JP2005322588A - Manufacturing device and method of electrode for fuel cell - Google Patents

Manufacturing device and method of electrode for fuel cell Download PDF

Info

Publication number
JP2005322588A
JP2005322588A JP2004141220A JP2004141220A JP2005322588A JP 2005322588 A JP2005322588 A JP 2005322588A JP 2004141220 A JP2004141220 A JP 2004141220A JP 2004141220 A JP2004141220 A JP 2004141220A JP 2005322588 A JP2005322588 A JP 2005322588A
Authority
JP
Japan
Prior art keywords
electrode
transfer
electrolyte membrane
roller
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004141220A
Other languages
Japanese (ja)
Other versions
JP4614687B2 (en
Inventor
Satoshi Sumiya
聡 角谷
Tatsuya Kawahara
竜也 川原
Keiichi Watanabe
恵一 渡辺
Tatsuya Hatanaka
達也 畑中
Tomo Morimoto
友 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2004141220A priority Critical patent/JP4614687B2/en
Publication of JP2005322588A publication Critical patent/JP2005322588A/en
Application granted granted Critical
Publication of JP4614687B2 publication Critical patent/JP4614687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To enable to prevent electrode material powder on an electrolyte film from reverse flight in reversed polarity, to surely manufacture an electrode for a fuel cell as fine as is designed, and to form an electrode with a two-dimensional thickness distribution, in manufacturing one by transferring the electrode material powder on the electrolyte film with the use of electrostatic force. <P>SOLUTION: A developing roller 3 with the statically charged electrode material powder 2 is placed at a position away from an electrolyte film and a transfer roller 12, and the transfer roller 12 is coated or otherwise with resin 12a having a high resistance value to turn it into a high-resistance member. Further, cam rollers 7a, 7b rotating in interlocking with the transfer roller 12 are arranged between the developing roller 3 and the transfer roller 12 to change field intensity by changing intervals of the two rollers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は固体高分子型燃料電池に用いられる電極の製造装置と方法、特に静電力を利用して電極材料粉末を電解質膜に飛翔させるようにした、いわゆる乾式法による電極の製造装置と方法に関する。   TECHNICAL FIELD The present invention relates to an electrode manufacturing apparatus and method for use in a polymer electrolyte fuel cell, and more particularly to an electrode manufacturing apparatus and method by a so-called dry method in which an electrode material powder is allowed to fly to an electrolyte membrane using electrostatic force. .

燃料電池の1つとして固体高分子型燃料電池が知られており、図10に示す形態の膜電極接合体(MEA)50を主要な構成要素としている。膜電極接合体50は、イオン交換膜である電解質膜51の一方側に燃料極側の電極52aと拡散層53aを積層し、他方の側に空気極側の電極52bと拡散層53bを積層した構造であり、拡散層53a、53b側をガス流路を備えたセパレータで挟持して、単セルと呼ばれる1つの燃料電池が形成される。   A polymer electrolyte fuel cell is known as one of the fuel cells, and a membrane electrode assembly (MEA) 50 having a configuration shown in FIG. 10 is a main component. The membrane electrode assembly 50 has a fuel electrode side electrode 52a and a diffusion layer 53a laminated on one side of an electrolyte membrane 51 that is an ion exchange membrane, and an air electrode side electrode 52b and a diffusion layer 53b laminated on the other side. The structure is such that one fuel cell called a single cell is formed by sandwiching the diffusion layers 53a, 53b side with a separator having a gas flow path.

通常、電解質膜51にはナフィオン(登録商標)膜と呼ばれているものが用いられる。また、電極52a、52bの形成には、白金などの触媒成分を担持するカーボン担体と電気伝導性物質である電解質溶液との混合溶液(触媒インキ)を調整し、それを電解質膜51にスクリーン印刷法などにより塗布し乾燥して形成する方法(湿式法)と、電極材料を全く乾式で調合し、あるいは、前記した触媒インクから溶媒などを乾燥除去して粉末状の電極材料を帯電させた後、それを静電力を利用して搬送ローラなどに付着させ、付着した電極材料粉末を電解質膜51に転写し、定着ローラで定着する方法(乾式法)とが行われる。   Usually, what is called a Nafion (registered trademark) film is used as the electrolyte film 51. The electrodes 52a and 52b are formed by preparing a mixed solution (catalyst ink) of a carbon carrier carrying a catalyst component such as platinum and an electrolyte solution which is an electrically conductive material, and screen-printing it on the electrolyte membrane 51. After forming the electrode material by applying the method and drying (wet method), and preparing the electrode material completely dry, or drying and removing the solvent from the catalyst ink, and charging the powdered electrode material Then, a method (dry method) is performed in which it is attached to a conveying roller or the like using electrostatic force, the attached electrode material powder is transferred to the electrolyte film 51, and is fixed by a fixing roller.

乾式法として、特許文献1(特開2002−367616号公報)には、図11に示すように、帯電した電極材料粉末54を搬送ローラ57上に静電付着させ、このローラ57と転写用背面電極58間に電圧を印加して、ローラ57と背面電極58間に配置された電解質膜59に電極材料粉末54を静電付着させる方法と装置が記載されている。1つの実施の形態として、図示のように、背面電極58および電解質膜59を搬送ローラ57から隔てて配置しておき、搬送ローラ57上に付着した電極材料粉末54を、搬送ローラ57と背面電極58間に生成される電界により電解質膜59に向けて飛翔させて静電付着させると共に、搬送ローラ57に沿って電極材料粉末の転写パターンをコントロールする制御プレート60を設けるようにしたものも示される。なお、61は定着ローラである。   As a dry method, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-367616), as shown in FIG. 11, a charged electrode material powder 54 is electrostatically adhered onto a conveying roller 57, and this roller 57 and the back surface for transfer are used. A method and apparatus are described in which a voltage is applied between the electrodes 58 to electrostatically adhere the electrode material powder 54 to the electrolyte membrane 59 disposed between the roller 57 and the back electrode 58. As one embodiment, as shown in the figure, the back electrode 58 and the electrolyte membrane 59 are arranged separately from the transport roller 57, and the electrode material powder 54 adhered on the transport roller 57 is transferred to the transport roller 57 and the back electrode. Also shown is a control plate 60 that is made to fly toward the electrolyte membrane 59 by the electric field generated between the electrodes 58 and electrostatically adhere to it, and to control the transfer pattern of the electrode material powder along the conveying roller 57. . Reference numeral 61 denotes a fixing roller.

特許文献2(特開2003−163010号公報)あるいは特許文献3(特開2003−163011号公報)には、静電複写機でのように、帯電させた感光体ドラムに光を照射して除電し、所望の電極像のパターンに電極材料粉末を静電力で付着させ、それを感光体ドラムと圧接ローラにて電解質膜に圧接転写して所望の電極とする方法と装置が記載されている。
特開2002−367616号公報 特開2003−163010号公報 特開2003−163011号公報
In Patent Document 2 (Japanese Patent Laid-Open No. 2003-163010) or Patent Document 3 (Japanese Patent Laid-Open No. 2003-163011), as in an electrostatic copying machine, the charged photosensitive drum is irradiated with light to eliminate static electricity. A method and an apparatus are described in which electrode material powder is adhered to a desired electrode image pattern by electrostatic force, and is transferred to an electrolyte film by pressure contact with a photosensitive drum and a pressure roller to form a desired electrode.
JP 2002-367616 A Japanese Patent Laid-Open No. 2003-163010 JP 2003-163011 A

上記した静電力を利用して搬送ローラ上の電極材料粉末を電解質膜に飛翔させる、あるいは感光体ドラムに所要パターンで静電付着した電極材料粉末を電解質膜に圧接転写する、燃料電池の電極製造方法は、触媒インクを塗布する湿式法と比較して、溶剤による電解質膜へのダメージ、膨潤や収縮による電極のクラック発生などの問題を解決できる利点がある。本発明者らは乾式法による電極の製造に多く関与しているが、その過程で、精緻な電極像パターンを得ようとすると、搬送ローラ上に正確な電極材料粉末の電極像パターンが形成されなかったり、電解質膜に転写した電極像に乱れが生じることを経験した。その原因を知るべく、静電複写機の乾式転写と燃料電池電極を作製する場合での上記乾式法との異同について考えた。   Production of fuel cell electrodes by using the electrostatic force described above to cause the electrode material powder on the transport roller to fly to the electrolyte film, or to transfer the electrode material powder electrostatically attached to the photosensitive drum in the required pattern to the electrolyte film. Compared with the wet method in which the catalyst ink is applied, the method has an advantage that problems such as damage to the electrolyte membrane due to the solvent and generation of cracks in the electrode due to swelling or shrinkage can be solved. The present inventors have been involved in the production of electrodes by a dry method, but in the process, an accurate electrode image pattern of electrode material powder is formed on the transport roller when trying to obtain a precise electrode image pattern. I experienced that there was no disturbance in the electrode image transferred to the electrolyte membrane. In order to know the cause, the difference between the dry transfer of the electrostatic copying machine and the dry method in the case of producing the fuel cell electrode was considered.

静電複写機やレーザプリンタなどにおいても静電力を利用した乾式複写(転写)が行われる。そこでは、先ず、複写像あるいは印刷像を感光体ドラム上に帯電分布として作り、現像ローラ上に薄層付着させた帯電トナーを、現像ローラと感光体ドラム間に高電圧を印加してクーロン力により感光体ドラム上の帯電分布にあわせて静電付着させる。次に、該感光体ドラムと転写ローラとの間に高電圧を印可し、その間に用紙を搬送させることによって、該用紙上に感光体ドラム上のトナーを静電転写する。その後、定着ローラでトナーを用紙に熱圧着して定着する、という転写方法が採られており、感光体ドラム上の帯電分布にあわせた正確な複写像が用紙上に得られている。   Electrostatic copying machines and laser printers also perform dry copying (transfer) using electrostatic force. First, a copier force is created by applying a high voltage between the developing roller and the photoconductive drum to the charged toner having a copy image or a printed image formed as a charge distribution on the photoconductive drum and having a thin layer deposited on the developing roller. To electrostatically adhere to the charge distribution on the photosensitive drum. Next, a high voltage is applied between the photosensitive drum and the transfer roller, and the paper is conveyed between them to electrostatically transfer the toner on the photosensitive drum onto the paper. Thereafter, a transfer method is adopted in which the toner is fixed on the paper by thermocompression with a fixing roller, and an accurate copy image in accordance with the charge distribution on the photosensitive drum is obtained on the paper.

上記の静電複写機での像形成方法と、前記した静電力を利用した燃料電池での電極製造方法は、原理的には同じであるのにかかわらず、電極製造においては、上記のように正確な転写像が得られない場合がある。その理由を実験をとおして次のように理解した。   Regardless of the principle that the image forming method in the electrostatic copying machine and the electrode manufacturing method in the fuel cell using the electrostatic force are the same in principle, in the electrode manufacturing, as described above. An accurate transfer image may not be obtained. The reason was understood through experiments as follows.

1.静電複写機のトナーは1014Ω程度の絶縁体であるのに対し、電極材料粉末は電極材料であり数Ω以下の導体である。また、静電複写機に使われる用紙は、表面抵抗率が109〜13Ω(吸湿性により環境によって変化する)の高抵抗であるが、電解質膜はそれと比較して低い抵抗値を示す(注1)し、電解質膜に電圧を加える、すなわち、高電界下で膜の表裏に電位差が生じると、導体としての挙動を示す。 1. The toner of the electrostatic copying machine is an insulator of about 10 14 Ω, whereas the electrode material powder is an electrode material and is a conductor of several Ω or less. In addition, a sheet used for an electrostatic copying machine has a high surface resistivity of 109 to 13 Ω (which varies depending on the environment due to hygroscopicity), but the electrolyte membrane exhibits a lower resistance value than that ( Note 1) When a voltage is applied to the electrolyte membrane, that is, when a potential difference occurs between the front and back surfaces of the membrane under a high electric field, it behaves as a conductor.

注1:厚さ5ミルの電解質膜(ナフィオン膜)の表面抵抗率をTREK社製の表面抵抗計Model 152にModel 152P−CRテストプローブを接続して測定すると、10V印加時にて2×10Ωと、低い抵抗値を示した。プローブをModel 152P−2Pに変え、2点法で抵抗を測っても、2×10Ωであった。同じ電解質膜をアルミ板の上に載せ、Model 152P−2Pの一方の端子を膜上に、もう一方の端子をアルミ板上に置いて測定しても、2×10Ωを示し、厚み方向にも低い抵抗材料であることが示された。 Note 1: When the surface resistivity of a 5 mil thick electrolyte membrane (Nafion membrane) is measured by connecting a Model 152P-CR test probe to a surface resistance meter Model 152 manufactured by TREK, 2 × 10 5 when 10 V is applied. A low resistance value was shown. Even when the probe was changed to Model 152P-2P and the resistance was measured by the two-point method, it was 2 × 10 5 Ω. Even when the same electrolyte membrane is placed on an aluminum plate and one terminal of Model 152P-2P is placed on the membrane and the other terminal is placed on the aluminum plate, the measurement shows 2 × 10 5 Ω, and the thickness direction It was also shown to be a low resistance material.

2.このような使用する材料物性の違いにより、静電力を利用して電極を製造する場合には、転写部で次のように問題が生じ、それが、精緻な転写像の形成を妨害している。   2. Due to the difference in the physical properties of the materials used, when manufacturing an electrode using electrostatic force, the following problems occur at the transfer portion, which hinders the formation of a precise transfer image. .

a.静電複写機では、感光体ドラムと用紙、転写ローラは、一般に、細部再現性をよくするために転写ローラが用紙を感光体ドラムに押し付けながら転写していく。これは、用紙の表面抵抗が109〜13Ω程度と高く、用紙紙面のみを帯電させてクーロン力によりトナーを感光体ドラムから用紙に転写できる。これに対し、燃料電池の電極製造では、用紙に相当する電解質膜の抵抗は2×10Ωと低く、導体としての挙動を示すことから、特許文献2あるいは3に記載のように、圧接転写する形態を用いると、転写ローラから電解質膜、電極材料粉末を通り感光体ドラム表面まで電流が流れる。このため、感光体ドラム上の電極材料粉末に電流が流れ込んで帯電荷量が変化し、感光体ドラムの帯電分布とは異なるものとなる。これにより、電極材料粉末が移動し、現像された電極像の形が変化してしまい、正確な電極像の転写を妨げる場合がある。 a. In an electrostatic copying machine, a photosensitive drum, a sheet, and a transfer roller are generally transferred while the transfer roller presses the sheet against the photosensitive drum in order to improve detail reproducibility. This is because the surface resistance of the paper is as high as about 10 9 to 13 Ω, and the toner can be transferred from the photosensitive drum to the paper by Coulomb force by charging only the paper surface of the paper. On the other hand, in the production of fuel cell electrodes, the resistance of the electrolyte membrane corresponding to the paper is as low as 2 × 10 5 Ω and exhibits a behavior as a conductor. Therefore, as described in Patent Document 2 or 3, pressure transfer With this configuration, current flows from the transfer roller through the electrolyte membrane and electrode material powder to the surface of the photosensitive drum. For this reason, an electric current flows into the electrode material powder on the photosensitive drum to change the charge amount, which is different from the charge distribution of the photosensitive drum. As a result, the electrode material powder moves and the shape of the developed electrode image changes, which may hinder accurate transfer of the electrode image.

b.特許文献1に記載される装置では、転写用高圧電源により背面電極(上記転写ローラに相当する)58と搬送ローラ27間、すなわち、転写部間に高電界を作り、電極材料粉末を電解質膜に静電付着させると、電極材料粉末は、高圧電源、背面電極、電解質膜と流れる電流により電荷を喪失して逆極性に帯電し、転写時と逆方向に静電力を受け、感光体ドラムに逆飛翔する転写異常を起こすことがある(高電界電極間に置かれた導体球の電極内反射現象)。また、所要量の付着量を得るのが容易でない場合が起こる。特許文献1の装置では、転写パターンをコントロールする制御プレート60を設けることにより、逆飛翔付着による電解質膜上の電極パターンの形状対策を行っているということもできるが、装置が複雑であり、高価な触媒を含んだ電極材料粉末が制御プレートに付着して利用効率が低下し、コスト高となる。さらに、装置を構成する他の部材から電解質膜59に電流がながれて、帯電した電極材料粉末の電荷が失われることに対する対策もなされていない。   b. In the apparatus described in Patent Document 1, a high electric field is created between the back electrode 58 (corresponding to the transfer roller) 58 and the conveying roller 27, that is, between the transfer portions, by a transfer high-voltage power source, and the electrode material powder is applied to the electrolyte membrane. When electrostatically adhering, the electrode material powder loses its charge due to the current flowing through the high-voltage power supply, back electrode, and electrolyte membrane, and is charged to the opposite polarity, receives electrostatic force in the direction opposite to that during transfer, and reverses to the photosensitive drum. It may cause a transfer abnormality that flies (reflection phenomenon inside the electrode of a conductor sphere placed between high electric field electrodes). In some cases, it is not easy to obtain the required amount of adhesion. In the apparatus of Patent Document 1, it can be said that the control pattern 60 for controlling the transfer pattern is provided to take measures against the shape of the electrode pattern on the electrolyte membrane by reverse flight adhesion, but the apparatus is complicated and expensive. The electrode material powder containing an appropriate catalyst adheres to the control plate and the utilization efficiency is lowered, resulting in an increase in cost. Further, no measures are taken against the loss of the charge of the charged electrode material powder due to the current flowing from the other members constituting the apparatus to the electrolyte membrane 59.

さらに、いずれのものにおいても、電解質膜上に転写される電極パターンは、現像ローラ上の電極像そのものであり、同じ装置を利用して部分的に厚みの異なる、すなわち二次元的厚み分布を持つ電極を電解質膜上に形成することが求められるような場合に、それに速やかに対処することは容易でない。   Furthermore, in any case, the electrode pattern transferred onto the electrolyte membrane is the electrode image itself on the developing roller, and has a partially different thickness, that is, a two-dimensional thickness distribution using the same apparatus. When it is required to form an electrode on an electrolyte membrane, it is not easy to quickly cope with it.

本発明は、上記のような事情に鑑みてなされたものであり、静電力を利用して電解質膜に電極材料粉末を転写して燃料電池の電極を製造する装置と方法において、電極パターンが精緻なものであっても、現像部に正確に電極像を形成することができ、電極材料粉末が一端受け取った電荷を逃がさないようにして、形成された電極像を転写異常を起こすことなくそのままの状態で電解質膜上に静電力により転写することができ、かつ、必要な場合には、容易な手段で、電解質膜上に転写される電極の厚みを二次元方向(X方向とY方向の双方向)に異ならせることができるようにした燃料電池の電極製造装置と製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. In an apparatus and method for manufacturing an electrode of a fuel cell by transferring an electrode material powder to an electrolyte membrane using an electrostatic force, the electrode pattern is refined. Even in such a case, the electrode image can be accurately formed on the developing portion, and the electrode material powder does not release the charge received once, and the formed electrode image is left as it is without causing a transfer abnormality. The electrode can be transferred onto the electrolyte membrane in a state by an electrostatic force, and if necessary, the thickness of the electrode transferred onto the electrolyte membrane can be reduced in two dimensions (both in the X direction and in the Y direction) by easy means. It is an object of the present invention to provide an electrode manufacturing apparatus and a manufacturing method for a fuel cell that can be made different from each other.

本発明による燃料電池の電極製造装置は、電極材料粉末を所定の電極像として形成する現像部および電極材料粉末を現像部から電解質膜上に静電力により転写する転写部とを少なくとも有する転写ユニットと、電解質膜上の電極材料粉末を定着する定着部とを少なくとも備えており、転写ユニットにおいて、転写部および電解質膜は現像部とは隔てて配置され、かつ、転写部には電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段が施されている燃料電池の電極製造装置であって、現像部は電極材料粉末を帯電し転写する転写電極を持つ現像ローラを有し、転写部は転写電極に対向する対向電極を持つ転写ローラを有し、前記2つの電極間には転写用高圧電源から高電圧が印加され電界が生成されるようになっており、さらに、転写中に現像ローラと転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させるための機械的手段が備えられていることを特徴とする。   A fuel cell electrode manufacturing apparatus according to the present invention includes a transfer unit having at least a developing unit that forms electrode material powder as a predetermined electrode image, and a transfer unit that transfers the electrode material powder from the developing unit onto the electrolyte membrane by electrostatic force; And a fixing unit for fixing the electrode material powder on the electrolyte membrane. In the transfer unit, the transfer unit and the electrolyte membrane are arranged separately from the developing unit, and the transfer unit is electrostatically attached to the electrolyte membrane. A fuel cell electrode manufacturing apparatus in which means for preventing the adhering electrode material powder from being charged to a reverse polarity is provided, wherein the developing unit has a transfer roller that charges and transfers the electrode material powder The transfer section has a transfer roller having a counter electrode facing the transfer electrode, and an electric field is generated between the two electrodes by applying a high voltage from a high-voltage power supply for transfer. Cage, further characterized in that is provided with mechanical means for varying the electric field strength between the two rollers by changing the distance between the developing roller and the transfer roller during the transfer.

また、本発明による燃料電池の電極製造方法は、電極材料粉末を所定の電極像として現像ローラ上に形成する工程、現像ローラ上の電極像を転写ローラ上を移動する電解質膜上に静電力により転写する工程、電解質膜上の電極材料粉末を定着する工程とを少なくとも備えた少なくとも備えた燃料電池の電極製造方法であって、現像ローラと転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させることにより、電解質膜へ静電付着する電極材料粉末量を変化させて、厚さの異なる部分を有する電極を電解質膜に形成することを特徴とする。   The method for producing an electrode of a fuel cell according to the present invention includes a step of forming electrode material powder as a predetermined electrode image on a developing roller, and an electrostatic force on the electrolyte membrane moving the electrode image on the developing roller on the transfer roller. A fuel cell electrode manufacturing method comprising at least a transferring step and a step of fixing an electrode material powder on an electrolyte membrane, wherein the distance between the developing roller and the transfer roller is changed between the two rollers. By changing the electric field strength, the amount of electrode material powder that adheres electrostatically to the electrolyte membrane is changed to form electrodes having portions with different thicknesses on the electrolyte membrane.

本発明では、転写部および電解質膜は現像部とは隔てて配置されることにより、転写部あるいは電解質膜から現像部へ電流が流れることは実質的になく、現像部の電極像が変化するのを防止できる。また、転写部には電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段が施されているので、転写区間において、静電付着した電極材料粉末が現像部へ逆飛翔して転写異常を起こすのを確実に阻止することができる。それにより、電極パターンが精緻なものであっても、現像部に正確に電極像を形成することができ、かつ、電解質膜上にそのまま静電付着させることが可能となる。電解質膜上の電極材料粉末は精緻な電極パターンを保ったままで定着部に送られて定着されるので、精度の高い燃料電池電極を得ることができる。   In the present invention, since the transfer portion and the electrolyte film are arranged apart from the developing portion, current does not substantially flow from the transfer portion or the electrolyte film to the developing portion, and the electrode image of the developing portion changes. Can be prevented. In addition, since the transfer part is provided with means for preventing the electrode material powder electrostatically attached to the electrolyte membrane from being charged in the reverse polarity, the electrode material powder electrostatically attached to the transfer part is developed in the transfer section. It is possible to reliably prevent a reverse flight to cause a transfer abnormality. As a result, even if the electrode pattern is fine, an electrode image can be accurately formed on the developing portion, and can be electrostatically attached to the electrolyte membrane as it is. Since the electrode material powder on the electrolyte membrane is sent and fixed to the fixing portion while maintaining a fine electrode pattern, a highly accurate fuel cell electrode can be obtained.

さらに、本発明では、現像部を構成する電極材料粉末を帯電し転写する転写電極を持つ現像ローラと、転写部を構成する転写電極に対向する対向電極を持つ転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させるための機械的手段が備えられているので、該機械的手段を介して2つのローラ間の間隔を適宜変化させながら電極材料粉末の静電転写を行うことにより、電解質膜へ静電付着する電極材料粉末量を変化させることができ、二次元厚み分布を持つ(すなわち、X方向とY方向のいずれか一方または双方に厚みの異なる)電極を電解質膜に形成することができる。   Furthermore, in the present invention, the interval between the developing roller having a transfer electrode that charges and transfers the electrode material powder constituting the developing portion and the transfer roller having the counter electrode facing the transfer electrode constituting the transfer portion is changed. Since the mechanical means for changing the electric field strength between the two rollers is provided, electrostatic transfer of the electrode material powder is performed while appropriately changing the interval between the two rollers via the mechanical means. Can change the amount of electrode material powder that adheres electrostatically to the electrolyte membrane, and use an electrode having a two-dimensional thickness distribution (that is, different in thickness in one or both of the X and Y directions) as the electrolyte membrane. Can be formed.

現像ローラと転写ローラとの間隔を変化させるための機械的手段に特に制限はないが、構成が容易であることから、現像ローラと転写ローラの間に介装される転動ローラであることは望ましく、転動ローラの材料としては、絶縁体であってもよく、転写ローラが絶縁されているために導電体であってもよいが、10MΩ〜100GΩ程度の高抵抗材料を用いることが好ましい。それにより、電解質膜上への正確な電極パターンの形成を阻害することなく、現像ローラと転写ローラとの間隔の変化のみに起因する2つのローラ間の電界強度の変化量を得ることができ、所期どおりの厚み変化のある電極を電解質膜上に形成することができる。転動ローラが絶縁体の場合、帯電し易くホコリ等が付き易く、除電し難くなるので、半導体かそれよりも少し高い抵抗体は好ましい態様である。   There is no particular limitation on the mechanical means for changing the distance between the developing roller and the transfer roller, but since it is easy to configure, it is a rolling roller interposed between the developing roller and the transfer roller. Desirably, the material of the rolling roller may be an insulator and may be a conductor because the transfer roller is insulated, but it is preferable to use a high resistance material of about 10 MΩ to 100 GΩ. Thereby, it is possible to obtain the amount of change in the electric field strength between the two rollers caused only by the change in the distance between the developing roller and the transfer roller without hindering the formation of an accurate electrode pattern on the electrolyte membrane, An electrode having a desired thickness change can be formed on the electrolyte membrane. When the rolling roller is an insulator, it is easy to be charged and dust or the like is easily attached, and it is difficult to remove the charge. Therefore, a semiconductor or a resistor slightly higher than that is a preferable embodiment.

電極材料粉末を転写する際に必要な静電力、すなわちクーロン力Fcは、電極材料粉末の帯電荷qと、現像ローラと転写ローラ間の電界Eで決まり、Fc=q・Eである。両ローラ間の電界Eは、転写用電源電圧Vとローラ間隔(電極間隔)dから、E=V/dである。転動ローラの中心から外縁までの距離rがローラ間隔dに比例する構造を持つ場合、転動ローラの中心から外縁までの距離rによってローラ間隔dが決まり、それにより、電界Eが、そして、電極材料粉末を転写するクーロン力Fcが定まる。   The electrostatic force necessary for transferring the electrode material powder, that is, the Coulomb force Fc, is determined by the charge q of the electrode material powder and the electric field E between the developing roller and the transfer roller, and Fc = q · E. The electric field E between the two rollers is E = V / d from the transfer power supply voltage V and the roller interval (electrode interval) d. When the distance r from the center of the rolling roller to the outer edge is proportional to the roller distance d, the roller distance d is determined by the distance r from the center of the rolling roller to the outer edge, whereby the electric field E and Coulomb force Fc for transferring the electrode material powder is determined.

従って、転写用電源電圧Vを一定にし、転動ローラを円形にすると同一厚さの電極が作成できる。また、その厚みは、転動ローラの半径rが大きくなるとローラ間隔dが広くなり、ローラ間の電界Eが小さくなってクーロン力Fcが弱まり、電極材料粉末の飛翔量が減って電極は薄くなる。逆に、半径rが小さくなると、ローラ間隔dが狭くなり、電極は厚くなる。   Accordingly, if the transfer power supply voltage V is constant and the rolling roller is circular, electrodes having the same thickness can be formed. Further, the thickness of the roller becomes larger as the radius r of the rolling roller becomes larger, the electric field E between the rollers becomes smaller, the Coulomb force Fc becomes weaker, the flying amount of the electrode material powder decreases, and the electrode becomes thinner. . Conversely, as the radius r decreases, the roller spacing d decreases and the electrodes increase in thickness.

従って、2枚の転動ローラを電解質膜の幅方向の両側において現像ローラと転写ローラの間に配置する場合において、2枚の転動ローラがカムローラ(すなわち、回転中心とローラの外縁までの距離が360°の範囲で変化するローラ)である場合、2枚のカムローラのカム輪郭が同じ形状でありかつ同位相で回転するようにされている場合には、電解質膜の移動方向(長手方向)に該カム輪郭に比例して厚さの変化した電極が形成される(請求項3)。2枚のカムローラのカム輪郭が同じ形状であっても、位相がずれて回転するようにされている場合には、長手方向だけでなく幅方向にもローラ間隔(電極間隔)dが変化するので、幅方向にも厚みの変化した電極が形成される(請求項4)。さらに、2枚のカムローラは異なる形状のカム輪郭を持つ場合にも、長手方向と幅方向とに厚みの変化する電極を形成することができる(請求項5)。カムローラの形状が楕円の場合、転写時での装置の振動を抑えるために、長径と短径との比があまり大きくない(例えば、1.25倍程度)楕円であることが望ましい。   Therefore, when two rolling rollers are arranged between the developing roller and the transfer roller on both sides in the width direction of the electrolyte membrane, the two rolling rollers are cam rollers (that is, the distance between the rotation center and the outer edge of the roller). If the cam contours of the two cam rollers have the same shape and are rotated in the same phase, the movement direction of the electrolyte membrane (longitudinal direction) Thus, an electrode having a thickness changed in proportion to the cam profile is formed (claim 3). Even if the cam contours of the two cam rollers have the same shape, if the rotation is out of phase, the roller interval (electrode interval) d changes not only in the longitudinal direction but also in the width direction. Further, an electrode having a changed thickness is formed also in the width direction. Further, even when the two cam rollers have cam contours of different shapes, it is possible to form an electrode whose thickness varies in the longitudinal direction and the width direction. When the shape of the cam roller is an ellipse, it is desirable that the ratio of the major axis to the minor axis is not so large (for example, about 1.25 times) so as to suppress vibration of the apparatus during transfer.

転動ローラはカムローラでなく円形のローラであってもよい。ただし、その場合には、電解質膜の幅方向の両側に配置される2枚の円形ローラは直径の異なるものとすることが必要である。この場合、2つの円形ローラの直径差に応じて、電解質膜の幅方向にローラ間隔(電極間隔)dの変化が形成されるので、幅方向に厚みの変化する電極を得ることができる。   The rolling roller may be a circular roller instead of a cam roller. However, in that case, it is necessary that the two circular rollers disposed on both sides in the width direction of the electrolyte membrane have different diameters. In this case, since a change in the roller interval (electrode interval) d is formed in the width direction of the electrolyte membrane according to the difference in diameter between the two circular rollers, an electrode whose thickness changes in the width direction can be obtained.

なお、転動ローラは、現像ローラとは独立して転動しながら、現像ローラの転写ローラに対する上下方向の位置を変化させることができるようにして現像ローラと転写ローラの間に備えられる。また、転動ローラがカムローラの場合には、2つのカムローラが同期して、すなわち初期設定した位相を常時維持して回転できるように取り付けられる。好ましくは、2つの転動ローラを転写ローラと連動して回転するように設定し、現像ローラに対しては相互に非拘束状態で転動できるように取り付ける。具体的には、現像ローラを収容するケース(例えば、電極材料粉末と現像ローラとを収容するケース)と転動ローラとを接触させる態様などがある。   The rolling roller is provided between the developing roller and the transfer roller so that the position of the developing roller relative to the transfer roller can be changed while rolling independently of the developing roller. Further, when the rolling roller is a cam roller, the two cam rollers are mounted so as to be able to rotate in synchronism, that is, while always maintaining the initially set phase. Preferably, the two rolling rollers are set so as to rotate in conjunction with the transfer roller, and are attached to the developing roller so that they can roll in an unconstrained state. Specifically, there is an aspect in which a case (for example, a case for accommodating the electrode material powder and the developing roller) that accommodates the developing roller and a rolling roller are brought into contact with each other.

なお、本発明において、転写部に形成する、電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段は、基本的に、導体である電極材料粉末に転写部から電流を流れにくくする手段で有れば任意の手段であってよい。例えば、転写部の電解質膜に面することとなる領域を高抵抗値を持つ材料で作製する手段、あるいは、転写部の電極と転写用高圧電源とを高抵抗値を持つ抵抗を介して接続する手段などが挙げられる。この場合、高抵抗値が10MΩ〜100GΩの範囲であれば、所期の目的を効果的に達成することができる。   In the present invention, the means for preventing the electrode material powder electrostatically attached to the electrolyte membrane, which is formed on the transfer portion, from being charged with a reverse polarity is basically applied to the electrode material powder that is a conductor. Any means may be used as long as it is a means for making it difficult for the current to flow. For example, a means for producing a region that faces the electrolyte membrane of the transfer portion with a material having a high resistance value, or an electrode of the transfer portion and a high-voltage power supply for transfer are connected via a resistor having a high resistance value. Means etc. are mentioned. In this case, if the high resistance value is in the range of 10 MΩ to 100 GΩ, the intended purpose can be effectively achieved.

好ましくは、転写部を構成する部材以外の部材であって、電極の製造過程で電解質膜に接することとなる部材は、少なくとも電解質膜に接することとなる領域を高抵抗値を持つ材料で作製し、またはアースに接続して、これら部材から電解質膜に静電付着した電極材料粉末が帯電するのをなくすあるいは極力少なくし、それにより電極材料粉末が逆極性に帯電するのを防止できるように構成する。このようにすることによって、現像部に逆飛翔する転写異常を一層確実に阻止することが可能となる。なお、電極の製造過程で電解質膜に接することとなる部材としては、定着部、電解質膜のロール巻き出し、巻き取り部、搬送部、収納部などが挙げられる。   Preferably, the member other than the member constituting the transfer portion, which is in contact with the electrolyte membrane during the electrode manufacturing process, is made of a material having a high resistance value at least in a region that is in contact with the electrolyte membrane. Or connected to the earth, and the electrode material powder that is electrostatically attached to the electrolyte membrane from these members can be prevented from being charged or reduced as much as possible, thereby preventing the electrode material powder from being charged to the opposite polarity. To do. By doing so, it is possible to more reliably prevent a transfer abnormality that reversely flies to the developing portion. Examples of the member that comes into contact with the electrolyte membrane during the manufacturing process of the electrode include a fixing unit, a roll unwinding of the electrolyte membrane, a winding unit, a conveyance unit, and a storage unit.

本発明は、予め所定の大きさの切断された電解質膜に対して電極材料粉末を定着するいわゆるバッチ式の電極製造に適用することもでき、また、ウェブ状の電解質膜を搬送しながらその上に連続的に電極材料粉末を定着していく連続式電極製造にも適用することができる。後者の場合に、前記した転写ユニットは装置全体で1個であってもよいが、2個以上の転写ユニットを電解質膜の搬送方向にタンデムに並べるようにしてもよい。それにより、任意の3次元構造を持つ電極を作製することができる。さらに、2個以上の転写ユニットを電解質膜の一面側にその搬送方向にタンデムに並べ、さらに、2個以上の転写ユニットを電解質膜の他面側にその搬送方向にタンデムに並べるようにしてもよい。このように転写ユニットを配置することにより、膜電極接合体での空気極と燃料極とを最適な構造で一度に作ることができる。   The present invention can also be applied to so-called batch-type electrode manufacturing in which electrode material powder is fixed to an electrolyte membrane that has been cut in advance of a predetermined size. It can also be applied to continuous electrode production in which the electrode material powder is continuously fixed. In the latter case, the number of transfer units described above may be one for the entire apparatus, but two or more transfer units may be arranged in tandem in the transport direction of the electrolyte membrane. Thereby, an electrode having an arbitrary three-dimensional structure can be produced. Further, two or more transfer units are arranged in tandem in the transport direction on one side of the electrolyte membrane, and two or more transfer units are arranged in tandem in the transport direction on the other side of the electrolyte membrane. Good. By arranging the transfer unit in this way, the air electrode and the fuel electrode in the membrane electrode assembly can be formed at the same time with an optimum structure.

上記のように、本発明では、転写中に現像ローラと転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させるための機械的手段が備えられ、該機械的手段として現像ローラと転写ローラに転動ローラを配置する場合に、径の変化量の大きい転動ローラを用いると、転写作業中に装置の振動が許容できない大きさになることも起こり得る。それを回避して所要の二次元厚み分布を持つ電極を得るために、2個以上の転写ユニットをタンデムに並べることはきわめて有効となる。すなわち、例えば長径と短径の比がきわめて小さな楕円系のカムローラを転動ローラとして使用する場合でも、それを2段、3段と繰り返すことにより、所要の二次元厚み分布を持つ電極を確実に製造することが可能となる。   As described above, in the present invention, the mechanical means for changing the electric field strength between the two rollers by changing the distance between the developing roller and the transfer roller during the transfer is provided, and the developing roller is used as the mechanical means. When a rolling roller is arranged in the transfer roller, if a rolling roller having a large diameter change amount is used, the vibration of the apparatus may become unacceptable during the transfer operation. In order to avoid this and obtain an electrode having a required two-dimensional thickness distribution, it is extremely effective to arrange two or more transfer units in tandem. That is, for example, even when an elliptical cam roller having a very small ratio of the major axis to the minor axis is used as a rolling roller, the electrode having the required two-dimensional thickness distribution can be ensured by repeating it two or three steps. It can be manufactured.

本発明によれば、静電力を利用して電解質膜に電極材料粉末を転写して燃料電池の電極を製造する際に、電極パターンが精緻なものであっても、現像部に正確に電極像を形成することができる。また、電極材料粉末が一端受け取った電荷を逃がさないようにして、形成された電極像を転写異常を起こすことなく、そのままの状態で電解質膜上に静電力により転写することができる。それにより、設計値どおりの燃料電池電極を確実に製造することが可能となる。さらに、機械的な手段により現像ローラと転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させるようにしたので、簡単な構成でもって、電解質膜上に転写される電極の厚みを二次元方向(X方向とY方向のいずれか一方または双方)に異ならせることができる。   According to the present invention, when producing an electrode of a fuel cell by transferring an electrode material powder to an electrolyte membrane using an electrostatic force, even if the electrode pattern is fine, the electrode image is accurately applied to the developing portion. Can be formed. Moreover, the electrode material powder can transfer the formed electrode image onto the electrolyte membrane as it is without causing any abnormal transfer so as not to release the charge received once by the electrode material powder. This makes it possible to reliably manufacture the fuel cell electrode as designed. Further, since the electric field strength between the two rollers is changed by changing the distance between the developing roller and the transfer roller by mechanical means, the thickness of the electrode transferred onto the electrolyte membrane with a simple configuration. Can be made different in a two-dimensional direction (one or both of the X and Y directions).

以下、図面を参照しながら実施の形態および実施例に基づき本発明を説明する。図1は本発明による燃料電池の電極製造装置の一例を示す模式図である。この装置Aでは、後記する転写ローラ12に対向するようにして、下端に開口を備えた電極材料粉末充填ホッパー1が配置され、その中に電極材料粉末2が充填される。電極材料粉末充填ホッパー1の下部には現像ローラ3が収容され、アースされている。現像ローラ3は、図3に示すように電極パターン凹部4を有し、その底部に転写用電極5が取り付けてある。転写用電極5には転写用高圧電源13の一方の極が接続しており、転写用高圧電源13の出力が0Vに設定されていて、転写用電極5は0Vとなっている。電極材料粉末充填ホッパー1内には薄層形成ブレード6が取り付けてあり、現像ローラ3の電極パターン凹部4内に電極材料粉末2が充填されるのを助ける。   Hereinafter, the present invention will be described based on embodiments and examples with reference to the drawings. FIG. 1 is a schematic view showing an example of a fuel cell electrode manufacturing apparatus according to the present invention. In this apparatus A, an electrode material powder filling hopper 1 having an opening at the lower end is disposed so as to face a transfer roller 12 described later, and the electrode material powder 2 is filled therein. A developing roller 3 is accommodated in the lower part of the electrode material powder filling hopper 1 and grounded. The developing roller 3 has an electrode pattern recess 4 as shown in FIG. 3, and a transfer electrode 5 is attached to the bottom thereof. One electrode of the transfer high-voltage power supply 13 is connected to the transfer electrode 5, the output of the transfer high-voltage power supply 13 is set to 0V, and the transfer electrode 5 is set to 0V. A thin layer forming blade 6 is attached in the electrode material powder filling hopper 1 to help the electrode material powder 2 to be filled in the electrode pattern recess 4 of the developing roller 3.

電解質膜にはウェブ状の電解質膜8が用いられ、電解質膜巻き出しローラ9から送り出された電解質膜8は、搬送ローラ10、転写ローラ12、搬送ローラ11、定着ローラ14、14を通過して、電解質膜巻き取りローラ15に巻き取られ収納される。転写ローラ12の対向電極には転写用高圧電源13の他の極が接続しており、この例では、転写用高圧電源13は−4kVを出力するようにされている。   A web-like electrolyte film 8 is used as the electrolyte film, and the electrolyte film 8 fed from the electrolyte film unwinding roller 9 passes through the transport roller 10, the transfer roller 12, the transport roller 11, and the fixing rollers 14 and 14. The electrolyte membrane winding roller 15 is wound and stored. The other electrode of the transfer high-voltage power supply 13 is connected to the counter electrode of the transfer roller 12, and in this example, the transfer high-voltage power supply 13 outputs -4 kV.

転写ローラ12は、すべりを良くするため、アルミパイプに体積抵抗率1×1012Ωcm、厚さ1mmの樹脂12aをコーティングしている。さらに、電解質膜巻き出しローラ9、電解質膜巻き取りローラ15、搬送ローラ10、11、定着ローラ14、14は、すべて体積抵抗率1×1011Ωcm、厚さ2mm以上の樹脂9a,15a,10a,11a,14a,15aでそれぞれコーティングされ、アースされている。 In order to improve the sliding of the transfer roller 12, an aluminum pipe is coated with a resin 12a having a volume resistivity of 1 × 10 12 Ωcm and a thickness of 1 mm. Furthermore, the electrolyte membrane unwinding roller 9, the electrolyte membrane winding roller 15, the transport rollers 10, 11, and the fixing rollers 14, 14 are all resins 9a, 15a, 10a having a volume resistivity of 1 × 10 11 Ωcm and a thickness of 2 mm or more. , 11a, 14a, and 15a, respectively, and are grounded.

現像ローラ3と転写ローラ12間には同形状の2つのカムローラ7a、7bが介装される。このカムローラが本発明でいう「転動ローラ」に相当する。図2、図3によく示すように、この例においてカムローラ7a、7bは楕円形であり、長径と短径の比はほぼ1.1〜1.2である。そして、2つのカムローラ7a、7bは位相を同じにして支軸7A,7Bに取り付けられている。   Two cam rollers 7 a and 7 b having the same shape are interposed between the developing roller 3 and the transfer roller 12. This cam roller corresponds to the “rolling roller” in the present invention. As shown well in FIGS. 2 and 3, in this example, the cam rollers 7a and 7b are elliptical, and the ratio of the major axis to the minor axis is approximately 1.1 to 1.2. The two cam rollers 7a and 7b are attached to the support shafts 7A and 7B with the same phase.

2つのカムローラ7a、7bは、転写ローラ12上における電解質膜8が搬送される領域を外れた両側の位置において転写ローラ12に接しており、転写ローラ12に連動して回転するようにされている。2つのカムローラ7a、7bは、同時に電極材料粉末充填ホッパー1の下端に接触しており、転写ローラ12の回転に連動して2つのカムローラ7a、7bが回転すると、そのカム軌跡に沿って電極材料粉末充填ホッパー1、すなわち、現像ローラ3が上下動する(なお、図2、図3では、動作をわかりやすくするために、電極材料粉末充填ホッパー1を省略して図示している)。   The two cam rollers 7 a and 7 b are in contact with the transfer roller 12 at positions on both sides of the transfer roller 12 outside the area where the electrolyte film 8 is conveyed, and are rotated in conjunction with the transfer roller 12. . The two cam rollers 7a and 7b are simultaneously in contact with the lower end of the electrode material powder filling hopper 1, and when the two cam rollers 7a and 7b rotate in conjunction with the rotation of the transfer roller 12, the electrode material is moved along the cam locus. The powder filling hopper 1, that is, the developing roller 3 moves up and down (in FIG. 2 and FIG. 3, the electrode material powder filling hopper 1 is omitted for easy understanding of the operation).

図2は2つのカムローラ7a、7bの短径部が転写ローラ12と電極材料粉末充填ホッパー1(現像ローラ3)に接している状態であり、現像ローラ3は最も下位の位置にある。図3は2つのカムローラ7a、7bが90°回転して長径部が転写ローラ12と電極材料粉末充填ホッパー1(現像ローラ3)に接している状態であり、現像ローラ3は最も上位の位置にある。2つのカムローラ7a、7bの回転角度に応じて、現像ローラ3は図2の位置と図3の位置との間に滑らかに上下動をし、それに応じて2つのローラ間の電界強度も変化する。   FIG. 2 shows a state in which the short diameter portions of the two cam rollers 7a and 7b are in contact with the transfer roller 12 and the electrode material powder filling hopper 1 (developing roller 3), and the developing roller 3 is at the lowest position. FIG. 3 shows a state in which the two cam rollers 7a and 7b are rotated by 90 ° so that the long diameter portion is in contact with the transfer roller 12 and the electrode material powder filling hopper 1 (developing roller 3). is there. The developing roller 3 smoothly moves up and down between the position in FIG. 2 and the position in FIG. 3 according to the rotation angle of the two cam rollers 7a and 7b, and the electric field strength between the two rollers also changes accordingly. .

電極を製造するに際し、最初に電極材料粉末2を電極材料粉末収納ケース1内に入れる。現像ローラ3が回転すると、電極材料粉末収納ケース1内の電極材料粉末2は、薄層形成ブレード6により現像ローラ3上の電極パターン凹部4に充填される。前記のように、このとき、電極パターン凹部4の底部に設けられた転写用電極5の電圧は、0Vである。   When manufacturing an electrode, the electrode material powder 2 is first put in the electrode material powder storage case 1. When the developing roller 3 rotates, the electrode material powder 2 in the electrode material powder storage case 1 is filled into the electrode pattern concave portion 4 on the developing roller 3 by the thin layer forming blade 6. As described above, at this time, the voltage of the transfer electrode 5 provided at the bottom of the electrode pattern recess 4 is 0V.

現像ローラ3が回転し、図3に示すように、電極パターン凹部4が電解質膜8上にくると、転写用高圧電源13は例えば−4kVを出力する。それにより、現像ローラ3上の転写用電極5と転写ローラ12(の対向電極)の間には高電圧Vが印加され、2つのローラ間には、2つのローラ間の距離(すなわち、カムローラ7a、7bの回転角度)に依存する大きさの強電界Eが形成される。同時に、転写用高圧電源13は電極材料粉末2を帯電するので、電極パターン凹部4に充填された電極材料粉末2は、電界強度に依存したクーロン力Fcを受けて飛翔し、電解質膜8に静電付着する。   When the developing roller 3 rotates and the electrode pattern concave portion 4 comes on the electrolyte film 8 as shown in FIG. 3, the transfer high-voltage power supply 13 outputs -4 kV, for example. As a result, a high voltage V is applied between the transfer electrode 5 on the developing roller 3 and the transfer roller 12 (opposite electrode thereof), and the distance between the two rollers (that is, the cam roller 7a). , 7b), a strong electric field E having a magnitude depending on the rotation angle is formed. At the same time, since the transfer high-voltage power supply 13 charges the electrode material powder 2, the electrode material powder 2 filled in the electrode pattern concave portion 4 flies by receiving the Coulomb force Fc depending on the electric field strength, and is statically applied to the electrolyte membrane 8. Electrodeposit.

電解質膜8は電解質膜巻き出しローラ9から搬送ローラ10、11により所要の早さで搬送されており、転写ローラ12も同期して回転する。前記のようにカムローラ7a、7bは転写ローラ12に連動して回転するようにされており、電解質膜8の搬送と共にカムローラ7a、7bが回転し、その楕円形状であるカム輪郭に応じて電極材料粉末充填ホッパー1(現像ローラ3)を上下動させる。それにより、現像ローラ3と転写ローラ12間の距離dが変化して、電界強度Eも変化する。それに応じてクーロン力Fcも変化するので、結果として、電解質膜8の上には、現像ローラ3と転写ローラ12間の距離dに比例した厚みで電極材料粉末2は転写される。   The electrolyte membrane 8 is conveyed from the electrolyte membrane unwinding roller 9 by the conveying rollers 10 and 11 at a required speed, and the transfer roller 12 also rotates in synchronization. As described above, the cam rollers 7a and 7b are rotated in conjunction with the transfer roller 12, and the cam rollers 7a and 7b are rotated along with the conveyance of the electrolyte film 8, and the electrode material is formed in accordance with the elliptical cam contour. The powder filling hopper 1 (developing roller 3) is moved up and down. As a result, the distance d between the developing roller 3 and the transfer roller 12 changes, and the electric field strength E also changes. Accordingly, since the Coulomb force Fc also changes, as a result, the electrode material powder 2 is transferred onto the electrolyte film 8 with a thickness proportional to the distance d between the developing roller 3 and the transfer roller 12.

現像ローラ3がさらに回転し、電極パターン凹部4が電解質膜8上を過ぎると、転写用高圧電源13は0Vとなり、電界は消滅する。また、電解質膜8上に付着した電極材料粉末2は、定着ローラ14により熱圧され、電解質膜8に定着されて電極となる。作成された燃料電池電極は、巻き取りローラ15に巻き取られる。   When the developing roller 3 further rotates and the electrode pattern concave portion 4 passes over the electrolyte membrane 8, the transfer high-voltage power supply 13 becomes 0V and the electric field disappears. The electrode material powder 2 adhered on the electrolyte membrane 8 is heat-pressed by the fixing roller 14 and fixed on the electrolyte membrane 8 to become an electrode. The produced fuel cell electrode is taken up by the take-up roller 15.

上記の装置において、電解質膜巻き出しローラ9、電解質膜巻き取りローラ15、搬送ローラ10、11、定着ローラ14は、高抵抗値である樹脂でコーティングされかつアースされている。そのために、これらのローラから電解質膜8上に転写された電極材料粉末2に流れ込む電流はほとんどなく、また、転写ローラ12も高抵抗であり電流がほとんど流れないので、現像ローラ3と転写ローラ12の間の強電界間を通過する間に電解質膜8に付着した電極材料粉末2が逆帯電して、現像ローラ3に逆飛翔することはなく、像の乱れのない設計値どおりの燃料電池電極を確実に製造することができる。   In the above apparatus, the electrolyte membrane unwinding roller 9, the electrolyte membrane winding roller 15, the transport rollers 10, 11 and the fixing roller 14 are coated with a resin having a high resistance value and are grounded. For this reason, almost no current flows from these rollers into the electrode material powder 2 transferred onto the electrolyte film 8, and the transfer roller 12 has a high resistance and hardly flows current. Therefore, the developing roller 3 and the transfer roller 12 The electrode material powder 2 adhering to the electrolyte membrane 8 is reversely charged while passing between the strong electric fields between them, and does not fly backward to the developing roller 3, and the fuel cell electrode as designed with no image disturbance Can be reliably manufactured.

[実施例1]
図1〜図3に基づき説明した上記の装置を用いて燃料電池電極を作製した。電極材料粉末2として、粒径1〜10μmのPt担体カーボン粉末と電解質樹脂とからなるものを用いた。転写ローラ12はアルミパイプに体積抵抗率1×1012Ωcm、厚さ1mmの樹脂12aをコーティングしたものを用いた。電解質膜巻き出しローラ9、電解質膜巻き取りローラ15、搬送ローラ10、11、定着ローラ14、14は、すべて体積抵抗率1×1011Ωcm、厚さ2mm以上の樹脂でそれぞれコーティングし、アースした。
[Example 1]
A fuel cell electrode was produced using the above-described apparatus described with reference to FIGS. As the electrode material powder 2, a powder made of Pt carrier carbon powder having a particle diameter of 1 to 10 μm and an electrolyte resin was used. As the transfer roller 12, an aluminum pipe coated with a resin 12a having a volume resistivity of 1 × 10 12 Ωcm and a thickness of 1 mm was used. The electrolyte membrane unwinding roller 9, the electrolyte membrane winding roller 15, the transport rollers 10 and 11, and the fixing rollers 14 and 14 are all coated with a resin having a volume resistivity of 1 × 10 11 Ωcm and a thickness of 2 mm or more, and are grounded. .

転写用高圧電源13の出力は0Vに設定して、転写用電極5の電圧は0Vとし、転写時には転写ローラ12の対向電極に−4kVを出力させた。搬送ローラ10、11により電解質膜8を30mm/secの速度で搬送させた。カムローラ7a、7bには、長径4.3mm、短径3.7mmの楕円型のカムローラを用いた。   The output of the transfer high-voltage power supply 13 was set to 0 V, the voltage of the transfer electrode 5 was set to 0 V, and −4 kV was output to the counter electrode of the transfer roller 12 during transfer. The electrolyte membrane 8 was conveyed at a speed of 30 mm / sec by the conveying rollers 10 and 11. As the cam rollers 7a and 7b, elliptical cam rollers having a major axis of 4.3 mm and a minor axis of 3.7 mm were used.

電解質膜8上に形成された電極の単位面積当たりの触媒量を塗工面の一部を切り取り重量測定したところ、図4のようになっており、短径部分で0.044mg/cm、長径部分で0.036mg/cmであった。長手方向の電極材料粉末の転写量、すなわち電極厚さが変化していることがわかった。また、電解質膜上に転写した電極像は、厚みの変化を除いて、現像ローラ3の電極パターン凹部4に静電付着した電極像と同じものであり、電極材料粉末が逆飛翔して付着した形跡は観察されなかった。 When a part of the coated surface was cut out and the weight of the catalyst amount per unit area of the electrode formed on the electrolyte membrane 8 was measured, it was as shown in FIG. 4. The minor axis portion was 0.044 mg / cm 2 , the major axis The portion was 0.036 mg / cm 2 . It was found that the transfer amount of the electrode material powder in the longitudinal direction, that is, the electrode thickness changed. Moreover, the electrode image transferred onto the electrolyte membrane is the same as the electrode image electrostatically attached to the electrode pattern concave portion 4 of the developing roller 3 except for the change in thickness, and the electrode material powder was applied in reverse flight. No evidence was observed.

[実施例2]
図1に示す装置において、図5に示すように、カムローラ7a、7bを直径5mmの円形ローラ7a1と、直径3mmの円形ローラ7b1に変えた以外は実施例1と同様にして電極を作成した。
[Example 2]
In the apparatus shown in FIG. 1, as shown in FIG. 5, electrodes were formed in the same manner as in Example 1 except that the cam rollers 7a and 7b were replaced with a circular roller 7a1 having a diameter of 5 mm and a circular roller 7b1 having a diameter of 3 mm.

電解質膜上に形成された電極の単位面積当たりの触媒量を実施例1と同様の方法により測定したところ、図6に示すように、ローラ間隔に応じて電解質膜の幅方向の付着量が変化しており、ローラ間隔3.7mmで平均0.042mg/cm、4.3mmで平均0.038mg/cmであった。また、電解質膜8上に転写した電極像は、幅方向での厚みの変化を除いて、現像ローラ3の電極パターン凹部4に静電付着した電極像と同じものであり、電極材料粉末が逆飛翔して付着した形跡は観察されなかった。 When the amount of catalyst per unit area of the electrode formed on the electrolyte membrane was measured by the same method as in Example 1, as shown in FIG. 6, the amount of adhesion in the width direction of the electrolyte membrane changed according to the roller spacing. and is an average of the roller spacing 3.7 mm 0.042 mg / cm 2, and an average 0.038 mg / cm 2 at 4.3 mm. Further, the electrode image transferred onto the electrolyte membrane 8 is the same as the electrode image electrostatically attached to the electrode pattern concave portion 4 of the developing roller 3 except for the change in thickness in the width direction, and the electrode material powder is reversed. No evidence of flying and adhering was observed.

[実施例3]
図1に示す装置において、図7に示すように、一方のカムローラ7aを直径3mmの円形ローラ7a2に変えた以外は実施例1と同様にして電極を作成した。
[Example 3]
In the apparatus shown in FIG. 1, as shown in FIG. 7, electrodes were formed in the same manner as in Example 1 except that one cam roller 7a was changed to a circular roller 7a2 having a diameter of 3 mm.

電解質膜上に形成された電極の単位面積当たりの触媒量を実施例1と同様の方法により測定したところ、円形ローラ7a2に近接する側の電極の厚みは変化がなかったが、楕円形のカムローラ7bに近接する側の電極は長手方向に徐々に薄くなっていた。   When the amount of catalyst per unit area of the electrode formed on the electrolyte membrane was measured by the same method as in Example 1, the thickness of the electrode adjacent to the circular roller 7a2 did not change, but the elliptical cam roller The electrode on the side close to 7b was gradually thinner in the longitudinal direction.

[実施例4]
図示しないが、図1に示す装置において、カムローラ7a、7bを90°位相をずらして取り付け以外は実施例1と同様にして電極を作成した。その結果、電極の厚みが、右側は厚い→薄いに変化し、左側は薄い→厚いに変化し、中央部ではほぼ中間厚さで一定となる電極が形成された。
[Example 4]
Although not shown in the drawing, electrodes were prepared in the same manner as in Example 1 except that the cam rollers 7a and 7b were attached with a 90 ° phase shift in the apparatus shown in FIG. As a result, the thickness of the electrode changed from thick to thin on the right side, and changed from thin to thick on the left side, and an electrode having a constant intermediate thickness was formed at the center.

図8は本発明による燃料電池の電極製造装置のさらに他の例を示す模式図である。この装置A1では、図1に示す装置Aでの、転写ローラ12、転写用高圧電源13、現像ローラ3を含む電極材料粉末充填ホッパー1などからなる部分を1つの転写ユニット20としたものが、電解質膜8の搬送方向に、複数個(図示のものでは3個)、タンデムに並べられている。   FIG. 8 is a schematic view showing still another example of a fuel cell electrode manufacturing apparatus according to the present invention. In this apparatus A1, the part composed of the transfer roller 12, the transfer high-voltage power supply 13, the electrode material powder filling hopper 1 including the developing roller 3 and the like in the apparatus A shown in FIG. A plurality (three in the figure) of the electrolyte membrane 8 are arranged in tandem in the transport direction of the electrolyte membrane 8.

本発明の装置において、カムローラ7a、7bとして長径と短径との比が大きすぎるものを用いると回転時の振動が許容限度を超えることから、1組のカムローラ7a、7bででもって形成しうる電極の厚み変化には自ずと限度がある。しかし、図8に示す装置のように、タンデムに複数個の転写ユニット20を配置することにより、複数回の転写でもって1つの電極を形成できることから、上記した本発明による固有の効果を維持しながら、急激な厚み変化を持つ電極を確実に作成することが可能となる。   In the apparatus of the present invention, if a cam roller 7a, 7b having an excessively large ratio between the major axis and the minor axis is used, vibration during rotation exceeds an allowable limit. The change in electrode thickness is naturally limited. However, as in the apparatus shown in FIG. 8, by arranging a plurality of transfer units 20 in tandem, one electrode can be formed by a plurality of times of transfer, so that the above-described inherent effects of the present invention are maintained. However, it is possible to reliably produce an electrode having a sudden thickness change.

図9は本発明による燃料電池の電極製造装置のさらに他の例を示す模式図である。この装置A2では、前記した転写ユニット20が、電解質膜の一面側(例えば燃料極側)に電解質膜8の搬送方向に複数個(図示のものでは3個)タンデムに並べられており、さらに、電解質膜の他面側(例えば空気極側)にも、向きを逆転した状態で、電解質膜8の搬送方向に複数個(図示のものでは3個)タンデムに並べられている。   FIG. 9 is a schematic view showing still another example of a fuel cell electrode manufacturing apparatus according to the present invention. In this apparatus A2, a plurality of transfer units 20 are arranged in tandem (three in the figure) in the transport direction of the electrolyte membrane 8 on one surface side (for example, the fuel electrode side) of the electrolyte membrane, On the other side of the electrolyte membrane (for example, the air electrode side), a plurality (three in the illustrated example) are arranged in tandem in the transport direction of the electrolyte membrane 8 in a state where the direction is reversed.

この装置では、上記した本発明による固有の効果を維持しながら、電解質膜8の両面に一連の工程で厚み変化のある電極像を形成することができる。なお、図示の例では、燃料極側の転写後に定着ローラ14aを配置し、空気極側の転写後にも定着ローラ14bを配置しているが、電極材料粉末や電解質膜8への熱圧着によるダメージを低減するために、先行する側の定着ローラ、すなわち燃料極側の転写後に定着ローラ14aを省略することもできる。また、電解質膜の燃料極側に並べる転写ユニットと空気極側に並べる転写ユニットとで、転動ローラの形状や充填する電極材料粉末の種類をそれぞれ異なるものとすることにより、燃料極側電極と空気極側電極に、それぞれ最適な電極を作成することも可能となる。   In this apparatus, an electrode image having a thickness change can be formed on both surfaces of the electrolyte membrane 8 in a series of steps while maintaining the above-described intrinsic effects of the present invention. In the illustrated example, the fixing roller 14a is arranged after the transfer on the fuel electrode side, and the fixing roller 14b is also arranged after the transfer on the air electrode side. However, the electrode material powder and the electrolyte film 8 are damaged by thermocompression bonding. In order to reduce this, it is possible to omit the fixing roller 14a on the preceding side, that is, after the transfer on the fuel electrode side. In addition, the transfer unit arranged on the fuel electrode side of the electrolyte membrane and the transfer unit arranged on the air electrode side are different in the shape of the rolling roller and the type of electrode material powder to be filled. It is also possible to create an optimum electrode for each air electrode side electrode.

なお、上記の説明では、現像ローラ3として電極パターン凹部4を有するものを用いるようにしているが、本発明において電極パターン凹部4は必須のものではなく、現像ローラ3上に所要パターンの電極像が形成されることを条件に省略可能である。   In the above description, the developing roller 3 having the electrode pattern concave portion 4 is used. However, in the present invention, the electrode pattern concave portion 4 is not essential, and an electrode image of a required pattern is formed on the developing roller 3. Can be omitted on the condition that is formed.

本発明による燃料電池の電極製造装置の一例を示す模式図。The schematic diagram which shows an example of the electrode manufacturing apparatus of the fuel cell by this invention. 転動ローラ(カムローラ)の部分を拡大して示す図であり、現像ローラが最も下位にある状態を示している。It is a figure which expands and shows the part of a rolling roller (cam roller), and has shown the state which has a developing roller in the lowest position. 転動ローラ(カムローラ)の部分を拡大して示す他の図であり、現像ローラが最も上位にある状態を示している。It is another figure which expands and shows the part of a rolling roller (cam roller), and has shown the state which has a developing roller in the highest rank. 実施例1での電極の厚み変化を示すグラフ。3 is a graph showing changes in electrode thickness in Example 1. FIG. 実施例2で用いた装置の要部を示す図。FIG. 6 is a diagram showing a main part of an apparatus used in Example 2. 実施例2での電極の厚み変化を示すグラフ。6 is a graph showing changes in electrode thickness in Example 2. 実施例3で用いた装置の要部を示す図。FIG. 6 is a diagram showing a main part of an apparatus used in Example 3. 本発明による燃料電池の電極製造装置のさらに他の例を示す模式図。The schematic diagram which shows the further another example of the electrode manufacturing apparatus of the fuel cell by this invention. 本発明による燃料電池の電極製造装置のさらに他の例を示す模式図。The schematic diagram which shows the further another example of the electrode manufacturing apparatus of the fuel cell by this invention. 固体高分子型燃料電池で用いられる膜電極接合体を説明するための模式図。The schematic diagram for demonstrating the membrane electrode assembly used with a polymer electrolyte fuel cell. 従来の燃料電池の電極製造装置の一例を示す模式図。The schematic diagram which shows an example of the electrode manufacturing apparatus of the conventional fuel cell.

符号の説明Explanation of symbols

A…燃料電池の電極製造装置、1…電極材料粉末充填ホッパー、2…電極材料粉末、3…現像ローラ、4…電極パターン凹部、5…転写用電極、6…薄層形成ブレード、7a、7b…カムローラ(転動ローラ)、7a1,7b1…円形ローラ(転動ローラ)、8…ウェブ状の電解質膜、9…電解質膜巻き出しローラ、10、11…搬送ローラ、12…転写ローラ、14…定着ローラ、15…電解質膜巻き取りローラ、9a、10a,11a,12a,14a,15a…樹脂コーティング、13…転写用高圧電源   DESCRIPTION OF SYMBOLS A ... Fuel cell electrode manufacturing apparatus, 1 ... Electrode material powder filling hopper, 2 ... Electrode material powder, 3 ... Developing roller, 4 ... Electrode pattern recessed part, 5 ... Transfer electrode, 6 ... Thin layer formation blade, 7a, 7b ... cam rollers (rolling rollers), 7a1, 7b1 ... circular rollers (rolling rollers), 8 ... web-like electrolyte film, 9 ... electrolyte film unwinding roller, 10, 11 ... conveying roller, 12 ... transfer roller, 14 ... Fixing roller, 15 ... electrolyte film winding roller, 9a, 10a, 11a, 12a, 14a, 15a ... resin coating, 13 ... high voltage power supply for transfer

Claims (12)

電極材料粉末を所定の電極像として形成する現像部および電極材料粉末を現像部から電解質膜上に静電力により転写する転写部とを少なくとも有する転写ユニットと、電解質膜上の電極材料粉末を定着する定着部とを少なくとも備えており、転写ユニットにおいて、転写部および電解質膜は現像部とは隔てて配置され、かつ、転写部には電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段が施されている燃料電池の電極製造装置であって、
現像部は電極材料粉末を帯電し転写する転写電極を持つ現像ローラを有し、転写部は転写電極に対向する対向電極を持つ転写ローラを有し、前記2つの電極間には転写用高圧電源から高電圧が印加され電界が生成されるようになっており、さらに、転写中に現像ローラと転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させるための機械的手段が備えられていることを特徴とする燃料電池の電極製造装置。
Fixing the electrode material powder on the electrolyte membrane, and a transfer unit having at least a developing portion for forming the electrode material powder as a predetermined electrode image and a transfer portion for transferring the electrode material powder from the development portion onto the electrolyte membrane by electrostatic force A transfer unit, and the transfer unit and the electrolyte film are arranged separately from the developing unit, and the electrode material powder electrostatically attached to the electrolyte film is charged to a reverse polarity in the transfer unit. An apparatus for manufacturing an electrode of a fuel cell, which is provided with means for preventing
The developing unit has a developing roller having a transfer electrode for charging and transferring the electrode material powder, the transfer unit has a transfer roller having a counter electrode facing the transfer electrode, and a high-voltage power supply for transfer between the two electrodes In addition, a mechanical means for changing the electric field strength between the two rollers by changing the distance between the developing roller and the transfer roller during the transfer is generated by applying a high voltage to the electric field. An electrode manufacturing apparatus for a fuel cell, comprising:
機械的手段が現像ローラと転写ローラの間に介装される転動ローラであることを特徴とする請求項1に記載の電極製造装置。   2. The electrode manufacturing apparatus according to claim 1, wherein the mechanical means is a rolling roller interposed between the developing roller and the transfer roller. 転動ローラは電解質膜の幅方向の両側に配置された2枚のカムローラであり、2枚のカムローラはカム輪郭が同じ形状でありかつ同位相で回転するようにされていることを特徴とする請求項2に記載の電極製造装置。   The rolling rollers are two cam rollers arranged on both sides in the width direction of the electrolyte membrane, and the two cam rollers have the same cam profile and are rotated in the same phase. The electrode manufacturing apparatus according to claim 2. 転動ローラは電解質膜の幅方向の両側に配置された2枚のカムローラであり、2枚のカムローラはカム輪郭が同じ形状でありかつ位相をずらして回転するようにされていることを特徴とする請求項2に記載の電極製造装置。   The rolling rollers are two cam rollers arranged on both sides in the width direction of the electrolyte membrane, and the two cam rollers have the same cam contour and are rotated with a phase shift. The electrode manufacturing apparatus according to claim 2. 転動ローラは電解質膜の幅方向の両側に配置された2枚のカムローラであり、2枚のカムローラは異なる形状のカム輪郭を持つことを特徴とする請求項2に記載の電極製造装置。   3. The electrode manufacturing apparatus according to claim 2, wherein the rolling rollers are two cam rollers disposed on both sides in the width direction of the electrolyte membrane, and the two cam rollers have cam profiles having different shapes. 転動ローラは電解質膜の幅方向の両側に配置された直径の異なる2枚の円形ローラであることを特徴とする請求項2に記載の電極製造装置。   3. The electrode manufacturing apparatus according to claim 2, wherein the rolling rollers are two circular rollers having different diameters arranged on both sides in the width direction of the electrolyte membrane. 電極材料粉末が逆極性に帯電するのを防止するための手段が、転写部の電解質膜に面することとなる領域を高抵抗値を持つ材料で作製する手段であることを特徴とする請求項1〜6のいずれかに記載の燃料電池の電極製造装置。   The means for preventing the electrode material powder from being charged with a reverse polarity is a means for producing a region that faces the electrolyte membrane of the transfer portion with a material having a high resistance value. The electrode manufacturing apparatus of the fuel cell in any one of 1-6. 電極材粉末が逆極性に帯電するのを防止するための手段が、転写部の電極と転写用高圧電源とを高抵抗値を持つ抵抗を介して接続する手段であることを特徴とする請求項1〜6のいずれかに記載の燃料電池の電極製造装置。   The means for preventing the electrode material powder from being charged with a reverse polarity is a means for connecting the electrode of the transfer portion and the high-voltage power supply for transfer via a resistor having a high resistance value. The electrode manufacturing apparatus of the fuel cell in any one of 1-6. 転写部を構成する部材以外の部材であって、電極の製造過程で電解質膜に接することとなる部材は、電解質膜に接することとなる領域を高抵抗値を持つ材料で作製されおり、これら部材から電解質膜に静電付着した電極材料粉末が帯電するのをなくして、電極材料粉末が逆極性に帯電するのを防止するようにされていることを特徴とする請求項1〜8のいずれかに記載の燃料電池の電極製造装置。   The members other than the members constituting the transfer portion, which are in contact with the electrolyte membrane in the manufacturing process of the electrodes, are made of a material having a high resistance value in the region that is in contact with the electrolyte membrane. The electrode material powder electrostatically attached to the electrolyte membrane is prevented from being charged to prevent the electrode material powder from being charged to a reverse polarity. The fuel cell electrode manufacturing apparatus according to claim 1. 2個以上の転写ユニットが電解質膜の搬送方向にタンデムに並べられていることを特徴とする請求項1〜9のいずれかに記載の燃料電池の電極製造装置。   The fuel cell electrode manufacturing apparatus according to claim 1, wherein two or more transfer units are arranged in tandem in the transport direction of the electrolyte membrane. 2個以上の転写ユニットが電解質膜の一面側にその搬送方向にタンデムに並べられており、さらに、2個以上の転写ユニットが電解質膜の他面側にその搬送方向にタンデムに並べられていることを特徴とする請求項10に記載の燃料電池の電極製造装置。   Two or more transfer units are arranged in tandem in the transport direction on one surface side of the electrolyte membrane, and two or more transfer units are arranged in tandem in the transport direction on the other surface side of the electrolyte membrane. The fuel cell electrode manufacturing apparatus according to claim 10. 電極材料粉末を所定の電極像として現像ローラ上に形成する工程、現像ローラ上の電極像を転写ローラ上を移動する電解質膜上に静電力により転写する工程、電解質膜上の電極材料粉末を定着する工程とを少なくとも備えた燃料電池の電極製造方法であって、現像ローラと転写ローラとの間隔を変化させて2つのローラ間の電界強度を変化させることにより、電解質膜へ静電付着する電極材料粉末量を変化させて、厚さの異なる部分を有する電極を電解質膜に形成することを特徴とする燃料電池の電極製造方法。   The process of forming electrode material powder on the developing roller as a predetermined electrode image, the process of transferring the electrode image on the developing roller onto the electrolyte film moving on the transfer roller by electrostatic force, and fixing the electrode material powder on the electrolyte film And an electrode for electrostatically adhering to the electrolyte membrane by changing the electric field strength between the two rollers by changing the distance between the developing roller and the transfer roller. An electrode manufacturing method for a fuel cell, wherein an electrode having a portion having a different thickness is formed on an electrolyte membrane by changing a material powder amount.
JP2004141220A 2004-05-11 2004-05-11 Fuel cell electrode manufacturing apparatus and method Expired - Fee Related JP4614687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141220A JP4614687B2 (en) 2004-05-11 2004-05-11 Fuel cell electrode manufacturing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141220A JP4614687B2 (en) 2004-05-11 2004-05-11 Fuel cell electrode manufacturing apparatus and method

Publications (2)

Publication Number Publication Date
JP2005322588A true JP2005322588A (en) 2005-11-17
JP4614687B2 JP4614687B2 (en) 2011-01-19

Family

ID=35469684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141220A Expired - Fee Related JP4614687B2 (en) 2004-05-11 2004-05-11 Fuel cell electrode manufacturing apparatus and method

Country Status (1)

Country Link
JP (1) JP4614687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164910A (en) * 2004-12-10 2006-06-22 Ricoh Co Ltd Electrochemical device, its manufacturing method, and cellular phone equipped with it
WO2014112812A1 (en) * 2013-01-16 2014-07-24 주식회사 엘지화학 Electrode assembly manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310367A (en) * 1988-06-09 1989-12-14 Fuji Xerox Co Ltd Developing device
JPH0427988A (en) * 1990-05-23 1992-01-30 Fujitsu Ltd Toner image transfer device for image forming device
JP2002367616A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for polymer electrolyte fuel cell, and manufacturing device for the same
JP2003233245A (en) * 2002-02-08 2003-08-22 Canon Inc Image forming method and image forming device using the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310367A (en) * 1988-06-09 1989-12-14 Fuji Xerox Co Ltd Developing device
JPH0427988A (en) * 1990-05-23 1992-01-30 Fujitsu Ltd Toner image transfer device for image forming device
JP2002367616A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for polymer electrolyte fuel cell, and manufacturing device for the same
JP2003233245A (en) * 2002-02-08 2003-08-22 Canon Inc Image forming method and image forming device using the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164910A (en) * 2004-12-10 2006-06-22 Ricoh Co Ltd Electrochemical device, its manufacturing method, and cellular phone equipped with it
WO2014112812A1 (en) * 2013-01-16 2014-07-24 주식회사 엘지화학 Electrode assembly manufacturing apparatus
KR101532730B1 (en) * 2013-01-16 2015-06-30 주식회사 엘지화학 Manufacturing apparatus for electrode assembly
US9768439B2 (en) 2013-01-16 2017-09-19 Lg Chem, Ltd. Apparatus for preparing electrode assembly

Also Published As

Publication number Publication date
JP4614687B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US7738821B2 (en) Developer supply device and image forming apparatus
JP6391770B2 (en) Image forming apparatus
BR102013007934B1 (en) IMAGE FORMING DEVICE
US8811868B2 (en) Fusing unit and image forming apparatus employing the same
US5832351A (en) Transfer sheet and image forming apparatus
WO2005080008A1 (en) Method and apparatus for forming catalyst layer on base constituting membrane electrode assembly
US7466942B2 (en) Direct charging device using nano-structures within a metal coated pore matrix
JP3325136B2 (en) Image forming device
JP2003163011A (en) Method and apparatus for manufacturing fuel cell electrode
JP2007300077A (en) System and method for making printed electronic circuits using electrophotography
JP2010038990A (en) Developing apparatus, process cartridge, and image forming apparatus
US20070217813A1 (en) Image forming device
CN107664940B (en) Image forming apparatus with a toner supply device
JP4253491B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP4614687B2 (en) Fuel cell electrode manufacturing apparatus and method
JP5175423B2 (en) Fuel cell electrode manufacturing apparatus and method
JP4619041B2 (en) Fuel cell electrode manufacturing apparatus and method
US11644770B2 (en) Intermediate transfer body and image forming apparatus
US10606184B2 (en) Image forming apparatus
JP2003241543A (en) Image forming apparatus
US11537068B2 (en) Intermediate transfer body and image forming apparatus
JP2002365923A (en) Imaging device and destaticizing bias control method
JP5446165B2 (en) Developing device, process cartridge, and image forming apparatus
JP3728382B2 (en) Wet image forming device
JPH09319182A (en) Electrifying device and manufacture of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees