JP2005321035A - Damping bearing device - Google Patents

Damping bearing device Download PDF

Info

Publication number
JP2005321035A
JP2005321035A JP2004139704A JP2004139704A JP2005321035A JP 2005321035 A JP2005321035 A JP 2005321035A JP 2004139704 A JP2004139704 A JP 2004139704A JP 2004139704 A JP2004139704 A JP 2004139704A JP 2005321035 A JP2005321035 A JP 2005321035A
Authority
JP
Japan
Prior art keywords
bearing
film
damper
damping
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004139704A
Other languages
Japanese (ja)
Other versions
JP4603287B2 (en
JP2005321035A6 (en
Inventor
Kazuyuki Yamaguchi
和幸 山口
Takayuki Takagi
享之 高木
Tomoaki Inoue
知昭 井上
Kuniyoshi Tsubouchi
邦良 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004139704A priority Critical patent/JP4603287B2/en
Publication of JP2005321035A publication Critical patent/JP2005321035A/en
Publication of JP2005321035A6 publication Critical patent/JP2005321035A6/en
Application granted granted Critical
Publication of JP4603287B2 publication Critical patent/JP4603287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping bering device in which subharmonic resonance is hardly caused even though a radial clearance in a fluid-film damper is reduced to increase in a damping coefficient, and consequently the bearing part and a bearing housing are apt to collide with each other. <P>SOLUTION: The damping bearing device 1 includes the bearing part 20 rotatably supporting a rotor 2, the bearing housing 5 provided on the outer peripheral side of the bearing part 20, and a fluid film damper 15 forming a fluid film 6 in the clearance between the bearing part 20 and the bearing housing 5. A surface film 7 of low hardness is formed at least on either side of fluid film-forming surfaces of the bearing part 20 and the housing 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、減衰軸受装置に係り、特にガスタービンやターボ圧縮機などの高速ターボ機械に好適な減衰軸受装置に関する。   The present invention relates to a damping bearing device, and more particularly to a damping bearing device suitable for a high-speed turbo machine such as a gas turbine or a turbo compressor.

環境問題への関心が高まる中、ターボ機械に対する小型化、高効率化の要求が強くなっている。   As interest in environmental issues increases, there is an increasing demand for downsizing and higher efficiency of turbomachinery.

出力を確保しつつ小型化を図るためには、運転回転速度を高速化することが有効である。しかし、回転体を高速化すると、オイルホワールに代表される不安定振動により安定性が低下する。また、回転体の高速化により、一般的に振動応答倍率が高い高次の危険速度を通過することが必要になる。   In order to reduce the size while securing the output, it is effective to increase the operating rotational speed. However, when the speed of the rotating body is increased, the stability is reduced due to unstable vibration represented by oil whirl. Further, due to the speeding up of the rotating body, it is generally necessary to pass a high-order critical speed with a high vibration response magnification.

一方、ターボ機械の高効率化のために、軸受損失の低減が求められている。転がり軸受や低粘度の流体を用いたすべり軸受を使用すると、軸受損失は低減されるが、軸受の減衰係数が小さくなるため、危険速度の振動応答倍率が高くなるという問題がある。   On the other hand, in order to increase the efficiency of turbomachinery, reduction of bearing loss is required. When a rolling bearing or a plain bearing using a low-viscosity fluid is used, the bearing loss is reduced, but there is a problem that the vibration response magnification of the critical speed is increased because the damping coefficient of the bearing is reduced.

これらの問題を解決するためには、軸支持部に制振能力の高い減衰機能を付加することが有効であり、軸受の外周側に流体膜ダンパを設置する例が多くみられる。   In order to solve these problems, it is effective to add a damping function having a high damping capacity to the shaft support portion, and there are many examples in which a fluid film damper is installed on the outer peripheral side of the bearing.

その流体膜ダンパの構造は、例えば特開2001−50267号公報(特許文献1)に開示されている。この流体膜ダンパは、軸受に固定されたダンパブッシュと、ダンパブッシュの外周側に配置される軸受ハウジングとの隙間に流体膜を形成し、流体膜のスクイーズ作用により減衰力を得るものである。流体膜の減衰特性の安定化を目的として、ダンパブッシュと軸受ハウジングとの偏心が小さくなるように、ダンパブッシュを柔軟に支持する軸受支持部材を設置する構造が主流になっている。   The structure of the fluid film damper is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-50267 (Patent Document 1). This fluid film damper forms a fluid film in a gap between a damper bush fixed to the bearing and a bearing housing disposed on the outer peripheral side of the damper bush, and obtains a damping force by a squeeze action of the fluid film. For the purpose of stabilizing the damping characteristics of the fluid film, a structure in which a bearing support member that flexibly supports the damper bush is installed so as to reduce the eccentricity between the damper bush and the bearing housing has become the mainstream.

