JP2005320877A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2005320877A
JP2005320877A JP2004137988A JP2004137988A JP2005320877A JP 2005320877 A JP2005320877 A JP 2005320877A JP 2004137988 A JP2004137988 A JP 2004137988A JP 2004137988 A JP2004137988 A JP 2004137988A JP 2005320877 A JP2005320877 A JP 2005320877A
Authority
JP
Japan
Prior art keywords
orifice
fuel injection
valve body
injection valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004137988A
Other languages
Japanese (ja)
Other versions
JP2005320877A5 (en
Inventor
Kenichi Gunji
賢一 郡司
Shuichi Shimizu
修一 清水
淳司 ▲高▼奥
Junji Takaoku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004137988A priority Critical patent/JP2005320877A/en
Publication of JP2005320877A publication Critical patent/JP2005320877A/en
Publication of JP2005320877A5 publication Critical patent/JP2005320877A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a shape and homogeneity of a spray injected in a direction oblique to the axial line of a solenoid type fuel injection valve main element by changing the inlet shape of an orifice. <P>SOLUTION: A seat surface is a roughly 90° cone shape surface on which a valve element abuts on. The part downstream thereof is a secondary cone surface less than 90°, and the second cone surface is unsymmetrical in relation to the axial line of the solenoid type fuel injection valve main element and a deflection side of the orifice is short. The orifice is positioned downstream of the second cone surface and is symmetrical in relation to a deflection axis and is substantially of the same length. Also, the orifice is unsymmetrical in relation to the deflection axis, and the deflection side is made long or short. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は燃料噴射弁に係わり、特に、シート面,第2の円錐面,オリフィスの入口形状によって燃料の噴霧形状及び噴霧形状を決定する電磁式燃料噴射弁に関する。   The present invention relates to a fuel injection valve, and more particularly, to an electromagnetic fuel injection valve that determines a fuel spray shape and a spray shape based on a seat surface, a second conical surface, and an inlet shape of an orifice.

従来、電磁式燃料噴射弁の軸線に対して偏向方向に噴射する噴霧の均質性(ペネトレーションの長さがほぼ均一)を向上させる物として、特許文献1がある。   Conventionally, Patent Document 1 discloses an object that improves the homogeneity of spray sprayed in a deflection direction with respect to the axis of the electromagnetic fuel injection valve (the penetration length is substantially uniform).

これは、ニードルバルブによって開閉される燃料噴射室の内半球に形成し、その噴射孔を斜め方向に形成する。この噴射孔に流入する燃料の該噴射孔の軸方向の流速分布の偏りを抑制するために、噴射孔の位置を、燃料噴射室の底面中心に対して、噴射孔の傾斜方向から燃料の旋回方向に90°回転させた方向にずらす。   This is formed in the inner hemisphere of the fuel injection chamber that is opened and closed by the needle valve, and the injection hole is formed in an oblique direction. In order to suppress the deviation of the flow velocity distribution in the axial direction of the injection hole of the fuel flowing into the injection hole, the position of the injection hole is swirled from the inclination direction of the injection hole with respect to the center of the bottom surface of the fuel injection chamber. Shift in the direction rotated 90 ° in the direction.

これによると、燃料噴射室の底面中心に噴射孔を形成した場合、軸方向流速は90°で最小となり、270°で最大となる。噴射孔をずらす量は、燃料噴射室の内周面と噴射孔の入口部との接続部が段差状にならない範囲で設定する。更に、噴射孔の入口部全周をR形状(円弧曲面状)に形成し、燃料噴射室の内周面と噴射孔の入口部とを連続する滑らかな曲面で結ぶ。   According to this, when the injection hole is formed in the center of the bottom surface of the fuel injection chamber, the axial flow velocity is minimum at 90 ° and maximum at 270 °. The amount by which the injection hole is displaced is set within a range in which the connecting portion between the inner peripheral surface of the fuel injection chamber and the inlet portion of the injection hole is not stepped. Further, the entire circumference of the injection hole is formed in an R shape (circular curved surface), and the inner peripheral surface of the fuel injection chamber and the inlet part of the injection hole are connected by a continuous curved surface.

一方、噴霧の到達距離L1,L2を変え、噴霧を不均一(オリフィスの偏向側のペネトレーションを長くする)にする方法には上記の特許文献2がある。   On the other hand, as a method of changing the spray reach distances L1 and L2 to make the spray non-uniform (lengthening the penetration on the deflection side of the orifice), there is Patent Document 2 described above.

弁体の周囲を通過する燃料に弁座部の上流で旋回力を与える燃料旋回手段と、旋回燃料を噴射するノズルとを備える。ノズルの噴射口から噴射される燃料噴霧は、燃料噴射弁本体軸線Cを基準にして一方向に偏向し、偏向する側の噴霧到達距離L1が大きく、偏向する側と反対側の噴霧到達距離L2が小さくなる噴霧形状に設定されている。   Fuel swirling means for imparting swirl force upstream of the valve seat to fuel passing around the valve body, and a nozzle for injecting swirl fuel are provided. The fuel spray injected from the nozzle injection port is deflected in one direction with reference to the fuel injection valve body axis C, and the spray arrival distance L1 on the deflection side is large, and the spray arrival distance L2 on the opposite side to the deflection side. The spray shape is set to be small.

その手段は、以下の構成による。
(1)オリフィスが偏向しているためオリフィスの出口部を斜めにカットして噴射口の長さを非軸対称にする。
(2)シート位置からオリフィスの出口までの長さを非軸対称にする。
(3)図13では噴射口入口を、旋回中心Cに対してオフセットすることで噴霧分布の傾向を強めたり弱めたりしている。
(4)オリフィスの出口形状を非軸対称にすることでL1,L2の到達距離を変化させている。
The means is as follows.
(1) Since the orifice is deflected, the outlet portion of the orifice is cut obliquely so that the length of the injection port becomes non-axisymmetric.
(2) The length from the sheet position to the outlet of the orifice is made non-axisymmetric.
(3) In FIG. 13, the tendency of the spray distribution is strengthened or weakened by offsetting the injection port inlet with respect to the turning center C.
(4) The reach distance of L1 and L2 is changed by making the outlet shape of the orifice non-axisymmetric.

特開平10−184496号公報Japanese Patent Laid-Open No. 10-18496 特開平11−159421号公報JP-A-11-159421

特開平10−184496号公報に記載の技術では、噴射孔を軸線に対してオフセットさせる必要があり、例えば生産性に優れるプレス加工で噴射孔を加工する場合は、曲面の中心からオフセットした位置をプレス加工するため、パンチに曲げ応力が加わり折損の原因になる。また、噴射孔入口を滑らかな曲面にする必要があり、放電加工やラッピング加工等の加工工数,加工設備が増加する。   In the technique described in Japanese Patent Application Laid-Open No. 10-18496, it is necessary to offset the injection hole with respect to the axis. For example, when the injection hole is processed by press work with excellent productivity, the position offset from the center of the curved surface is set. Since it is pressed, bending stress is applied to the punch, causing breakage. Moreover, it is necessary to make the injection hole inlet a smooth curved surface, which increases the number of processing steps and processing facilities such as electric discharge machining and lapping.

特開平11−159421号公報に記載の技術では、噴霧到達距離L1,L2を変えることを目的としており、偏向した噴射口でL1,L2を変えるために噴射口の出口部を斜めにカットし噴射口の長さを非軸対称にしている。このため噴射口の方向と斜面の方向を合わせる必要があり、機械加工で位置合わせを必要とするなど加工工数が大きくなる。   The technique described in Japanese Patent Application Laid-Open No. 11-159421 is intended to change the spray reach distances L1 and L2, and in order to change L1 and L2 with the deflected injection port, the outlet part of the injection port is cut obliquely and injected. Mouth length is non-axisymmetric. For this reason, it is necessary to match the direction of the injection port and the direction of the inclined surface, and the number of processing steps increases, for example, alignment is required by machining.

また、噴射口入口を旋回中心Cに対してオフセットすることにより噴射口入口の形状を変え、噴霧分布の偏りの傾向を強めたり弱めたりして所望の噴霧形状,流速,流量分布を得ている。しかし、均質噴霧については言及しておらず、球弁の使用や、噴射口の長さ
(L)と噴射口の径(d)が0.3<L/d<1.3の比較的アスペクト比が短いオリフィスでは、ペネトレーションの長さが全周同じになるような均質性を達成できないと考えられる。ましてや、L1とL2の長さの比を逆転できない。
Further, by offsetting the injection port inlet with respect to the turning center C, the shape of the injection port inlet is changed, and the tendency of uneven distribution of the spray distribution is increased or decreased to obtain a desired spray shape, flow velocity, and flow rate distribution. . However, there is no mention of homogeneous spraying, the use of a ball valve, and the relatively long aspect of the jet port length (L) and jet port diameter (d) of 0.3 <L / d <1.3. It is considered that an orifice with a short ratio cannot achieve homogeneity such that the penetration length is the same all around. Moreover, the length ratio between L1 and L2 cannot be reversed.

本発明は、電磁式燃料噴射弁の軸線に対して偏向したオリフィスでも均質性の高い噴霧を得ることを目的とする。   An object of the present invention is to obtain a highly homogeneous spray even with an orifice deflected with respect to the axis of an electromagnetic fuel injection valve.

また、第2の円錐面とオリフィスの形状を変えることで、電磁式燃料噴射弁の軸線に対して偏向したオリフィスの均質性を変えることを目的とする。   Another object is to change the homogeneity of the orifice deflected with respect to the axis of the electromagnetic fuel injection valve by changing the shape of the second conical surface and the orifice.

上記目的の一つは、弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、弁体によって開閉される燃料噴射室を形成すると共に燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた筒内噴射式エンジン用の電磁式燃料噴射弁において、シート面は弁体と接する面が約90°の円錐状で、その下流側が90°より小さい第2の円錐面で、第2の円錐面は電磁式燃料噴射弁本体の軸線に対して非対称であり、且つオリフィスの偏向側が短く、オリフィスは第2の円錐面の下流側に位置し、偏向軸に対して軸対称でほぼ同じ長さにすることにより達成される。   One of the above objects is to form a swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and a swirl fuel at the bottom of the fuel injection chamber In an electromagnetic fuel injection valve for an in-cylinder injection engine having an orifice that injects in an oblique direction, the seat surface has a conical shape with a surface in contact with the valve body of about 90 °, and the downstream side is smaller than 90 °. A conical surface, the second conical surface is asymmetrical with respect to the axis of the electromagnetic fuel injection valve body, and the deflection side of the orifice is short; the orifice is located downstream of the second conical surface and is relative to the deflection axis; This is achieved by making the axes symmetrical and approximately the same length.

本発明の好ましくは、第2の円錐面とつながるオリフィスの入口部はエッジ形状にすることで達成される。   Preferably, according to the present invention, the inlet portion of the orifice connected to the second conical surface is formed in an edge shape.

本発明の好ましくは、オリフィスの長さLとオリフィス径dの関係はL/d≧1.5 で、オリフィスの出口面は球面状であり、球面部に位置するオリフィスは出口側に向かって曲面状に僅かに径を大きくすることにより達成される。   Preferably, in the present invention, the relationship between the length L of the orifice and the orifice diameter d is L / d ≧ 1.5, the outlet surface of the orifice is spherical, and the orifice located in the spherical surface is curved toward the outlet side. This is achieved by slightly increasing the diameter.

上記目的のもう一つは、弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、弁体によって開閉される燃料噴射室を形成すると共に燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた筒内噴射式エンジン用の電磁式燃料噴射弁において、シート面は弁体と接する面が約90°の円錐状で、その下流側が90°より小さい第2の円錐面で、第2の円錐面は電磁式燃料噴射弁本体の軸線に対して対称であり、オリフィスは第2の円錐面の下流側に位置し、偏向軸に対して非対称で偏向側をやや短くしたことにより達成される。   Another object of the present invention is to form a swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and a swirl fuel at the bottom of the fuel injection chamber. In the electromagnetic fuel injection valve for an in-cylinder injection type engine having an orifice for injecting the nozzle in an oblique direction, the seat surface has a conical shape with a surface in contact with the valve body of about 90 °, and the downstream side is smaller than 90 °. The second conical surface is symmetric with respect to the axis of the electromagnetic fuel injection valve body, and the orifice is located downstream of the second conical surface and is asymmetric with respect to the deflection axis, This is achieved by shortening slightly.

上記目的の一つは、弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、弁体によって開閉される燃料噴射室を形成すると共に燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた筒内噴射式エンジン用の電磁式燃料噴射弁において、シート面は弁体と接する面が約90°の円錐状で、その下流側が90°より小さい第2の円錐面で、第2の円錐面は電磁式燃料噴射弁本体の軸線に対して非対称であり、且つオリフィスの偏向側が短く、オリフィスは第2の円錐面の下流側に位置し、偏向軸に対して非対称で、偏向側を長くすることにより達成される。   One of the above objects is to form a swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and a swirl fuel at the bottom of the fuel injection chamber. In an electromagnetic fuel injection valve for an in-cylinder injection engine having an orifice that injects in an oblique direction, the seat surface has a conical shape with a surface in contact with the valve body of about 90 °, and the downstream side is smaller than 90 °. A conical surface, the second conical surface is asymmetrical with respect to the axis of the electromagnetic fuel injection valve body, and the deflection side of the orifice is short; the orifice is located downstream of the second conical surface and is relative to the deflection axis; Asymmetric and achieved by lengthening the deflection side.

上記目的の一つは、弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、弁体によって開閉される燃料噴射室を形成すると共に燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた筒内噴射式エンジン用の電磁式燃料噴射弁において、シート面は弁体と接する面が約90°の円錐状で、その下流側が90°より小さい第2の円錐面で、第2の円錐面は電磁式燃料噴射弁本体の軸線に対して非対称であり、且つオリフィスの偏向側が長く、オリフィスは第2の円錐面の下流側に位置し、偏向軸に対して非対称で、偏向側を短くすることにより達成される。   One of the above objects is to form a swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and a swirl fuel at the bottom of the fuel injection chamber. In an electromagnetic fuel injection valve for an in-cylinder injection engine having an orifice that injects in an oblique direction, the seat surface has a conical shape with a surface in contact with the valve body of about 90 °, and the downstream side is smaller than 90 °. A conical surface, the second conical surface is asymmetrical with respect to the axis of the electromagnetic fuel injector body, and the deflection side of the orifice is long; the orifice is located downstream of the second conical surface and is relative to the deflection axis; Asymmetric and achieved by shortening the deflection side.

本発明の好ましくは、第2の円錐面とつながるオリフィスの入口部はエッジ形状にすることで達成される。   Preferably, according to the present invention, the inlet portion of the orifice connected to the second conical surface is formed in an edge shape.

本発明の好ましくは、オリフィスの長さLとオリフィス径dの関係はL/d≧1.5 で、オリフィスの出口面は球面状であり、球面部に位置するオリフィスは出口側に向かって曲面状に僅かに径を大きくすることにより達成される。   Preferably, in the present invention, the relationship between the length L of the orifice and the orifice diameter d is L / d ≧ 1.5, the outlet surface of the orifice is spherical, and the orifice located in the spherical surface is curved toward the outlet side. This is achieved by slightly increasing the diameter.

本発明によれば、シート面の下流側に位置する第2の円錐面と、第2の円錐面に続く偏向したオリフィスの形状を適正化することにより、偏向したオリフィスでも均質性の高い噴霧や、均質性を任意に変えた噴霧を容易に得ることができる。このため、第2の円錐面と、第2の円錐面に続く偏向したオリフィスの形状を変えるだけで様々なエンジンに対応可能な噴霧形状を提供することが出来る。   According to the present invention, by optimizing the shape of the second conical surface located on the downstream side of the seat surface and the deflected orifice following the second conical surface, a highly homogeneous spray or Therefore, it is possible to easily obtain a spray having arbitrarily changed homogeneity. For this reason, the spray shape which can respond to various engines can be provided only by changing the shape of the deflected orifice following the second conical surface and the second conical surface.

また、オリフィスプレートの加工工程数が少なく、オリフィスをプレス加工等の生産性に優れた加工方法で容易に生産できる。   Further, the number of processing steps of the orifice plate is small, and the orifice can be easily produced by a processing method having excellent productivity such as press working.

本発明の実施例を図面に基づき説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態による電磁式燃料噴射弁の全体構成を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing the overall configuration of an electromagnetic fuel injection valve according to an embodiment of the present invention.

電磁式燃料噴射弁本体1は、コア2,ヨーク3,ハウジング4,可動子5からなる磁気回路、磁気回路を励磁するコイル6、及びコイル6に通電する端子ボビン7から構成されている。コア2とハウジング4の間にはシールリング8が結合され、コイル6に燃料が流入するのを防いでいる。   The electromagnetic fuel injection valve body 1 includes a magnetic circuit including a core 2, a yoke 3, a housing 4, and a mover 5, a coil 6 for exciting the magnetic circuit, and a terminal bobbin 7 for energizing the coil 6. A seal ring 8 is coupled between the core 2 and the housing 4 to prevent fuel from flowing into the coil 6.

ハウジング4の内部にはバルブ部品が収納され、可動子5,ノズル9,可動子5のストローク量を調整するリング10が配置されている。可動子5は、弁体11と可動コア12をジョイント13で結合したものであり、可動コア12とジョイント13の間にはパイプ18と共同して可動子5が閉弁した時のバウンドを抑えるプレート14を備えている。   Valve parts are housed inside the housing 4, and a movable element 5, a nozzle 9, and a ring 10 that adjusts the stroke amount of the movable element 5 are arranged. The movable element 5 is obtained by connecting the valve body 11 and the movable core 12 with a joint 13, and suppresses the bounce when the movable element 5 is closed in cooperation with the pipe 18 between the movable core 12 and the joint 13. A plate 14 is provided.

外套部材を構成する前記ハウジング4とノズル9は前記可動子5の周囲を覆ってなり、ノズル9は、先端にシート面15a,オリフィス15bを有するオリフィスプレート15と、ガイドプレート16と共に可動子5を摺動可能にガイドし燃料に旋回力を与えるスワラー17を備えている。   The housing 4 and the nozzle 9 constituting the jacket member cover the periphery of the movable element 5. The nozzle 9 includes the orifice plate 15 having a sheet surface 15 a and an orifice 15 b at the tip, and the guide plate 16 and the movable element 5. A swirler 17 is provided that slidably guides and applies a turning force to the fuel.

コア2の内部には弁体11をシート面15aにパイプ18とプレート14を介して押圧するスプリング19,スプリング19の押圧荷重を調整するアジャスタ20,外部からのコンタミの進入を防ぐフィルター21が配置されている。   A spring 19 that presses the valve element 11 against the seat surface 15a via the pipe 18 and the plate 14, an adjuster 20 that adjusts the pressing load of the spring 19, and a filter 21 that prevents entry of contamination from the outside are disposed inside the core 2. Has been.

以上のように構成された電磁式燃料噴射弁本体1の動作について説明する。コイル6に通電すると、可動子5がスプリング19の付勢力に抗してコア2の方向に吸引され、可動子5の先端の弁シート部11aとシート面15aとの間に隙間ができる(開弁状態)。加圧されている燃料はまずコア2,アジャスタ20,パイプ18から可動子5内の燃料通路13a経てノズル9内に入る。次にガイドプレート16の燃料通路16a,ノズルの通路9aから、スワラー17の通路17a,17bに入り、スワラー17の旋回溝17cによって旋回力を与えられる。旋回力を与えられた燃料は弁シート部11aとシート面15aの隙間からオリフィス15bを経て噴射される。   The operation of the electromagnetic fuel injection valve body 1 configured as described above will be described. When the coil 6 is energized, the mover 5 is attracted in the direction of the core 2 against the urging force of the spring 19, and a gap is formed between the valve seat portion 11a at the tip of the mover 5 and the seat surface 15a (opening). Valve state). The pressurized fuel first enters the nozzle 9 from the core 2, the adjuster 20, and the pipe 18 through the fuel passage 13 a in the mover 5. Next, the fuel passage 16 a of the guide plate 16 and the passage 9 a of the nozzle enter the passages 17 a and 17 b of the swirler 17, and a turning force is given by the turning groove 17 c of the swirler 17. The fuel given the turning force is injected through the orifice 15b from the gap between the valve seat portion 11a and the seat surface 15a.

一方、コイル6の電流を遮断した場合には、可動子5の弁シート部11aがスプリング19の力でシート面15aに当接し、閉弁状態となる。   On the other hand, when the current of the coil 6 is interrupted, the valve seat portion 11a of the mover 5 is brought into contact with the seat surface 15a by the force of the spring 19, and the valve is closed.

以上述べたような構成からなる燃料噴射弁本体1において、オリフィスプレート15,第2の円錐弁15c,オリフィス15bが噴霧形状を決定するものであり、以下その詳細について説明する。   In the fuel injection valve body 1 configured as described above, the orifice plate 15, the second conical valve 15c, and the orifice 15b determine the spray shape, and the details thereof will be described below.

図2は図1の先端部の部分拡大図であって、ペネトレーションの長さL1とL2がほぼ同等になる均質噴霧を形成するバルブ周りを示す。   FIG. 2 is a partially enlarged view of the tip of FIG. 1 and shows the periphery of the valve that forms a homogeneous spray in which the penetration lengths L1 and L2 are substantially equal.

オリフィスプレート15は、オリフィス15bの出口側が球面形状(球面15f)をしており、上流側から弁シート部11aと開閉弁する約90°のシート面15a,約70°の第2の円錐面15c,オリフィス15bの入口部15d,出口部が曲面状に広がる出口部15eからなる。ここで、第2の円錐面15cは弁シート部11aとシート面15aが開閉弁する位置より下流側になり、上流側は2段円錐面形状になる。また、第2の円錐面
15cとオリフィス15bの入口部15dはエッジ形状でつながる。オリフィス15bの径は約0.6mmで、長さは約1.2mmであり、オリフィス15bの偏向角は5°〜20°であれば良く、この場合は12.5°に設定している。
The orifice plate 15 has a spherical shape (spherical surface 15f) on the outlet side of the orifice 15b, and has a seat surface 15a of about 90 ° and a second conical surface 15c of about 70 ° that open and close with the valve seat portion 11a from the upstream side. The inlet portion 15d of the orifice 15b and the outlet portion 15e having a curved outlet. Here, the second conical surface 15c is on the downstream side from the position where the valve seat portion 11a and the seat surface 15a are opened and closed, and the upstream side has a two-stage conical surface shape. The second conical surface 15c and the inlet 15d of the orifice 15b are connected in an edge shape. The orifice 15b has a diameter of about 0.6 mm and a length of about 1.2 mm, and the deflection angle of the orifice 15b may be 5 ° to 20 °. In this case, it is set to 12.5 °.

シート面15aは電磁式燃料噴射弁本体1の軸線Aと軸対称である。第2の円錐面15cは軸線A上にあるが、オリフィス15bの偏向側が短くなっている。オリフィス15bは第2の円錐面15c内で軸線AとC線の交点を通る偏向軸線Bに対して軸対称であり、偏向軸線Bに対して入口部15dはほぼ直角になっている。つまり、第2の円錐面15cからつながるオリフィス15bの入口部15dを偏向軸Bに対して約90°に設定している。   The seat surface 15 a is symmetric with respect to the axis A of the electromagnetic fuel injection valve body 1. The second conical surface 15c is on the axis A, but the deflection side of the orifice 15b is shortened. The orifice 15b is axisymmetric with respect to the deflection axis B passing through the intersection of the axes A and C in the second conical surface 15c, and the inlet portion 15d is substantially perpendicular to the deflection axis B. That is, the inlet portion 15d of the orifice 15b connected to the second conical surface 15c is set to about 90 ° with respect to the deflection axis B.

実験の結果、以上のように設定すると、旋回溝17cで旋回力を与えられた燃料の流れは、弁シート部11aとシート面15aの隙間を旋回しながら第2の円錐面に至り、次いで旋回しながら入口部15dが傾斜している分オリフィス15bの偏向側から順次オリフィス15bに流入し、出口部15eよりエンジンの筒内に噴射される。このときの噴霧形状は、偏向軸Bに対してほぼ対称なペネトレーションの長さL1とL2がほぼ同等な二等辺三角形状の均質噴霧になり、噴霧30のような形状になる。   As a result of the experiment, if the setting is made as described above, the flow of fuel given the turning force in the turning groove 17c reaches the second conical surface while turning in the gap between the valve seat portion 11a and the seat surface 15a, and then turns. However, since the inlet portion 15d is inclined, it flows into the orifice 15b sequentially from the deflection side of the orifice 15b, and is injected into the cylinder of the engine from the outlet portion 15e. The spray shape at this time is an isosceles triangle-shaped homogeneous spray in which penetration lengths L1 and L2 which are substantially symmetrical with respect to the deflection axis B are substantially equal, and has a shape like the spray 30.

図3は図1の先端部の部分拡大図であって、ペネトレーションの長さがL1>L2になる噴霧を形成するバルブ周りを示す。   FIG. 3 is a partially enlarged view of the tip of FIG. 1 and shows the periphery of a valve that forms a spray with a penetration length of L1> L2.

オリフィスプレート15は、オリフィス15bの出口側が球面形状(球面15f)をしており、上流側から弁シート部11aと開閉弁する約90°のシート面15a,約70°の第2の円錐面15c,オリフィス15bの入口部15d,出口部が曲面状に広がる出口部15eからなる。ここで、第2の円錐面15cは弁シート部11aとシート面15aが開閉弁する位置より下流側になり、上流側は2段円錐面形状になる。また、第2の円錐面15cとオリフィス15bの入口部15dはエッジ形状でつながる。オリフィス15bの径は約0.6mmで、長さは約1.2mmであり、オリフィス15bの偏向角は5°〜20°であれば良く、この場合は12.5°に設定している。   The orifice plate 15 has a spherical shape (spherical surface 15f) on the outlet side of the orifice 15b, and has a seat surface 15a of about 90 ° and a second conical surface 15c of about 70 ° that open and close with the valve seat portion 11a from the upstream side. The inlet portion 15d of the orifice 15b and the outlet portion 15e having a curved outlet. Here, the second conical surface 15c is on the downstream side from the position where the valve seat portion 11a and the seat surface 15a are opened and closed, and the upstream side has a two-stage conical surface shape. The second conical surface 15c and the inlet portion 15d of the orifice 15b are connected in an edge shape. The orifice 15b has a diameter of about 0.6 mm and a length of about 1.2 mm, and the deflection angle of the orifice 15b may be 5 ° to 20 °. In this case, it is set to 12.5 °.

シート面15aと第2の円錐面15cは電磁式燃料噴射弁本体1の軸線Aと軸対称である。オリフィス15bは、オリフィス15bの入口部15dで軸線AとC線の交点を通る偏向軸線B上にあるが、偏向側が僅かに短く非軸対称であり、軸線Aに対して入口部15dはほぼ直角になっている。つまり、第2の円錐面15aからつながるオリフィス15bの入口部15dは軸線Aに対して約90°に設定している。   The seat surface 15a and the second conical surface 15c are symmetric with respect to the axis A of the electromagnetic fuel injection valve body 1. The orifice 15b is on the deflection axis B passing through the intersection of the axis A and the C line at the inlet 15d of the orifice 15b, but the deflection side is slightly short and non-axisymmetric, and the inlet 15d is substantially perpendicular to the axis A. It has become. That is, the inlet portion 15d of the orifice 15b connected from the second conical surface 15a is set to about 90 ° with respect to the axis A.

実験の結果、以上のように設定すると旋回溝17cで旋回力を与えられた燃料の流れは、弁シート部11aとシート面15aの隙間を旋回しながら第2の円錐面15cに至り、次いで旋回しながら全周から同時にオリフィス15bに流入し、出口部15eよりエンジンの筒内に噴射される。このときの噴霧形状は偏向軸Bに対して偏向側が長くなり、ペネトレーションの長さがL1>L2となる不均質噴霧になり、噴霧31のような形状になる。   As a result of the experiment, when the setting is made as described above, the flow of fuel given the turning force in the turning groove 17c reaches the second conical surface 15c while turning in the gap between the valve seat portion 11a and the seat surface 15a, and then turns. However, it flows into the orifice 15b simultaneously from the entire circumference and is injected into the cylinder of the engine from the outlet 15e. The spray shape at this time is longer on the deflection side with respect to the deflection axis B, becomes a heterogeneous spray having a penetration length of L1> L2, and has a shape like the spray 31.

図4は図1の先端部の部分拡大図であって、ペネトレーションの長さがL1<L2になる噴霧を形成するバルブ周りを示す。   FIG. 4 is a partially enlarged view of the tip of FIG. 1 and shows the periphery of a valve that forms a spray with a penetration length L1 <L2.

オリフィスプレート15は、オリフィス15bの出口側が球面形状(球面15f)をしており、上流側から弁シート部11aと開閉弁する約90°のシート面15a,約70°の第2の円錐面15c,オリフィス15bの入口部15d,出口部が曲面状に広がる出口部15eからなる。ここで、第2の円錐面15cは弁シート部11aとシート面15aが開閉弁する位置より下流側になり、上流側は2段円錐面形状になる。また、第2の円錐面15cとオリフィス15bの入口部15dはエッジ形状でつながる。オリフィス15bの径は約0.6mmで、長さは約1.2mmであり、オリフィス15bの偏向角は5°〜20°であれば良く、この場合は12.5°に設定している。   The orifice plate 15 has a spherical shape (spherical surface 15f) on the outlet side of the orifice 15b, and has a seat surface 15a of about 90 ° and a second conical surface 15c of about 70 ° that open and close with the valve seat portion 11a from the upstream side. The inlet portion 15d of the orifice 15b and the outlet portion 15e having a curved outlet. Here, the second conical surface 15c is on the downstream side from the position where the valve seat portion 11a and the seat surface 15a are opened and closed, and the upstream side has a two-stage conical surface shape. The second conical surface 15c and the inlet portion 15d of the orifice 15b are connected in an edge shape. The orifice 15b has a diameter of about 0.6 mm and a length of about 1.2 mm, and the deflection angle of the orifice 15b may be 5 ° to 20 °. In this case, it is set to 12.5 °.

シート面15aは電磁式燃料噴射弁本体1の軸線Aと軸対称である。第2の円錐面15cは軸線A上にあるが、オリフィス15bの偏向側が短くなっている。オリフィス15bは第2の円錐面15c内で軸線AとC線の交点を通る偏向軸線B上にあるが、偏向側が長くなっており、偏向軸線Bに対して入口部15dは右下がりの傾きになっている。つまり、図2に対して第2の円錐面15cからつながるオリフィス15bの入口部15dはより右下がりに傾斜している。実験の結果、以上のように設定すると、旋回溝17cで旋回力を与えられた燃料の流れは、弁シート部11aとシート面15aの隙間を旋回しながら第2の円錐面15cに至り、次いで旋回しながら入口部15dが傾斜している分オリフィス
15bの偏向側から順次オリフィス15bに流入し、出口部15eよりエンジンの筒内に噴射される。このときの噴霧形状は偏向軸Bに対して偏向側が短くなり、ペネトレーションの長さがL1<L2となる不均質噴霧になり、噴霧32のような形状になる。
The seat surface 15 a is symmetric with respect to the axis A of the electromagnetic fuel injection valve body 1. The second conical surface 15c is on the axis A, but the deflection side of the orifice 15b is shortened. The orifice 15b is on the deflection axis B passing through the intersection of the axes A and C in the second conical surface 15c, but the deflection side is long, and the inlet portion 15d is inclined downward to the right with respect to the deflection axis B. It has become. That is, the inlet portion 15d of the orifice 15b connected to the second conical surface 15c is more inclined to the right with respect to FIG. As a result of the experiment, when set as described above, the flow of the fuel given the turning force in the turning groove 17c reaches the second conical surface 15c while turning around the gap between the valve seat portion 11a and the seat surface 15a, and then Since the inlet portion 15d is tilted while turning, it flows into the orifice 15b sequentially from the deflection side of the orifice 15b, and is injected into the cylinder of the engine from the outlet portion 15e. The spray shape at this time is a non-homogeneous spray in which the deflection side is shorter than the deflection axis B, and the penetration length is L1 <L2, resulting in a spray-like shape.

図5は図1の先端部の部分拡大図であって、ペネトレーションの長さがL1>L2になる噴霧を形成するバルブ周りを示す。   FIG. 5 is a partially enlarged view of the tip of FIG. 1 and shows the periphery of a valve that forms a spray with a penetration length of L1> L2.

オリフィスプレート15は、オリフィス15bの出口側が球面形状(球面15f)をしており、上流側から弁シート部11aと開閉弁する約90°のシート面15a,約70°の第2の円錐面15c,オリフィス15bの入口部15d,出口部が曲面状に広がる出口部15eからなる。ここで、第2の円錐面15cは弁シート部11aとシート面15aが開閉弁する位置より下流側になり、上流側は2段円錐面形状になる。また、第2の円錐面
15cとオリフィス15bの入口部15dはエッジ形状でつながる。オリフィス15bの径は約0.6mmで、長さは約1.2mmであり、オリフィス15bの偏向角は5°〜20°であれば良く、この場合は12.5°に設定している。
The orifice plate 15 has a spherical shape (spherical surface 15f) on the outlet side of the orifice 15b, and has a seat surface 15a of about 90 ° and a second conical surface 15c of about 70 ° that opens and closes with the valve seat portion 11a from the upstream side. The inlet portion 15d of the orifice 15b and the outlet portion 15e having a curved outlet. Here, the second conical surface 15c is on the downstream side from the position where the valve seat portion 11a and the seat surface 15a are opened and closed, and the upstream side has a two-stage conical surface shape. The second conical surface 15c and the inlet portion 15d of the orifice 15b are connected in an edge shape. The orifice 15b has a diameter of about 0.6 mm and a length of about 1.2 mm, and the deflection angle of the orifice 15b may be 5 ° to 20 °. In this case, it is set to 12.5 °.

シート面15aは電磁式燃料噴射弁本体1の軸線Aと軸対称である。第2の円錐面15cは軸線A上にあるが、オリフィス15bの偏向側が長くなっている。オリフィス15bはオリフィス15b内で軸線AとC線の交点を通る偏向軸線B上にあるが、偏向側が短くなっており、偏向軸線Bに対して入口部15dは右上がりの傾きになっている。つまり、図3に対して第2の円錐面15cからつながるオリフィス15bの入口部15dは右上がりに傾斜している。   The seat surface 15 a is symmetric with respect to the axis A of the electromagnetic fuel injection valve body 1. The second conical surface 15c is on the axis A, but the deflection side of the orifice 15b is long. The orifice 15b is on the deflection axis B passing through the intersection of the axis A and the C line in the orifice 15b, but the deflection side is shortened, and the inlet portion 15d is inclined upward to the deflection axis B. That is, the inlet portion 15d of the orifice 15b connected to the second conical surface 15c is inclined to the right with respect to FIG.

実験の結果、以上のように設定すると、旋回溝17cで旋回力を与えられた燃料の流れは、弁シート部11aとシート面15aの隙間を旋回しながら第2の円錐面15cに至り、次いで旋回しながら入口部15dが傾斜している分オリフィス15bの偏向側と反対側から順次オリフィス15bに流入し、出口部15eよりエンジンの筒内に噴射される。このときの噴霧形状は偏向軸Bに対して偏向側が長くなり、ペネトレーションの長さがL1>L2となる不均質噴霧になり、噴霧33のような形状になる。   As a result of the experiment, when set as described above, the flow of the fuel given the turning force in the turning groove 17c reaches the second conical surface 15c while turning around the gap between the valve seat portion 11a and the seat surface 15a, and then Since the inlet portion 15d is inclined while turning, it flows into the orifice 15b sequentially from the side opposite to the deflection side of the orifice 15b, and is injected into the cylinder of the engine from the outlet portion 15e. The spray shape at this time becomes a heterogeneous spray in which the deflection side is longer than the deflection axis B, and the penetration length is L1> L2, and is shaped like a spray 33.

以上実施例1から4に示したように、第2の円錐面15cからオリフィス15bの入口部15dの形状を変えることにより噴霧の形状を任意に変更することができる。つまり、オリフィス15bの軸線Bと電磁式燃料噴射弁本体1の軸線Aの交点位置を変えるだけで噴霧形状を変えることができる。   As described above in the first to fourth embodiments, the shape of the spray can be arbitrarily changed by changing the shape of the inlet portion 15d of the orifice 15b from the second conical surface 15c. That is, the spray shape can be changed only by changing the position of the intersection of the axis B of the orifice 15b and the axis A of the electromagnetic fuel injection valve body 1.

図6は電磁式燃料噴射弁本体1を出口側から見た図である。オリフィス15bはX軸線上に在り、特開平10−184496号公報のようにX軸に対してオフセットしていない。   FIG. 6 is a view of the electromagnetic fuel injection valve body 1 as viewed from the outlet side. The orifice 15b is on the X-axis, and is not offset with respect to the X-axis as disclosed in JP-A-10-18496.

図示しないが、オリフィスプレート15の加工方法は、オリフィスプレート15の外形形状、及び球面15fを切削加工等で加工し、球面15f側からプレス加工でオリフィス15bを半抜き状に加工する。次に第2の円錐面15cを切削加工等で加工し、オリフィス15bを開口させる。更に焼入れを施した後、シート面15aを研削加工等で仕上げ加工する。ここで、オリフィス15bをプレス加工するときに図6のX線上の位置を変えることにより、第2の円錐面15cとオリフィス15bの入口部15dの形状を目的の形状に合わせて変えることができる。   Although not shown, the orifice plate 15 is processed by processing the outer shape of the orifice plate 15 and the spherical surface 15f by cutting or the like, and processing the orifice 15b from the spherical surface 15f side into a half-cut shape by pressing. Next, the second conical surface 15c is processed by cutting or the like to open the orifice 15b. Further, after quenching, the sheet surface 15a is finished by grinding or the like. Here, by changing the position on the X-ray in FIG. 6 when the orifice 15b is pressed, the shape of the second conical surface 15c and the inlet portion 15d of the orifice 15b can be changed to the desired shape.

本発明はエンジンの気筒内に直接ガソリンを噴射する筒内噴射式エンジン用の電磁式燃料噴射弁に適用でき、燃費の改善,排ガスの有害成分の低下に寄与する。   The present invention can be applied to an electromagnetic fuel injection valve for an in-cylinder injection engine that directly injects gasoline into the cylinder of the engine, and contributes to improvement of fuel consumption and reduction of harmful components of exhaust gas.

本発明の第1実施例を示す電磁式燃料噴射弁の全体構成を示す縦断面図。1 is a longitudinal sectional view showing the overall configuration of an electromagnetic fuel injection valve showing a first embodiment of the present invention. 本発明の第1実施例を示す電磁式燃料噴射弁本体の先端部の拡大を示す縦断面図。The longitudinal cross-sectional view which shows the expansion of the front-end | tip part of the electromagnetic fuel injection valve main body which shows 1st Example of this invention. 本発明の第2実施例を示す電磁式燃料噴射弁本体の先端部の拡大を示す縦断面図。The longitudinal cross-sectional view which shows the expansion of the front-end | tip part of the electromagnetic fuel injection valve main body which shows 2nd Example of this invention. 本発明の第3実施例を示す電磁式燃料噴射弁本体の先端部の拡大を示す縦断面図。The longitudinal cross-sectional view which shows the expansion of the front-end | tip part of the electromagnetic fuel injection valve main body which shows 3rd Example of this invention. 本発明の第4実施例を示す電磁式燃料噴射弁本体の先端部の拡大を示す縦断面図。The longitudinal cross-sectional view which shows the expansion of the front-end | tip part of the electromagnetic fuel injection valve main body which shows 4th Example of this invention. 本発明の電磁式燃料噴射弁の出口部を示す概観図。The general-view figure which shows the exit part of the electromagnetic fuel injection valve of this invention.

符号の説明Explanation of symbols

1…電磁式燃料噴射弁本体、15…オリフィスプレート、15a…シート面、15b…オリフィス、15c…第2の円錐面、15d…入口部、15e…出口部。   DESCRIPTION OF SYMBOLS 1 ... Electromagnetic fuel injection valve main body, 15 ... Orifice plate, 15a ... Seat surface, 15b ... Orifice, 15c ... 2nd conical surface, 15d ... Inlet part, 15e ... Outlet part.

Claims (10)

弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、前記弁体によって開閉される燃料噴射室を形成すると共に前記燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた燃料噴射弁であって、
前記シート面は前記弁体と接する面が約90°の円錐状で、前記シート面の下流側が
90°より小さい第2の円錐面で、前記第2の円錐面は燃料噴射弁本体の軸線に対して非対称であり、前記オリフィスの偏向側が短く、前記オリフィスは前記第2の円錐面の下流側に位置し、偏向軸に対して軸対称でほぼ同じ長さであることを特徴とした燃料噴射弁。
A swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body and a fuel injection chamber that is opened and closed by the valve body are formed, and swirl fuel is injected obliquely into the bottom of the fuel injection chamber. A fuel injection valve with an orifice,
The seat surface is a conical shape having a surface in contact with the valve body of about 90 °, and the downstream side of the seat surface is a second conical surface smaller than 90 °, and the second conical surface is an axis of the fuel injection valve body. The fuel injection is characterized in that it is asymmetrical, the deflection side of the orifice is short, the orifice is located downstream of the second conical surface, is axially symmetric with respect to the deflection axis and has substantially the same length valve.
請求項1において、前記第2の円錐面とつながる前記オリフィスの入口部はエッジ形状であることを特徴とした電磁式燃料噴射弁。   2. The electromagnetic fuel injection valve according to claim 1, wherein an inlet portion of the orifice connected to the second conical surface has an edge shape. 請求項1において、前記オリフィスの長さLと前期オリフィス径dの関係はL/d≧
1.5 で、前記オリフィスの出口面は球面状であり、前記球面部に位置する前記オリフィスは出口側に向かって曲面状に径が大きくなることを特徴とした電磁式燃料噴射弁。
In Claim 1, the relationship between the length L of the orifice and the previous orifice diameter d is L / d ≧
1.5. The electromagnetic fuel injection valve according to 1.5, wherein the outlet surface of the orifice is spherical, and the orifice located in the spherical portion has a curved surface with a diameter increasing toward the outlet side.
弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、前記弁体によって開閉される燃料噴射室と、前記燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた燃料噴射弁であって、
前記シート面は前記弁体と接する面が約90°の円錐状で、前記シート面の下流側が
90°より小さい第2の円錐面で、前記第2の円錐面は燃料噴射弁本体の軸線に対して対称であり、前記オリフィスは前記第2の円錐面の下流側に配置され、偏向軸に対して非対称で偏向側が短いことを特徴とした燃料噴射弁。
A swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and an orifice that injects swirl fuel in an oblique direction at the bottom of the fuel injection chamber. A fuel injection valve provided,
The seat surface is a conical shape having a surface in contact with the valve body of about 90 °, and the downstream side of the seat surface is a second conical surface smaller than 90 °, and the second conical surface is an axis of the fuel injection valve body. A fuel injection valve characterized by being symmetrical with respect to each other, wherein the orifice is disposed downstream of the second conical surface, is asymmetric with respect to a deflection axis, and has a short deflection side.
弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、前記弁体によって開閉される燃料噴射室と、前記燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた燃料噴射弁であって、
前記シート面は前記弁体と接する面が約90°の円錐状で、その下流側が90°より小さい第2の円錐面で、前記第2の円錐面は燃料噴射弁本体の軸線に対して非対称であり、前記オリフィスの偏向側が短く、前記オリフィスは前記第2の円錐面の下流側に位置し、偏向軸に対して非対称で、偏向側が長いことを特徴とした燃料噴射弁。
A swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and an orifice that injects swirl fuel in an oblique direction at the bottom of the fuel injection chamber. A fuel injection valve provided,
The seat surface is a conical shape with a surface of about 90 ° in contact with the valve body, and a downstream side thereof is a second conical surface smaller than 90 °, and the second conical surface is asymmetric with respect to the axis of the fuel injection valve body. A fuel injection valve characterized in that the deflection side of the orifice is short, the orifice is located downstream of the second conical surface, is asymmetric with respect to the deflection axis, and has a long deflection side.
弁体の周囲を通過する燃料にシート面の上流で旋回力を与えるスワラーと、前記弁体によって開閉される燃料噴射室と、前記燃料噴射室の底部に旋回燃料を斜め方向に噴射するオリフィスを備えた燃料噴射弁であって、
前記シート面は前記弁体と接する面が約90°の円錐状で、その下流側が90°より小さい第2の円錐面で、前記第2の円錐面は燃料噴射弁本体の軸線に対して非対称であり、前記オリフィスの偏向側が長く、前記オリフィスは前記第2の円錐面の下流側に位置し、偏向軸に対して非対称で、偏向側が短いことを特徴とした燃料噴射弁。
A swirler that applies a swirl force upstream of the seat surface to the fuel that passes around the valve body, a fuel injection chamber that is opened and closed by the valve body, and an orifice that injects swirl fuel in an oblique direction at the bottom of the fuel injection chamber. A fuel injection valve provided,
The seat surface is a conical shape with a surface of about 90 ° in contact with the valve body, and a downstream side thereof is a second conical surface smaller than 90 °, and the second conical surface is asymmetric with respect to the axis of the fuel injection valve body. A fuel injection valve characterized in that the deflection side of the orifice is long, the orifice is located downstream of the second conical surface, is asymmetric with respect to the deflection axis, and has a short deflection side.
請求項4から6において、前記第2の円錐面とつながる前記オリフィスの入り口部はエッジ形状であることを特徴とした燃料噴射弁。   7. The fuel injection valve according to claim 4, wherein an inlet portion of the orifice connected to the second conical surface has an edge shape. 請求項4から6において、前記オリフィスの長さLと前期オリフィス径dの関係はL/d≧1.5 で、前記オリフィスの出口面は球面状であり、前記球面部に位置する前記オリフィスは出口側に向かって曲面状に僅かに径が大きくなることを特徴とした燃料噴射弁。   The relationship between the orifice length L and the previous orifice diameter d is L / d ≧ 1.5, the outlet surface of the orifice is spherical, and the orifice located in the spherical portion is A fuel injection valve characterized in that its diameter slightly increases in a curved shape toward the outlet side. 請求項1乃至8のいずれか1項において、
前記燃料噴射弁は、内蔵されたコイルへの通電及び遮断によって弁体を動作させて所定量の燃料を噴射する電磁式燃料噴射弁であることを特徴とする燃料噴射弁。
In any one of Claims 1 thru | or 8,
The fuel injection valve is an electromagnetic fuel injection valve that injects a predetermined amount of fuel by operating a valve body by energizing and shutting off a built-in coil.
請求項9において、
前記燃料噴射弁は、エンジンの燃焼室内に直接燃料を噴霧して動力を得る筒内噴射式エンジンに適用される事を特徴とする燃料噴射弁。
In claim 9,
The fuel injection valve is applied to an in-cylinder injection engine that obtains power by directly spraying fuel into a combustion chamber of the engine.
JP2004137988A 2004-05-07 2004-05-07 Fuel injection valve Withdrawn JP2005320877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137988A JP2005320877A (en) 2004-05-07 2004-05-07 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137988A JP2005320877A (en) 2004-05-07 2004-05-07 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2005320877A true JP2005320877A (en) 2005-11-17
JP2005320877A5 JP2005320877A5 (en) 2006-09-07

Family

ID=35468336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137988A Withdrawn JP2005320877A (en) 2004-05-07 2004-05-07 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP2005320877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064038A (en) * 2006-09-07 2008-03-21 Denso Corp Fuel injection device
JP2010151053A (en) * 2008-12-25 2010-07-08 Denso Corp Fuel injection nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064038A (en) * 2006-09-07 2008-03-21 Denso Corp Fuel injection device
JP2010151053A (en) * 2008-12-25 2010-07-08 Denso Corp Fuel injection nozzle

Similar Documents

Publication Publication Date Title
EP0753105B1 (en) Fuel injector having novel multiple orifice disk members
US6826833B1 (en) Fuel injection valve and a method for manufacturing exit outlets on the valve
EP1581739B1 (en) Spray pattern control with non-angled orifices formed on dimpled fuel injection metering disc having a sac volume reducer
US7448560B2 (en) Unitary fluidic flow controller orifice disc for fuel injector
EP1092865A1 (en) Fuel injection valve with multiple nozzle plates
KR20040034340A (en) Fuel injection valve
KR101019324B1 (en) Fuel injection valve
JP4300197B2 (en) Fuel injection valve and internal combustion engine using the same
EP1795744A1 (en) Fuel injection device
JP2010077865A (en) Fuel injection valve
JP2000097129A (en) Solenoid type fuel injection valve
JP2007046518A (en) Fuel injection valve
JP5875442B2 (en) Fuel injection valve
JP2004353661A (en) Fuel injection valve and cylinder injection type internal combustion engine having it
JPH11200998A (en) Fluid injection nozzle
JP2009250122A (en) Fuel injection valve
JP3931802B2 (en) FUEL INJECTION VALVE AND DEVICE, INTERNAL COMBUSTION ENGINE, FUEL INJECTION VALVE MANUFACTURING METHOD, NOZZLE BODY, AND ITS MANUFACTURING METHOD
JP2005320877A (en) Fuel injection valve
JP6745986B2 (en) Fuel injection valve
WO2015068534A1 (en) Fuel injection valve
JP6448814B2 (en) Fuel injection valve
JP6545333B2 (en) Fuel injection valve and injection hole plate
JP2005098231A (en) Fuel injection valve
JP2004003518A (en) Fuel injection nozzle and fuel supply equipment
JP6141350B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A521 Written amendment

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080326