JP2005321528A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2005321528A
JP2005321528A JP2004138601A JP2004138601A JP2005321528A JP 2005321528 A JP2005321528 A JP 2005321528A JP 2004138601 A JP2004138601 A JP 2004138601A JP 2004138601 A JP2004138601 A JP 2004138601A JP 2005321528 A JP2005321528 A JP 2005321528A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
retardation
retardation region
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004138601A
Other languages
Japanese (ja)
Inventor
Shoji Yasuda
庄司 安田
Mitsuyoshi Ichihashi
光芳 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004138601A priority Critical patent/JP2005321528A/en
Priority to KR1020050037743A priority patent/KR20060045914A/en
Publication of JP2005321528A publication Critical patent/JP2005321528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an IPS (in-plane switching) liquid crystal display with significantly improved display quality and a viewing angle. <P>SOLUTION: The liquid crystal display comprises a liquid crystal cell having a first polarizing film, a first retardation region, a second retardation region and a liquid crystal layer all interposed between a pair of substrates, and a second polarizing film, in which the liquid crystal molecules are aligned parallel to the surface of the substrate during black display. Retardation Re in the first retardation region defined by Re=(nx-ny)×d using the refractive indices nx, ny (nx≥ny) in the plane, the refractive index nz in the thickness direction and the film thickness d ranges 60 to 200 nm. A value Nz defined by Nz=(nx-nz)/(nx-ny) is in the range over 0.8 to 1.5 or less. The first retardation region has a retardation layer obtained by stretching an alicyclic structure-containing polymer resin film. The refractive indices nx and ny in the plane in the second retardation region are substantially equal to each other, and retardation Rth in the thickness direction in the second retardation region defined by Rth=ä(nx+ny)/2-nz}×d ranges -200 to -50 nm. The transmission axis of the first polarizing film is parallel to the slow phase axis of the liquid crystal molecules during black display. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示装置に関し、特に水平方向に配向した液晶分子に横方向の電界を印加することにより表示を行う、インプレーンスイッチングモードの液晶表示装置に関する。   The present invention relates to a liquid crystal display device, and more particularly to an in-plane switching mode liquid crystal display device that performs display by applying a horizontal electric field to liquid crystal molecules aligned in a horizontal direction.

液晶表示装置としては、二枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶分子による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性分子がハイブリッド配向したフイルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、液晶性分子を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での諧調反転が抑えきれないという問題を生じていた。   As a liquid crystal display device, a so-called TN mode is widely used in which a liquid crystal layer in which nematic liquid crystal is twisted is sandwiched between two orthogonal polarizing plates and an electric field is applied in a direction perpendicular to the substrate. In this system, since the liquid crystal rises with respect to the substrate during black display, birefringence occurs due to liquid crystal molecules when viewed from an oblique direction, and light leakage occurs. To solve this problem, a system for optically compensating the liquid crystal cell and preventing this light leakage by using a film in which liquid crystal molecules are hybrid-aligned has been put into practical use. However, even if liquid crystal molecules are used, it is very difficult to completely optically compensate the liquid crystal cell without any problem, resulting in a problem that gradation reversal in the lower direction of the screen cannot be suppressed.

かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるインプレーンスイッチング(IPS)モードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、TV用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった、黒表示時の対角位斜め入射方向での僅かな光漏れが表示品質の低下の原因として顕在化してきた。   In order to solve such a problem, a liquid crystal display device using a so-called in-plane switching (IPS) mode in which a lateral electric field is applied to the liquid crystal, or a liquid crystal having a negative dielectric anisotropy is vertically aligned in the panel. A vertical alignment (VA) mode in which alignment is divided by protrusions and slit electrodes has been proposed and put into practical use. In recent years, these panels have been developed not only for monitor applications but also for TV applications, and screen brightness has been greatly improved accordingly. For this reason, slight light leakage in the diagonally oblique incidence direction during black display, which has not been considered as a problem in these operation modes, has become apparent as a cause of deterioration in display quality.

この色調や黒表示の視野角を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSモードにおいても検討されている。例えば、傾斜時の液晶層のレターデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示又は中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコチック液晶性化合物からなる光学補償フイルムを使用した方法(特許文献2、3、4参照)や、光学補償フイルムとして複屈折が正で光学軸がフイルムの面内にある膜と複屈折が正で光学軸がフイルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レターデーションが二分の一波長の二軸性の光学補償シートを使用する方法(特許文献6参照)、偏光板の保護膜として負のレターデーションを有する膜を使い、この表面に正のレターデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。   As one means for improving the color tone and the viewing angle of black display, the arrangement of an optical compensation material having birefringence characteristics between the liquid crystal layer and the polarizing plate is also studied in the IPS mode. For example, by arranging a birefringent medium having an optical axis orthogonal to each other to compensate for the increase / decrease in retardation of the liquid crystal layer during tilting, a white display or a halftone display is diagonally arranged between the substrate and the polarizing plate. It is disclosed that coloring can be improved when viewing directly from (see Patent Document 1). In addition, a method using an optical compensation film made of a styrenic polymer having a negative intrinsic birefringence or a discotic liquid crystalline compound (see Patent Documents 2, 3, and 4), or an optical axis having a positive birefringence as an optical compensation film. A film in which the film is in the plane of the film and a film having a positive birefringence and an optical axis in the normal direction of the film (see Patent Document 5), biaxial optical compensation with a retardation of half wavelength A method using a sheet (see Patent Document 6), a method using a film having a negative retardation as a protective film of a polarizing plate, and providing an optical compensation layer having a positive retardation on this surface (see Patent Document 7) Proposed.

特開平9−80424号公報Japanese Patent Laid-Open No. 9-80424 特開平10−54982号公報Japanese Patent Laid-Open No. 10-54982 特開平11−202323号公報JP-A-11-202323 特開平9−292522号公報Japanese Patent Laid-Open No. 9-292522 特開平11−133408号公報JP 11-133408 A 特開平11−305217号公報JP-A-11-305217 特開平10−307291号公報JP-A-10-307291

しかし、提案された方式の多くは、液晶セル中の液晶の複屈折の異方性を打ち消して視野角を改善する方式であるために、直交偏光板を斜めから見た場合の偏光軸交差角度の直交からのズレに基づく光漏れを十分に解決できないという問題がある。また、この光漏れを補償できるとされる方式でも、液晶セルを問題なく完全に光学的に補償することは非常に難しい。さらに、延伸複屈折ポリマーフイルムで光学補償を行うIPSモード液晶セル用光学補償シートでは、複数のフイルムを用いる必要があり、その結果、光学補償シートの厚さが増し、表示装置の薄形化に不利である。また、延伸フイルムの積層には粘着層を用いるため、温湿度変化により粘着層が収縮してフイルム間の剥離や反りといった不良が発生することがあった。   However, many of the proposed methods are methods that improve the viewing angle by canceling the birefringence anisotropy of the liquid crystal in the liquid crystal cell, so the polarization axis crossing angle when the orthogonal polarizing plate is viewed from an oblique direction. There is a problem that the light leakage based on the deviation from orthogonality cannot be solved sufficiently. Even in a system that can compensate for this light leakage, it is very difficult to completely optically compensate the liquid crystal cell without any problem. Furthermore, in the optical compensation sheet for an IPS mode liquid crystal cell that performs optical compensation with a stretched birefringent polymer film, it is necessary to use a plurality of films. As a result, the thickness of the optical compensation sheet is increased, and the display device is made thinner. It is disadvantageous. In addition, since an adhesive layer is used for laminating stretched films, the adhesive layer contracts due to changes in temperature and humidity, and defects such as peeling and warping between films may occur.

本発明は前記諸問題に鑑みなされたものであって、簡易な構成で、表示品位のみならず、視野角が著しく改善されたIPS型液晶表示装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an IPS liquid crystal display device with a simple configuration and not only display quality but also a viewing angle that is remarkably improved.

また、提案された方式の多くは、光学的向き(光軸や遅相軸)を調節するためには煩雑な製造工程を必要とする。例えば、光学補償シートを所定の角度にカットして得られるチップを粘着剤によって貼合し積層する、いわゆる「バッチ貼り」により製造する必要がある。該製造方式では、軸ずれによる品質低下が起き易く、歩留まりが低下し製造コストが増大する可能性が大きい。   Many of the proposed methods require a complicated manufacturing process in order to adjust the optical direction (optical axis or slow axis). For example, it is necessary to manufacture a chip obtained by cutting an optical compensation sheet at a predetermined angle by so-called “batch sticking”, in which a chip is bonded and laminated with an adhesive. In the manufacturing method, the quality is likely to be deteriorated due to the shaft misalignment, and there is a high possibility that the yield is reduced and the manufacturing cost is increased.

本発明は前記諸問題に鑑みなされたものであって、第一に、表示品位のみならず、視野角が著しく改善されたIPS型液晶表示装置を提供することを目的とする。第二に、光学特性の安定性に優れ、ロールトゥーロール方式での製造が可能で生産効率に優れたIPS型液晶表示装置を提供することを目的とする。   The present invention has been made in view of the above problems, and firstly, an object is to provide an IPS liquid crystal display device in which not only display quality but also a viewing angle is remarkably improved. A second object of the present invention is to provide an IPS liquid crystal display device that is excellent in stability of optical characteristics, can be manufactured by a roll-to-roll method, and has excellent production efficiency.

前記課題を解決するための手段は以下の通りである。
(1) 少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層を一対の基板で挟んだ液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
面内の屈折率nxとny(nx≧ny)、厚さ方向の屈折率nz、及びフイルムの厚さdを用いてRe=(nx−ny)×dで定義される第1位相差領域のレターデーションReが60nm〜200nmであり、
Nz=(nx−nz)/(nx−ny)で定義される第1位相差領域の値Nzが0.8を超え1.5以下で、
第1位相差領域が、脂環式構造含有重合体樹脂フイルムを延伸して得られた位相差層を有し、
第2位相差領域の面内の屈折率nxとnyが実質的に等しく、nx<nzであり、Rth={(nx+ny)/2−nz}×dで定義される第2位相差領域の厚み方向のレターデーションRthが−200nm〜−50nmであり、且つ
第1偏光膜の透過軸が黒表示時の液晶分子の遅相軸方向に平行である液晶表示装置。
(2) 第1偏光膜、第1位相差領域、第2位相差領域及び液晶セルが、この順序で配置され、且つ第1位相差領域の遅相軸が、第1偏光膜の透過軸に実質的に平行である(1)の液晶表示装置。
(3) 第1偏光膜、第2位相差領域、第1位相差領域及び液晶セルがこの順序で配置され、且つ第1位相差領域の遅相軸が第1偏光膜の透過軸に実質的に直交である(1)の液晶表示装置。
(4) 第1位相差領域が有する位相差層が、ノルボルネン系フイルムを延伸して得られた長尺の延伸フイルムである(1)〜(3)のいずれかの液晶表示装置。
Means for solving the above-mentioned problems are as follows.
(1) At least a first polarizing film, a first retardation region, a second retardation region, a liquid crystal cell having a liquid crystal layer sandwiched between a pair of substrates, and a second polarizing film, A liquid crystal display device in which liquid crystal molecules of a liquid crystal layer are aligned parallel to the surfaces of the pair of substrates,
Using the in-plane refractive indices nx and ny (nx ≧ ny), the refractive index nz in the thickness direction, and the thickness d of the film, the first retardation region defined by Re = (nx−ny) × d Retardation Re is 60 nm to 200 nm,
The value Nz of the first phase difference region defined by Nz = (nx−nz) / (nx−ny) exceeds 0.8 and is 1.5 or less.
The first retardation region has a retardation layer obtained by stretching an alicyclic structure-containing polymer resin film,
In-plane refractive indices nx and ny are substantially equal, nx <nz, and the thickness of the second retardation region defined by Rth = {(nx + ny) / 2−nz} × d. A liquid crystal display device in which the direction retardation Rth is -200 nm to -50 nm and the transmission axis of the first polarizing film is parallel to the slow axis direction of the liquid crystal molecules during black display.
(2) The first polarizing film, the first retardation region, the second retardation region, and the liquid crystal cell are arranged in this order, and the slow axis of the first retardation region is the transmission axis of the first polarizing film. The liquid crystal display device according to (1), which is substantially parallel.
(3) The first polarizing film, the second retardation region, the first retardation region, and the liquid crystal cell are arranged in this order, and the slow axis of the first retardation region is substantially the transmission axis of the first polarizing film. (1) The liquid crystal display device which is orthogonal to
(4) The liquid crystal display device according to any one of (1) to (3), wherein the retardation layer of the first retardation region is a long stretched film obtained by stretching a norbornene-based film.

(5) 第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向の位相差Rthが40nm〜−50nmである(1)〜(4)のいずれかの液晶表示装置。
(6) 第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向の位相差Rthが20nm〜−20nmである(1)〜(4)のいずれかの液晶表示装置。
(7) 第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚みが60μm以下である(1)〜(6)のいずれかの液晶表示装置。
(8) 第1位相差領域が有する位相差層の、波長450nmの面内レターでションRe(450)と波長750nmの面内レターデーションRe(750)との比Re(450)/Re(750)が1.1未満である(1)〜(7)のいずれかの液晶表示装置。
(9) 第1位相差領域の遅相軸が、第1偏光膜の透過軸に対し±5°、もしくは90°±5°である(1)〜(8)のいずれかの液晶表示装置。
(10) 第1偏光膜及び第2偏光膜を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜がセルロースアシレートフイルム又はノルボルネン系フイルムを含む(1)〜(9)のいずれかの液晶表示装置。
(5) having a pair of protective films arranged with at least one of the first polarizing film and the second polarizing film interposed therebetween, and at least the position in the thickness direction of the protective film on the side close to the liquid crystal layer of the pair of protective films The liquid crystal display device according to any one of (1) to (4), wherein the phase difference Rth is 40 nm to -50 nm.
(6) It has a pair of protective films arranged with at least one of the first polarizing film and the second polarizing film interposed therebetween, and at least the position of the protective film on the side close to the liquid crystal layer in the thickness direction of the pair of protective films The liquid crystal display device according to any one of (1) to (4), wherein the phase difference Rth is 20 nm to -20 nm.
(7) It has a pair of protective films arranged with at least one of the first polarizing film and the second polarizing film interposed therebetween, and the thickness of the protective film on the side close to the liquid crystal layer among the pair of protective films is 60 μm or less. The liquid crystal display device according to any one of (1) to (6).
(8) Ratio Re (450) / Re (750) of the retardation layer of the first retardation region between the in-plane letter with a wavelength of 450 nm and the in-plane retardation Re (750) with a wavelength of 750 nm. ) Is less than 1.1. The liquid crystal display device according to any one of (1) to (7).
(9) The liquid crystal display device according to any one of (1) to (8), wherein the slow axis of the first retardation region is ± 5 ° or 90 ° ± 5 ° with respect to the transmission axis of the first polarizing film.
(10) It has a pair of protective films arranged with the first polarizing film and the second polarizing film interposed therebetween, and at least the protective film on the side close to the liquid crystal layer is a cellulose acylate film or a norbornene-based film The liquid crystal display device according to any one of (1) to (9), comprising a film.

本発明によれば、正面方向の特性を何ら変更させることなく、斜めの方位角方向から見た場合に2枚の偏光板の吸収軸が90度からずれることから生ずるコントラストの低下、特に45度の斜め方向からのコントラストの低下や黒表示時の色味の視野角変化を改善することができる。   According to the present invention, the contrast decreases due to the shift of the absorption axes of the two polarizing plates from 90 degrees when viewed from an oblique azimuth direction without changing the characteristics in the front direction, particularly 45 degrees. It is possible to improve the decrease in contrast from the oblique direction and the change in the viewing angle of the color during black display.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下において、本発明の液晶表示装置の一実施形態及びその構成部材について順次説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。   In the following, one embodiment of the liquid crystal display device of the present invention and its constituent members will be sequentially described. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本明細書において、「平行」、「直交」とは、厳密な角度±10゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±5゜未満であることが好ましく、±2゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらに屈折率および位相差の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。   In the present specification, “parallel” and “orthogonal” mean that the angle is within a range of strictly less than ± 10 °. In this range, an error from a strict angle is preferably less than ± 5 °, and more preferably less than ± 2 °. Further, the “slow axis” means a direction in which the refractive index is maximized. Further, the measurement wavelengths of the refractive index and the phase difference are values at λ = 550 nm in the visible light region unless otherwise specified.

本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。   In this specification, “polarizing plate” is cut into a size to be incorporated into a long polarizing plate and a liquid crystal device unless otherwise specified (in this specification, “cutting” includes “punching” and “cutting out”. It is used in the meaning including both of the polarizing plates. In this specification, “polarizing film” and “polarizing plate” are distinguished from each other. “Polarizing plate” means a laminate having a transparent protective film for protecting the polarizing film on at least one side of the “polarizing film”. It shall be.

以下、図面を用いて本発明の実施の形態を詳細に説明する。図1は、本発明の液晶表示装置の画素領域例を示す模式図である。図2及び図3は、本発明の液晶表示装置の一実施形態の模式図である。
[液晶表示装置]
図2に示す液晶表示装置は、偏光膜8、20と、第1位相差領域10と、第2位相差領域12と、一対の基板13、17及びこれに挟持される液晶層15からなる液晶セルとを有する。偏光膜8及20は、それぞれ保護膜7aと7b及び19aと19bによって挟持されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a pixel region of the liquid crystal display device of the present invention. 2 and 3 are schematic views of an embodiment of the liquid crystal display device of the present invention.
[Liquid Crystal Display]
The liquid crystal display device shown in FIG. 2 is a liquid crystal comprising polarizing films 8 and 20, a first retardation region 10, a second retardation region 12, a pair of substrates 13 and 17, and a liquid crystal layer 15 sandwiched between the substrates. Cell. The polarizing films 8 and 20 are sandwiched between protective films 7a and 7b and 19a and 19b, respectively.

図2の液晶表示装置では、液晶セルは、基板13及び17と、これらに挟持される液晶層15からなる。液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは透過モードにおいて、ねじれ構造を持たないIPS型では0.2〜0.4μmの範囲が最適値となる。この範囲では白表示輝度が高く、黒表示輝度が小さいことから、明るくコントラストの高い表示装置が得られる。基板13及び17の液晶層15に接触する表面には、配向膜(不図示)が形成されていて、液晶分子を基板の表面に対して略平行に配向させるとともに配向膜上に施されたラビング処理方向14及び18等により、電圧無印加状態もしくは低印加状態における液晶分子配向方向が制御され、遅相軸16の方向が決定されている。また、基板13若しくは17の内面には、液晶分子に電圧印加可能な電極(図2中不図示)が形成されている。   In the liquid crystal display device of FIG. 2, the liquid crystal cell includes substrates 13 and 17 and a liquid crystal layer 15 sandwiched between them. The product Δn · d of the thickness d (μm) of the liquid crystal layer and the refractive index anisotropy Δn is optimal in the range of 0.2 to 0.4 μm for the IPS type having no twisted structure in the transmission mode. In this range, the white display luminance is high and the black display luminance is small, so that a bright and high-contrast display device can be obtained. An alignment film (not shown) is formed on the surfaces of the substrates 13 and 17 that are in contact with the liquid crystal layer 15 to align liquid crystal molecules substantially parallel to the surface of the substrate and to be rubbed on the alignment film. By the processing directions 14 and 18 and the like, the liquid crystal molecule alignment direction in the voltage non-application state or the low application state is controlled, and the direction of the slow axis 16 is determined. Further, an electrode (not shown in FIG. 2) capable of applying a voltage to the liquid crystal molecules is formed on the inner surface of the substrate 13 or 17.

図1に、液晶層15の1画素領域中の液晶分子の配向を模式的に示す。図1は、液晶層15の1画素に相当する程度の極めて小さい面積の領域中の液晶分子の配向を、基板13及び17の内面に形成された配向膜のラビング方向4、及び基板13及び17の内面に形成された液晶分子に電圧印加可能な電極2及び3とともに示した模式図である。電界効果型液晶として正の誘電異方性を有するネマチック液晶を用いてアクティブ駆動を行った場合の、電圧無印加状態若しくは低印加状態での液晶分子配向方向は5a及び5bであり、この時に黒表示が得られる。電極2及び3間に印加されると、電圧に応じて液晶分子は6a及び6b方向へとその配向方向を変える。通常、この状態で明表示を行なう。
また、本発明に用いられる液晶セルはIPSモードに限定されることなく、黒表示時に液晶分子が前記一対の基板の表面に対して実質的に平行に配向する液晶表示装置であれば、いずれも好適に用いることができる。この例としては強誘電性液晶表示装置、反強誘電性液晶表示装置、ECB型液晶表示装置がある。
FIG. 1 schematically shows the alignment of liquid crystal molecules in one pixel region of the liquid crystal layer 15. FIG. 1 shows the alignment of liquid crystal molecules in a very small area corresponding to one pixel of the liquid crystal layer 15 in the rubbing direction 4 of the alignment film formed on the inner surfaces of the substrates 13 and 17 and the substrates 13 and 17. It is the schematic diagram shown with the electrodes 2 and 3 which can apply a voltage to the liquid crystal molecule formed in the inner surface. When active driving is performed using a nematic liquid crystal having positive dielectric anisotropy as a field effect liquid crystal, the liquid crystal molecule alignment directions in a no voltage application state or a low application state are 5a and 5b. A display is obtained. When applied between the electrodes 2 and 3, the liquid crystal molecules change their alignment direction in the directions of 6 a and 6 b in accordance with the voltage. Usually, bright display is performed in this state.
The liquid crystal cell used in the present invention is not limited to the IPS mode, and any liquid crystal display device in which liquid crystal molecules are aligned substantially parallel to the surfaces of the pair of substrates during black display can be used. It can be used suitably. Examples thereof include a ferroelectric liquid crystal display device, an antiferroelectric liquid crystal display device, and an ECB type liquid crystal display device.

再び図2において、偏光膜8の透過軸9と、偏光膜20の透過軸21は直交して配置されている。また、第1位相差領域10は、その遅相軸11が偏光膜8の透過軸9と平行に配置される。さらに、偏光膜8の透過軸9と、黒表示時の液晶層14中の液晶分子の遅相軸16とは平行であり、即ち、第1位相差領域10の遅相軸11と液晶黒表示時の液晶層14の遅相軸16とは平行である。第1位相差領域10は、脂環式構造含有重合体樹脂からなるフイルムを延伸して作製された延伸フイルムである。第1位相差領域10は、後述する光学特性を満たすため、他の延伸フイルムとの積層体であっても、また、液晶性化合物の配向によって発現された光学異方性を示す光学異方性層との積層体であってもよい。本態様では、後述する特定の光学特性を示す第1位相差領域10を、この様に配置するとともに、後述する特定の光学特性を有する第2位相差領域13を第1位相差領域10と液晶セルとの間に配置することで、液晶セルの視野角特性を改善している。   In FIG. 2 again, the transmission axis 9 of the polarizing film 8 and the transmission axis 21 of the polarizing film 20 are arranged orthogonally. Further, the slow axis 11 of the first phase difference region 10 is arranged in parallel with the transmission axis 9 of the polarizing film 8. Further, the transmission axis 9 of the polarizing film 8 and the slow axis 16 of the liquid crystal molecules in the liquid crystal layer 14 at the time of black display are parallel, that is, the slow axis 11 of the first retardation region 10 and the liquid crystal black display. The slow axis 16 of the liquid crystal layer 14 at the time is parallel. The first retardation region 10 is a stretched film produced by stretching a film made of an alicyclic structure-containing polymer resin. In order to satisfy the optical characteristics described later, the first retardation region 10 may be a laminate with other stretched films, or an optical anisotropy exhibiting an optical anisotropy expressed by the orientation of the liquid crystalline compound. It may be a laminate with layers. In this aspect, the first retardation region 10 having specific optical characteristics to be described later is arranged in this manner, and the second retardation region 13 having specific optical characteristics to be described later is replaced with the first retardation region 10 and the liquid crystal. By disposing it between the cells, the viewing angle characteristics of the liquid crystal cell are improved.

図2に示す液晶表示装置では、偏光膜8が二枚の保護膜7a及び7bに挟持された構成を示しているが、保護膜7bはなくてもよい。但し、保護膜7bを配置しない場合は、第1位相差領域10は後述する特定の光学特性を有するとともに、偏光膜8を保護する機能も兼ね備えている必要がある。保護膜7bを配置する場合は、該保護膜の厚み方向の位相差Rthは、−50nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、偏光膜20も二枚の保護膜19a及び19bに挟持されているが、液晶層15に近い側の保護膜19aはなくてもよい。保護膜19aを配置する場合は、該保護膜の厚み方向の位相差Rthは、−50nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、保護膜7b及び保護膜19aは、その厚みが薄いのが好ましく、具体的には60nm以下であるのが好ましい。   In the liquid crystal display device shown in FIG. 2, the configuration in which the polarizing film 8 is sandwiched between the two protective films 7a and 7b is shown, but the protective film 7b may be omitted. However, when the protective film 7b is not disposed, the first retardation region 10 needs to have a specific optical characteristic to be described later and also have a function of protecting the polarizing film 8. When the protective film 7b is disposed, the thickness direction retardation Rth of the protective film is preferably −50 nm to 40 nm, and more preferably −20 nm to 20 nm. Further, although the polarizing film 20 is also sandwiched between the two protective films 19a and 19b, the protective film 19a on the side close to the liquid crystal layer 15 may be omitted. When the protective film 19a is disposed, the thickness direction retardation Rth of the protective film is preferably −50 nm to 40 nm, and more preferably −20 nm to 20 nm. Moreover, it is preferable that the thickness of the protective film 7b and the protective film 19a is thin, and specifically, it is preferable that it is 60 nm or less.

図2の態様では、第1位相差領域及び第2位相差領域は、液晶セルの位置を基準にして、液晶セルと視認側の偏光膜との間に配置されていてもよいし、液晶セルと背面側の偏光膜との間に配置されていてもよいが、液晶セルと背面側の偏光膜との間に配置される方が歩留まりの点で好ましい。いずれの態様においても、図2の構成では第2位相差領域が液晶セルにより近くなるように配置する。   In the embodiment of FIG. 2, the first retardation region and the second retardation region may be disposed between the liquid crystal cell and the viewing-side polarizing film with reference to the position of the liquid crystal cell. May be disposed between the liquid crystal cell and the polarizing film on the back side, but it is preferable in terms of yield to be disposed between the liquid crystal cell and the polarizing film on the back side. In either embodiment, the second phase difference region is disposed closer to the liquid crystal cell in the configuration of FIG.

本発明の他の実施形態を図3に示す。図3中、図2と同一の部材については同一の符号を付し、詳細な説明は省略する。図3に示す液晶表示装置では、第1位相差領域10と第2位相差領域12との位置が入れ替わり、第1位相差領域10が、第2位相差領域12と比較して偏光膜8からより遠い位置、即ち、より液晶セルに近い位置に配置される。また、図3に示す態様では、第1位相差領域10は、その遅相軸11が、偏光膜8の透過軸9と直交にして配置される。さらに、偏光膜8の透過軸9と、黒表示時の液晶層14中の液晶分子の遅相軸16とは平行であり、即ち、第1位相差領域10の遅相軸11と液晶黒表示時の液晶層14の遅相軸16とは直交である。本態様では、後述する特定の光学特性を示す第1位相差領域10をこの様に配置するとともに、後述する特定の光学特性を有する第2位相差領域を第1位相差領域10と偏光膜8との間に配置することで、液晶セルの視野角特性を改善している。   Another embodiment of the present invention is shown in FIG. 3, the same members as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In the liquid crystal display device shown in FIG. 3, the positions of the first retardation region 10 and the second retardation region 12 are interchanged, and the first retardation region 10 is separated from the polarizing film 8 compared to the second retardation region 12. It is arranged at a position farther away, that is, a position closer to the liquid crystal cell. In the embodiment shown in FIG. 3, the first retardation region 10 is arranged such that its slow axis 11 is orthogonal to the transmission axis 9 of the polarizing film 8. Further, the transmission axis 9 of the polarizing film 8 and the slow axis 16 of the liquid crystal molecules in the liquid crystal layer 14 at the time of black display are parallel, that is, the slow axis 11 of the first retardation region 10 and the liquid crystal black display. The slow axis 16 of the liquid crystal layer 14 at the time is orthogonal. In this aspect, the first retardation region 10 having specific optical characteristics to be described later is arranged in this manner, and the second retardation region having specific optical characteristics to be described later is arranged as the first retardation region 10 and the polarizing film 8. The viewing angle characteristics of the liquid crystal cell are improved.

図3の液晶表示装置においても、上記と同様、保護膜7bまたは保護膜19aはなくてもよい。但し、保護膜7bがない場合は、第2位相差領域12が、後述する特定の光学特性を有するとともに、偏光膜8を保護する機能も兼ね備えている必要がある。保護膜7bを配置する場合は、該保護膜の厚み方向の位相差Rthは、−50nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、偏光膜20も二枚の保護膜19a及び19bに挟持されているが、液晶層15に近い側の保護膜19aはなくてもよい。保護膜19aを配置する場合は、該保護膜の厚み方向の位相差Rthは、−50nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、保護膜7b及び保護膜19aは、その厚みが薄いのが好ましく、具体的には60nm以下であるのが好ましい。   In the liquid crystal display device of FIG. 3 as well, the protective film 7b or the protective film 19a may be omitted as described above. However, when the protective film 7 b is not provided, the second retardation region 12 needs to have a specific optical characteristic to be described later and also have a function of protecting the polarizing film 8. When the protective film 7b is disposed, the thickness direction retardation Rth of the protective film is preferably −50 nm to 40 nm, and more preferably −20 nm to 20 nm. Further, although the polarizing film 20 is also sandwiched between the two protective films 19a and 19b, the protective film 19a on the side close to the liquid crystal layer 15 may be omitted. When the protective film 19a is disposed, the thickness direction retardation Rth of the protective film is preferably −50 nm to 40 nm, and more preferably −20 nm to 20 nm. Moreover, it is preferable that the thickness of the protective film 7b and the protective film 19a is thin, and specifically, it is preferable that it is 60 nm or less.

なお、図3の態様では、第1位相差領域及び第2位相差領域は、液晶セルの位置を基準にして、液晶セルと視認側の偏光膜との間に配置されていてもよいし、液晶セルと背面側の偏光膜との間に配置されていてもよいが、液晶セルと背面側の偏光膜との間に配置される方が歩留まりの点で好ましい。いずれの態様においても、図3の構成では第1位相差領域が液晶セルにより近くなるように配置する。   In the aspect of FIG. 3, the first retardation region and the second retardation region may be disposed between the liquid crystal cell and the viewing-side polarizing film with reference to the position of the liquid crystal cell. Although it may be arranged between the liquid crystal cell and the polarizing film on the back side, it is preferable in terms of yield to be arranged between the liquid crystal cell and the polarizing film on the back side. In any aspect, in the configuration of FIG. 3, the first phase difference region is arranged closer to the liquid crystal cell.

本発明の液晶表示装置は、図1〜図3に示す構成に限定されず、他の部材を含んでいてもよい。例えば、液晶層と偏光膜との間にカラーフィルターを配置してもよい。また、偏光膜の保護膜の表面に反射防止処理やハードコートを施しても良い。また、構成部材に導電性を付与したものを使用してもよい。また、透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置することができる。この場合、バックライトの配置は図2及び図3の上側であっても下側であっても良いが、不良品率がやや高い反射防止や帯電防止処理をした偏光板と組み合わせる必要性が低いため、図でバックライトを下にしたほうがより好ましい。また、液晶層とバックライトとの間に、反射型偏光板や拡散板、プリズムシートや導光板を配置することもできる。また、上記した様に、本発明の液晶表示装置は、反射型であってもよく、かかる場合は、偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を配置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。   The liquid crystal display device of the present invention is not limited to the configuration shown in FIGS. 1 to 3 and may include other members. For example, a color filter may be disposed between the liquid crystal layer and the polarizing film. Further, an antireflection treatment or a hard coat may be applied to the surface of the protective film of the polarizing film. Moreover, you may use what gave electroconductivity to the structural member. In the case of use as a transmission type, a cold cathode or a hot cathode fluorescent tube, or a backlight having a light emitting diode, a field emission element, or an electroluminescent element as a light source can be disposed on the back surface. In this case, the arrangement of the backlight may be on the upper side or the lower side in FIGS. 2 and 3, but the necessity of combining with a polarizing plate subjected to antireflection or antistatic treatment with a slightly high defective product rate is low. Therefore, it is more preferable to lower the backlight in the figure. In addition, a reflective polarizing plate, a diffusion plate, a prism sheet, or a light guide plate can be disposed between the liquid crystal layer and the backlight. Further, as described above, the liquid crystal display device of the present invention may be of a reflection type. In such a case, only one polarizing plate may be disposed on the observation side, and the back side of the liquid crystal cell or the lower side of the liquid crystal cell. A reflective film is disposed on the inner surface of the substrate. Of course, it is also possible to provide a front light using the light source on the liquid crystal cell observation side.

本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、TFTやMIMのような3端子又は2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるパッシブマトリックス液晶表示装置に適用した態様も有効である。   The liquid crystal display device of the present invention includes an image direct view type, an image projection type, and a light modulation type. The present invention is particularly effective when applied to an active matrix liquid crystal display device using a three-terminal or two-terminal semiconductor element such as TFT or MIM. Of course, a mode applied to a passive matrix liquid crystal display device called time-division driving is also effective.

以下、本発明の液晶表示装置に使用可能な種々の部材の好ましい光学特性や部材に用いられる材料、その製造方法等について、詳細に説明する。   Hereinafter, preferred optical characteristics of various members usable in the liquid crystal display device of the present invention, materials used for the members, manufacturing methods thereof, and the like will be described in detail.

[第1位相差領域]
本発明では、第1位相差領域は、面内の屈折率nxとny(nx≧ny)、厚さ方向の屈折率nz、及びフイルムの厚さdを用いてRe=(nx−ny)×dで定義されるレターデーションReが60nm〜200nmである。斜め方向の光漏れを効果的に低減するためには、第1位相差領域のReは、70nm〜180nmであるのがより好ましく、90nm〜160nmであるのがさらに好ましい。また、Nz=(nx−nz)/(nx−ny)で定義されるNzが0.8を超え1.5以下が斜め方向の光漏れを効果的に低減するために好ましい。第1位相差領域のNzは、0.9〜1.3であるのが好ましく、0.95〜1.2であるのがより好ましい。0.8以下ではコントラストを向上させるために必要なReが大きくなりすぎ、偏光板との貼合角度許容範囲が狭くなり歩留まりが下がり好ましくない。また1.5を超えるとコントラストを向上させるために必要な第二位相差領域のRthが大きくなり好ましくない。
[First phase difference region]
In the present invention, the first retardation region is represented by Re = (nx−ny) × using in-plane refractive indices nx and ny (nx ≧ ny), a refractive index nz in the thickness direction, and a film thickness d. The retardation Re defined by d is 60 nm to 200 nm. In order to effectively reduce the light leakage in the oblique direction, Re of the first phase difference region is more preferably 70 nm to 180 nm, and further preferably 90 nm to 160 nm. Further, Nz defined by Nz = (nx−nz) / (nx−ny) is preferably more than 0.8 and 1.5 or less in order to effectively reduce light leakage in an oblique direction. Nz in the first retardation region is preferably 0.9 to 1.3, and more preferably 0.95 to 1.2. If it is 0.8 or less, Re required for improving the contrast becomes too large, the allowable range of the bonding angle with the polarizing plate becomes narrow, and the yield decreases, which is not preferable. On the other hand, if it exceeds 1.5, the Rth of the second retardation region necessary for improving the contrast becomes large, which is not preferable.

前記第1位相差領域は、脂環式構造含有重合体樹脂フイルムを延伸して得られた位相差層を有する位相差膜である。第1位相差領域は、該位相差層を積層した態様であっても、他の延伸フイルムとの積層体であっても、また液晶性化合物を含有する組成物から形成された光学異方性層との積層体であってもよい。   The first retardation region is a retardation film having a retardation layer obtained by stretching an alicyclic structure-containing polymer resin film. The first retardation region may be an embodiment in which the retardation layer is laminated or a laminate with another stretched film, or an optical anisotropy formed from a composition containing a liquid crystalline compound. It may be a laminate with layers.

脂環式構造含有重合体樹脂は、重合体樹脂の繰り返し単位中に脂環式構造を有するものであり、主鎖中に脂環式構造を有する重合体樹脂および側鎖に脂環式構造を有する重合体樹脂のいずれも用いることができる。
脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造などが挙げられるが、熱安定性などの観点からシクロアルカン構造が好ましい。脂環式構造を構成する炭素数に特に制限はないが、通常4〜30個、好ましくは5〜20個、より好ましくは6〜15個である。脂環式構造を構成する炭素原子数がこの範囲にあると、耐熱性および柔軟性に優れた延伸フイルムを得ることができる。
The alicyclic structure-containing polymer resin has an alicyclic structure in the repeating unit of the polymer resin, and a polymer resin having an alicyclic structure in the main chain and an alicyclic structure in the side chain. Any polymer resin can be used.
Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability. Although there is no restriction | limiting in particular in carbon number which comprises an alicyclic structure, Usually, 4-30 pieces, Preferably it is 5-20 pieces, More preferably, it is 6-15 pieces. When the number of carbon atoms constituting the alicyclic structure is within this range, a stretched film having excellent heat resistance and flexibility can be obtained.

脂環式構造を有する重合体樹脂中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択されればよいが、通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。脂環式構造を有する繰り返し単位が過度に少ないと耐熱性が低下し好ましくない。なお、脂環式構造含有重合体樹脂における脂環式構造を有する繰り返し単位以外の繰り返し単位は、使用目的に応じて適宜選択される。   The proportion of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure may be appropriately selected according to the purpose of use, but is usually 50% by mass or more, preferably 70% by mass or more. Preferably it is 90 mass% or more. If the number of repeating units having an alicyclic structure is too small, the heat resistance is undesirably lowered. In addition, repeating units other than the repeating unit which has an alicyclic structure in an alicyclic structure containing polymer resin are suitably selected according to the intended purpose.

脂環式構造含有重合体樹脂の具体例としては、(1)ノルボルネン系重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン系重合体、(4)ビニル脂環式炭化水素重合体、および(1)〜(4)の水素化物などが挙げられる。これらの中でも、耐熱性および機械的強度に優れることなどから、ノルボルネン系重合体水素化物、ビニル脂環式炭化水素重合体およびその水素化物が好ましく、ノルボルネン系重合体の水素化物がより好ましい。   Specific examples of the alicyclic structure-containing polymer resin include (1) norbornene polymer, (2) monocyclic olefin polymer, (3) cyclic conjugated diene polymer, and (4) vinyl alicyclic. Examples thereof include hydrocarbon polymers and hydrides (1) to (4). Among these, from the viewpoint of excellent heat resistance and mechanical strength, a norbornene polymer hydride, a vinyl alicyclic hydrocarbon polymer, and a hydride thereof are preferable, and a hydride of a norbornene polymer is more preferable.

本発明に用いるノルボルネン系重合体は、ノルボルネンおよびその誘導体、テトラシクロドデセンおよびその誘導体、ジシクロペンタジエンおよびその誘導体、メタノテトラヒドロフルオレンおよびその誘導体などのノルボルネン系単量体を主成分とする単量体の重合体である。
ノルボルネン系重合体の具体例としては、(1)ノルボルネン系単量体の開環重合体、(2)ノルボルネン系単量体とこれと共重合可能なその他の単量体との開環共重合体、(3)ノルボルネン系単量体の付加重合体、(4)ノルボルネン系単量体とこれと共重合可能なその他の単量体との付加重合体、および(1)〜(4)の水素化物などが挙げられる。
The norbornene-based polymer used in the present invention is a single monomer mainly composed of norbornene-based monomers such as norbornene and its derivatives, tetracyclododecene and its derivatives, dicyclopentadiene and its derivatives, methanotetrahydrofluorene and its derivatives. Body polymer.
Specific examples of the norbornene-based polymer include (1) a ring-opening polymer of a norbornene-based monomer, and (2) a ring-opening copolymer of the norbornene-based monomer and other monomers copolymerizable therewith. (3) addition polymer of norbornene monomer, (4) addition polymer of norbornene monomer and other monomer copolymerizable therewith, and (1) to (4) A hydride etc. are mentioned.

ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、7,8−ベンゾトリシクロ[4.3.0.12,5]デカ−3−エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、アルコキシカルボニル基、カルボキシル基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン系単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。   Examples of the norbornene-based monomer include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, an alkoxycarbonyl group, and a carboxyl group. Moreover, these substituents may be the same or different and a plurality may be bonded to the ring. Norbornene monomers can be used alone or in combination of two or more.

ノルボルネン系単量体と共重合可能な他の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類およびその誘導体;シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエンおよびその誘導体;などが挙げられる。   Examples of other monomers copolymerizable with norbornene monomers include, for example, monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene and derivatives thereof And so on.

ノルボルネン系単量体の開環重合体およびノルボルネン系単量体と共重合可能な他の単量体との開環共重合体は、単量体を開環重合触媒の存在下に(共)重合することにより得ることができる。
用いる開環重合触媒としては、例えば、ルテニウム、オスミウムなどの金属のハロゲン化物と、硫酸塩またはアセチルアセトン化合物、および還元剤とからなる触媒;あるいは、チタン、ジルコニウム、タングステン、モリブデンなどの金属のハロゲン化物またはアセチルアセトン化合物と、有機アルミニウム化合物とからなる触媒;などが挙げられる。
A ring-opening polymer of a norbornene monomer and a ring-opening copolymer with another monomer copolymerizable with the norbornene monomer are used in the presence of a ring-opening polymerization catalyst. It can be obtained by polymerization.
As the ring-opening polymerization catalyst to be used, for example, a catalyst comprising a metal halide such as ruthenium or osmium and a sulfate or acetylacetone compound and a reducing agent; or a metal halide such as titanium, zirconium, tungsten or molybdenum Or a catalyst comprising an acetylacetone compound and an organoaluminum compound;

ノルボルネン系単量体の付加重合体およびノルボルネン系単量体と共重合可能な他の単量体との付加共重合体は、単量体を付加重合触媒の存在下に重合することにより得ることができる。付加重合触媒としては、例えば、チタン、ジルコニウム、バナジウムなどの金属の化合物と有機アルミニウム化合物からなる触媒などを用いることができる。   Norbornene monomer addition polymers and addition copolymers with other monomers copolymerizable with norbornene monomers can be obtained by polymerizing the monomers in the presence of an addition polymerization catalyst. Can do. As the addition polymerization catalyst, for example, a catalyst composed of a metal compound such as titanium, zirconium, vanadium and an organoaluminum compound can be used.

ノルボルネン系単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどの炭素数2〜20のα−オレフィンおよびこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテン、3a,5,6,7a−テトラヒドロ−4,7−メタノ−1H−インデンなどのシクロオレフィンおよびこれらの誘導体;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、1,7−オクタジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α−オレフィンが好ましく、エチレンがより好ましい。   Examples of other monomers that can be addition copolymerized with a norbornene monomer include ethylene, propylene, 1-butene, 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 Α-olefins having 2 to 20 carbon atoms such as hexadecene, 1-octadecene, 1-eicocene and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3a, 5,6,7a-tetrahydro-4,7-methano Cycloolefins such as -1H-indene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, etc. Is mentioned. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable and ethylene is more preferable.

本発明に用いる単環の環状オレフィン系重合体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテンなどの付加重合体を挙げることができる。
本発明に用いる環状共役ジエン系重合体としては、例えば、シクロペンタジエン、シクロヘキサジエンなどの環状共役ジエン系単量体を1,2−付加重合または1,4−付加重合した重合体を挙げることができる。
Examples of the monocyclic olefin polymer used in the present invention include addition polymers such as cyclohexene, cycloheptene, and cyclooctene.
Examples of the cyclic conjugated diene polymer used in the present invention include polymers obtained by 1,2-addition polymerization or 1,4-addition polymerization of cyclic conjugated diene monomers such as cyclopentadiene and cyclohexadiene. it can.

ノルボルネン系重合体、単環の環状オレフィンの重合体および環状共役ジエンの重合体の分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレンまたはポリスチレン換算の重量平均分子量(Mw)で、通常10,000〜100,000、好ましくは25,000〜80,000、より好ましくは25,000〜50,000である。重量平均分子量がこのような範囲にあるときに、フイルムの機械的強度および成型加工性とが高度にバランスされ好適である。   The molecular weight of the norbornene-based polymer, the monocyclic olefin polymer and the cyclic conjugated diene polymer is appropriately selected according to the purpose of use, but cyclohexane (toluene if the polymer resin does not dissolve) is used as the solvent. Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography, usually 10,000 to 100,000, preferably 25,000 to 80,000, more preferably 25,000 to 50,000. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the film are highly balanced and suitable.

ビニル脂環式炭化水素重合体は、ビニルシクロアルカンまたはビニルシクロアルケン由来の繰り返し単位を有する重合体である。ビニル脂環式炭化水素重合体としては、例えば、ビニルシクロヘキサンなどのビニルシクロアルカン、ビニルシクロヘキセンなどのビニルシクロアルケンなどのビニル脂環式炭化水素化合物の重合体およびその水素化物;スチレン、α−メチルスチレンなどのビニル芳香族炭化水素化合物の重合体の芳香族部分の水素化物などが挙げられる。   The vinyl alicyclic hydrocarbon polymer is a polymer having a repeating unit derived from vinylcycloalkane or vinylcycloalkene. Examples of vinyl alicyclic hydrocarbon polymers include polymers of vinyl alicyclic hydrocarbon compounds such as vinyl cycloalkanes such as vinyl cyclohexane and vinyl cycloalkenes such as vinyl cyclohexene and their hydrides; styrene, α-methyl Examples include hydrides of aromatic moieties of polymers of vinyl aromatic hydrocarbon compounds such as styrene.

また、ビニル脂環式炭化水素重合体は、ビニル脂環式炭化水素化合物やビニル芳香族炭化水素化合物と、これらの単量体と共重合可能な他の単量体とのランダム共重合体、ブロック共重合体などの共重合体およびその水素化物であってもよい。ブロック共重合としては、ジブロック、トリブロック、またはそれ以上のマルチブロックや傾斜ブロック共重合などが挙げられるが、特に制限はない。   The vinyl alicyclic hydrocarbon polymer is a random copolymer of a vinyl alicyclic hydrocarbon compound or a vinyl aromatic hydrocarbon compound and another monomer copolymerizable with these monomers, It may be a copolymer such as a block copolymer and a hydride thereof. Examples of block copolymerization include diblock, triblock, or more multiblock and gradient block copolymerization, but there is no particular limitation.

ビニル脂環式炭化水素重合体の分子量は使用目的に応じて適宜選択されるが、溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いたゲル・パーミエーション・クロマトグラフィーにより測定したポリイソプレンまたはポリスチレン換算の重量平均分子量が、通常10,000〜300,000、好ましくは15,000〜250,000、より好ましくは20,000〜200,000の範囲であるときに、成形体の機械的強度および成形加工性とが高度にバランスされ好適である。   The molecular weight of the vinyl alicyclic hydrocarbon polymer is appropriately selected according to the purpose of use, but it is measured by gel permeation chromatography using cyclohexane (toluene when the polymer resin does not dissolve) as a solvent. When the weight average molecular weight in terms of isoprene or polystyrene is usually in the range of 10,000 to 300,000, preferably 15,000 to 250,000, more preferably 20,000 to 200,000, It is suitable because the mechanical strength and moldability are highly balanced.

ノルボルネン系単量体の開環重合体、ノルボルネン系単量体とこれと開環共重合可能なその他の単量体との開環共重合体、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とこれと共重合可能なその他の単量体との付加重合体、ビニル脂環式炭化水素化合物の重合体、及びビニル芳香族炭化水素化合物の重合体の芳香族部分、ビニル脂環式炭化水素化合物やビニル芳香族炭化水素化合物と、これらの単量体と共重合可能な他の単量体との共重合体の水素化物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素化触媒を添加し、炭素−炭素不飽和結合を好ましくは90%以上水素化することによって得ることができる。   Ring-opening polymer of norbornene-based monomer, ring-opening copolymer of norbornene-based monomer and other monomers capable of ring-opening copolymerization, addition polymer of norbornene-based monomer, norbornene-based Addition polymer of monomer and other monomer copolymerizable therewith, polymer of vinyl alicyclic hydrocarbon compound, aromatic part of polymer of vinyl aromatic hydrocarbon compound, vinyl alicyclic Hydrides of copolymers of the formula hydrocarbon compounds and vinyl aromatic hydrocarbon compounds with other monomers copolymerizable with these monomers, such as nickel, palladium, etc. It can obtain by adding the well-known hydrogenation catalyst containing these transition metals, and hydrogenating a carbon-carbon unsaturated bond preferably 90% or more.

本発明に用いる脂環式構造含有重合体樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100〜250℃の範囲である。ガラス転移温度がこのような範囲にある脂環式構造含有重合体樹脂を含有するフイルムは、高温下での使用における変形や応力が生じることがなく耐久性に優れる。   The glass transition temperature of the alicyclic structure-containing polymer resin used in the present invention may be appropriately selected according to the purpose of use, but is preferably 80 ° C. or higher, more preferably in the range of 100 to 250 ° C. A film containing an alicyclic structure-containing polymer resin having a glass transition temperature in such a range is excellent in durability without causing deformation or stress during use at high temperatures.

本発明に用いる脂環式構造含有重合体樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0〜10.0、好ましくは1.1〜4.0、より好ましくは1.2〜3.5の範囲である。   The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic structure-containing polymer resin used in the present invention is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1. It is -4.0, More preferably, it is the range of 1.2-3.5.

脂環式構造含有重合体樹脂フイルムは、樹脂をフイルム状に成形することにより得ることができる。樹脂をフイルム状に成形する方法としては特に制約されず、公知の成形法、例えば、加熱溶融成形法、溶液流延法のいずれも採用することができるが、シート中の揮発性成分を低減させる観点から、加熱溶融成形法を用いるのが好ましい。   The alicyclic structure-containing polymer resin film can be obtained by molding a resin into a film shape. The method for molding the resin into a film is not particularly limited, and any known molding method, for example, a heat-melt molding method or a solution casting method can be adopted, but the volatile components in the sheet are reduced. From the viewpoint, it is preferable to use a heat-melt molding method.

加熱溶融成形法は、さらに詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度および厚さ精度などに優れる延伸フイルムを得るためには、溶融押出成形法を用いるのが好ましい。   The hot melt molding method can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these, in order to obtain a stretched film having excellent mechanical strength and thickness accuracy, it is preferable to use a melt extrusion molding method.

成形条件は使用目的や成形方法により適宜選択されるが、溶融押出成形法による場合は、シリンダー温度が、好ましくは100〜600℃、より好ましくは150〜350℃の範囲で適宜設定される。   The molding conditions are appropriately selected depending on the purpose of use and the molding method. In the case of the melt extrusion molding method, the cylinder temperature is suitably set in the range of preferably 100 to 600 ° C, more preferably 150 to 350 ° C.

脂環式構造含有重合体樹樹脂フイルムの厚みは、得られる延伸フイルムの使用目的などに応じて適宜決定することができる。フイルムの厚みは、安定した延伸処理による均質な延伸フイルムが得られる観点から、好ましくは10〜300μm、より好ましくは30〜200μmである。   The thickness of the alicyclic structure-containing polymer tree resin film can be appropriately determined according to the purpose of use of the obtained stretched film. The thickness of the film is preferably 10 to 300 μm, more preferably 30 to 200 μm from the viewpoint of obtaining a uniform stretched film by a stable stretching process.

また、脂環式構造含有重合体樹脂フイルムを製造する場合には、本発明の目的を阻害しない範囲内で、他の添加剤を添加することができる。他の添加剤としては、例えば、可塑剤や劣化防止剤などが挙げられる。可塑剤は、フイルムの機械的物性を改良するため、または乾燥速度を向上させるために添加する。用いる可塑剤としては、リン酸エステルまたはカルボン酸エステルが挙げられる。   Moreover, when manufacturing an alicyclic structure containing polymer resin film, another additive can be added in the range which does not inhibit the objective of this invention. Examples of other additives include plasticizers and deterioration inhibitors. The plasticizer is added to improve the mechanical properties of the film or to increase the drying speed. Examples of the plasticizer to be used include phosphoric acid esters and carboxylic acid esters.

リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェートなどが挙げられる。カルボン酸エステルとしては、例えば、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジフェニルフタレートなどのフタル酸エステル;O−アセチルクエン酸トリエチル、O−アセチルクエン酸トリブチルなどのクエン酸エステル;オレイン酸ブチル;リシノール酸メチルアセチル、セバシン酸ジブチルなどの高級脂肪酸エステル;トリメット酸エステル;などが挙げられる。   Examples of phosphate esters include triphenyl phosphate and tricresyl phosphate. Examples of carboxylic acid esters include phthalic acid esters such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, and diphenyl phthalate; citrate esters such as triethyl O-acetylcitrate and tributyl O-acetylcitrate; butyl oleate Higher fatty acid esters such as methylacetyl ricinoleate and dibutyl sebacate; trimetic acid esters; and the like.

劣化防止剤としては、例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン類などが挙げられる。劣化防止剤については、特開平3−199201号公報、特開平5−1907073号公報、特開平5−194789号公報、特開平5−271471号公報、特開平6−107854号公報などに記載されたものがある。   Examples of the deterioration preventing agent include an antioxidant, a peroxide decomposing agent, a radical inhibitor, a metal deactivator, an acid scavenger, and amines. The deterioration preventing agents are described in JP-A-3-199201, JP-A-5-1907073, JP-A-5-194789, JP-A-5-271471, JP-A-6-107854, and the like. There is something.

これらの他の添加剤や他の樹脂の添加量は、樹脂に対して、通常0〜20重量%、好ましくは0〜10重量%、より好ましくは0〜5重量%である。   The addition amount of these other additives and other resins is usually 0 to 20% by weight, preferably 0 to 10% by weight, more preferably 0 to 5% by weight, based on the resin.

以上のようにして得られる脂環式構造含有重合体樹脂フイルムをその幅方向に対して任意の角度方向に連続的に延伸することにより、所望の光学特性を有するとともに、フイルムの幅方向に対して任意の角度の遅相軸(最大屈折率方向)を有する長尺の延伸フイルムを得ることができる。すなわち、延伸方向を任意に設定することにより、面内の遅相軸方向の屈折率、面内の遅相軸に垂直な方向の屈折率、および厚み方向の屈折率を所望の値となるようにすることができる。
このようにして得られる位相差フイルムは、長尺の延伸フイルムであり、ロール状に巻き取り、回収・保存することができる。長尺の延伸フイルムは、長尺状に作製された偏光板(又は偏光膜)と長尺のまま積層することができ、それぞれを所定の大きさに裁断し、軸合わせをして貼り合せるよりも、軸ズレ等の発生が低減でき、生産性の向上に寄与する。特に、吸収軸が長手方向に平行な長尺の偏光膜と、長手方向に直交な方向に遅相軸を有する長尺の延伸フイルム(第1位相差領域)とを用いることにより、または、吸収軸が長手方向に直交した長尺の偏光膜と、長手方向に平行な方向に遅相軸を有する長尺の延伸フイルム(第1位相差領域)を用いることにより、これらの膜を、ロールツーロールで接着剤または粘着剤等で貼合して、長尺の積層体を得、その後、該積層体を所定の大きさに裁断して積層偏光板として、液晶表示装置に組み込むことができる。長尺の状態で貼合処理を行うことにより、偏光膜の吸収軸と、第1位相差領域の遅相軸との角度を直交もしくは平行にして積層するのが容易となる。その結果、極めて精度のいい貼合が可能となり、生産性が向上する。
The alicyclic structure-containing polymer resin film obtained as described above is continuously stretched in an arbitrary angle direction with respect to the width direction, thereby having desired optical characteristics and with respect to the width direction of the film. Thus, a long stretched film having a slow axis (maximum refractive index direction) at an arbitrary angle can be obtained. That is, by arbitrarily setting the stretching direction, the refractive index in the in-plane slow axis direction, the refractive index in the direction perpendicular to the in-plane slow axis, and the refractive index in the thickness direction are set to desired values. Can be.
The retardation film thus obtained is a long stretched film, which can be rolled up, collected and stored. The long stretched film can be laminated with the polarizing plate (or polarizing film) produced in a long shape as it is long, and each is cut into a predetermined size, aligned and bonded. However, the occurrence of shaft misalignment can be reduced, which contributes to the improvement of productivity. In particular, by using a long polarizing film whose absorption axis is parallel to the longitudinal direction and a long stretched film (first retardation region) having a slow axis in a direction orthogonal to the longitudinal direction, or absorption By using a long polarizing film whose axis is perpendicular to the longitudinal direction and a long stretched film (first retardation region) having a slow axis in a direction parallel to the longitudinal direction, these films can be rolled-up. A long laminate is obtained by bonding with an adhesive or a pressure sensitive adhesive with a roll, and then the laminate is cut into a predetermined size and incorporated into a liquid crystal display device as a laminated polarizing plate. By performing the laminating process in a long state, it becomes easy to stack the polarizing film so that the angle between the absorption axis of the polarizing film and the slow axis of the first retardation region is orthogonal or parallel. As a result, extremely accurate bonding is possible, and productivity is improved.

[第2位相差領域]
本発明において、第2位相差領域の面内の屈折率nxとnyは実質的に等しいのが好ましく、その差は0.05以下であるのが好ましく、0.02以下であるのがより好ましく、0.01以下であるのがさらに好ましい。また、第2位相差領域は、面内の屈折率nxとny(nx≧ny)、厚さ方向の屈折率nz、及びフイルムの厚さdを用いてRe=(nx−ny)×dで定義される面内のレターデーションReが100nm以下であるのが好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましい。またRth={(nx+ny)/2−nz}×dで定義される厚み方向のレターデーションRthのより好ましい範囲は、他の光学部材の光学特性に応じて変動し、特に、より近くに位置する偏光膜の保護膜(例えば、トリアセチルセルロースフイルム)のRthに応じて、大きく変動する。斜め方向の光漏れを効果的に低減するためには、−200nm〜−50nmであり、−180nm〜−60nmであるのがより好ましく、−160nm〜−70nmであるのがさらに好ましい。
なお、第2位相差領域の遅相軸方向の配置は特に限定されないが、20nmを超える場合は、図2の構成では、より近い位置に配置される偏光膜の透過軸と平行になる方向であるのが好ましく、図3の構成では、より近い位置に配置される偏光膜の透過軸と直交になる方向であるのが好ましく、そのように配置すると、例えば、第1位相差領域の厚みを薄くできる。
[Second phase difference region]
In the present invention, the in-plane refractive indexes nx and ny in the second retardation region are preferably substantially equal, and the difference is preferably 0.05 or less, more preferably 0.02 or less. More preferably, it is 0.01 or less. Further, the second retardation region has an in-plane refractive index nx and ny (nx ≧ ny), a refractive index nz in the thickness direction, and a film thickness d, and Re = (nx−ny) × d. The defined in-plane retardation Re is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 20 nm or less. Further, the more preferable range of the retardation Rth in the thickness direction defined by Rth = {(nx + ny) / 2−nz} × d varies depending on the optical characteristics of other optical members, and is particularly located closer. It varies greatly depending on the Rth of the protective film of the polarizing film (for example, triacetyl cellulose film). In order to effectively reduce light leakage in an oblique direction, it is −200 nm to −50 nm, more preferably −180 nm to −60 nm, and further preferably −160 nm to −70 nm.
The arrangement of the second retardation region in the slow axis direction is not particularly limited. However, in the case of exceeding 20 nm, in the configuration of FIG. 2, in the direction parallel to the transmission axis of the polarizing film arranged at a closer position. In the configuration of FIG. 3, it is preferable that the direction is perpendicular to the transmission axis of the polarizing film disposed at a closer position. With such arrangement, for example, the thickness of the first retardation region is reduced. Can be thin.

前記第2位相差領域は、前記光学特性を有する限り、その材料及び形態については特に制限されない。例えば、複屈折ポリマーフイルムからなる位相差膜、及び透明支持体上に低分子あるいは高分子液晶性化合物を塗布もしくは転写することによって形成された位相差層を有する位相差膜など、いずれも使用することができる。また、それぞれを積層して使用することもできる。   As long as the second retardation region has the optical characteristics, the material and form thereof are not particularly limited. For example, both a retardation film made of a birefringent polymer film and a retardation film having a retardation layer formed by applying or transferring a low-molecular or high-molecular liquid crystalline compound on a transparent support are used. be able to. Moreover, each can also be laminated | stacked and used.

上記光学特性を有する複屈折ポリマーフイルムからなる位相差膜は、熱収縮性のフイルムを貼り合わせて加熱しながら所定の張力を加え高分子フイルムを膜の厚さ方向に延伸する方法(特開2000−206328号公報、特開2000−304925号公報)や、ビニルカルバゾール系高分子を塗布して乾燥させる方法(特開2001−091746号公報)で容易に形成できる。また、上記光学特性を有する液晶性化合物から形成された位相差層としては、キラル構造単位を含んだコレステリックディスコチック液晶化合物や組成物を、その螺旋軸を基板に略垂直に配向させたのち固定化して形成した層、屈折率異方性が正の棒状液晶化合物や組成物を基板に略垂直に配向させたのち固定化して形成した層などを例示することができる(例えば、特開平6−331826号公報や特許第2853064号等参照)。棒状液晶化合物は低分子化合物であってもよく、高分子化合物であってもよい。さらに、一の位相差層のみならず複数の位相差層を積層して、上記光学特性を示す第2位相差領域を構成することもできる。また、支持体と位相差層との積層体全体で上記光学特性を満たすようにして、第2位相差領域を構成してもよい。用いる棒状液晶化合物としては、配向固定させる温度範囲で、ネマチック液晶相、スメクチック液晶相、リオトロピック液晶相状態をとるものが好適に用いられる。揺らぎの無い均一な垂直配向が得られるスメクチックA相、B相を示す液晶が好ましい。これらの相は複屈折がネマチック液晶相に比べて大きく、膜の厚みを薄く出来る点でも好ましい。特にまた、添加剤の存在下において、適切な配向温度範囲で、上記液晶状態となる棒状液晶性化合物については、該添加剤と棒状液晶性化合物を含有する組成物を用いて層を形成するのも好ましい。   A retardation film made of a birefringent polymer film having the above optical characteristics is a method in which a heat-shrinkable film is laminated and heated to apply a predetermined tension while stretching the polymer film in the thickness direction of the film (Japanese Patent Laid-Open No. 2000). -206328 and JP-A-2000-304925) and a method of applying a vinylcarbazole polymer and drying it (JP-A-2001-091746). In addition, as a retardation layer formed from a liquid crystalline compound having the above optical characteristics, a cholesteric discotic liquid crystal compound or composition containing a chiral structural unit is fixed after its helical axis is aligned substantially perpendicular to the substrate. Examples thereof include a layer formed by forming a rod-like liquid crystal compound or composition having a positive refractive index anisotropy and a composition formed by orienting the substrate substantially perpendicularly to the substrate and then immobilizing it (for example, JP-A-6-6 331826 and Japanese Patent No. 2853064). The rod-like liquid crystal compound may be a low molecular compound or a high molecular compound. Furthermore, not only one retardation layer but also a plurality of retardation layers can be laminated to form the second retardation region exhibiting the above optical characteristics. Further, the second retardation region may be configured so that the entire laminated body of the support and the retardation layer satisfies the optical characteristics. As the rod-like liquid crystal compound to be used, those that take a nematic liquid crystal phase, a smectic liquid crystal phase, and a lyotropic liquid crystal phase in a temperature range in which the orientation is fixed are preferably used. A liquid crystal exhibiting a smectic A phase and a B phase capable of obtaining uniform vertical alignment without fluctuation is preferable. These phases are preferable in that the birefringence is larger than that of the nematic liquid crystal phase and the thickness of the film can be reduced. In particular, in the presence of an additive, a rod-like liquid crystalline compound that becomes a liquid crystal state in an appropriate orientation temperature range is formed by using a composition containing the additive and the rod-like liquid crystalline compound. Is also preferable.

《棒状液晶性化合物》
前記第2位相差領域は、棒状液晶性化合物を含む組成物から形成してもよい。前記棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。液晶分子には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は1〜6個、好ましくは1〜3個である。
《Bar-shaped liquid crystalline compound》
The second retardation region may be formed from a composition containing a rod-like liquid crystal compound. Examples of the rod-like liquid crystalline compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only the low-molecular liquid crystalline molecules as described above but also high-molecular liquid crystalline molecules can be used. As the liquid crystal molecules, those having a partial structure capable of causing polymerization or crosslinking reaction by actinic rays, electron beams, heat, or the like are preferably used. The number of the partial structures is 1 to 6, preferably 1 to 3.

第2位相差領域が、棒状液晶性化合物を配向状態に固定して形成された位相差層を含む場合は、棒状液晶性化合物を実質的に垂直配向させて、その状態に固定して形成した位相差層を用いるのが好ましい。実質的に垂直とは、フイルム面と棒状液晶性化合物のダイレクターとのなす角度が70°〜90°の範囲内であることを意味する。これらの液晶性化合物は斜め配向させてもよいし、傾斜角が徐々に変化するように(ハイブリッド配向)させてもよい。斜め配向又はハイブリッド配向の場合でも、平均傾斜角は70°〜90°であることが好ましく、80°〜90°がより好ましく、85°〜90°が最も好ましい。   When the second retardation region includes a retardation layer formed by fixing the rod-like liquid crystalline compound in the aligned state, the rod-like liquid crystalline compound is substantially vertically aligned and fixed in that state. It is preferable to use a retardation layer. Substantially perpendicular means that the angle formed by the film surface and the director of the rod-like liquid crystal compound is in the range of 70 ° to 90 °. These liquid crystalline compounds may be aligned obliquely or may be changed so that the inclination angle gradually changes (hybrid alignment). Even in the case of oblique orientation or hybrid orientation, the average inclination angle is preferably 70 ° to 90 °, more preferably 80 ° to 90 °, and most preferably 85 ° to 90 °.

棒状液晶性化合物から形成された位相差層は、棒状液晶性化合物、所望により、下記の重合性開始剤や空気界面垂直配向剤や他の添加剤を含む塗布液を、支持体の上に形成された垂直配向膜の上に塗布して、垂直配向させ、該配向状態を固定することで形成することができる。仮支持体上に形成した場合は、該位相差層を支持体上に転写することで作製することもできる。さらに、1層の位相差層のみならず複数の位相差層を積層して、上記光学特性を示す第2位相差領域を構成することもできる。また、支持体と位相差層との積層体全体で上記光学特性を満たすようにして、第2位相差領域を構成してもよい。   The retardation layer formed from the rod-like liquid crystalline compound is formed on the support with a coating liquid containing the rod-like liquid crystalline compound and, if desired, the following polymerizable initiator, air interface vertical alignment agent and other additives. It can be formed by coating on the vertical alignment film formed, vertically aligning, and fixing the alignment state. When it is formed on a temporary support, it can also be produced by transferring the retardation layer onto the support. Furthermore, not only a single retardation layer but also a plurality of retardation layers can be laminated to form a second retardation region exhibiting the above optical characteristics. Further, the second retardation region may be configured so that the entire laminated body of the support and the retardation layer satisfies the optical characteristics.

塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。塗布液の塗布は、公知の方法(例、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。   As a solvent used for preparing the coating solution, an organic solvent is preferably used. Examples of organic solvents include amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), alkyl halides (eg, , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination. The coating liquid can be applied by a known method (eg, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method).

垂直配向させた液晶性化合物は、配向状態を維持して固定するのが好ましい。固定化は、液晶性化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。   The vertically aligned liquid crystal compound is preferably fixed while maintaining the alignment state. The immobilization is preferably performed by a polymerization reaction of the polymerizable group (P) introduced into the liquid crystal compound. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred. Examples of the photopolymerization initiator include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US Pat. No. 3,549,367) Description), acridine and phenazine compounds (JP-A-60-105667, U.S. Pat. No. 4,239,850) and oxadiazole compounds (U.S. Pat. No. 4,212,970).

光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。棒状液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。前記光学違法性層を含む第1位相差領域の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましく、1〜5μmであることが最も好ましい。 The amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating solution. The light irradiation for polymerizing the rod-like liquid crystalline molecules preferably uses ultraviolet rays. The irradiation energy is preferably 20mJ / cm 2 ~50J / cm 2 , further preferably 100 to 800 mJ / cm 2. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions. The thickness of the first retardation region including the optically illegal layer is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, and most preferably 1 to 5 μm.

《垂直配向膜》
液晶性化合物を配向膜側で垂直に配向させるためには、配向膜の表面エネルギーを低下させることが重要である。具体的には、ポリマーの官能基により配向膜の表面エネルギーを低下させ、これにより液晶性化合物を立てた状態にする。配向膜の表面エネルギーを低下させる官能基としては、フッ素原子及び炭素原子数が10以上の炭化水素基が有効である。フッ素原子又は炭化水素基を配向膜の表面に存在させるために、ポリマーの主鎖よりも側鎖にフッ素原子又は炭化水素基を導入することが好ましい。含フッ素ポリマーは、フッ素原子を0.05〜80質量%の割合で含むことが好ましく、0.1〜70質量%の割合で含むことがより好ましく、0.5〜65質量%の割合で含むことがさらに好ましく、1〜60質量%の割合で含むことが最も好ましい。炭化水素基は、脂肪族基、芳香族基又はそれらの組み合わせである。脂肪族基は、環状、分岐状あるいは直鎖状のいずれでもよい。脂肪族基は、アルキル基(シクロアルキル基であってもよい)又はアルケニル基(シクロアルケニル基であってもよい)であることが好ましい。炭化水素基は、ハロゲン原子のような強い親水性を示さない置換基を有していてもよい。炭化水素基の炭素原子数は、10〜100であることが好ましく、10〜60であることがさらに好ましく、10〜40であることが最も好ましい。ポリマーの主鎖は、ポリイミド構造又はポリビニルアルコール構造を有することが好ましい。
<< Vertical alignment film >>
In order to align the liquid crystalline compound vertically on the alignment film side, it is important to reduce the surface energy of the alignment film. Specifically, the surface energy of the alignment film is lowered by the functional group of the polymer, thereby bringing the liquid crystalline compound into a standing state. As the functional group for reducing the surface energy of the alignment film, a hydrocarbon group having 10 or more fluorine atoms and carbon atoms is effective. In order to make a fluorine atom or a hydrocarbon group exist on the surface of the alignment film, it is preferable to introduce a fluorine atom or a hydrocarbon group into the side chain rather than the main chain of the polymer. The fluoropolymer preferably contains fluorine atoms in a proportion of 0.05 to 80% by mass, more preferably in a proportion of 0.1 to 70% by mass, and in a proportion of 0.5 to 65% by mass. More preferably, it is most preferable to contain in the ratio of 1-60 mass%. The hydrocarbon group is an aliphatic group, an aromatic group or a combination thereof. The aliphatic group may be cyclic, branched or linear. The aliphatic group is preferably an alkyl group (may be a cycloalkyl group) or an alkenyl group (may be a cycloalkenyl group). The hydrocarbon group may have a substituent that does not exhibit strong hydrophilicity, such as a halogen atom. The number of carbon atoms of the hydrocarbon group is preferably 10 to 100, more preferably 10 to 60, and most preferably 10 to 40. The main chain of the polymer preferably has a polyimide structure or a polyvinyl alcohol structure.

ポリイミドは、一般にテトラカルボン酸とジアミンとの縮合反応により合成する。二種類以上のテトラカルボン酸あるいは二種類以上のジアミンを用いて、コポリマーに相当するポリイミドを合成してもよい。フッ素原子又は炭化水素基は、テトラカルボン酸起源の繰り返し単位に存在していても、ジアミン起源の繰り返し単位に存在していても、両方の繰り返し単位に存在していてもよい。ポリイミドに炭化水素基を導入する場合、ポリイミドの主鎖又は側鎖にステロイド構造を形成することが特に好ましい。側鎖に存在するステロイド構造は、炭素原子数が10以上の炭化水素基に相当し、液晶性化合物を垂直に配向させる機能を有する。本明細書においてステロイド構造とは、シクロペンタノヒドロフェナントレン環構造又はその環の結合の一部が脂肪族環の範囲(芳香族環を形成しない範囲)で二重結合となっている環構造を意味する。   Polyimide is generally synthesized by a condensation reaction of tetracarboxylic acid and diamine. A polyimide corresponding to a copolymer may be synthesized using two or more kinds of tetracarboxylic acids or two or more kinds of diamines. The fluorine atom or hydrocarbon group may be present in the repeating unit derived from tetracarboxylic acid, may be present in the repeating unit derived from diamine, or may be present in both repeating units. When introducing a hydrocarbon group into polyimide, it is particularly preferable to form a steroid structure in the main chain or side chain of the polyimide. The steroid structure present in the side chain corresponds to a hydrocarbon group having 10 or more carbon atoms, and has a function of vertically aligning the liquid crystalline compound. In this specification, the steroid structure is a cyclopentanohydrophenanthrene ring structure or a ring structure in which a part of the ring bond is a double bond in the range of an aliphatic ring (a range that does not form an aromatic ring). means.

さらに液晶性化合物を垂直に配向させる手段として、ポリビニルアルコール、変性ポリビニルアルコール、又はポリイミドの高分子に有機酸を混合する方法を好適に用いることができる。混合する酸としてはカルボン酸やスルホン酸、アミノ酸が好適に用いられる。後述の空気界面配向剤の内、酸性を示すものを使用してもよい。また、4級アンモニウム塩類も好適に用いることが出来る。その混合量は高分子に対して、0.1質量%〜20質量%であることが好ましく、0.5質量%〜10質量%であることがさらに好ましい。   Further, as a means for vertically aligning the liquid crystalline compound, a method of mixing an organic acid with a polymer of polyvinyl alcohol, modified polyvinyl alcohol, or polyimide can be suitably used. As the acid to be mixed, carboxylic acid, sulfonic acid and amino acid are preferably used. You may use what shows the acidity among the below-mentioned air interface aligning agent. Moreover, quaternary ammonium salts can also be used suitably. The mixing amount is preferably 0.1% by mass to 20% by mass and more preferably 0.5% by mass to 10% by mass with respect to the polymer.

上記ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は100〜5000であることが好ましい。   The saponification degree of the polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%. The polymerization degree of polyvinyl alcohol is preferably 100 to 5000.

棒状液晶性化合物を配向させる場合、配向膜は、側鎖に疎水性基を官能基として有するポリマーからなるのが好ましい。具体的な官能基の種類は、液晶性分子の種類及び必要とする配向状態に応じて決定する。例えば、変性ポリビニルアルコールの変性基は、共重合変性、連鎖移動変性又はブロック重合変性により導入できる。変性基の例には、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10〜100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等が挙げられる。これらの変性ポリビニルアルコール化合物の具体例として、例えば、特開2000−155216号公報明細書中の段落番号[0022]〜[0145]、同2002−62426号公報明細書中の段落番号[0018]〜[0022]に記載のもの等が挙げられる。   When aligning a rod-like liquid crystalline compound, the alignment film is preferably made of a polymer having a hydrophobic group as a functional group in the side chain. The specific type of functional group is determined according to the type of liquid crystal molecule and the required alignment state. For example, the modifying group of the modified polyvinyl alcohol can be introduced by copolymerization modification, chain transfer modification or block polymerization modification. Examples of modifying groups include hydrophilic groups (carboxylic acid groups, sulfonic acid groups, phosphonic acid groups, amino groups, ammonium groups, amide groups, thiol groups, etc.), hydrocarbon groups having 10 to 100 carbon atoms, fluorine atoms Substituted hydrocarbon groups, thioether groups, polymerizable groups (unsaturated polymerizable groups, epoxy groups, azirinidyl groups, etc.), alkoxysilyl groups (trialkoxy, dialkoxy, monoalkoxy) and the like can be mentioned. Specific examples of these modified polyvinyl alcohol compounds include, for example, paragraph numbers [0022] to [0145] in JP-A No. 2000-155216 and paragraph numbers [0018] to [0018] in JP-A No. 2002-62426. And the like described in [0022].

配向膜を、主鎖に結合した架橋性官能基を有する側鎖を有するポリマー又は液晶性分子を配向させる機能を有する側鎖に架橋性官能基を有するポリマーを用いて形成し、その上に位相差膜を、多官能モノマーを含む組成物を用いて形成すると、配向膜中のポリマーと、その上に形成される位相差膜中の多官能モノマーとを共重合させることができる。その結果、多官能モノマー間だけではなく、配向膜ポリマー間及び多官能モノマーと配向膜ポリマーとの間にも共有結合が形成され、配向膜と位相差膜とが強固に結合される。従って、架橋性官能基を有するポリマーを用いて配向膜を形成することで、光学補償シートの強度を著しく改善することができる。配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。   The alignment film is formed by using a polymer having a side chain having a crosslinkable functional group bonded to the main chain or a polymer having a crosslinkable functional group on a side chain having a function of aligning liquid crystal molecules. When the retardation film is formed using a composition containing a polyfunctional monomer, the polymer in the alignment film and the polyfunctional monomer in the retardation film formed thereon can be copolymerized. As a result, a covalent bond is formed not only between the polyfunctional monomers but also between the alignment film polymers and between the polyfunctional monomer and the alignment film polymer, and the alignment film and the retardation film are firmly bonded. Therefore, the strength of the optical compensation sheet can be remarkably improved by forming the alignment film using a polymer having a crosslinkable functional group. The crosslinkable functional group of the alignment film polymer preferably contains a polymerizable group in the same manner as the polyfunctional monomer. Specific examples include those described in paragraphs [0080] to [0100] in JP-A-2000-155216.

配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。   Apart from the crosslinkable functional group, the alignment film polymer can also be crosslinked using a crosslinking agent. Examples of the crosslinking agent include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole and dialdehyde starch. Two or more kinds of crosslinking agents may be used in combination. Specific examples include compounds described in paragraphs [0023] to [024] in JP-A-2002-62426. Aldehydes having high reaction activity, particularly glutaraldehyde are preferred.

架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、又は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。   0.1-20 mass% is preferable with respect to a polymer, and, as for the addition amount of a crosslinking agent, 0.5-15 mass% is more preferable. The amount of the unreacted crosslinking agent remaining in the alignment film is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less. By adjusting in this way, even if the alignment film is used for a long time in a liquid crystal display device or left in a high-temperature and high-humidity atmosphere for a long time, sufficient durability without occurrence of reticulation can be obtained.

配向膜は、基本的に、配向膜形成材料である上記ポリマー及び架橋剤を含む組成物を透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行なってよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には位相差層表面の欠陥が著しく減少する。   The alignment film can be basically formed by applying a composition containing the polymer and the crosslinking agent, which are alignment film forming materials, onto a transparent support, followed by drying by heating (crosslinking) and rubbing treatment. it can. As described above, the crosslinking reaction may be performed at an arbitrary time after coating on the transparent support. When a water-soluble polymer such as polyvinyl alcohol is used as the alignment film forming material, the coating solution is preferably a mixed solvent of an organic solvent (eg, methanol) having a defoaming action and water. The ratio of water: methanol is preferably 0: 100 to 99: 1, and more preferably 0: 100 to 91: 9. Thereby, generation | occurrence | production of a bubble is suppressed and the defect of the alignment film and also the phase difference layer surface reduces remarkably.

配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1〜10μmが好ましい。加熱乾燥は、20℃〜110℃で行なうことができる。充分な架橋を形成するためには60℃〜100℃が好ましく、特に80℃〜100℃が好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特に5が好ましい。   The alignment film is preferably applied by spin coating, dip coating, curtain coating, extrusion coating, rod coating, or roll coating. A rod coating method is particularly preferable. The film thickness after drying is preferably 0.1 to 10 μm. Heating and drying can be performed at 20 ° C to 110 ° C. In order to form sufficient cross-linking, 60 ° C to 100 ° C is preferable, and 80 ° C to 100 ° C is particularly preferable. The drying time can be 1 minute to 36 hours, preferably 1 minute to 30 minutes. The pH is preferably set to an optimum value for the crosslinking agent to be used. When glutaraldehyde is used, the pH is 4.5 to 5.5, and 5 is particularly preferable.

配向膜は、透明支持体上に設けられることが好ましい。配向膜は、上記のようにポリマー層を架橋して使用する。棒状液晶性化合物の垂直配向にはラビング処理は行なわないことが好ましい。なお、配向膜を用いて液晶性化合物を配向させてから、その配向状態のまま液晶性化合物を固定して位相差層を形成し、位相差層のみをポリマーフイルム(又は透明支持体)上に転写してもよい。   The alignment film is preferably provided on the transparent support. The alignment film is used by crosslinking the polymer layer as described above. The rubbing treatment is preferably not performed for the vertical alignment of the rod-like liquid crystalline compound. In addition, after aligning a liquid crystalline compound using an alignment film, the liquid crystalline compound is fixed in the alignment state to form a retardation layer, and only the retardation layer is formed on the polymer film (or transparent support). You may transcribe.

《空気界面垂直配向剤》
通常、液晶性化合物は、空気界面側では傾斜して配向する性質を有するので、均一に垂直配向した状態を得るために、空気界面側において液晶性化合物を垂直に配向制御することが必要である。この目的のために、空気界面側に偏在して、その排除体積効果や静電気的な効果によって液晶性化合物を垂直に配向させる作用を及ぼす化合物を液晶塗布液に含有させて、位相差膜を形成するのが好ましい。
《Air interface vertical alignment agent》
Usually, since the liquid crystalline compound has a property of being inclined and aligned on the air interface side, it is necessary to control the alignment of the liquid crystalline compound vertically on the air interface side in order to obtain a uniformly vertically aligned state. . For this purpose, a phase difference film is formed by adding a compound that is unevenly distributed on the air interface side and that has the effect of vertically aligning the liquid crystalline compound by its excluded volume effect or electrostatic effect to the liquid crystal coating liquid. It is preferable to do this.

空気界面配向剤としては、特開2002−20363号公報、特開2002−129162号公報に記載されている化合物を用いることができる。また、特願2002−212100号明細書の段落番号[0072]〜[0075]、特願2002−262239号明細書の段落番号[0037]〜[0039]、特願2003−91752号明細書の段落番号[0071]〜[0078]、特願2003−119959号明細書の段落番号[0052]〜[0054]、[0065]〜[0066]、[0092]〜[0094]、特願2003−330303号明細書の段落番号[0028]〜[0030]、特願2004−003804号明細書の段落番号[0087]〜[0090]に記載される事項も本発明に適宜適用することができる。また、これらの化合物を配合することによって塗布性が改善され、ムラ又はハジキの発生が抑制される。   As the air interface alignment agent, compounds described in JP-A Nos. 2002-20363 and 2002-129162 can be used. Also, paragraph numbers [0072] to [0075] of Japanese Patent Application No. 2002-212100, paragraph numbers [0037] to [0039] of Japanese Patent Application No. 2002-262239, paragraphs of Japanese Patent Application No. 2003-91752 Nos. [0071] to [0078], paragraph numbers [0052] to [0054], [0065] to [0066], [0092] to [0094] of Japanese Patent Application No. 2003-119959, Japanese Patent Application No. 2003-330303 The matters described in paragraph numbers [0028] to [0030] of the specification and paragraph numbers [0087] to [0090] of Japanese Patent Application No. 2004-003804 can also be appropriately applied to the present invention. Moreover, by mix | blending these compounds, applicability | paintability is improved and generation | occurrence | production of a nonuniformity or a repellency is suppressed.

液晶塗布液への空気界面配向剤の使用量は、0.05質量%〜5質量%であることが好ましい。また、フッ素系空気界面配向剤を用いる場合は、1質量%以下であることが好ましい。   The amount of the air interface alignment agent used in the liquid crystal coating liquid is preferably 0.05% by mass to 5% by mass. Moreover, when using a fluorine-type air interface aligning agent, it is preferable that it is 1 mass% or less.

《位相差層中の他の材料》
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることが出来る。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
<Other materials in retardation layer>
Along with the liquid crystal compound, a plasticizer, a surfactant, a polymerizable monomer, and the like can be used in combination to improve the uniformity of the coating film, the strength of the film, the orientation of the liquid crystal compound, and the like. These materials are preferably compatible with the liquid crystal compound and do not inhibit the alignment.

重合性モノマーとしては、ラジカル重合性もしくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。   Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the above-described polymerizable group-containing liquid crystal compound. Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423. The amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the discotic liquid crystalline molecules.

界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物、特願2003−295212号公報明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。   Examples of the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in JP-A-2001-330725, paragraphs [0028] to [0056], and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212. And the compounds described.

液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。   The polymer used together with the liquid crystal compound is preferably capable of thickening the coating solution. A cellulose ester can be mentioned as an example of a polymer. Preferable examples of the cellulose ester include those described in paragraph [0178] of JP-A No. 2000-155216. The addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and in the range of 0.1 to 8% by mass with respect to the liquid crystal molecules so as not to inhibit the alignment of the liquid crystal compound. It is more preferable.

[支持体]
本発明では、液晶性化合物から形成された位相差層を、支持体上に形成してもよい。支持体は透明であるのが好ましく、具体的には、光透過率が80%以上であるのが好ましい。支持体は、波長分散が小さいのが好ましく、具体的には、Re400/Re700の比が1.2未満であることが好ましい。中でも、ポリマーフイルムが好ましい。透明支持体は第1位相差領域、第2位相差領域又は偏光板保護膜を兼ねることもできる。また、透明支持体と位相差層全体で、第1位相差領域又は第2位相差領域を構成していてもよい。支持体の光学異方性は小さいのが好ましく、面内レターデーション(Re)が20nm以下であることが好ましく、10nm以下であることがさらに好ましく、5nm以下であることが最も好ましい。
[Support]
In the present invention, a retardation layer formed from a liquid crystal compound may be formed on a support. The support is preferably transparent, and specifically, the light transmittance is preferably 80% or more. The support preferably has a small wavelength dispersion. Specifically, the Re400 / Re700 ratio is preferably less than 1.2. Among these, a polymer film is preferable. The transparent support can also serve as the first retardation region, the second retardation region, or the polarizing plate protective film. The transparent support and the whole retardation layer may constitute the first retardation region or the second retardation region. The optical anisotropy of the support is preferably small, and the in-plane retardation (Re) is preferably 20 nm or less, more preferably 10 nm or less, and most preferably 5 nm or less.

支持体となるポリマーフイルムの例には、セルロースエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート及びポリメタクリレートのフイルムが含まれる。セルロースエステルフイルムが好ましく、アセチルセルロースフイルムがさらに好ましく、トリアセチルセルロースフイルムが最も好ましい。ポリマーフイルムは、ソルベントキャスト法により形成することが好ましい。透明支持体の厚さは、20〜500μmであることが好ましく、40〜200μmであることがさらに好ましい。透明支持体とその上に設けられる層(接着層、垂直配向膜あるいは位相差層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10〜100nm程度の無機粒子を固形分重量比で5%〜40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。   Examples of the polymer film as the support include cellulose ester, polycarbonate, polysulfone, polyethersulfone, polyacrylate and polymethacrylate films. A cellulose ester film is preferred, an acetylcellulose film is more preferred, and a triacetylcellulose film is most preferred. The polymer film is preferably formed by a solvent cast method. The thickness of the transparent support is preferably 20 to 500 μm, and more preferably 40 to 200 μm. In order to improve adhesion between the transparent support and the layer (adhesive layer, vertical alignment film or retardation layer) provided thereon, surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet light (UV) ) Treatment, flame treatment). An adhesive layer (undercoat layer) may be provided on the transparent support. Moreover, the average particle diameter is 10 to 100 nm in order to provide the transparent support or the long transparent support with slipperiness in the conveying process or to prevent the back surface and the surface from sticking after winding. It is preferable to use what formed the polymer layer which mixed the inorganic particle of about 5%-40% by solid content weight ratio by the application | coating or co-casting with the support body on the one side of the support body.

[偏光膜用保護膜]
偏光膜用保護膜としては、可視光領域に吸収が無く、光透過率が80%以上であり、複屈折性に基づくレターデーションが小さいものが好ましい。具体的には、面内のReが0〜30nmが好ましく、0〜15nmがより好ましく、0〜5nmが最も好ましい。さらに、液晶セル側に配置される保護膜(例えば、図2及び図3中の7b及び19a)の厚み方向のレターデーションRthは−50nm〜40nmであることが好ましく、−30nm〜35nmがより好ましく、−20nm〜20nmであることがさらに好ましい。
[Protective film for polarizing film]
As the protective film for the polarizing film, a protective film having no absorption in the visible light region, a light transmittance of 80% or more, and a retardation based on birefringence is preferable. Specifically, the in-plane Re is preferably 0 to 30 nm, more preferably 0 to 15 nm, and most preferably 0 to 5 nm. Further, the retardation Rth in the thickness direction of the protective film (for example, 7b and 19a in FIGS. 2 and 3) disposed on the liquid crystal cell side is preferably −50 nm to 40 nm, more preferably −30 nm to 35 nm. -20 nm to 20 nm is more preferable.

また、保護膜の厚み、特に液晶セル側に配置される保護膜の厚みは、Rthを小さくするという観点から、60μm以下であるのが好ましく、50μm以下であるのがより好ましく、40μm以下があるのがさらに好ましい。但し、保護膜が上記光学特性を満たすために複数の層からなる場合は、厚みの好ましい範囲はこの範囲に限定されない。   The thickness of the protective film, particularly the thickness of the protective film arranged on the liquid crystal cell side is preferably 60 μm or less, more preferably 50 μm or less, and more preferably 40 μm or less from the viewpoint of reducing Rth. Is more preferable. However, when the protective film is composed of a plurality of layers in order to satisfy the above optical characteristics, the preferred range of thickness is not limited to this range.

この特性を有するフイルムであれば好適に用いることができるが、偏光膜の耐久性の観点からはセルロースアシレートやノルボルネン系のフイルムを含んでいるのがより好ましい。
ノルボルネン系高分子としては、ノルボルネン及びその誘導体、テトラシクロドデセン及びその誘導体、ジシクロペンタジエン及びその誘導体、メタノテトラヒドロフルオレンおよびその誘導体などのノルボルネン系モノマーの主成分とするモノマーの重合体であり、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーとこれと開環共重合可能なその他のモノマーとの開環共重合体、ノルボルネン系モノマーの付加重合体、ノルボルネン系モノマーとこれと共重合可能なその他のモノマーとの付加共重合体、及びの水素添加物などが挙げられる。これらの中でも、耐熱性、機械的強度等の観点から、ノルボルネン系モノマーの開環重合体水素化物が最も好ましい。ノルボルネン系重合体、単環の環状オレフィンの重合体又は環状共役ジエンの重合体の分子量は、使用目的に応じて適宜選択されるが、シクロヘキサン溶液(重合体樹脂が溶解しない場合はトルエン溶液)のゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレンまたはポリスチレン換算の重量平均分子量で、通常5,000〜500,000、好ましくは8,000〜200,000、より好ましくは10,000〜100,000の範囲であるときに、フイルム(A)の機械的強度、及び成形加工性とが高度にバランスされて好適である。
Any film having this characteristic can be used preferably, but from the viewpoint of the durability of the polarizing film, it is more preferable to contain a cellulose acylate or norbornene-based film.
As the norbornene-based polymer, norbornene and its derivatives, tetracyclododecene and its derivatives, dicyclopentadiene and its derivatives, methanotetrahydrofluorene and its monomers as a main component of a norbornene-based monomer polymer, Ring-opening polymer of norbornene monomer, ring-opening copolymer of norbornene monomer and other monomer capable of ring-opening copolymerization, addition polymer of norbornene monomer, copolymerizable with norbornene monomer Examples include addition copolymers with other monomers and hydrogenated products thereof. Among these, from the viewpoints of heat resistance, mechanical strength, and the like, a ring-opening polymer hydride of a norbornene monomer is most preferable. The molecular weight of the norbornene-based polymer, the monocyclic olefin polymer, or the cyclic conjugated diene polymer is appropriately selected depending on the purpose of use, but is a cyclohexane solution (a toluene solution if the polymer resin does not dissolve). The polyisoprene or polystyrene-converted weight average molecular weight measured by gel permeation chromatography is usually 5,000 to 500,000, preferably 8,000 to 200,000, more preferably 10,000 to 100,000. When the thickness is within the range, the mechanical strength of the film (A) and the moldability are highly balanced and suitable.

セルロースアシレートとしては、そのアシル基が脂肪族基でもアリル基でもよく特に限定されない。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよく、総炭素数が22以下のエステル基が好ましい。これらの好ましいセルロースアシレートとしては、エステル部の総炭素数が22以下のアシル基(例えば、アセチル、プロピオニル、ブチロイル、バレル、ヘプタノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、ヘキサデカノイル、オクタデカノイルなど)、アリールカルボニル基(アクリル、メタクリルなど)、アリルカルボニルキ(ベンゾイル、ナフタロイルなど)、シンナモイル基を挙げることが出来る。これらの中でも、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートステアレート、セルロースアセテートベンゾエートなどであり、混合エステルの場合はその比率は特に限定されないが、好ましくはアセテートが総エステルの30モル%以上であることが好ましい。   The cellulose acylate is not particularly limited, and the acyl group may be an aliphatic group or an allyl group. They are, for example, alkyl carbonyl esters, alkenyl carbonyl esters, aromatic carbonyl esters, aromatic alkyl carbonyl esters, etc. of cellulose, each of which may further have a substituted group, and an ester having a total carbon number of 22 or less. Groups are preferred. These preferred cellulose acylates include acyl groups having a total carbon number of 22 or less in the ester moiety (for example, acetyl, propionyl, butyroyl, barrel, heptanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, hexadecanoyl, octadecanoyl, etc. ), Arylcarbonyl groups (acrylic, methacrylic, etc.), allylcarbonylkis (benzoyl, naphthaloyl etc.) and cinnamoyl groups. Among these, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate stearate, cellulose acetate benzoate, etc. are not particularly limited in the case of mixed esters, but preferably acetate is the total ester. It is preferable that it is 30 mol% or more.

これらの中でも、セルロースアシレートが好ましく、特に写真用グレードのものが好ましく、市販の写真用グレードのものは粘度平均重合度、置換度等の品質を満足して入手することができる。写真用グレードのセルローストリアセテートのメーカーとしては、ダイセル化学工業(株)(例えばLT−20,30,40,50,70,35,55,105など)、イーストマンコダック社(例えば、CAB−551−0.01、CAB−551−0.02、CAB−500−5、CAB−381−0.5、CAB−381−02、CAB−381−20、CAB−321−0.2、CAP−504−0.2、CAP−482−20、CA−398−3など)、コートルズ社、ヘキスト社等があり、何れも写真用グレードのセルロースアシレートを使用できる。また、フイルムの機械的特性や光学的な特性を制御する目的で、可塑剤、界面活性剤、レターデーション調節剤、UV吸収剤などを混合することが出来る(参考資料:特開2002−277632号公報、特開2002−182215号公報)   Among these, cellulose acylate is preferred, and photographic grades are particularly preferred, and commercially available photographic grades can be obtained with satisfactory quality such as viscosity average degree of polymerization and substitution degree. Manufacturers of photographic grade cellulose triacetate include Daicel Chemical Industries, Ltd. (for example, LT-20, 30, 40, 50, 70, 35, 55, 105, etc.), Eastman Kodak Company (for example, CAB-551). 0.01, CAB-551-0.02, CAB-500-5, CAB-381-0.5, CAB-381-02, CAB-381-20, CAB-321-0.2, CAP-504 0.2, CAP-482-20, CA-398-3, etc.), Coatles, Hoechst, etc., any of which can use photographic grade cellulose acylate. In addition, a plasticizer, a surfactant, a retardation modifier, a UV absorber, and the like can be mixed for the purpose of controlling the mechanical properties and optical properties of the film (reference material: Japanese Patent Application Laid-Open No. 2002-277632). Gazette, JP-A-2002-182215)

透明樹脂をシート又はフイルム状に成形する方法は、例えば、加熱溶融成形法、溶液流延法のいずれも用いることができる。加熱溶融成形法は、さらに詳細に、押出成形法、プレス成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法などに分類できるが、これらの方法の中でも、機械的強度、表面精度等に優れたフイルムを得るためには、押出成形法、インフレーション成形法、及びプレス成形法が好ましく、押出成形法が最も好ましい。成形条件は、使用目的や成形方法により適宜選択されるが、加熱溶融成形法による場合は、シリンダー温度が、好ましくは100〜400℃、より好ましくは150〜350℃の範囲で適宜設定される。上記シート又はフイルムの厚みは、好ましくは10〜300μm、より好ましくは30〜200μmである。
上記シート又はフイルムの延伸は、該透明樹脂のガラス転移温度をTgとするとき、好ましくはTg−30℃からTg+60℃の温度範囲、より好ましくはTg−10℃からTg+50℃の温度範囲にて、少なくとも一方向に好ましくは1.01〜2倍の延伸倍率で行う。延伸方向は少なくとも一方向であればよいが、その方向は、シートが押出成形で得られたものである場合には、樹脂の機械的流れ方向(押出方向)であることが好ましく、延伸方法は自由収縮一軸延伸法、幅固定一軸延伸法、二軸延伸法などが好ましい。光学特性の制御はこの延伸倍率と加熱温度を制御することによって行なうことが出来る。
As a method of forming the transparent resin into a sheet or film, for example, either a hot melt molding method or a solution casting method can be used. The heat-melt molding method can be further classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, a stretch molding method, etc. Among these methods, mechanical strength, surface In order to obtain a film excellent in accuracy and the like, the extrusion molding method, the inflation molding method, and the press molding method are preferable, and the extrusion molding method is most preferable. The molding conditions are appropriately selected depending on the purpose of use and the molding method. In the case of the heat-melt molding method, the cylinder temperature is preferably set in the range of preferably 100 to 400 ° C, more preferably 150 to 350 ° C. The thickness of the sheet or film is preferably 10 to 300 μm, more preferably 30 to 200 μm.
When the glass transition temperature of the transparent resin is defined as Tg, the stretching of the sheet or film is preferably in a temperature range of Tg-30 ° C to Tg + 60 ° C, more preferably in a temperature range of Tg-10 ° C to Tg + 50 ° C. In at least one direction, the stretching ratio is preferably 1.01 to 2 times. The stretching direction may be at least one direction, but when the sheet is obtained by extrusion, the direction is preferably the mechanical flow direction (extrusion direction) of the resin. A free shrink uniaxial stretching method, a fixed width uniaxial stretching method, a biaxial stretching method, and the like are preferable. The optical characteristics can be controlled by controlling the draw ratio and the heating temperature.

セルロースアシレートフイルムのRthを小さくする方法として、非平面構造性の化合物をフイルムに混合することが有効である。また、特開平11−246704号公報、特開2001−247717号公報、特願2003−379975号明細書に記載の方法などが挙げられる。また、セルロースアシレートフイルムの厚みを小さくすることによっても、Rthを小さくすることができる。   As a method for reducing the Rth of a cellulose acylate film, it is effective to mix a compound having a non-planar structure into the film. Moreover, the method of Unexamined-Japanese-Patent No. 11-246704, Unexamined-Japanese-Patent No. 2001-247717, Japanese Patent Application No. 2003-379975, etc. are mentioned. Rth can also be reduced by reducing the thickness of the cellulose acylate film.

Rthが負の光学特性を有する偏光板保護膜は、高分子フイルムを膜の厚さ方向に延伸する方法や(例 特開2000−162436号公報)、ビニルカルバゾール系高分子を塗布して乾燥させる方法(例 特開2001−091746号公報)で容易に形成できる。また、保護膜は、液晶材料を含んでいてもよく、例えば、Rthが負の光学特性を有する液晶性化合物から形成された位相差層を含んでいてもよい。該位相差層としては、キラル構造単位を含んだコレステリックディスコチック液晶化合物や組成物を、その螺旋軸を基板に略垂直に配向させたのち固定化して形成した層、屈折率異方性が正の棒状液晶化合物や組成物を基板に略垂直に配向させたのち固定化して形成した層などを例示することができる(例えば、特開平6−331826号公報や特許第2853064号等参照)。棒状液晶化合物は低分子化合物であってもよく、高分子化合物であってもよい。さらに、一の位相差層のみならず複数の位相差層を積層して、Rthが負の光学特性を示す保護膜を構成することもできる。また、支持体と位相差層との積層体全体でRthが負の光学特性を満たすようにして、保護層を構成してもよい。用いる棒状液晶化合物としては、配向固定させる温度範囲で、ネマチック液晶相、スメクチック液晶相、リオトロピック液晶相状態をとるものが好適に用いられる。揺らぎの無い均一な垂直配向が得られるスメクチックA相、B相を示す液晶が好ましい。特にまた、添加剤の存在下において、適切な配向温度範囲で、上記液晶状態となる棒状液晶性化合物については、該添加剤と棒状液晶性化合物を含有する組成物を用いて層を形成するのも好ましい。   A polarizing plate protective film having negative optical characteristics for Rth can be obtained by a method of stretching a polymer film in the thickness direction of the film (e.g., Japanese Patent Application Laid-Open No. 2000-162436) or by applying a vinylcarbazole polymer and drying it. It can be easily formed by a method (eg, Japanese Patent Application Laid-Open No. 2001-091746). In addition, the protective film may contain a liquid crystal material, and for example, may contain a retardation layer formed from a liquid crystalline compound having a negative optical characteristic for Rth. The retardation layer is a layer formed by fixing a cholesteric discotic liquid crystal compound or composition containing a chiral structural unit with its helical axis aligned substantially perpendicular to the substrate, and having a positive refractive index anisotropy. Examples thereof include a layer formed by orienting the rod-like liquid crystal compound or composition of the present invention on the substrate and then fixing it to the substrate (see, for example, JP-A-6-331826 and Japanese Patent No. 2853064). The rod-like liquid crystal compound may be a low molecular compound or a high molecular compound. Furthermore, it is possible to form a protective film that exhibits not only one retardation layer but also a plurality of retardation layers to exhibit optical characteristics with negative Rth. Further, the protective layer may be configured so that the entire laminate of the support and the retardation layer satisfies a negative optical characteristic of Rth. As the rod-like liquid crystal compound to be used, those that take a nematic liquid crystal phase, a smectic liquid crystal phase, and a lyotropic liquid crystal phase in a temperature range in which the orientation is fixed are preferably used. A liquid crystal exhibiting a smectic A phase and a B phase capable of obtaining uniform vertical alignment without fluctuation is preferable. In particular, in the presence of an additive, a rod-like liquid crystalline compound that becomes a liquid crystal state in an appropriate orientation temperature range is formed by using a composition containing the additive and the rod-like liquid crystalline compound. Is also preferable.

保護膜とその上に設けられる層(接着層、配向膜あるいは位相差層)との接着を改善するため、フイルムに表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10〜100nm程度の無機粒子を固形分重量比で5%〜40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。   In order to improve the adhesion between the protective film and the layer (adhesive layer, alignment film or retardation layer) provided thereon, the film is subjected to surface treatment (eg, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, flame) Processing) may be performed. An adhesive layer (undercoat layer) may be provided on the transparent support. Moreover, the average particle diameter is 10 to 100 nm in order to provide the transparent support or the long transparent support with slipperiness in the conveying process or to prevent the back surface and the surface from sticking after winding. It is preferable to use what formed the polymer layer which mixed the inorganic particle of about 5%-40% by solid content weight ratio by the application | coating or co-casting with the support body on the one side of the support body.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

<IPSモード液晶セル1の作製>
一枚のガラス基板上に、図1に示す様に、隣接する電極間の距離が20μmとなるように電極(図1中2及び3)を配設し、その上にポリイミド膜を配向膜として設け、ラビング処理を行なった。図1中に示す方向4に、ラビング処理を行なった。別に用意した一枚のガラス基板の一方の表面にポリイミド膜を設け、ラビング処理を行なって配向膜とした。二枚のガラス基板を、配向膜同士を対向させて、基板の間隔(ギャップ;d)を3.9μmとし、二枚のガラス基板のラビング方向が反平行となるようにして重ねて貼り合わせ、次いで屈折率異方性(Δn)が0.0769及び誘電率異方性(Δε)が正の4.5であるネマチック液晶組成物を封入した。液晶層のd・Δnの値は300nmであった。
<Preparation of IPS mode liquid crystal cell 1>
As shown in FIG. 1, electrodes (2 and 3 in FIG. 1) are arranged on one glass substrate so that the distance between adjacent electrodes is 20 μm, and a polyimide film is used as an alignment film on it. A rubbing process was performed. The rubbing process was performed in the direction 4 shown in FIG. A polyimide film was provided on one surface of a separately prepared glass substrate, and a rubbing treatment was performed to obtain an alignment film. The two glass substrates are stacked and bonded so that the alignment films face each other, the distance between the substrates (gap; d) is 3.9 μm, and the rubbing direction of the two glass substrates is antiparallel. Next, a nematic liquid crystal composition having a refractive index anisotropy (Δn) of 0.0769 and a dielectric anisotropy (Δε) of 4.5 was enclosed. The value of d · Δn of the liquid crystal layer was 300 nm.

<第1位相差領域1、第1位相差領域2、第1位相差領域3、第1位相差領域4、第1位相差領域5の作製>
以下のようにして第1位相差領域をなすポリマーフイルムを作製した。
厚さ100μmのノルボルネン系フイルム(ゼオノア、日本ゼオン(株)製)を一軸延伸(温度180℃、連続延伸)して下記5種の延伸複屈折率ロール状フイルムを得た。
<Preparation of the first retardation region 1, the first retardation region 2, the first retardation region 3, the first retardation region 4, and the first retardation region 5>
A polymer film forming the first retardation region was produced as follows.
A norbornene-based film (Zeonor, manufactured by Nippon Zeon Co., Ltd.) having a thickness of 100 μm was uniaxially stretched (temperature 180 ° C., continuously stretched) to obtain the following five types of stretched birefringence roll films.

光学特性は、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、Reの光入射角度依存性を測定し算出した。
第1位相差領域1;Re80nm、Rth80nm、Nz1.2
第1位相差領域2;Re140nm、Rth70nm、Nz1.0
第1位相差領域3;Re80nm、Rth80nm、Nz1.5
第1位相差領域4;Re170nm、Rth85nm、Nz1.0
第1位相差領域5;Re140nm、Rth70nm、Nz1.0
なお、第1位相差領域1〜3は横一軸延伸を施し、遅相軸方向はロール状フイルムの長手方向と直交していた。第1位相差領域4、5は縦一軸延伸を施し、遅相軸方向はロール状フイルムの長手方向と平行していた。
The optical characteristics were calculated by measuring the light incident angle dependency of Re using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments).
First retardation region 1; Re 80 nm, Rth 80 nm, Nz 1.2
First retardation region 2; Re 140 nm, Rth 70 nm, Nz 1.0
First retardation region 3; Re 80 nm, Rth 80 nm, Nz 1.5
First retardation region 4; Re 170 nm, Rth 85 nm, Nz 1.0
First retardation region 5; Re140 nm, Rth70 nm, Nz1.0
The first retardation regions 1 to 3 were subjected to lateral uniaxial stretching, and the slow axis direction was orthogonal to the longitudinal direction of the roll film. The first retardation regions 4 and 5 were subjected to longitudinal uniaxial stretching, and the slow axis direction was parallel to the longitudinal direction of the roll film.

<第2位相差領域1、第2位相差領域2、第2位相差領域3、第2位相差領域4の作製>
市販のセルロースアセテートフイルム(フジタックTD80UF、富士写真フイルム(株)製、Re=2nm、Rth=48nm)、及びコロナ放電処理をほどこした第1位相差領域1〜5の上に市販の垂直配向膜(JALS−204R、日本合成ゴム(株)製)をメチルエチルケトンで1:1に希釈したのち、ワイヤーバーコーターで連続塗布した(塗布量2.4ml/m2)。直ちに、120℃の温風で120秒乾燥した。
<Preparation of Second Phase Difference Region 1, Second Phase Difference Region 2, Second Phase Difference Region 3, and Second Phase Difference Region 4>
A commercially available cellulose acetate film (Fujitac TD80UF, manufactured by Fuji Photo Film Co., Ltd., Re = 2 nm, Rth = 48 nm), and a commercially available vertical alignment film on the first retardation regions 1 to 5 subjected to corona discharge treatment ( JALS-204R (manufactured by Nippon Synthetic Rubber Co., Ltd.) was diluted 1: 1 with methyl ethyl ketone, and then continuously applied with a wire bar coater (application amount 2.4 ml / m 2 ). Immediately, it was dried with warm air of 120 ° C. for 120 seconds.

次に、下記の棒状液晶化合物3.8g、光重合開始剤(イルガキュアー907、チバガイギー社製)0.06g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.02g、下記の空気界面側垂直配向剤0.002gを9.2gのメチルエチルケトンに溶解した溶液を調製した。この溶液を前記配向膜を形成したフイルムの配向膜側に、下記の番手のワイヤーバーでそれぞれ連続塗布し、100℃で2分間加熱し、棒状液晶化合物を配向させた。次に、80℃で120W/cm高圧水銀灯により、20秒間UV照射し棒状液晶化合物を架橋して、その後、室温まで放冷してロール状の位相差層を作製した。   Next, 3.8 g of the following rod-like liquid crystal compound, 0.06 g of photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy), 0.02 g of sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.), A solution in which 0.002 g of the air interface side vertical alignment agent was dissolved in 9.2 g of methyl ethyl ketone was prepared. This solution was continuously applied to the alignment film side of the film on which the alignment film was formed with a wire bar having the following count, and heated at 100 ° C. for 2 minutes to align the rod-like liquid crystal compound. Next, the rod-shaped liquid crystal compound was crosslinked by UV irradiation for 20 seconds with a 120 W / cm high-pressure mercury lamp at 80 ° C., and then allowed to cool to room temperature to prepare a roll-like retardation layer.

Figure 2005321528
Figure 2005321528

Figure 2005321528
Figure 2005321528

────────────────────────────────────
フイルム名称 棒状液晶からなる位相差層 支持体 ワイヤーバー番手
第2位相差領域名称
────────────────────────────────────
フイルムA 第2位相差領域1 第1位相差領域1 #1.5
フイルムB 第2位相差領域2 第1位相差領域2 #2.0
フイルムC 第2位相差領域3 第1位相差領域3 #3.0
フイルムD 第2位相差領域4 第1位相差領域4 #2.7
フイルムE 第2位相差領域2 第1位相差領域5 #2.0
────────────────────────────────────
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、製作したフイルムのReの光入射角度依存性を測定し、予め測定した支持体の寄与分を差し引くことによって、第2位相差領域のみの光学特性を算出したところ、それぞれ、
第2位相差領域1はReが0nm、Rthが−75nm、
第2位相差領域2はReが0nm、Rthが−100nm、
第2位相差領域3はReが0nm、Rthが−150nm、
第2位相差領域4はReが0nm、Rthが−135nm
であって、いずれも棒状液晶が略垂直に配向していることを確認した。
────────────────────────────────────
Film name Retardation layer made of rod-shaped liquid crystal Support Wire bar count
Second phase difference area name ─────────────────────────────────────
Film A Second retardation region 1 First retardation region 1 # 1.5
Film B Second retardation region 2 First retardation region 2 # 2.0
Film C Second retardation region 3 First retardation region 3 # 3.0
Film D Second phase difference region 4 First phase difference region 4 # 2.7
Film E Second retardation region 2 First retardation region 5 # 2.0
────────────────────────────────────
Using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.), measure the light incident angle dependency of Re of the manufactured film, and subtract the contribution of the support measured in advance. And calculating the optical characteristics of only the second phase difference region,
In the second phase difference region 1, Re is 0 nm, Rth is −75 nm,
In the second retardation region 2, Re is 0 nm, Rth is −100 nm,
In the second phase difference region 3, Re is 0 nm, Rth is −150 nm,
In the second phase difference region 4, Re is 0 nm and Rth is -135 nm.
In either case, it was confirmed that the rod-like liquid crystals were aligned substantially vertically.

<偏光板保護膜1の作製>
(偏光板保護膜1)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液Aを調製した。
<セルロースアセテート溶液A組成>
置換度2.86のセルロースアセテート 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール 11質量部
<Production of Polarizing Plate Protective Film 1>
(Polarizing plate protective film 1)
The following composition was put into a mixing tank, stirred while heating to dissolve each component, and a cellulose acetate solution A was prepared.
<Composition of cellulose acetate solution A>
Cellulose acetate having a substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first solvent) 300 parts by weight Methanol (second solvent) ) 54 parts by mass 1-butanol 11 parts by mass

別のミキシングタンクに、下記の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液B−1を調製した。
<添加剤溶液B−1組成>
メチレンクロライド 80質量部
メタノール 20質量部
以下の光学的異方性低下剤 40質量部
The following composition was charged into another mixing tank, stirred while heating to dissolve each component, and an additive solution B-1 was prepared.
<Additive solution B-1 composition>
Methylene chloride 80 parts by weight Methanol 20 parts by weight The following optical anisotropy reducing agent 40 parts by weight

Figure 2005321528
Figure 2005321528

セルロースアセテート溶液Aを477質量部に、添加剤溶液B−1の40質量部を添加し、充分に攪拌して、ドープを調製した。ドープを流延口から0℃に冷却したドラム上に流延した。溶媒含有率70質量%の場外で剥ぎ取り、フイルムの巾方向の両端をピンテンター(特開平4−1009号公報の図3に記載のピンテンター)で固定し、溶媒含有率が3〜5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み80μmの偏光板保護膜1を作製した。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、Reの光入射角度依存性を測定し、光学特性を算出したところ、Reが1nm、Rthが6nmであることが確認できた。
40 parts by mass of the additive solution B-1 was added to 477 parts by mass of the cellulose acetate solution A, and the dope was prepared by sufficiently stirring. The dope was cast from a casting port onto a drum cooled to 0 ° C. The solvent content is peeled off at 70% by mass, both ends in the width direction of the film are fixed with a pin tenter (the pin tenter described in FIG. 3 of JP-A-4-1009), and the solvent content is 3-5% by mass. In this state, the film was dried while maintaining an interval at which the stretching ratio in the transverse direction (direction perpendicular to the machine direction) was 3%. Then, it further dried by conveying between the rolls of the heat processing apparatus, and produced the polarizing plate protective film 1 with a thickness of 80 μm.
Using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.), the light incident angle dependence of Re was measured, and the optical characteristics were calculated. Re was 1 nm and Rth was 6 nm. I was able to confirm.

<偏光板Aの作製>
次に延伸したポリビニルアルコールフイルムにヨウ素を吸着させて偏光膜を製作し、市販のセルロースアセテートフイルム(フジタックTD80UF、富士写真フイルム(株)製、Re=2nm、Rth=48nm)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の片面に貼り付けた。さらに同様にして市販のセルロースアセテートフイルム(フジタックT40UZ、富士写真フイルム(株)製、Re=1nm、Rth=35nm、厚み40μm)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて偏光膜のもう片面に貼り付け偏光板Aを形成した。
<Preparation of polarizing plate A>
Next, iodine is adsorbed to the stretched polyvinyl alcohol film to produce a polarizing film, and saponification is performed on a commercially available cellulose acetate film (Fujitac TD80UF, manufactured by Fuji Photo Film Co., Ltd., Re = 2 nm, Rth = 48 nm). Using a polyvinyl alcohol-based adhesive, it was attached to one side of the polarizing film. In the same manner, a commercially available cellulose acetate film (Fujitac T40UZ, manufactured by Fuji Photo Film Co., Ltd., Re = 1 nm, Rth = 35 nm, thickness 40 μm) was subjected to saponification treatment, and a polarizing film was formed using a polyvinyl alcohol-based adhesive. Affixed to the other side to form polarizing plate A.

<偏光板Bの作製>
同様にして偏光膜を製作し、市販のセルロースアセテートフイルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の片面に貼り付けた。さらに同様にして前記製作の偏光板保護膜1を偏光膜のもう片面に貼り付け偏光板Bを形成した。
<Preparation of polarizing plate B>
A polarizing film was produced in the same manner, and a commercially available cellulose acetate film (Fujitac TD80UF, manufactured by Fuji Photo Film Co., Ltd.) was subjected to saponification treatment and attached to one side of the polarizing film using a polyvinyl alcohol-based adhesive. . In the same manner, the polarizing plate protective film 1 manufactured as described above was attached to the other side of the polarizing film to form a polarizing plate B.

<偏光板Cの作製>
同様にして偏光膜を製作し、市販のセルロースアセテートフイルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の両面に貼り付け偏光板Cを形成した。
<Preparation of polarizing plate C>
In the same manner, a polarizing film is produced, and a commercially available cellulose acetate film (Fujitac TD80UF, manufactured by Fuji Photo Film Co., Ltd.) is saponified, and is attached to both surfaces of the polarizing film using a polyvinyl alcohol adhesive. Plate C was formed.

[実施例1]
偏光板Aの偏光板保護膜T40UZ側にアクリル系接着剤を用いて、作製したロール状フイルムAを第1位相差領域1側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域1の遅相軸が平行になるように連続的に貼り合せた。
偏光板AとフイルムAとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域1の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第2位相差領域1面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板AをフジタックT40UZ側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Aとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.10%であった。
[Example 1]
Acrylic adhesive is used on the polarizing plate protective film T40UZ side of the polarizing plate A so that the produced roll film A has the first retardation region 1 side on the polarizing film side and the transmission axis of the polarizing film and the first Bonding was continued so that the slow axis of the phase difference region 1 was parallel.
After the laminated body of the polarizing plate A and the film A is cut into a predetermined size, the laminate is parallel to the rubbing direction of the liquid crystal cell on one side of the IPS mode liquid crystal cell 1 produced above. (That is, the slow axis of the first retardation region 1 is parallel to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display) and the second retardation region 1 surface side is liquid crystal Affixed to the cell side.
Subsequently, another polarizing plate A is placed on the other side of the IPS mode liquid crystal cell 1 so that the Fujitac T40UZ side is the liquid crystal cell side, and the polarizing plate A with the retardation region previously bonded is crossed Nicol. The liquid crystal display device was manufactured by pasting so as to be arranged. The leakage light of the liquid crystal display device thus manufactured was measured. The leaked light when observed from the left oblique direction of 60 ° was 0.10%.

[実施例2]
偏光板Bの偏光板保護膜1側にアクリル系接着剤を用いて、作製したロール状フイルムBを第1位相差領域2側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域2の遅相軸が平行になるように連続的に貼り合せた。
偏光板BとフイルムBとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域2の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第2位相差領域2面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板Bを偏光板保護膜1側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.05%であった。
[Example 2]
Using an acrylic adhesive on the polarizing plate protective film 1 side of the polarizing plate B, the produced roll-shaped film B is arranged such that the first retardation region 2 side is the polarizing film side and the transmission axis of the polarizing film and the first Bonding was continuously performed so that the slow axis of the phase difference region 2 was parallel.
After the laminated body of the polarizing plate B and the film B is cut into a predetermined size, the transmission body of the polarizing plate is parallel to the rubbing direction of the liquid crystal cell on one of the IPS mode liquid crystal cells 1 produced above. (That is, the slow axis of the first retardation region 2 is parallel to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display), and the second retardation region 2 surface side is liquid crystal Affixed to the cell side.
Subsequently, another polarizing plate B is attached to the other side of the IPS mode liquid crystal cell 1 so that the polarizing plate protective film 1 side is on the liquid crystal cell side, and the polarizing plate B with a retardation region bonded first. A liquid crystal display device was manufactured by pasting in a crossed Nicol arrangement. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.05%.

[実施例3]
偏光板Cにアクリル系接着剤を用いて、作製したロール状フイルムCを第1位相差領域3側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域3の遅相軸が平行になるように連続的に貼り合せた。
偏光板CとフイルムCとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域3の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と平行になるように)、且つ第2位相差領域3面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に偏光板Bを偏光板保護膜1側が液晶セル側になるように、且つ位相差領域付偏光板Cとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.05%であった。
[Example 3]
Using an acrylic adhesive for the polarizing plate C, the roll film C thus prepared is such that the first retardation region 3 side is the polarizing film side, and the transmission axis of the polarizing film and the retardation phase of the first retardation region 3 are They were laminated together so that the axes were parallel.
After the laminated body of the polarizing plate C and the film C is cut into a predetermined size, this is applied to one of the IPS mode liquid crystal cells 1 produced above, and the transmission axis of the polarizing plate is parallel to the rubbing direction of the liquid crystal cell. (That is, the slow axis of the first retardation region 3 is parallel to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display), and the second retardation region 3 surface side is liquid crystal. Affixed to the cell side.
Subsequently, the polarizing plate B is placed on the other side of the IPS mode liquid crystal cell 1 so that the polarizing plate protective film 1 side is on the liquid crystal cell side, and the polarizing plate with retardation region C is placed in a crossed Nicols arrangement. A liquid crystal display device was manufactured. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.05%.

[実施例4]
偏光板Aの偏光板保護膜T40UZ側にアクリル系接着剤を用いて、作製したロール状フイルムDを、第2位相差領域4側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域4の遅相軸が直交になるように連続的に貼り合せた。
偏光板AとフイルムDとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域4の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と直交になるように)、且つ第1位相差領域4面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板AをフジタックT40UZ側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Aとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.11%であった。
[Example 4]
Using an acrylic adhesive on the polarizing plate protective film T40UZ side of the polarizing plate A, the produced roll film D is aligned with the transmission axis of the polarizing film so that the second retardation region 4 side is on the polarizing film side. Bonding was continuously performed so that the slow axis of one phase difference region 4 was orthogonal.
After the laminated body of the polarizing plate A and the film D is cut into a predetermined size, the transmission body of the polarizing plate is parallel to the rubbing direction of the liquid crystal cell on one side of the IPS mode liquid crystal cell 1 produced above. (That is, the slow axis of the first retardation region 4 is perpendicular to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display), and the first retardation region 4 surface side is liquid crystal. Affixed to the cell side.
Subsequently, another polarizing plate A is placed on the other side of the IPS mode liquid crystal cell 1 so that the Fujitac T40UZ side is the liquid crystal cell side, and the polarizing plate A with the retardation region previously bonded is crossed Nicol. The liquid crystal display device was manufactured by pasting so as to be arranged. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.11%.

[実施例5]
偏光板Bの偏光板保護膜1側にアクリル系接着剤を用いて、作製したロール状フイルムEを第2位相差領域2側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域5の遅相軸が直交になるように連続的に貼り合せた。
偏光板BとフイルムEとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域5の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と直交になるように)、且つ第1位相差領域5面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板Bを偏光板保護膜1側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.05%であった。
[Example 5]
Using the acrylic adhesive on the polarizing plate protective film 1 side of the polarizing plate B, the produced roll-shaped film E is arranged so that the second retardation region 2 side is the polarizing film side and the transmission axis of the polarizing film and the first Bonding was continued so that the slow axis of the phase difference region 5 would be orthogonal.
After the laminated body of the polarizing plate B and the film E is cut into a predetermined size, the transmission axis of the polarizing plate is parallel to the rubbing direction of the liquid crystal cell on one of the IPS mode liquid crystal cells 1 produced above. (That is, the slow axis of the first retardation region 5 is orthogonal to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display), and the first retardation region 5 surface side is liquid crystal Affixed to the cell side.
Subsequently, another polarizing plate B is attached to the other side of the IPS mode liquid crystal cell 1 so that the polarizing plate protective film 1 side is on the liquid crystal cell side, and the polarizing plate B with a retardation region bonded first. A liquid crystal display device was manufactured by pasting in a crossed Nicol arrangement. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.05%.

[実施例6]
<強誘電性液晶セル1の作製>
ITO電極付ガラス基板上ポリイミド膜を配向膜として設け、ラビング処理を行なった。この基板を2枚製作し、配向膜同士を対向させて、基板の間隔(ギャップ;d)を1.9μmとし、二枚のガラス基板のラビング方向が平行となるようにして重ねて貼り合わせ、次いで屈折率異方性(Δn)が0.15及び自発分極(Ps)が12nCcm−2である強誘電性液晶組成物を封入した。液晶層のd・Δnの値は280nmであった。
[Example 6]
<Preparation of Ferroelectric Liquid Crystal Cell 1>
A polyimide film on an ITO electrode glass substrate was provided as an alignment film, and a rubbing treatment was performed. Two substrates are manufactured, the alignment films are made to face each other, the distance between the substrates (gap; d) is set to 1.9 μm, and the rubbing directions of the two glass substrates are parallel to each other and bonded together. Next, a ferroelectric liquid crystal composition having a refractive index anisotropy (Δn) of 0.15 and a spontaneous polarization (Ps) of 12 nCcm −2 was sealed. The value of d · Δn of the liquid crystal layer was 280 nm.

偏光板Bの偏光板保護膜1側にアクリル系接着剤を用いて、作製したロール状フイルムBを第1位相差領域2側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域2の遅相軸が平行になるように連続的に貼り合せた。
偏光板BとフイルムBとの積層体を、所定の大きさに裁断した後、これを、強誘電性液晶セル1の一方に、前記第1位相差領域2の遅相軸が、液晶セルに直流電圧10Vを印加した場合の液晶分子の遅相軸と平行になるように、且つ第2位相差領域2側が液晶セル側になるように貼り付けた。続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板Bを偏光板保護膜1側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.05%であった。
Using an acrylic adhesive on the polarizing plate protective film 1 side of the polarizing plate B, the produced roll-shaped film B is arranged such that the first retardation region 2 side is the polarizing film side and the transmission axis of the polarizing film and the first Bonding was continuously performed so that the slow axis of the phase difference region 2 was parallel.
After the laminated body of the polarizing plate B and the film B is cut into a predetermined size, this is divided into one of the ferroelectric liquid crystal cell 1 and the slow axis of the first retardation region 2 is formed in the liquid crystal cell. Affixing was performed so that the slow axis of the liquid crystal molecules when a DC voltage of 10 V was applied was parallel to the liquid crystal cell side. Subsequently, another polarizing plate B is attached to the other side of the IPS mode liquid crystal cell 1 so that the polarizing plate protective film 1 side is on the liquid crystal cell side, and the polarizing plate B with a retardation region bonded first. A liquid crystal display device was manufactured by pasting in a crossed Nicol arrangement. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.05%.

[実施例7]
偏光板Bの偏光板保護膜1側にアクリル系接着剤を用いて、シート状に裁断したフイルムEを第1位相差領域5側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域5の遅相軸が平行になるように貼り合せた。
偏光板BとフイルムEとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域5の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と直交になるように)、且つ第1位相差領域5面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板Bを偏光板保護膜1側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.18%であった。
[Example 7]
Using an acrylic adhesive on the polarizing plate protective film 1 side of the polarizing plate B, the film E cut into a sheet shape is arranged such that the first retardation region 5 side is the polarizing film side and the transmission axis of the polarizing film is Bonding was performed so that the slow axis of one phase difference region 5 was parallel.
After the laminated body of the polarizing plate B and the film E is cut into a predetermined size, the transmission axis of the polarizing plate is parallel to the rubbing direction of the liquid crystal cell on one of the IPS mode liquid crystal cells 1 produced above. (That is, the slow axis of the first retardation region 5 is orthogonal to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display), and the first retardation region 5 surface side is liquid crystal Affixed to the cell side.
Subsequently, another polarizing plate B is bonded to the other side of the IPS mode liquid crystal cell 1 so that the polarizing plate protective film 1 side is on the liquid crystal cell side, and the polarizing plate B with a retardation region previously bonded. A liquid crystal display device was manufactured by pasting in a crossed Nicol arrangement. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.18%.

[実施例8]
偏光板Bの偏光板保護膜1側にアクリル系接着剤を用いて、シート状に裁断したフイルムBを第2位相差領域2側が偏光膜側になるように、且つ偏光膜の透過軸と第1位相差領域2の遅相軸が直交になるように貼り合せた。
偏光板BとフイルムBとの積層体を、所定の大きさに裁断した後、これを、前記で作製したIPSモード液晶セル1の一方に、偏光板の透過軸が液晶セルのラビング方向と平行になるように(即ち、第1位相差領域2の遅相軸が、黒表示時の液晶セルの液晶分子の遅相軸と直交になるように)、且つ第1位相差領域2面側が液晶セル側になるように貼り付けた。
続いて、このIPSモード液晶セル1のもう一方の側に別の偏光板Bを偏光板保護膜1側が液晶セル側になるように、且つ先に貼合した位相差領域付偏光板Bとはクロスニコルの配置になるように貼り付け、液晶表示装置を作製した。このように作製した液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.20%であった。
[Example 8]
Using an acrylic adhesive on the polarizing plate protective film 1 side of the polarizing plate B, the film B cut into a sheet shape is arranged such that the second retardation region 2 side is the polarizing film side and the transmission axis of the polarizing film is Bonding was performed so that the slow axis of one phase difference region 2 was orthogonal.
After the laminated body of the polarizing plate B and the film B is cut into a predetermined size, the transmission body of the polarizing plate is parallel to the rubbing direction of the liquid crystal cell on one of the IPS mode liquid crystal cells 1 produced above. (That is, the slow axis of the first retardation region 2 is perpendicular to the slow axis of the liquid crystal molecules of the liquid crystal cell during black display), and the first retardation region 2 surface side is liquid crystal Affixed to the cell side.
Subsequently, another polarizing plate B is attached to the other side of the IPS mode liquid crystal cell 1 so that the polarizing plate protective film 1 side is on the liquid crystal cell side, and the polarizing plate B with a retardation region bonded first. A liquid crystal display device was manufactured by pasting in a crossed Nicol arrangement. The leakage light of the liquid crystal display device thus manufactured was measured. The leakage light when observed from the left oblique direction of 60 ° was 0.20%.

[比較例1]
前記作製したIPSモード液晶セル1の両側に市販の偏光板(HLC2−5618、(株)サンリッツ製)を、クロスニコルの配置で貼り付け、液晶表示装置を作製した。光学補償フイルムは用いなかった。上記液晶表示装置では、実施例1と同様に、上側の偏光板の透過軸が液晶セルのラビング方向と平行になるように偏光板を貼り付けた。このように作製した本発明の位相差領域を具備しない液晶表示装置の漏れ光を測定した。左斜め方向60°から観察した際の漏れ光は0.55%であった。
[Comparative Example 1]
A commercially available polarizing plate (HLC2-5618, manufactured by Sanritz Co., Ltd.) was attached to both sides of the produced IPS mode liquid crystal cell 1 in a crossed Nicol arrangement to produce a liquid crystal display device. An optical compensation film was not used. In the liquid crystal display device, as in Example 1, the polarizing plate was attached so that the transmission axis of the upper polarizing plate was parallel to the rubbing direction of the liquid crystal cell. The leakage light of the liquid crystal display device thus manufactured without the retardation region of the present invention was measured. Light leakage when observed from the left oblique direction of 60 ° was 0.55%.

本発明の液晶表示装置の画素領域例を示す概略図である。It is the schematic which shows the pixel area example of the liquid crystal display device of this invention. 本発明の液晶表示装置の一例を示す概略図である。It is the schematic which shows an example of the liquid crystal display device of this invention. 本発明の液晶表示装置の他の例を示す概略図である。It is the schematic which shows the other example of the liquid crystal display device of this invention.

符号の説明Explanation of symbols

1 液晶素子画素領域
2 画素電極
3 表示電極
4 ラビング方向
5a、5b 黒表示時の液晶化合物のダイレクター
6a、6b 白表示時の液晶化合物のダイレクター
7a,7b、19a,19b 偏光膜用保護膜
8、20 偏光膜
9、21 偏光膜の偏光透過軸
10 第1位相差領域
11 第1位相差領域の遅相軸
12 第2位相差領域
13、17 セル基板
14、18 セル基板ラビング方向
15 液晶層
16 液晶層の遅相軸方向
DESCRIPTION OF SYMBOLS 1 Liquid crystal element pixel area 2 Pixel electrode 3 Display electrode 4 Rubbing direction 5a, 5b Director of liquid crystal compound at the time of black display 6a, 6b Director of liquid crystal compound at the time of white display 7a, 7b, 19a, 19b Protective film for polarizing film 8, 20 Polarizing film 9, 21 Polarizing transmission axis 10 of polarizing film First retardation region 11 Slow axis 12 of first retardation region Second retardation region 13, 17 Cell substrate 14, 18 Cell substrate rubbing direction 15 Liquid crystal Layer 16 Slow axis direction of liquid crystal layer

Claims (9)

少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層を一対の基板で挟んだ液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、
面内の屈折率nxとny(nx≧ny)、厚さ方向の屈折率nz、及びフイルムの厚さdを用いてRe=(nx−ny)×dで定義される第1位相差領域のレターデーションReが60nm〜200nmであり、
Nz=(nx−nz)/(nx−ny)で定義される第1位相差領域の値Nzが0.8を超え1.5以下で、
第1位相差領域が、脂環式構造含有重合体樹脂フイルムを延伸して得られた位相差層を有し、
第2位相差領域の面内の屈折率nxとnyが実質的に等しく、nx<nzであり、Rth={(nx+ny)/2−nz}×dで定義される第2位相差領域の厚み方向のレターデーションRthが−200nm〜−50nmであり、且つ
第1偏光膜の透過軸が黒表示時の液晶分子の遅相軸方向に平行である液晶表示装置。
The liquid crystal cell includes at least a first polarizing film, a first retardation region, a second retardation region, a liquid crystal cell having a liquid crystal layer sandwiched between a pair of substrates, and a second polarizing film. A liquid crystal display device in which liquid crystal molecules are aligned parallel to the surfaces of the pair of substrates,
Using the in-plane refractive indices nx and ny (nx ≧ ny), the refractive index nz in the thickness direction, and the thickness d of the film, the first retardation region defined by Re = (nx−ny) × d Retardation Re is 60 nm to 200 nm,
The value Nz of the first phase difference region defined by Nz = (nx−nz) / (nx−ny) exceeds 0.8 and is 1.5 or less.
The first retardation region has a retardation layer obtained by stretching an alicyclic structure-containing polymer resin film,
In-plane refractive indices nx and ny are substantially equal, nx <nz, and the thickness of the second retardation region defined by Rth = {(nx + ny) / 2−nz} × d. A liquid crystal display device in which the direction retardation Rth is -200 nm to -50 nm and the transmission axis of the first polarizing film is parallel to the slow axis direction of the liquid crystal molecules during black display.
第1偏光膜、第1位相差領域、第2位相差領域及び液晶セルが、この順序で配置され、且つ第1位相差領域の遅相軸が、第1偏光膜の透過軸に実質的に平行である請求項1に記載の液晶表示装置。 The first polarizing film, the first retardation region, the second retardation region, and the liquid crystal cell are arranged in this order, and the slow axis of the first retardation region is substantially the transmission axis of the first polarizing film. The liquid crystal display device according to claim 1, which is parallel. 第1偏光膜、第2位相差領域、第1位相差領域及び液晶セルがこの順序で配置され、且つ第1位相差領域の遅相軸が第1偏光膜の透過軸に実質的に直交である請求項1に記載の液晶表示装置。 The first polarizing film, the second retardation region, the first retardation region, and the liquid crystal cell are arranged in this order, and the slow axis of the first retardation region is substantially orthogonal to the transmission axis of the first polarizing film. The liquid crystal display device according to claim 1. 第1位相差領域が有する位相差層が、ノルボルネン系フイルムを延伸して得られた長尺の延伸フイルムを裁断してなる請求項1〜3のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the retardation layer of the first retardation region is formed by cutting a long stretched film obtained by stretching a norbornene-based film. 第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向の位相差Rthが40nm〜−50nmである請求項1〜4のいずれか1項に記載の液晶表示装置。 A pair of protective films disposed between at least one of the first polarizing film and the second polarizing film, and a thickness direction retardation Rth of the protective film on the side closer to the liquid crystal layer of the pair of protective films. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is 40 nm to −50 nm. 第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向の位相差Rthが20nm〜−20nmである請求項1〜4のいずれか1項に記載の液晶表示装置。 A pair of protective films disposed between at least one of the first polarizing film and the second polarizing film, and a thickness direction retardation Rth of the protective film on the side closer to the liquid crystal layer of the pair of protective films. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is 20 nm to −20 nm. 第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚みが60μm以下である請求項1〜6のいずれか1項に記載の液晶表示装置。 A pair of protective films disposed between at least one of the first polarizing film and the second polarizing film, and the thickness of the protective film on the side close to the liquid crystal layer of the pair of protective films is 60 μm or less. Item 7. The liquid crystal display device according to any one of items 1 to 6. 第1位相差領域が有する位相差層の、波長450nmの面内レターでションRe(450)と波長750nmの面内レターデーションRe(750)との比Re(450)/Re(750)が1.1未満である請求項1〜7のいずれか1項に記載の液晶表示装置。 The ratio Re (450) / Re (750) of the retardation Re (450) and the in-plane retardation Re (750) with a wavelength of 750 nm in the in-plane letter with a wavelength of 450 nm of the retardation layer of the first retardation region is 1. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is less than .1. 第1偏光膜及び第2偏光膜を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜がセルロースアシレートフイルム又はノルボルネン系フイルムを含む請求項1〜8のいずれか1項に記載の液晶表示装置。   A pair of protective films disposed between the first polarizing film and the second polarizing film, wherein at least the protective film on the side close to the liquid crystal layer includes a cellulose acylate film or a norbornene-based film; The liquid crystal display device according to claim 1.
JP2004138601A 2004-05-07 2004-05-07 Liquid crystal display Pending JP2005321528A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004138601A JP2005321528A (en) 2004-05-07 2004-05-07 Liquid crystal display
KR1020050037743A KR20060045914A (en) 2004-05-07 2005-05-04 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138601A JP2005321528A (en) 2004-05-07 2004-05-07 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2005321528A true JP2005321528A (en) 2005-11-17

Family

ID=35468880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138601A Pending JP2005321528A (en) 2004-05-07 2004-05-07 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP2005321528A (en)
KR (1) KR20060045914A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090897A1 (en) * 2005-02-23 2006-08-31 Fujifilm Corporation Liquid crystal display device
JP2007017466A (en) * 2005-07-05 2007-01-25 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2007041527A (en) * 2005-06-30 2007-02-15 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2007065575A (en) * 2005-09-02 2007-03-15 Jsr Corp Optical film, polarizing plate and liquid crystal display
JP2007153926A (en) * 2005-11-30 2007-06-21 Nippon Zeon Co Ltd Oriented film, use thereof and method for producing the same
JP2007171362A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Optical compensation film, polarizing plate and liquid crystal display device
JP2007179026A (en) * 2005-11-30 2007-07-12 Fujifilm Corp Optical compensation film, optical compensation film integral type polarizing plate using same, and liquid crystal display device
WO2007097407A1 (en) * 2006-02-21 2007-08-30 Sumitomo Chemical Company, Limited Composite polarizing plate with wide field of view and liquid crystal display
JP2007286578A (en) * 2006-03-23 2007-11-01 Fujifilm Corp Optical-compensation film incorporating polarizing plate and liquid crystal display device
JP2008051838A (en) * 2006-08-22 2008-03-06 Fujifilm Corp Optical compensation film and liquid crystal display apparatus
JP2008152219A (en) * 2006-11-20 2008-07-03 Nitto Denko Corp Multilayer optical film, liquid crystal panel and liquid crystal display device using the multilayer optical film
US7408603B2 (en) 2004-12-08 2008-08-05 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
US7463320B2 (en) 2004-11-29 2008-12-09 Nitto Denko Corporation Liquid crystal panel and display apparatus having a negative biaxial element of 110 to 250 nm thickness direction retardation value and an Nz coefficient of 1.4 or more
JP2010510553A (en) * 2006-11-20 2010-04-02 エルジー・ケム・リミテッド Optical film and manufacturing method thereof
US7898628B2 (en) 2007-08-29 2011-03-01 Mitsubishi Electric Corporation Liquid crystal display device
US8313814B2 (en) 2005-11-25 2012-11-20 Fujifilm Corporation Cellulose acylate film, method of producing the same, cellulose derivative film, optically compensatory film using the same, optically-compensatory film incorporating polarizing plate, polarizing plate and liquid crystal display device
WO2016153024A1 (en) * 2015-03-25 2016-09-29 富士フイルム株式会社 Polarizing plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197162B1 (en) 2008-08-27 2012-11-09 주식회사 엘지화학 In-plane swiching mode liquid crystal display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296424A (en) * 2000-12-18 2002-10-09 Nippon Kayaku Co Ltd Optical film, polarizing film and method for improving visibility angle of polarizing film
JP2005208356A (en) * 2004-01-23 2005-08-04 Hitachi Ltd Polarizing plate, and liquid crystal display using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296424A (en) * 2000-12-18 2002-10-09 Nippon Kayaku Co Ltd Optical film, polarizing film and method for improving visibility angle of polarizing film
JP2005208356A (en) * 2004-01-23 2005-08-04 Hitachi Ltd Polarizing plate, and liquid crystal display using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463320B2 (en) 2004-11-29 2008-12-09 Nitto Denko Corporation Liquid crystal panel and display apparatus having a negative biaxial element of 110 to 250 nm thickness direction retardation value and an Nz coefficient of 1.4 or more
US7408603B2 (en) 2004-12-08 2008-08-05 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
WO2006090897A1 (en) * 2005-02-23 2006-08-31 Fujifilm Corporation Liquid crystal display device
JP2007041527A (en) * 2005-06-30 2007-02-15 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2007017466A (en) * 2005-07-05 2007-01-25 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2007065575A (en) * 2005-09-02 2007-03-15 Jsr Corp Optical film, polarizing plate and liquid crystal display
US8313814B2 (en) 2005-11-25 2012-11-20 Fujifilm Corporation Cellulose acylate film, method of producing the same, cellulose derivative film, optically compensatory film using the same, optically-compensatory film incorporating polarizing plate, polarizing plate and liquid crystal display device
JP2007179026A (en) * 2005-11-30 2007-07-12 Fujifilm Corp Optical compensation film, optical compensation film integral type polarizing plate using same, and liquid crystal display device
JP2007153926A (en) * 2005-11-30 2007-06-21 Nippon Zeon Co Ltd Oriented film, use thereof and method for producing the same
JP2007171362A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Optical compensation film, polarizing plate and liquid crystal display device
JP2007225648A (en) * 2006-02-21 2007-09-06 Sumitomo Chemical Co Ltd Compound polarizing plate of wide viewing angle and liquid crystal display device
WO2007097407A1 (en) * 2006-02-21 2007-08-30 Sumitomo Chemical Company, Limited Composite polarizing plate with wide field of view and liquid crystal display
JP2007286578A (en) * 2006-03-23 2007-11-01 Fujifilm Corp Optical-compensation film incorporating polarizing plate and liquid crystal display device
JP2008051838A (en) * 2006-08-22 2008-03-06 Fujifilm Corp Optical compensation film and liquid crystal display apparatus
JP4726740B2 (en) * 2006-08-22 2011-07-20 富士フイルム株式会社 Optical compensation film and liquid crystal display device
JP2010510553A (en) * 2006-11-20 2010-04-02 エルジー・ケム・リミテッド Optical film and manufacturing method thereof
JP2008152219A (en) * 2006-11-20 2008-07-03 Nitto Denko Corp Multilayer optical film, liquid crystal panel and liquid crystal display device using the multilayer optical film
JP2013178576A (en) * 2006-11-20 2013-09-09 Lg Chem Ltd Optical film and method of manufacturing the same
US7898628B2 (en) 2007-08-29 2011-03-01 Mitsubishi Electric Corporation Liquid crystal display device
WO2016153024A1 (en) * 2015-03-25 2016-09-29 富士フイルム株式会社 Polarizing plate
JPWO2016153024A1 (en) * 2015-03-25 2017-11-16 富士フイルム株式会社 Polarizer
US10365419B2 (en) 2015-03-25 2019-07-30 Fujifilm Corporation Polarizing plate

Also Published As

Publication number Publication date
KR20060045914A (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP5989859B2 (en) Liquid crystal display
JP4328243B2 (en) Liquid crystal display
KR100831919B1 (en) Liquid crystal panel, liquid crystal television, and liquid crystal display device
JP4624129B2 (en) Liquid crystal display device
KR100831918B1 (en) Liquid crystal panel, liquid crystal television, and liquid crystal display device
KR20060045914A (en) Liquid crystal display device
JP4647315B2 (en) Liquid crystal display device
US20090257012A1 (en) Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film
US20060061717A1 (en) Elliptically polarizing plate and liquid crystal display device
JP2006119623A (en) Elliptically polarizing plate and liquid crystal display device
KR20060045885A (en) Liquid crystal display device
JP4726740B2 (en) Optical compensation film and liquid crystal display device
WO2019009145A1 (en) Liquid crystal display device
JP5036209B2 (en) Liquid crystal display
JP2006124368A (en) Liquid crystalline compound, optically anisotropic film and liquid crystal display
JP4521302B2 (en) Optically anisotropic film and liquid crystal display device
JP2006078718A (en) Optically anisotropic membrane, its manufacturing method, and liquid crystal display
KR101196270B1 (en) Liquid crystal display device
JP2006058542A (en) Birefringent film and liquid crystal display device
JP2007264234A (en) Liquid crystal display device and elliptic polarizing plate
JP2006242984A (en) Optically anisotropic film and liquid crystal display device
JP2005275104A (en) Optical compensation film and liquid crystal display device
JP2006071963A (en) Polarizing plate integrated optical compensation film and liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330