このような流体膜ダンパの減衰係数計算方法は、例えば「堀著、振動工学ハンドブック、養賢堂、(1976)935」(非特許文献1)に開示されており、ダンパブッシュと軸受ハウジングとの偏心が無い条件での減衰係数Cは、短軸受幅理論から次の数式(1)で与えられる。   A method for calculating the damping coefficient of such a fluid film damper is disclosed in, for example, “Hori, Vibration Engineering Handbook, Yokendo, (1976) 935” (Non-Patent Document 1). The damping coefficient C under the condition where there is no eccentricity is given by the following formula (1) from the short bearing width theory.

Figure 2005321035
Figure 2005321035

但し、πは円周率、μは流体の粘性係数、Rはダンパ径、Lはダンパ幅、cは半径隙間である。   Here, π is the circumference ratio, μ is the viscosity coefficient of the fluid, R is the damper diameter, L is the damper width, and c is the radial gap.

特開2001−50267号公報JP 2001-50267 A

堀、振動工学ハンドブック、養賢堂、(1976)935Hori, Vibration Engineering Handbook, Yokendo, (1976) 935

上記の減衰軸受装置において、回転軸であるロータの振動振幅が増加してダンパブッシュと軸受ハウジングが衝突すると、回転速度の整数分の一の周波数の低周波振動が発生する。特に、回転速度がロータの固有振動数の整数倍になると、分数調波共振が発生し、ロータの振動振幅が更に増大するという問題がある。この現象は、衝突により流体膜ダンパの剛性が急激に増加するという、剛性の強い非線型性に起因している。   In the above-described damped bearing device, when the vibration amplitude of the rotor, which is the rotating shaft, increases and the damper bush and the bearing housing collide with each other, low-frequency vibration having a frequency that is an integral fraction of the rotational speed is generated. In particular, when the rotational speed is an integer multiple of the natural frequency of the rotor, there is a problem that subharmonic resonance occurs and the vibration amplitude of the rotor further increases. This phenomenon is attributed to the strong non-linearity that the rigidity of the fluid film damper increases rapidly due to the collision.

数式1からわかるように、流体膜ダンパの減衰係数を大きくするためには、流体膜ダンパの半径隙間を小さくすることが有効である。しかし、流体膜ダンパの半径隙間を小さくすると、より小さな振動振幅でも流体膜ダンパの衝突が発生することになる。また、構造簡略化のためにダンパブッシュの軸受支持部材を省略した場合は、振動振幅が比較的小さい領域から衝突が発生する。   As can be seen from Equation 1, in order to increase the damping coefficient of the fluid film damper, it is effective to reduce the radial gap of the fluid film damper. However, if the radial gap of the fluid film damper is reduced, the collision of the fluid film damper occurs even with a smaller vibration amplitude. Further, when the bearing support member of the damper bush is omitted for simplification of the structure, a collision occurs from a region where the vibration amplitude is relatively small.

本発明の目的は、流体膜ダンパの半径隙間を小さくしその減衰係数を大きくして軸受部と軸受ハウジングとが衝突し易くなっても、分数調波共振が発生しにくい減衰軸受装置を提供することにある。   An object of the present invention is to provide a damping bearing device in which subharmonic resonance is unlikely to occur even when the radial gap of the fluid film damper is reduced and the damping coefficient thereof is increased so that the bearing portion and the bearing housing easily collide with each other. There is.

前記目的を達成するために、本発明は、ロータを回転自在に支持する軸受部と、前記軸受部の外周側に配置される軸受ハウジングと、前記軸受部と前記軸受ハウジングとの隙間に流体膜を形成する流体膜ダンパと、を有する減衰軸受装置において、前記軸受部及び前記軸受ハウジングの流体膜形成面の少なくとも一方に低硬度の表面膜を形成したことにある。   In order to achieve the object, the present invention provides a fluid film in a bearing portion that rotatably supports a rotor, a bearing housing that is disposed on an outer peripheral side of the bearing portion, and a gap between the bearing portion and the bearing housing. A low-hardness surface film is formed on at least one of the bearing part and the fluid film forming surface of the bearing housing.

係る本発明のより好ましい具体例は次の通りである。
(1)前記流体膜ダンパの流体膜を形成する作動流体として水を主成分とする低粘度の液体を用いたこと。
(2)前記軸受部及び前記軸受ハウジングの流体膜形成面の何れか一方に表面膜を形成し、この表面膜とこれに対向する前記軸受部または前記軸受ハウジングとの接触剛性を、前記軸受部と前記軸受ハウジングとの接触剛性より小さくしたこと。
(3)上記(2)に加えて、前記表面膜とこれに対向する前記軸受部または前記軸受ハウジングとの接触剛性を、前記軸受部と前記軸受ハウジングとの接触剛性の半分程度としたこと。
(4)前記軸受部を軸受とこれに固定されたダンパブッシュとで構成し、前記ダンパブッシュの外周面を前記軸受ハウジングの内周面と対向させ、このダンパブッシュの外周面に前記表面膜を形成したこと。
(5)上記(4)に加えて、前記ダンパブッシュを前記軸受ハウジングに半径方向に滑らかに移動可能に設けると共に、前記軸受と前記ダンパブッシュとを着脱可能に固定したこと。
(6)前記軸受部を柔軟に支持する軸受支持部材を前記軸受ハウジングに装着したこと。
More preferred specific examples of the present invention are as follows.
(1) A low-viscosity liquid mainly composed of water is used as a working fluid for forming a fluid film of the fluid film damper.
(2) A surface film is formed on one of the bearing part and the fluid film forming surface of the bearing housing, and the contact rigidity between the surface film and the bearing part or the bearing housing facing the surface film is determined by the bearing part. And less than the contact rigidity between the bearing housing and the bearing housing.
(3) In addition to the above (2), the contact stiffness between the surface film and the bearing portion or the bearing housing facing the surface film is about half of the contact stiffness between the bearing portion and the bearing housing.
(4) The bearing portion is composed of a bearing and a damper bush fixed to the bearing, the outer peripheral surface of the damper bush is opposed to the inner peripheral surface of the bearing housing, and the surface film is formed on the outer peripheral surface of the damper bush. That formed.
(5) In addition to (4) above, the damper bush is provided in the bearing housing so as to be smoothly movable in the radial direction, and the bearing and the damper bush are detachably fixed.
(6) A bearing support member that flexibly supports the bearing portion is mounted on the bearing housing.

本発明によれば、軸受部及び軸受ハウジングの流体膜形成面の少なくとも一方に低硬度の表面膜を形成したので、流体膜ダンパの半径隙間を小さくしその減衰係数を大きくして軸受部と軸受ハウジングとが衝突し易くなっても、分数調波共振が発生しにくい減衰軸受装置を提供することができる。   According to the present invention, since the low hardness surface film is formed on at least one of the fluid film forming surfaces of the bearing part and the bearing housing, the radial gap of the fluid film damper is reduced and the damping coefficient thereof is increased to increase the bearing part and the bearing. Even if the housing easily collides, it is possible to provide a damped bearing device in which subharmonic resonance hardly occurs.

以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

まず、本発明の第1実施例の減衰軸受装置を図1から図3を用いて説明する。図1は本発明の第1実施例の減衰軸受装置を示す縦断面図、図2は図1の減衰軸受装置における流体膜ダンパの剛性特性を表面膜無しの場合と比較して示す図、図3は図1の減衰軸受装置の振動振幅特性を表面膜無しの場合と比較して示す図である。図3において、(a)は従来例の振動振幅を示す図、(b)は本実施例の振動振幅を示す図である。   First, a damping bearing device according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing a damping bearing device according to a first embodiment of the present invention. FIG. 2 is a diagram showing the rigidity characteristics of a fluid film damper in the damping bearing device of FIG. 3 is a diagram showing the vibration amplitude characteristics of the damping bearing device of FIG. 1 in comparison with the case without a surface film. 3A is a diagram showing the vibration amplitude of the conventional example, and FIG. 3B is a diagram showing the vibration amplitude of the present embodiment.

減衰軸受装置1は、図1に示すように、軸受部20、軸受ハウジング5、及び流体膜ダンパ15を備えて構成されている。本実施例の減衰軸受装置1は、マイクロガスタービン用の減衰軸受装置を想定している。   As shown in FIG. 1, the damping bearing device 1 includes a bearing portion 20, a bearing housing 5, and a fluid film damper 15. The damping bearing device 1 of the present embodiment assumes a damping bearing device for a micro gas turbine.

回転軸であるロータ2は軸受部20によって回転自在に支持されている。軸受部20は、軸受3とダンパブッシュ4とで構成されている。軸受3は、一般に安価で信頼性の高い滑り軸受で構成され、ロータ2の外周に配置されてロータ2との摺動部を形成している。ダンパブッシュ4は、リング状に形成され、軸受3の外周に固定されている。軸受3とダンパブッシュ4とは軸受固定ボルト10により着脱可能に固定されている。これらを着脱可能とすることにより、何れか一方が損傷または性能が劣化した場合に、損傷または性能が劣化した部材のみを交換することができる。   The rotor 2 that is a rotating shaft is rotatably supported by the bearing portion 20. The bearing portion 20 includes the bearing 3 and the damper bush 4. The bearing 3 is generally composed of a low-cost and highly reliable sliding bearing, and is disposed on the outer periphery of the rotor 2 to form a sliding portion with the rotor 2. The damper bush 4 is formed in a ring shape and is fixed to the outer periphery of the bearing 3. The bearing 3 and the damper bush 4 are detachably fixed by a bearing fixing bolt 10. By making these attachable and detachable, when either one is damaged or the performance is deteriorated, only the member whose damage or the performance is deteriorated can be replaced.

ダンパブッシュ4の外周側には軸受ハウジング5が配置されている。ダンパブッシュ4は、軸受ハウジング5の内周面の両側に設置された軸受支持部材8a、8bにより柔軟に支持されている。軸受支持部材8a、8bと流体膜6との支持機能が相俟って軸受部20を良好に支持することができる。本実施例においては軸受支持部材8としてゴム製のOリングを使用している。また、ダンパブッシュ4は軸受カバー9により軸方向に拘束されている。そして、ダンパブッシュ4が半径方向に滑らかに移動できるように、ダンパブッシュ4と軸受カバー9との間には僅かな隙間が設けられている。軸受カバー9は軸受カバー固定ボルト11により軸受ハウジング5に着脱可能に固定されている。   A bearing housing 5 is disposed on the outer peripheral side of the damper bush 4. The damper bush 4 is flexibly supported by bearing support members 8 a and 8 b installed on both sides of the inner peripheral surface of the bearing housing 5. The support function of the bearing support members 8a and 8b and the fluid film 6 can be combined to support the bearing portion 20 satisfactorily. In this embodiment, a rubber O-ring is used as the bearing support member 8. Further, the damper bush 4 is restrained in the axial direction by the bearing cover 9. A slight gap is provided between the damper bush 4 and the bearing cover 9 so that the damper bush 4 can move smoothly in the radial direction. The bearing cover 9 is detachably fixed to the bearing housing 5 by bearing cover fixing bolts 11.

ダンパブッシュ4と軸受ハウジング5との隙間には、流体供給流路12から供給される作動流体が満たされており、流体膜6が形成されている。流体供給流路12は軸受ハウジング5の外側から半径方向内側に延び、ダンパブッシュ4と軸受ハウジング5との隙間の中央部に表面膜7に対向して開口されている。   The gap between the damper bush 4 and the bearing housing 5 is filled with the working fluid supplied from the fluid supply flow path 12, and a fluid film 6 is formed. The fluid supply flow path 12 extends radially inward from the outside of the bearing housing 5, and is opened at the center of the gap between the damper bush 4 and the bearing housing 5 so as to face the surface film 7.

ロータ2の振動は軸受3を介してダンパブッシュ4に伝達され、流体膜6の厚さが変動することにより流体膜ダンパ15として機能する。流体膜ダンパ15の作動流体はダンパブッシュ4に設けた複数の流体排出流路14から外部に排出される。流体排出流路14は、流体供給流路12の左右両側に位置して表面膜7を貫通して設けられている。   The vibration of the rotor 2 is transmitted to the damper bush 4 via the bearing 3 and functions as the fluid film damper 15 by changing the thickness of the fluid film 6. The working fluid of the fluid film damper 15 is discharged to the outside from a plurality of fluid discharge channels 14 provided in the damper bush 4. The fluid discharge channel 14 is provided on both the left and right sides of the fluid supply channel 12 so as to penetrate the surface film 7.

補機構成の単純化のために、流体膜ダンパ15の作動流体と軸受3の潤滑流体は同一の流体を使用している。軸受3の損失低減及び凍結防止の観点から、水に凍結防止剤を混入した粘性の低い液体を使用している。   In order to simplify the auxiliary machine configuration, the working fluid of the fluid film damper 15 and the lubricating fluid of the bearing 3 use the same fluid. From the viewpoint of reducing the loss of the bearing 3 and preventing freezing, a low viscosity liquid in which an antifreezing agent is mixed in water is used.

ダンパブッシュ4の流体膜6の形成面には低硬度の表面膜7が形成されている。表面膜7は軸受部20及び軸受ハウジング5の流体膜形成面の少なくとも一方に形成されていることが必要である。本実施例では、ダンパブッシュ4の外周面にのみに表面膜7を形成した安価な構造を採用しており、具体的には、防振ゴムをダンパブッシュ4の外周面全体に貼り付けて表面膜7としている。表面膜7を軸受部20側に設けることにより、表面膜7が損傷または性能が低下した場合には、軸受部20を取外して交換することが可能である。   A low hardness surface film 7 is formed on the surface of the damper bush 4 where the fluid film 6 is formed. The surface film 7 needs to be formed on at least one of the bearing film 20 and the fluid film forming surface of the bearing housing 5. In this embodiment, an inexpensive structure in which the surface film 7 is formed only on the outer peripheral surface of the damper bush 4 is employed. Specifically, the vibration isolating rubber is attached to the entire outer peripheral surface of the damper bush 4 and the surface. The film 7 is used. By providing the surface film 7 on the bearing portion 20 side, when the surface film 7 is damaged or the performance is lowered, the bearing portion 20 can be removed and replaced.

図2は低硬度の表面膜7の有無による流体膜ダンパ15の剛性特性の違いを模式的に示している。低硬度の表面膜7が無い場合には、図2の一点鎖線の特性から明らかなように、ダンパブッシュ4と軸受ハウジング5とが衝突した瞬間に、流体膜ダンパ15の剛性が、軸受支持部材8の剛性から、ダンパブッシュ4と軸受ハウジング5の接触剛性へと急激に変化し、流体膜ダンパ15の剛性が強い非線型性を有するため、後述する図3(a)に示すように分数調波共振が発生しやすい。   FIG. 2 schematically shows the difference in rigidity characteristics of the fluid film damper 15 depending on the presence or absence of the low hardness surface film 7. When there is no surface film 7 with low hardness, as is apparent from the characteristics of the one-dot chain line in FIG. 2, the rigidity of the fluid film damper 15 is the bearing support member at the moment when the damper bush 4 and the bearing housing 5 collide. The rigidity of the damper bush 4 and the bearing housing 5 changes rapidly from the rigidity of FIG. 8 and the rigidity of the fluid film damper 15 has a strong non-linearity. Therefore, as shown in FIG. Wave resonance is likely to occur.

一方、本実施例のように低硬度の表面膜7が有る場合は、図2実線の特性から明らかなように、流体膜ダンパ15の剛性が、軸受支持部材8の剛性から低硬度の表面膜7の接触剛性を介して、ダンパブッシュ4と軸受ハウジング5の接触剛性へと移行するため、流体膜ダンパ15の剛性の非線型性が緩和され、後述する図3(b)に示すように分数調波共振が発生しにくくなる。これによって、減衰軸受装置1による振動を低減することができると共に、信頼性を向上することができる。   On the other hand, when the low hardness surface film 7 is provided as in the present embodiment, the fluid film damper 15 has a rigidity from the rigidity of the bearing support member 8 to the low hardness surface film, as is apparent from the characteristics of the solid line in FIG. Since the transition to the contact stiffness between the damper bush 4 and the bearing housing 5 is made via the contact stiffness of 7, the nonlinearity of the stiffness of the fluid film damper 15 is alleviated, and as shown in FIG. Harmonic resonance is less likely to occur. As a result, vibrations caused by the damping bearing device 1 can be reduced and the reliability can be improved.

図3(a)及び図3(b)は、それぞれ、低硬度の表面膜7が無い場合と有る場合のロータ2の振動周波数スペクトルの計算例を示す。本計算例におけるロータ2の回転速度は200Hzである。低硬度の表面膜7が無い場合の計算結果では、図3(a)に示すように、流体膜ダンパ15の剛性の強い非線型性により、回転速度の半分の周波数である100Hzの周波数の分数調波共振が発生している。一方、本実施例の低硬度の表面膜7が有る場合の計算結果では、図3(b)に示すように、100Hzの周波数の分数調波共振は発生していない。このことから、流体膜15形成面に低硬度の表面膜7を形成することにより分数調波共振を抑制できることがわかる。   FIG. 3A and FIG. 3B show calculation examples of the vibration frequency spectrum of the rotor 2 when there is no low hardness surface film 7 and when there is no surface film 7, respectively. The rotational speed of the rotor 2 in this calculation example is 200 Hz. In the calculation result when there is no surface film 7 with low hardness, as shown in FIG. 3 (a), due to the strong non-linearity of the fluid film damper 15, a fraction of the frequency of 100 Hz, which is half the rotational speed, is obtained. Harmonic resonance has occurred. On the other hand, as shown in FIG. 3B, the subharmonic resonance of the frequency of 100 Hz does not occur in the calculation result when the low hardness surface film 7 of this embodiment is present. From this, it can be seen that the subharmonic resonance can be suppressed by forming the low hardness surface film 7 on the surface on which the fluid film 15 is formed.

本実施例では、流体膜ダンパ15の作動流体として水を主成分とする粘度の低い液体を使用しているため、粘度の高い油などを使用する場合と比較して、流体膜ダンパの流体反力が小さく、流体膜6の破断によるダンパブッシュ4と軸受ハウジング5間の衝突が発生しやすい。このため、低粘度の液体を流体膜6の作動流体として用いると共に、流体膜6形成面に低硬度の表面膜7を形成した場合における分数調波共振抑制の効果が顕著である。また、水は腐食を発生させやすい流体であるので、流体膜6形成面の表面膜は、流体膜ダンパ15の腐食防止の観点からも有効である。   In the present embodiment, since a low-viscosity liquid containing water as a main component is used as the working fluid of the fluid film damper 15, the fluid reaction of the fluid film damper is compared to the case of using high-viscosity oil or the like. The force is small, and collision between the damper bush 4 and the bearing housing 5 due to the breakage of the fluid film 6 is likely to occur. For this reason, while using a low-viscosity liquid as the working fluid of the fluid film 6, the effect of suppressing the subharmonic resonance when the surface film 7 with low hardness is formed on the surface on which the fluid film 6 is formed is remarkable. Further, since water is a fluid that easily causes corrosion, the surface film on the surface on which the fluid film 6 is formed is also effective from the viewpoint of preventing corrosion of the fluid film damper 15.

低硬度の表面膜7の厚さは数十μmから数mmの範囲が効果的である。すなわち、表面膜7の厚さが薄過ぎると、軸受ハウジング5との接触剛性が大きくなり過ぎてしまうと共に、表面膜7の厚さが厚過ぎると、スクイズフィルムダンパの減衰能力が低下するおそれがある。低硬度の表面膜7の接触剛性が、ダンパブッシュ4と軸受ハウジング5間の接触剛性の1/2程度であるとき、分数調波共振の抑制効果が最も大きい。   The thickness of the low hardness surface film 7 is effective in the range of several tens of μm to several mm. That is, if the surface film 7 is too thin, the contact rigidity with the bearing housing 5 becomes too large, and if the surface film 7 is too thick, the damping capability of the squeeze film damper may be reduced. is there. When the contact rigidity of the low hardness surface film 7 is about ½ of the contact rigidity between the damper bush 4 and the bearing housing 5, the effect of suppressing the subharmonic resonance is the largest.

なお、低硬度の表面膜7は図1に示すようにダンパブッシュ4の流体膜6形成面に形成しても良いし、軸受ハウジング5の流体膜6形成面に形成しても良く、ダンパブッシュ4と軸受ハウジング5の両方に形成しても良い。また、低硬度の表面膜7の材料としてゴム以外の物質、例えば樹脂材を使用しても良い、使用条件によっては軸受メタル材などを使用してよく、制振塗料などを塗布しても良い。   The low hardness surface film 7 may be formed on the surface of the damper bush 4 where the fluid film 6 is formed as shown in FIG. 1, or may be formed on the surface of the bearing housing 5 where the fluid film 6 is formed. 4 and the bearing housing 5 may be formed. Further, a material other than rubber, such as a resin material, may be used as the material of the low-hardness surface film 7, a bearing metal material or the like may be used depending on use conditions, or a vibration-damping paint or the like may be applied. .

また、使用条件によっては、流体膜ダンパ15の作動流体として、粘性の低い油などの、水以外の流体を採用しても良く、流体膜ダンパ15と軸受3で別の流体を使用しても良い。   In addition, depending on the use conditions, a fluid other than water, such as low-viscosity oil, may be employed as the working fluid of the fluid film damper 15, or another fluid may be used between the fluid film damper 15 and the bearing 3. good.

また、使用条件によっては、軸受支持部材8として金属ばねや樹脂材などの、ゴム製Oリング以外のものを使用しても良く、軸受支持部材8を省略しても良い。   Further, depending on use conditions, a bearing support member 8 other than a rubber O-ring such as a metal spring or a resin material may be used, or the bearing support member 8 may be omitted.

また、軸受3とダンパブッシュ4とを分割せずに一体構造とすれば、分割による有利点がなくなるが、安価な軸受部20とすることができる。   Further, if the bearing 3 and the damper bush 4 are integrated without being divided, there is no advantage of the division, but the inexpensive bearing portion 20 can be obtained.

次に、本発明の第2実施例について図4を用いて説明する。図4は本発明の第2実施例の減衰軸受装置の縦断面図である。この第2実施例は、次に述べる点で第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a longitudinal sectional view of a damping bearing device according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in the following points, and is basically the same as the first embodiment in other points.

この第2実施例では、軸受部20が軸受3のみで構成されており、軸受3として転がり軸受を用いている。転がり軸受3を用いることにより、滑り軸受を用いたものと比較して軸受3の損失を低減できる。また、第2実施例では、転がり軸受3の外周面を流体膜6形成面とし、その外周面に表面膜7を直接形成しているので、ダンパブッシュを設ける場合に比較して部品点数を削減できる。さらに、第2実施例では、流体排出流路14を軸受ハウジング5に形成し、転がり軸受3に流体排出流路14を形成していないため、一般的な構造の転がり軸受3を用いることができる。なお、第2実施例では、軸受支持部材8を省略しているため、流体膜ダンパ15の剛性の非線型性が強くなり、分数調波共振は比較的発生しやすくなるが、部品点数を削減できる。   In the second embodiment, the bearing portion 20 is composed only of the bearing 3, and a rolling bearing is used as the bearing 3. By using the rolling bearing 3, the loss of the bearing 3 can be reduced as compared with that using a sliding bearing. In the second embodiment, the outer peripheral surface of the rolling bearing 3 is the fluid film 6 forming surface, and the surface film 7 is directly formed on the outer peripheral surface. Therefore, the number of parts is reduced compared to the case where a damper bush is provided. it can. Furthermore, in the second embodiment, since the fluid discharge channel 14 is formed in the bearing housing 5 and the fluid discharge channel 14 is not formed in the rolling bearing 3, the rolling bearing 3 having a general structure can be used. . In the second embodiment, since the bearing support member 8 is omitted, the non-linearity of the rigidity of the fluid film damper 15 is increased, and subharmonic resonance is relatively likely to occur, but the number of components is reduced. it can.

上述した各実施例によれば、流体膜ダンパ15の流体膜形成面に低硬度の表面膜7を形成したことにより、流体膜ダンパ15の衝突による剛性の急激な変化を緩和できるため、分数調波共振を発生しにくくできる。   According to each of the above-described embodiments, since the surface film 7 having a low hardness is formed on the fluid film forming surface of the fluid film damper 15, a sudden change in rigidity due to the collision of the fluid film damper 15 can be reduced. It is difficult to generate wave resonance.

本発明の第1実施例の減衰軸受装置を示す縦断面図である。1 is a longitudinal sectional view showing a damping bearing device according to a first embodiment of the present invention. 図1の減衰軸受装置における流体膜ダンパの剛性特性を表面膜無しの場合と比較して示す図である。It is a figure which shows the rigidity characteristic of the fluid film | membrane damper in the damping bearing apparatus of FIG. 1 compared with the case where there is no surface film. 図1の減衰軸受装置の振動振幅特性を表面膜無しの場合と比較して示す図である。It is a figure which shows the vibration amplitude characteristic of the attenuation | damping bearing apparatus of FIG. 1 compared with the case where there is no surface film. 本発明の第2実施例の減衰軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the damping bearing device of 2nd Example of this invention.

符号の説明Explanation of symbols

1…減衰軸受装置、
2…ロータ、
3…軸受、
4…ダンパブッシュ、
5…軸受ハウジング、
6…流体膜、
7…低硬度の表面膜、
8…軸受支持部材、
9…軸受カバー、
10…軸受固定ボルト、
11…軸受カバー固定ボルト、
12…流体供給流路、
14…流体排出流路、
15…流体膜ダンパ、
20…軸受部。
1 ... Damping bearing device,
2 ... Rotor,
3 ... bearing,
4 ... Damper bush,
5 ... Bearing housing,
6 ... Fluid film,
7 ... low hardness surface film,
8 ... Bearing support member,
9 ... Bearing cover,
10: Bearing fixing bolt,
11 ... Bearing cover fixing bolt,
12 ... Fluid supply channel,
14 ... Fluid discharge channel,
15 ... Fluid film damper,
20 ... Bearing part.

Claims (7)

ロータを回転自在に支持する軸受部と、
前記軸受部の外周側に配置される軸受ハウジングと、
前記軸受部と前記軸受ハウジングとの隙間に流体膜を形成する流体膜ダンパと、を有する減衰軸受装置において、
前記軸受部及び前記軸受ハウジングの流体膜形成面の少なくとも一方に低硬度の表面膜を形成した
ことを特徴とする減衰軸受装置。
A bearing that rotatably supports the rotor;
A bearing housing disposed on the outer peripheral side of the bearing portion;
In a damping bearing device having a fluid film damper that forms a fluid film in a gap between the bearing portion and the bearing housing,
A low-hardness surface film is formed on at least one of the bearing part and the fluid film forming surface of the bearing housing.
請求項1に記載された減衰軸受装置において、前記流体膜ダンパの流体膜を形成する作動流体として水を主成分とする低粘度の液体を用いたことを特徴とする減衰軸受装置。   2. The damping bearing device according to claim 1, wherein a low-viscosity liquid mainly composed of water is used as a working fluid for forming a fluid film of the fluid film damper. 請求項1または2に記載された減衰軸受装置において、前記軸受部及び前記軸受ハウジングの流体膜形成面の何れか一方に表面膜を形成し、この表面膜とこれに対向する前記軸受部または前記軸受ハウジングとの接触剛性を、前記軸受部と前記軸受ハウジングとの接触剛性より小さくしたことを特徴とする減衰軸受装置。   The damping bearing device according to claim 1 or 2, wherein a surface film is formed on any one of the fluid film forming surfaces of the bearing part and the bearing housing, and the surface film and the bearing part facing the surface film or the A damping bearing device characterized in that a contact rigidity with a bearing housing is smaller than a contact rigidity between the bearing portion and the bearing housing. 請求項3に記載された減衰軸受装置において、前記表面膜とこれに対向する前記軸受部または前記軸受ハウジングとの接触剛性を、前記軸受部と前記軸受ハウジングとの接触剛性の半分程度としたことを特徴とする減衰軸受装置。   4. The damping bearing device according to claim 3, wherein a contact rigidity between the surface film and the bearing portion or the bearing housing facing the surface film is about half of a contact rigidity between the bearing portion and the bearing housing. A damped bearing device. 請求項1または2に記載された減衰軸受装置において、前記軸受部を軸受とこれに固定されたダンパブッシュとで構成し、前記ダンパブッシュの外周面を前記軸受ハウジングの内周面と対向させ、このダンパブッシュの外周面に前記表面膜を形成したことを特徴とする減衰軸受装置。   The damping bearing device according to claim 1 or 2, wherein the bearing portion includes a bearing and a damper bush fixed to the bearing, and an outer peripheral surface of the damper bush is opposed to an inner peripheral surface of the bearing housing. A damping bearing device in which the surface film is formed on the outer peripheral surface of the damper bush. 請求項5に記載された減衰軸受装置において、前記ダンパブッシュを前記軸受ハウジングに半径方向に滑らかに移動可能に設けると共に、前記軸受と前記ダンパブッシュとを着脱可能に固定したことを特徴とする減衰軸受装置。   6. The damping bearing device according to claim 5, wherein the damper bush is provided in the bearing housing so as to be smoothly movable in the radial direction, and the bearing and the damper bush are detachably fixed. Bearing device. 請求項1または2に記載された減衰軸受装置において、前記軸受部を柔軟に支持する軸受支持部材を前記軸受ハウジングに装着したことを特徴とする減衰軸受装置。
3. The damping bearing device according to claim 1, wherein a bearing support member that flexibly supports the bearing portion is attached to the bearing housing.
JP2004139704A 2004-05-10 2004-05-10 Damping bearing device Expired - Fee Related JP4603287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139704A JP4603287B2 (en) 2004-05-10 2004-05-10 Damping bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004139704A JP4603287B2 (en) 2004-05-10 2004-05-10 Damping bearing device

Publications (3)

Publication Number Publication Date
JP2005321035A true JP2005321035A (en) 2005-11-17
JP2005321035A6 JP2005321035A6 (en) 2006-04-13
JP4603287B2 JP4603287B2 (en) 2010-12-22

Family

ID=35468457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139704A Expired - Fee Related JP4603287B2 (en) 2004-05-10 2004-05-10 Damping bearing device

Country Status (1)

Country Link
JP (1) JP4603287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020483A1 (en) * 2006-08-18 2008-02-21 Hitachi, Ltd. Bearing device for gas turbine power generation facility and gas turbine power generation facility
JP2017020495A (en) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 Turbomachine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020483A1 (en) * 2006-08-18 2008-02-21 Hitachi, Ltd. Bearing device for gas turbine power generation facility and gas turbine power generation facility
JPWO2008020483A1 (en) * 2006-08-18 2010-01-07 株式会社日立製作所 Gas turbine power generation equipment bearing device and gas turbine power generation equipment
JP4847478B2 (en) * 2006-08-18 2011-12-28 株式会社日立製作所 Gas turbine power generation equipment bearing device and gas turbine power generation equipment
US8459932B2 (en) 2006-08-18 2013-06-11 Hitachi, Ltd. Bearing device of gas turbine power generation equipment and gas turbine power generation equipment
JP2017020495A (en) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 Turbomachine

Also Published As

Publication number Publication date
JP4603287B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US8083413B2 (en) Compliant hybrid gas journal bearing using integral wire mesh dampers
EP2187072B1 (en) Compliant hybrid gas journal bearing using integral wire mesh dampers
JP5276414B2 (en) Followable hybrid gas journal bearings using an integral wire mesh damper
JPS60263723A (en) Compression film damper
JPS62200077A (en) Sealing device for rotary machine
US9212665B2 (en) Planetary-type auxiliary bearing for a hydrostatic primary bearing
EP3851690B1 (en) Damper bearing and damper
US20020079765A1 (en) Compliant foil fluid film bearing with eddy current damper
US20130140774A1 (en) Annular seal apparatus and method
JP4603287B2 (en) Damping bearing device
JP2005321035A6 (en) Damping bearing device
JPH0914262A (en) Dynamic pressure gas journal bearing
WO2018154815A1 (en) Bearing device and rotary machine
RU2622161C1 (en) Elastic damping support of rotor
JP2004336917A (en) Rotating electric machine and micro gas turbine having the same
JP2001050267A (en) Damping bearing and rotary machine using same
JP5092896B2 (en) Rotating machine
CN111911531B (en) Return type elastic supporting structure and engine
CN214007791U (en) Gas bearing and compressor
CN106337698B (en) Turbine engine
JP2019157870A (en) Vibration damping device of bearing
AU2022235620B2 (en) Damper bearing and damper
CN113260798B (en) Damped bearing component, bearing comprising said component and rotary machine comprising said bearing
JP2012052632A (en) Flexible pad bearing
WO2020194381A1 (en) Bearing device and rotation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060516

A977 Report on retrieval

Effective date: 20081009

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Effective date: 20081219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A02

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101001

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees