[12] A battery electrode using the 10 electrode material.
[13] A battery using the 12 battery electrode.

本発明の炭素粒子は、結晶性が高く導電性に優れ、凝集が少なく、粒径が揃っているので、潤滑材、研磨材、切削材、各種電池(一次電池、二次電池、燃料電池等)の電極材の添加剤、電子ペーパーの表示材料、電子放出源、ゴム・樹脂等のフィラーとして好ましく使用することができる。
また、この特異な形態を有する炭素粒子は、簡便で、経済性に優れた方法で製造することができる。
Since the carbon particles of the present invention have high crystallinity, excellent conductivity, little aggregation, and uniform particle size, lubricants, abrasives, cutting materials, various batteries (primary batteries, secondary batteries, fuel cells, etc.) ) Electrode material additives, electronic paper display materials, electron emission sources, rubber and resin fillers, and the like.
Moreover, the carbon particle which has this peculiar form can be manufactured by the method which was simple and excellent in economical efficiency.

本発明の炭素粒子は、一次粒子の断面が多角形である。炭素粒子の断面が多角形となることは、粒子外面が(002)面からなることとなり、その結果、粒子表面の活性を抑制することにつながる。多角形としては、好ましくは6〜14角形であり、より好ましくは7〜10角形である。
断面が多角形である本発明の炭素粒子は、多面体あるいはそれに類する形状を有している。そしてその各面が(002)面から形成されることとなり、粒子全体として表面の活性を低下させうる。
In the carbon particles of the present invention, the primary particles have a polygonal cross section. When the cross section of the carbon particle is a polygon, the outer surface of the particle is a (002) surface, and as a result, the activity of the particle surface is suppressed. As a polygon, Preferably it is a 6-14 square, More preferably, it is a 7-10 square.
The carbon particles of the present invention having a polygonal cross section have a polyhedron or similar shape. Each surface is formed from the (002) surface, and the surface activity of the entire particle can be reduced.

本発明の炭素粒子は、実質的に同心状の多層構造を有する。実質的に同心状の多層構造とは、多面体あるいはそれに類する形状が同心状で層状に重なってなる構造であり、各層は炭素の(002)面から形成されることが好ましい。
層の数は粒径にもよるので一概に言えないが、通常50層〜2000層であり、好ましくは100層〜1000層である。
The carbon particles of the present invention have a substantially concentric multilayer structure. The substantially concentric multilayer structure is a structure in which polyhedrons or similar shapes are concentric and overlapped in layers, and each layer is preferably formed from a (002) plane of carbon.
Although the number of layers depends on the particle size, it cannot be generally described, but is usually 50 to 2000 layers, preferably 100 to 1000 layers.

また、本発明の炭素粒子は、その中心部(核に相当する部分;以下「核」という)が複数存在する複数核の炭素粒子を含んでいても良い。複数核の炭素粒子とは、複数の単核炭素粒子に共通する上層を有するものをいい、二核のものに限らず、三核以上のものを含んでいても良い。
このような複数核の炭素粒子を含む場合、その含有量は30質量%以下が好ましく、さらに好ましくは10質量%以下である。含有量の下限は特になく、0質量%、すなわち実質的に複数核の炭素粒子を含まない場合も好ましい。
In addition, the carbon particles of the present invention may include multi-nuclear carbon particles having a plurality of central portions (portions corresponding to nuclei; hereinafter referred to as “nuclei”). The multinuclear carbon particles are those having an upper layer common to a plurality of mononuclear carbon particles, and are not limited to those having two nuclei, and may include those having three or more nuclei.
When such multi-nuclear carbon particles are included, the content is preferably 30% by mass or less, and more preferably 10% by mass or less. There is no particular lower limit of the content, and 0% by mass, that is, a case where substantially no multinuclear carbon particles are contained is also preferable.

本発明の炭素粒子の平均粒径は、50〜1000nmである。平均粒径が小さ過ぎると分散性に劣り、また凝集しやすくなる。好ましい平均粒径は80〜500nmであり、特に好ましい平均粒径は100〜300nmである。   The average particle diameter of the carbon particles of the present invention is 50 to 1000 nm. If the average particle size is too small, the dispersibility is inferior and aggregation tends to occur. A preferable average particle diameter is 80 to 500 nm, and a particularly preferable average particle diameter is 100 to 300 nm.

本発明の炭素粒子の結晶度は、高い方が望ましい。
具体的には、ラマン散乱スペクトルの1341〜1360cm-1のバンド(dライン)のピーク高さ(Id)及び1570〜1580cm-1のバンド(gライン)のピーク高さ(Ig)の比(Id/Ig)が0.3以下であることが望ましく、ラマンスペクトルのgラインの半価幅が40cm-1以下が望ましく、また、X線回折法による(002)面の平均面間隔d002が、0.335〜0.340nmが望ましい。
The crystallinity of the carbon particles of the present invention is desirably higher.
Specifically, the ratio (Id) of the peak height (Id) of the band (d line) of 1341-1360 cm −1 and the peak height (Ig) of the band (g line) of 1570-1580 cm −1 of the Raman scattering spectrum. / Ig) is desirably 0.3 or less, the half width of the g line of the Raman spectrum is desirably 40 cm −1 or less, and the average interplanar spacing d 002 of the (002) plane by the X-ray diffraction method is 0.335 to 0.340 nm is desirable.

本発明の炭素粒子は、例えば、炭素を含む有機化合物を気相で熱分解し炭素粒子を生成する工程、及び得られた炭素粒子を黒鉛化処理する工程を含む方法により製造することができる。   The carbon particles of the present invention can be produced, for example, by a method including a step of pyrolyzing an organic compound containing carbon in a gas phase to generate carbon particles, and a step of graphitizing the obtained carbon particles.

本発明の炭素粒子の原料となる炭素含有有機化合物としては、炭素を含有する化合物で、反応温度において気体状態であり、熱分解して炭素を生成するものである。具体的にはベンゼン、トルエン、キシレン等の芳香族化合物類;ヘキサン、ヘプタン等の直鎖状の炭化水素類;シクロヘキサン等の環式炭化水素類;メタノール、エタノール、ブタノール等のアルコール類;揮発油、灯油などの油類;メタン、エタン、プロパン、エチレン、一酸化炭素、二酸化炭素、天然ガスなどのガス類が挙げられる。芳香族化合物が好ましく、さらにはベンゼンまたはトルエンが好ましく、特にベンゼンが好ましい。これらの炭素含有化合物は単体でも2種類以上混合しても用いることができる。   The carbon-containing organic compound used as the raw material for the carbon particles of the present invention is a compound containing carbon that is in a gaseous state at the reaction temperature and is pyrolyzed to produce carbon. Specifically, aromatic compounds such as benzene, toluene and xylene; linear hydrocarbons such as hexane and heptane; cyclic hydrocarbons such as cyclohexane; alcohols such as methanol, ethanol and butanol; volatile oil And oils such as kerosene; gases such as methane, ethane, propane, ethylene, carbon monoxide, carbon dioxide, and natural gas. Aromatic compounds are preferred, benzene or toluene is more preferred, and benzene is particularly preferred. These carbon-containing compounds can be used alone or in combination of two or more.

炭素を含有する上記の原料化合物は、気化した状態でキャリアガスにより反応装置内に供給されることが望ましいが、液体状態で噴霧して反応装置内で気化させることも可能である。   The raw material compound containing carbon is desirably supplied into the reactor by a carrier gas in a vaporized state, but can be vaporized in the reactor by spraying in a liquid state.

キャリアガスとしては、原料化合物と反応しないものを使用することができる。例えば、窒素ガス、アルゴン、ヘリウム、水素ガス等が挙げられ、原料化合物の分解反応を制御する点から水素ガスが好ましい。キャリアガスの量は原料化合物1モルに対して1〜100モル部が適当である。   As the carrier gas, one that does not react with the raw material compound can be used. For example, nitrogen gas, argon, helium, hydrogen gas and the like can be mentioned, and hydrogen gas is preferable from the viewpoint of controlling the decomposition reaction of the raw material compound. The amount of carrier gas is suitably 1 to 100 mol parts per mol of the raw material compound.

反応温度(熱分解温度)は、炭素含有化合物が分解して炭素(炭素核)を生じて、粒成長が起こり、炭素粒子を生成する温度であれば特に限定されないが、収率が高いことと装置の容易性、操作性、経済性から、約1500℃以下が好ましく、約1100〜約1500℃がさらに好ましい。   The reaction temperature (thermal decomposition temperature) is not particularly limited as long as it is a temperature at which the carbon-containing compound decomposes to produce carbon (carbon nuclei), grain growth occurs, and carbon particles are generated, but the yield is high. From the ease of operation, operability, and economy, the temperature is preferably about 1500 ° C. or less, more preferably about 1100 to about 1500 ° C.

続いて、上記熱分解反応により生成した炭素粒子を黒鉛化処理する。
黒鉛化処理は、炭素粒子の結晶性をさらに向上させるために行うものであり、好ましくは不活性ガス雰囲気で2500℃以上の温度で熱処理することにより行う。不活性ガスはアルゴン、ヘリウム、窒素ガス、特にアルゴンが好ましい。黒鉛化の前に、タール分などを除去するため、約1000〜約1300℃で焼成処理することも必要に応じて可能である。
Subsequently, the carbon particles generated by the thermal decomposition reaction are graphitized.
The graphitization treatment is performed to further improve the crystallinity of the carbon particles, and is preferably performed by heat treatment at a temperature of 2500 ° C. or higher in an inert gas atmosphere. The inert gas is preferably argon, helium, nitrogen gas, especially argon. Prior to graphitization, a firing treatment at about 1000 to about 1300 ° C. may be performed as necessary in order to remove a tar content and the like.

熱分解に用いる具体的な装置としては、例えば図1にフロー図を示すような装置を用いることができる。
原料液(1)は、気化器(2)で加熱気化される。加熱温度は原料化合物の種類にもよるが、通常100〜800℃、好ましくは200〜700℃程度である。気化した原料化合物はキャリアガス(3)によって管路に運ばれ、原料濃度を調整等するための別途のキャリアガス(4)とスタチックミキサー(5)等により混合された後、加熱炉(6)に導入される。加熱炉は、回収等の容易さの点から縦型反応管タイプのものが好ましい。
加熱炉で生成した炭素粒子は、回収後、黒鉛化処理され、本発明の炭素粒子となる。
As a specific apparatus used for thermal decomposition, for example, an apparatus whose flow diagram is shown in FIG. 1 can be used.
The raw material liquid (1) is heated and vaporized by the vaporizer (2). Although heating temperature is based also on the kind of raw material compound, it is 100-800 degreeC normally, Preferably it is about 200-700 degreeC. The vaporized raw material compound is transported to the pipeline by the carrier gas (3), mixed with a separate carrier gas (4) for adjusting the raw material concentration and the like by a static mixer (5), and then heated in the heating furnace (6 ). The heating furnace is preferably of a vertical reaction tube type from the viewpoint of easy recovery.
The carbon particles generated in the heating furnace are recovered and graphitized to form the carbon particles of the present invention.

本発明の製造方法においては、触媒等の他の成分の存在を必要としない。そのため、触媒由来の金属不純物の混入がなく、得られる炭素粒子中の金属含有量が少ない。   The production method of the present invention does not require the presence of other components such as a catalyst. Therefore, there is no mixing of metal impurities derived from the catalyst, and the metal content in the obtained carbon particles is small.

本発明の炭素粒子は、結晶性が高く導電性に優れ、凝集が少なく、粒径が揃っているので、潤滑材、研磨材、切削材、各種電池(一次電池、二次電池、燃料電池等)の電極材の添加剤、電子ペーパーの表示材料、電子放出源、ゴム・樹脂等のフィラーとして使用することができる。   Since the carbon particles of the present invention have high crystallinity, excellent conductivity, little aggregation, and uniform particle size, lubricants, abrasives, cutting materials, various batteries (primary batteries, secondary batteries, fuel cells, etc.) ) Electrode material additive, electronic paper display material, electron emission source, rubber and resin filler.

本発明の炭素粒子は、有機溶剤類、油脂類等に分散させて、あるいはそのままで、機械部品摺動部に塗布または添加することにより潤滑剤として用いることができる。本発明の炭素粒子は粒子径が揃っており、また結晶性が高いので、潤滑剤として用いた場合には摺動性及び潤滑性が高いという利点を有する。   The carbon particles of the present invention can be used as a lubricant by being dispersed or dispersed in organic solvents, oils and fats, etc. or applied to a sliding part of a machine part as it is. Since the carbon particles of the present invention have a uniform particle diameter and high crystallinity, when used as a lubricant, the carbon particles have the advantage of high slidability and lubricity.

本発明の炭素粒子は、液体に分散させることにより、柔らかい物質の研磨材あるいは切削材として用いることができる。本発明の炭素粒子は粒子径が揃っているので、研磨材等として用いた場合には仕上げ面の凹凸が少なくできるという利点を有する。   The carbon particles of the present invention can be used as a soft material abrasive or cutting material by being dispersed in a liquid. Since the carbon particles of the present invention have a uniform particle diameter, when used as an abrasive or the like, there is an advantage that the unevenness of the finished surface can be reduced.

本発明の炭素粒子は、各種電池の電極の添加剤として用いることができる。電極主剤とバインダーに本発明の炭素粒子を添加することにより、導電性が向上する。   The carbon particles of the present invention can be used as an additive for various battery electrodes. By adding the carbon particles of the present invention to the electrode main agent and the binder, the conductivity is improved.

本発明の炭素粒子は、電子ペーパーの表示用の黒色粒子として用いることができる。電子ペーパーは書籍や文書の情報を薄い装置に表示するもので、帯電させた白または黒の粒子に電圧をかけ表面に移動させ文字を表示するものであり、画質の向上には表示用の粒子の大きさが揃っていることが不可欠となる。本発明の炭素粒子は粒子径が揃っているので、電子ペーパー用の黒色粒子として用いた場合には高精細の電子ペーパーとすることが可能となる。   The carbon particles of the present invention can be used as black particles for displaying electronic paper. Electronic paper displays information on books and documents on a thin device. It displays voltage by applying voltage to charged white or black particles and moving them to the surface. Display particles are used to improve image quality. It is indispensable to have the same size. Since the carbon particles of the present invention have a uniform particle size, when used as black particles for electronic paper, it becomes possible to obtain high-definition electronic paper.

本発明の炭素粒子は、その多角形の角を利用することにより電子放出源として用いることができ、ディスプレイの材料として使用することができる。   The carbon particles of the present invention can be used as an electron emission source by utilizing the polygonal corners, and can be used as a display material.

以下、本発明を実施例及び比較例をあげて具体的に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these examples.

実施例1:
図1に示した装置を用いて炭素粒子を製造した。縦型加熱炉(内径370mm、長さ2000mm)の頂部に原料ガス供給ノズルを取り付けた。系内に窒素ガスを流通し、酸素ガスを追い出した後、水素ガスを流通し、系内を水素ガス雰囲気に置換した。その後、反応器の昇温を開始し1250℃まで温度を上げた。原料にはベンゼンを用いた。原料を気化させるために、500℃に加熱した気化器を設置し、原料液をポンプで気化器に供給した。反応の際には気化器に原料液を30g/分、水素ガスを50L/分供給した。また反応管上部フランジより水素ガスを230L/分流通し、スタチックミキサーでガス混合を行い反応管へ導入した。
この状態で1時間反応させ、原料ベンゼンに対して収率32%で炭素粒子を得た。得られた炭素粒子をアルゴン雰囲気中で2800℃で30分加熱して炭素粒子を得た。
生成した炭素粒子を透過型電子顕微鏡で観察したところ、図2のように粒径のそろった多角形の粒子であった。また、平均粒子径は約200nmであり、X線回折法により求めた(002)面の平均面間隔d002は0.339nmであった。
この炭素粒子のラマン散乱分析(測定条件:測定レーザー波長514.5nm、出力100mW、スリット500μm、露光時間900秒)を行ったスペクトルチャートを図4に示す。このチャートから読み取った(Id/Ig)は0.22、半値幅(gライン)は31cm-1であった。
Example 1:
Carbon particles were produced using the apparatus shown in FIG. A source gas supply nozzle was attached to the top of a vertical heating furnace (inner diameter: 370 mm, length: 2000 mm). Nitrogen gas was circulated in the system and oxygen gas was expelled, then hydrogen gas was circulated and the system was replaced with a hydrogen gas atmosphere. Thereafter, the temperature of the reactor was increased and the temperature was increased to 1250 ° C. Benzene was used as a raw material. In order to vaporize the raw material, a vaporizer heated to 500 ° C. was installed, and the raw material liquid was supplied to the vaporizer by a pump. During the reaction, the raw material liquid was supplied to the vaporizer at 30 g / min and hydrogen gas was supplied at 50 L / min. Further, hydrogen gas was circulated at 230 L / min from the upper flange of the reaction tube, gas was mixed with a static mixer and introduced into the reaction tube.
In this state, the reaction was performed for 1 hour to obtain carbon particles with a yield of 32% based on the raw material benzene. The obtained carbon particles were heated at 2800 ° C. for 30 minutes in an argon atmosphere to obtain carbon particles.
When the produced carbon particles were observed with a transmission electron microscope, they were polygonal particles having a uniform particle size as shown in FIG. The average particle diameter is about 200 nm, the average spacing d 002 of was determined by X-ray diffraction method (002) plane was 0.339 nm.
FIG. 4 shows a spectrum chart obtained by performing Raman scattering analysis (measurement conditions: measurement laser wavelength 514.5 nm, output 100 mW, slit 500 μm, exposure time 900 seconds) of the carbon particles. The (Id / Ig) read from this chart was 0.22, and the half-value width (g line) was 31 cm −1 .

比較例:
市販のカーボンブラック(ショウブラックIP200,昭和キャボット株式会社製)をアルゴン雰囲気中で2800℃、30分間加熱して、黒鉛化カーボンブラックを得た。
得られた黒鉛化カーボンブラックの透過型電子顕微鏡写真を図3に示す。図3から、黒鉛化カーボンブラックは、大きさが不揃いで、形状もまちまちであり、黒鉛の基底面が表面に並ぶ、中心に空洞が生じた構造であった。
Comparative example:
Commercially available carbon black (Show Black IP200, Showa Cabot Co., Ltd.) was heated in an argon atmosphere at 2800 ° C. for 30 minutes to obtain graphitized carbon black.
A transmission electron micrograph of the graphitized carbon black obtained is shown in FIG. From FIG. 3, the graphitized carbon black has a structure in which the size is uneven, the shape is various, and the bottom surface of the graphite is lined up on the surface and a cavity is formed in the center.

本発明の炭素粒子の製法における熱分解工程を実施する装置のフロー図。The flowchart of the apparatus which implements the thermal decomposition process in the manufacturing method of the carbon particle of this invention. 実施例1で製造した炭素粒子の透過電子顕微鏡写真。2 is a transmission electron micrograph of carbon particles produced in Example 1. FIG. 比較例で製造した黒鉛化処理カーボンブラック。Graphitized carbon black produced in a comparative example. 実施例1で製造した炭素粒子のラマンスペクトル図。The Raman spectrum figure of the carbon particle manufactured in Example 1. FIG.

符号の説明Explanation of symbols

1 原料化合物
2 気化器
3,4 キャリアガス
5 撹拌装置
6 加熱炉

DESCRIPTION OF SYMBOLS 1 Raw material compound 2 Vaporizer 3, 4 Carrier gas 5 Stirrer 6 Heating furnace

Claims (13)

一次粒子の断面が多角形であり、実質的に同心状の多層構造を有し、平均粒子径が50〜1000nmであることを特徴とする炭素粒子。   Carbon particles, wherein the primary particles have a polygonal cross section, have a substantially concentric multilayer structure, and have an average particle diameter of 50 to 1000 nm. 中心部を二個以上有する複数核の炭素粒子を30質量%以下含む請求項1に記載の炭素粒子。   The carbon particle according to claim 1, comprising 30% by mass or less of multinuclear carbon particles having two or more central parts. ラマン散乱スペクトルの1341〜1360cm-1のバンド(dライン)のピーク高さ(Id)及び1570〜1580cm-1のバンド(gライン)のピーク高さ(Ig)の比(Id/Ig)が0.3以下である請求項1または2に記載の炭素粒子。 The ratio (Id / Ig) of the peak height (Id) of the band (d line) of 1341-1360 cm −1 and the peak height (Ig) of the band (g line) of 1570-1580 cm −1 of the Raman scattering spectrum is 0. The carbon particle according to claim 1 or 2, which is .3 or less. ラマン散乱スペクトルのgラインの半値幅が、40cm-1以下である請求項1乃至3のいずれかに記載の炭素粒子。 The carbon particle according to any one of claims 1 to 3, wherein a half width of a g line of a Raman scattering spectrum is 40 cm -1 or less. X線回折法による(002)面の平均面間隔d002が、0.335〜0.340nmである請求項1乃至4のいずれかに記載の炭素粒子。 Mean spacing d 002 of the X-ray diffraction (002) plane, the carbon particle according to any one of claims 1 to 4 is 0.335~0.340Nm. 炭素を含む有機化合物を気相で熱分解し炭素粒子を生成する工程、及び得られた炭素粒子を黒鉛化処理する工程を含む請求項1乃至5のいずれかに記載の炭素粒子の製造方法。   The method for producing carbon particles according to any one of claims 1 to 5, comprising a step of pyrolyzing an organic compound containing carbon in a gas phase to produce carbon particles, and a step of graphitizing the obtained carbon particles. 熱分解により炭素粒子を生成する工程における熱分解温度が1500℃以下である請求項6記載の炭素粒子の製造方法。   The method for producing carbon particles according to claim 6, wherein the pyrolysis temperature in the step of producing carbon particles by pyrolysis is 1500 ° C or lower. 黒鉛化処理する工程が、2500℃以上の温度で熱処理することにより行われる請求項6に記載の炭素粒子の製造方法。   The method for producing carbon particles according to claim 6, wherein the graphitizing step is performed by heat treatment at a temperature of 2500 ° C. or higher. 請求項1乃至5のいずれかに記載の炭素粒子を用いた表示材料。   A display material using the carbon particles according to claim 1. 請求項1乃至5のいずれかに記載の炭素粒子を用いた電極材料。   The electrode material using the carbon particle in any one of Claims 1 thru | or 5. 請求項9の表示材料を表示部に用いたディスプレー。   A display using the display material of claim 9 in a display section. 請求項10の電極材料を用いた電池用電極。   A battery electrode using the electrode material according to claim 10. 請求項12の電池用電極を用いた電池。
A battery using the battery electrode according to claim 12.
JP2004145746A 2004-05-17 2004-05-17 Carbon particle, its manufacturing method and use Pending JP2005324995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145746A JP2005324995A (en) 2004-05-17 2004-05-17 Carbon particle, its manufacturing method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145746A JP2005324995A (en) 2004-05-17 2004-05-17 Carbon particle, its manufacturing method and use

Publications (1)

Publication Number Publication Date
JP2005324995A true JP2005324995A (en) 2005-11-24

Family

ID=35471643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145746A Pending JP2005324995A (en) 2004-05-17 2004-05-17 Carbon particle, its manufacturing method and use

Country Status (1)

Country Link
JP (1) JP2005324995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123081A1 (en) * 2009-04-24 2010-10-28 トヨタ自動車株式会社 Carbon material and method for producing same
WO2010137592A1 (en) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
US8953126B2 (en) 2009-09-23 2015-02-10 Samsung Display Co., Ltd. Liquid crystal display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150930A (en) * 1992-11-12 1994-05-31 Sharp Corp Non-aqueous secondary battery
JPH06211511A (en) * 1993-01-14 1994-08-02 Sony Corp Production of carbon hyperfine particle
WO2000073206A1 (en) * 1999-05-27 2000-12-07 Eiji Osawa Method for preparing nano-size particulate graphite
JP2003107533A (en) * 2001-09-28 2003-04-09 Fuji Xerox Co Ltd Display element
JP2003149690A (en) * 2001-11-12 2003-05-21 Tdk Corp Display device
JP2005243410A (en) * 2004-02-26 2005-09-08 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150930A (en) * 1992-11-12 1994-05-31 Sharp Corp Non-aqueous secondary battery
JPH06211511A (en) * 1993-01-14 1994-08-02 Sony Corp Production of carbon hyperfine particle
WO2000073206A1 (en) * 1999-05-27 2000-12-07 Eiji Osawa Method for preparing nano-size particulate graphite
JP2003107533A (en) * 2001-09-28 2003-04-09 Fuji Xerox Co Ltd Display element
JP2003149690A (en) * 2001-11-12 2003-05-21 Tdk Corp Display device
JP2005243410A (en) * 2004-02-26 2005-09-08 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123081A1 (en) * 2009-04-24 2010-10-28 トヨタ自動車株式会社 Carbon material and method for producing same
JP2010254513A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Carbon material and method for producing the same
US8865102B2 (en) 2009-04-24 2014-10-21 Toyota Jidosha Kabushiki Kaisha Carbon material and method for producing same
WO2010137592A1 (en) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
CN102448880A (en) * 2009-05-26 2012-05-09 创业发展联盟技术有限公司 Carbon material and method for producing the same
KR101456904B1 (en) * 2009-05-26 2014-10-31 가부시키가이샤 인큐베이션 얼라이언스 Carbon material and method for producing the same
JP5629681B2 (en) * 2009-05-26 2014-11-26 株式会社インキュベーション・アライアンス Carbon material and manufacturing method thereof
US8951451B2 (en) 2009-05-26 2015-02-10 Incubation Alliance, Inc. Carbon material and method for producing same
CN102448880B (en) * 2009-05-26 2015-04-01 创业发展联盟技术有限公司 Carbon material and method for producing the same
US9783423B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
US9783422B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
US8953126B2 (en) 2009-09-23 2015-02-10 Samsung Display Co., Ltd. Liquid crystal display

Similar Documents

Publication Publication Date Title
KR101274492B1 (en) Process for producing carbon nanotube
Ismagilov et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers
Lyu et al. Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate
Zhao et al. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface
Jin et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons
Qiu et al. A novel form of carbon micro-balls from coal
Jin et al. Electrochemical graphitization: an efficient conversion of amorphous carbons to nanostructured graphites
US6730398B2 (en) Fine carbon and method for producing the same
US20100119724A1 (en) Methods and systems for synthesis on nanoscale materials
KR20030068561A (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
Morjan et al. Carbon nanopowders from the continuous-wave CO2 laser-induced pyrolysis of ethylene
US9643847B2 (en) Method for growth of vertically aligned carbon nanotubes on diamond substrates
JP3841684B2 (en) Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber
Le et al. Bio-based production of carbon nanotubes via co-pyrolysis of eucalyptus oil and ferrocene
JP2005324995A (en) Carbon particle, its manufacturing method and use
JP2001080913A (en) Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube
Rud et al. Structure of carbon nanospheres modified with oxygen-containing groups and halogens
Liu et al. Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol
JP2006183227A (en) Carbon fiber structure
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
KR20120092344A (en) Fabrication method of carbon nanotube or carbon nanofiber using metal-organic frameworks, and the carbon nanotube or carbon nanofiber thereby
JP2005015339A (en) Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber
Cataldo et al. On the mechanism of carbon clusters formation under laser irradiation. The case of diamond grains and solid C60 fullerene
Rümmeli et al. Novel catalysts for low temperature synthesis of single wall carbon nanotubes
JP2016150891A (en) Method for producing carbon nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824