JP2005317815A - Optical fiber and multistage optical fiber amplifier - Google Patents
Optical fiber and multistage optical fiber amplifier Download PDFInfo
- Publication number
- JP2005317815A JP2005317815A JP2004134991A JP2004134991A JP2005317815A JP 2005317815 A JP2005317815 A JP 2005317815A JP 2004134991 A JP2004134991 A JP 2004134991A JP 2004134991 A JP2004134991 A JP 2004134991A JP 2005317815 A JP2005317815 A JP 2005317815A
- Authority
- JP
- Japan
- Prior art keywords
- time
- optical fiber
- optical power
- input
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims description 245
- 230000003287 optical effect Effects 0.000 claims abstract description 330
- 230000003321 amplification Effects 0.000 claims abstract description 104
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 104
- 238000001514 detection method Methods 0.000 claims abstract description 81
- 241001125929 Trisopterus luscus Species 0.000 claims abstract description 49
- 238000012545 processing Methods 0.000 claims abstract description 43
- 230000005284 excitation Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims description 62
- 238000004364 calculation method Methods 0.000 claims description 45
- 238000005086 pumping Methods 0.000 claims description 30
- 239000000835 fiber Substances 0.000 claims description 16
- 238000012937 correction Methods 0.000 claims description 15
- 230000007423 decrease Effects 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 20
- 101001128814 Pandinus imperator Pandinin-1 Proteins 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 230000001052 transient effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
Description
本発明は、光ファイバを増幅媒体として用いる光ファイバ増幅器に関するものである。 The present invention relates to an optical fiber amplifier using an optical fiber as an amplification medium.
近年、波長分割多重伝送システムでは、多重化された波長信号の一部を信号チャネル単位で他の伝送路へ分離したり、逆に他の伝送路から波長信号チャネル単位で伝送路に合流することで、伝送路中の波長信号チャネル数が増減する。また、送信局側の波長信号チャネルの増設もしくは伝送路の障害等によっても、伝送路を伝搬する波長信号チャネル数が増減する。 In recent years, in a wavelength division multiplex transmission system, a part of multiplexed wavelength signals is separated into other transmission paths in units of signal channels, or conversely, they are joined to transmission paths in units of wavelength signal channels from other transmission paths. Thus, the number of wavelength signal channels in the transmission path increases or decreases. In addition, the number of wavelength signal channels propagating in the transmission path increases or decreases due to an increase in the number of wavelength signal channels on the transmission station side or a failure in the transmission path.
このように波長信号チャネル数が増減する伝送システムで用いられる光ファイバ増幅器には、利得一定制御(AGC: Automatic Gain Control)が一般的に適用される。図11に一般的な光ファイバ増幅器の構成を示す。光ファイバ増幅器908に入力する信号光Sinの光パワ−の一部と光ファイバ増幅媒体1から出力される信号光Sampの光パワ−の一部をそれぞれ光分岐カップラ4a、4bにて分岐し、分岐したそれぞれの信号光の光パワ−をフォトダイオ−ド5a、5bに入力し、フォトダイオ−ド5a、5bからの出力に基づいて求めた現利得が所望の目標利得になるように励起光源6の出力を制御する。
Thus, constant gain control (AGC: Automatic Gain Control) is generally applied to an optical fiber amplifier used in a transmission system in which the number of wavelength signal channels increases or decreases. FIG. 11 shows a configuration of a general optical fiber amplifier. A part of the optical power of the signal light Sin input to the
しかしながら、図11に示す構成の光ファイバ増幅器908では、光分岐カップラ4aと4bの間に光ファイバ増幅媒体1が存在するため、入力光パワ−の変化と出力光パワ−の変化の間に信号光の伝搬に伴う遅延が生じる。その結果、入力光パワ−が急激に変化した場合に過渡的に利得が大きく変化することになる。即ち、例えば入力光パワ−が波長信号チャネル数の増加により大きく増加した場合、その増加が出力光パワ−の増加として検出されるまでは、見掛け上の利得が著しく減少することになる。
However, in the
光分岐カップラ4a、4bの間に光ファイバ増幅媒体1に加えて信号波形の成形のための分散補償ファイバが挿入されている場合や、1565〜1625nmといったLバンド帯を増幅する場合、或いは集中型ラマン増幅器の場合には、光分岐カップラ4a、4bの間の伝搬遅延時間が大きくなるため、前述の見掛け上の利得変動が継続する時間も大きくなる。光ファイバ増幅器908が利得一定制御で利得制御されている場合には、この見掛け上の利得変動に対応して利得制御動作が行われるため、例えば図2のAとして示すように利得のハンティングが生じ、伝送の信頼性を著しく阻害することになる。
When a dispersion compensating fiber for shaping a signal waveform is inserted between the
これを補償するために、図12に示すように入力側光分岐カップラ4aとフォトダイオ−ド5aの間の光伝搬部に遅延手段、即ちファイバコイル10を設けることが考えられている(特許文献1参照)。
In order to compensate for this, it is considered that a delay means, that is, a
しかし、一般的な光ファイバの最小曲げ半径は30mmであるため、上記の光ファイバ増幅器の伝搬遅延時間に相当する遅延時間を得るためには数kmから十数kmの光ファイバを巻くことが必要となる。光ファイバを巻くボビンの一例を挙げると胴径が60mm、鍔径が170mm、厚みが10mm程度のものが使用される。このような大きさのボビンを使用して光ファイバコイル10を作成するため、かなりの設置スペ−スを必要とする。近年の光ファイバ増幅器にも小型化が要求されている状況では、遅延補償のための光ファイバコイル10という空間的にかなりのスペ−スを要する部品の設置は小型化の要求を実現するに当たって大きな障害となる。
However, since the minimum bending radius of a general optical fiber is 30 mm, in order to obtain a delay time corresponding to the propagation delay time of the optical fiber amplifier described above, it is necessary to wind an optical fiber of several kilometers to several tens of kilometers. It becomes. As an example of a bobbin wound with an optical fiber, a bobbin having a body diameter of 60 mm, a heel diameter of 170 mm, and a thickness of about 10 mm is used. Since the
また、分散補償ファイバは分散補償の対象となる伝送用光ファイバの特性によってその長さを調整する必要がある。これに対応して、遅延補償用の光ファイバもその長さを調整する必要が生じ、据付時の調整が煩雑となり、調整コストを増大させる。 Further, the length of the dispersion compensating fiber needs to be adjusted according to the characteristics of the transmission optical fiber to be subjected to dispersion compensation. Correspondingly, it is necessary to adjust the length of the optical fiber for delay compensation, which makes the adjustment at the time of installation complicated and increases the adjustment cost.
上記の課題を解決するために請求項1に記載の光ファイバ増幅器は、前記光ファイバ増幅器に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段と、前記光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の出力光パワ−を求める出力光パワ−検出手段と、前記入力光パワ−の時系列デ−タを保存する記憶手段と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段を備えるとともに、前記入力光パワ−の時刻tにおける値をPin(t)、前記出力光パワ−の時刻tにおける値をPout(t)、前記増幅利得の時刻tにおける値をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτeとし、前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τeから時刻tまで前記記憶手段にて保持するとともに、前記増幅利得G(t)をPout(t)とPin(t−τf+τe)に基づいて求めることを特徴とする。
In order to solve the above problems, an optical fiber amplifier according to
上記の光ファイバ増幅器においては、伝搬遅延補償を光ファイバコイルを用いることなく、実現することができる。 In the above optical fiber amplifier, propagation delay compensation can be realized without using an optical fiber coil.
請求項2に記載の光ファイバ増幅器は、前記光ファイバ増幅器に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段と、前記光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の出力光パワ−を求める出力光パワ−検出手段と、前記入力光パワ−の時系列デ−タを保存する記憶手段と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段を備えるとともに、前記入力光パワ−の時刻tにおける値をPin(t)、前記出力光パワ−の時刻tにおける値をPout(t)、前記増幅利得の時刻tにおける値をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτe、前記利得制御手段に於ける演算から該演算に基づいて励起光パワ−が変化するまでに要する時間を制御遅延時間τcとし、前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τe+τcから時刻tまで前記記憶手段にて保持するとともに、前記増幅利得G(t)をPout(t)とPin(t−τf+τe+τc)に基づいて求めることを特徴とする。
3. The optical fiber amplifier according to
上記の光ファイバ増幅器においては、伝搬遅延補償に加えて制御遅延補償をも利得制御手段における設定変更により容易に実現することができる。 In the above optical fiber amplifier, not only propagation delay compensation but also control delay compensation can be easily realized by changing the setting in the gain control means.
請求項3に記載の多段光ファイバ増幅器は、複数段接続された前記光ファイバ増幅部の内のいずれかの互いに隣り合った少なくとも2段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記互いに隣り合った少なくとも2段の光ファイバ増幅部の入力光パワ−を求める入力光パワ−検出手段と、前記互いに隣り合った少なくとも2段の光ファイバ増幅部の内の最終段となる光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記最終段となる光ファイバ増幅部の出力光パワ−を求める出力光パワ−検出手段と、前記入力光パワ−の時系列デ−タを保存する記憶手段と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記最終段となる光ファイバ増幅部の励起用光源の駆動電流を制御する利得制御手段を備えるとともに、時刻tにおける入力光パワ−をPin(t)、時刻tにおける出力光パワ−をPout(t)、前記利得制御手段にて求められた時刻tにおける増幅利得をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記最終段となる光ファイバ増幅部の利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτeとし、前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τeから時刻tまで前記記憶手段にて保持するとともに、時刻tにおける増幅利得G(t)をPout(t)とPin(t−τf+τe)に基づいて求めることを特徴とする。
The multistage optical fiber amplifier according to
上記の光ファイバ増幅器においては、互いに隣り合った少なくとも2段の光ファイバ増幅部の、いずれかの光ファイバ増幅部間に分散補償ファイバなどの損失媒体を含む場合に、前記損失媒体による伝搬遅延に加えて、気温等による損失媒体の損失変動をも補償することができる。 In the above optical fiber amplifier, when a loss medium such as a dispersion compensation fiber is included between any of the optical fiber amplifiers of at least two optical fiber amplifiers adjacent to each other, the propagation delay due to the loss medium is reduced. In addition, it is possible to compensate for loss fluctuations of the loss medium due to temperature or the like.
請求項4記載の多段光ファイバ増幅器は、複数段接続された前記光ファイバ増幅部の内のいずれかの互いに隣り合った少なくとも2段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記互いに隣り合った少なくとも2段の光ファイバ増幅部の入力光パワ−を求める入力光パワ−検出手段と、前記互いに隣り合った少なくとも2段の光ファイバ増幅部の内の最終段となる光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記最終段となる光ファイバ増幅部の出力光パワ−を求める出力光パワ−検出手段と、前記入力光パワ−の時系列デ−タを保存する記憶手段と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記最終段となる光ファイバ増幅部の励起用光源の駆動電流を制御する利得制御手段を備えるとともに、時刻tにおける入力光パワ−をPin(t)、時刻tにおける出力光パワ−をPout(t)、前記利得制御手段にて求められた時刻tにおける増幅利得をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記最終段となる光ファイバ増幅部の利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτe、前記利得制御手段に於ける演算から該演算に基づいて励起光パワ−が変化するまでに要する時間を制御遅延時間τcとし、前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τe+τcから時刻tまで前記記憶手段にて保持するとともに、時刻tにおける増幅利得G(t)をPout(t)とPin(t−τf+τe+τc)に基づいて求めることを特徴とする。
5. The multistage optical fiber amplifier according to
請求項5記載の光ファイバ増幅器は、請求項2または4において前記伝搬時間τfが、前記信号処理時間差τeと前記制御遅延時間τcの和に対して2倍以上であることを特徴とする。
The optical fiber amplifier according to
請求項6記載の多段光ファイバ増幅器は、前記多段光ファイバ増幅器の初段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記初段の光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段を備え、更に、前記光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅部各段の出力光パワ−を求める出力光パワ−検出手段と、前記入力光パワ−の時系列デ−タを保存する記憶手段と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段とを、各光ファイバ増幅部毎に備えるとともに、時刻tにおける前記入力光パワ−をPin(t)、時刻tにおけるn段目(1≦n≦N)の光ファイバ増幅部の前記出力光パワ−をPnout(t)、前記入力光パワ−検出手段に備えられた光カップラと前記n段目の光ファイバ増幅部の前記出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτfn、前記n段目の光ファイバ増幅部の前記利得制御手段における入力光パワ−デ−タの信号処理時間と前記n段目の光ファイバ増幅部の出力光パワ−デ−タの信号処理時間の差をτenとするとき、前記入力光パワ−の時系列デ−タを少なくとも時刻t−τfn+τenから時刻tまで保持するとともに、時刻tにおける前記n段目の光ファイバ増幅部の増幅利得Gn(t)をPnout(t)とPin(t−τfn+τen)に基づいて求めることを特徴とする。
The multi-stage optical fiber amplifier according to
上記の多段光ファイバ増幅器においては、光ファイバコイルを用いることなく、伝搬遅延補償を実現できることに加えて、入力光パワ−検出手段を1つ備えることで各段の光ファイバ増幅部の利得制御を行うことができ、多段光ファイバ増幅器を更に小型化することができる。 In the above multi-stage optical fiber amplifier, in addition to realizing propagation delay compensation without using an optical fiber coil, the gain control of the optical fiber amplifying unit at each stage can be performed by providing one input optical power detection means. The multistage optical fiber amplifier can be further miniaturized.
請求項7記載の多段光ファイバ増幅器は、前記多段光ファイバ増幅器の初段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記初段の光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段を備え、更に、前記光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅部各段の出力光パワ−を求める出力光パワ−検出手段と、前記入力光パワ−の時系列デ−タを保存する記憶手段と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段とを、各光ファイバ増幅部毎に備えるとともに、時刻tにおける前記入力光パワ−をPin(t)、時刻tにおけるn段目(1≦n≦N)の光ファイバ増幅部の前記出力光パワ−をPnout(t)、前記入力光パワ−検出手段に備えられた光カップラと前記n段目の光ファイバ増幅部の前記出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτfn、前記n段目の光ファイバ増幅部の前記利得制御手段における入力光パワ−デ−タの信号処理時間と前記n段目の光ファイバ増幅部の出力光パワ−デ−タの信号処理時間の差をτen、前記n段目の光ファイバ増幅部の利得制御手段に於ける演算から該演算に基づいて励起光パワ−が変化するまでに要する時間を制御遅延時間τcnとするとき、前記入力光パワ−の時系列デ−タを少なくとも時刻t−τfn+τen+τcnから時刻tまで保持するとともに、時刻tにおける前記n段目の光ファイバ増幅部の増幅利得Gn(t)をPnout(t)とPin(t−τfn+τen+τcn)に基づいて求めることを特徴とする。
The multi-stage optical fiber amplifier according to
請求項8記載の多段光ファイバ増幅器は、請求項7において前記伝搬時間τfnが、前記信号処理時間τenと前記制御遅延時間τcnの和に対して2倍以上であることを特徴とする。
The multistage optical fiber amplifier according to
請求項9記載の光ファイバ増幅器の増幅利得を制御するプログラムは、前記光ファイバ増幅器に入力される信号光の光パワ−を求める入力光パワ−検出手順と、前記光ファイバ増幅器から出力される信号光の光パワ−を求める出力光パワ−検出手順と、前記入力光パワ−の時系列デ−タを保存する手順と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求める増幅利得算出手順と、前記増幅利得と所望の目標利得との偏差を算出する利得偏差算出手順と、前記利得偏差に基づいて前記励起用光源の駆動電流の補正量を算出する駆動電流補正量算出手順と、前記補正量に基づいて新たな駆動電流設定値を算出する手順と、前記新たな駆動電流設定値を出力し、励起用光源の出力を制御する制御出力手順を備え、前記入力光パワ−検出手順で得られた時刻tにおける入力光パワ−の値をPin(t)、前記出力光パワ−検出手順で得られた時刻tにおける出力光パワ−の値をPout(t)、前記利得制御手順で得られた時刻tにおける増幅利得の値をG(t)、所定区間の信号光の伝搬時間をτf、前記入力光パワ−デ−タの信号処理時間と前記出力光パワ−デ−タの信号処理時間の差をτeとし、前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τeから時刻tまで前記記憶手順にて保持するとともに、
前記増幅利得算出手順では前記増幅利得G(t)をPout(t)とPin(t−τf+τe)に基づいて求めることを特徴とする。
The program for controlling the amplification gain of the optical fiber amplifier according to claim 9 includes: an input optical power detection procedure for obtaining an optical power of signal light input to the optical fiber amplifier; and a signal output from the optical fiber amplifier. Based on the output optical power detection procedure for obtaining the optical power of light, the procedure for storing the time series data of the input optical power, and the data of the input optical power and the output optical power An amplification gain calculation procedure for obtaining an amplification gain, a gain deviation calculation procedure for calculating a deviation between the amplification gain and a desired target gain, and a drive for calculating a correction amount of the drive current of the excitation light source based on the gain deviation A current correction amount calculation procedure, a procedure for calculating a new drive current setting value based on the correction amount, and a control output procedure for outputting the new drive current setting value and controlling the output of the excitation light source, The input light The input optical power value at time t obtained by the power detection procedure is Pin (t), the output optical power value at time t obtained by the output optical power detection procedure is Pout (t), The value of amplification gain at time t obtained by the gain control procedure is G (t), the propagation time of signal light in a predetermined section is τf, the signal processing time of the input optical power data, and the output optical power data A difference in signal processing time of data is τe, and time series data of the input optical power Pin (t) is held in the storing procedure from at least time t-τf + τe to time t,
In the amplification gain calculation procedure, the amplification gain G (t) is obtained based on Pout (t) and Pin (t−τf + τe).
請求項10記載の光ファイバ増幅器の増幅利得を制御するプログラムは、前記光ファイバ増幅器に入力される信号光の光パワ−を求める入力光パワ−検出手順と、前記光ファイバ増幅器から出力される信号光の光パワ−を求める出力光パワ−検出手順と、前記入力光パワ−の時系列デ−タを保存する手順と、前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求める増幅利得算出手順と、前記増幅利得と所望の目標利得との偏差を算出する利得偏差算出手順と、前記利得偏差に基づいて前記励起用光源の駆動電流の補正量を算出する駆動電流補正量算出手順と、前記補正量に基づいて新たな駆動電流設定値を算出する駆動電流設定値算出手順と、前記新たな駆動電流設定値を出力し、励起用光源の出力を制御する制御出力手順を備え、前記入力光パワ−検出手順で得られた時刻tにおける入力光パワ−の値をPin(t)、前記出力光パワ−検出手順で得られた時刻tにおける出力光パワ−の値をPout(t)、前記利得制御手順で得られた時刻tにおける増幅利得の値をG(t)、所定区間の信号光の伝搬時間をτf、前記入力光パワ−デ−タの信号処理時間と前記出力光パワ−デ−タの信号処理時間の差をτe、前記増幅利得算出手順に於ける演算から前記利得偏差算出手順、駆動電流補正量算出手順、前記駆動電流設定値算出手順、前記制御出力手順を経て、励起光パワ−が変化するまでに要する時間を制御遅延時間τcとし、前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τe+τcから時刻tまで前記記憶手順にて保持するとともに、前記増幅利得算出手順では前記増幅利得G(t)をPout(t)とPin(t−τf+τe+τc)に基づいて求めることを特徴とする。
The program for controlling the amplification gain of the optical fiber amplifier according to
請求項11記載の光ファイバ増幅器の増幅利得を制御するプログラムは、請求項9または10において前記伝搬時間τfが、前記入力光パワ−検出のために挿入される光分岐カップラと前記出力光パワ−検出のために挿入される光分岐カップラ間を信号光が伝搬するのに要する時間であることを特徴とする。
The program for controlling the amplification gain of the optical fiber amplifier according to claim 11 is the optical branching coupler in which the propagation time τf is inserted for detecting the input optical power and the output optical power in
本発明によって、光ファイバ増幅媒体を信号光が伝播することによる遅延を制御部の処理のみによって行うことができ、遅延補償用の光ファイバコイルが不要となり、光ファイバ増幅器の小型化が容易になる。 According to the present invention, the delay due to the propagation of the signal light through the optical fiber amplifying medium can be performed only by the processing of the control unit, the optical fiber coil for delay compensation becomes unnecessary, and the optical fiber amplifier can be easily downsized. .
また、遅延補償についての調整は入力光パワ−の時系列デ−タの保存時間の設定の変更のみで対応可能であり、調整作業が容易となる。 Further, the adjustment for delay compensation can be made only by changing the setting of the storage time of the time series data of the input optical power, and the adjustment work becomes easy.
以下に本発明の好ましい実施の形態を図面に基づいて説明する。本発明を適用する基本的な構成である第1実施形態とこの第1実施形態の変形例として分散補償ファイバを併設した第2実施形態と、連続する複数段の光ファイバ増幅部に適用した第3実施形態と、多段光ファイバ増幅器全体に適用した第4実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The first embodiment, which is a basic configuration to which the present invention is applied, the second embodiment in which a dispersion compensating fiber is provided as a modification of the first embodiment, and the second embodiment that is applied to a plurality of continuous optical fiber amplifiers. A third embodiment and a fourth embodiment applied to the entire multistage optical fiber amplifier will be described.
図1は本発明の第1実施形態である光ファイバ増幅器901の構成例である。光ファイバ増幅器901は、入出力用として用いられる伝送用光ファイバ3a、3bと、光ファイバ増幅媒体1と、励起用光源6と、励起用光源6の駆動回路7と、信号光と励起光を合波するための合波器2に加えて、入力信号光Sinの一部を分岐する光カップラ4aと分岐された信号光の光パワ−を検出するフォトダイオ−ド5aとから構成される入力光パワ−検出手段と、光ファイバ増幅媒体1から出力される信号光Sampの一部を分岐する光カップラ4bと分岐された信号光の光パワ−を検出するフォトダイオ−ド5bとから構成される出力光パワ−検出手段と、駆動回路7から励起用光源6に出力される駆動電流を制御する制御部8を含む利得制御手段と、制御部8内に備えられたメモリ9を含む記憶手段とから構成されている。
FIG. 1 is a configuration example of an
伝送用光ファイバ3aから入力した信号光Sinは光分岐カップラ4aにてその一部が分岐され、残りは光合波器2にて励起用光源6からの励起光と合波された後、光ファイバ増幅媒体1に入力される。光ファイバ増幅媒体1にて増幅された信号光Sampは光分岐カップラ4bにてその一部を分岐され、残りは伝送用光ファイバ3bから出力信号光Soutとして出力される。光分岐カップラ4a、4bにて分岐された信号光はそれぞれフォトダイオ−ド5a、5bに入力される。フォトダイオ−ド5a、5bの出力を用いて信号光Sin、Soutの光パワ−Pin(t)、Pout(t)を算出し、その変化をモニタする。光分岐カップラ4a、4bは信号光の波長域においてほぼ一定の分岐比が得られるように調整されているため、フォトダイオ−ド5a、5bそれぞれの出力から光ファイバ増幅器へ入力された信号光の光入力パワ−Pin(t)と光ファイバ増幅器から出力された信号光の光出力パワ−Pout(t)を知ることができる。光入力パワ−Pin(t)の時系列デ−タは制御部8に内蔵されたメモリ9に記憶される。制御部8は、メモリ9からPin(t−τf+τe)の値を読み出し、これとPout(t)から増幅利得G(t)を算出し、これが所望の値になるように励起用光源6への駆動電流値を指示して励起光パワ−制御する。
A part of the signal light Sin input from the transmission
上記の利得G(t)の算出方法であるが、Pout(t)とPin(t−τf+τe)がdBm値として表される対数値の場合、一般的には式1によって算出される。また、mW単位などで表される線形値の場合には式2によって算出される。
In the calculation method of the gain G (t) described above, when Pout (t) and Pin (t−τf + τe) are logarithmic values expressed as dBm values, they are generally calculated by
G(t)=Pout(t)−Pin(t−τf+τe) (1) G (t) = Pout (t) −Pin (t−τf + τe) (1)
G(t)=Pout(t)/Pin(t−τf+τe) (2) G (t) = Pout (t) / Pin (t-τf + τe) (2)
図2に、本発明を適用した場合の各部の光パワ−の変化を、従来の制御方法を適用した場合と合わせて示す。尚、光増幅器は図1の構成とする。Type Aは遅延補償を施していない場合、Type Bは伝搬遅延のみを補償した場合、Type Cは伝搬遅延と制御遅延の両方を補償した場合、Type Dは過渡変動が生じない理想的な動作をした場合を示している。 FIG. 2 shows changes in the optical power of each part when the present invention is applied, together with the case where the conventional control method is applied. The optical amplifier has the configuration shown in FIG. When Type A is not compensated for delay, Type B is compensated only for propagation delay, Type C is compensated for both propagation delay and control delay, and Type D is ideally operated without transient fluctuations. Shows the case.
先ずType Aの場合について説明する。波長信号チャネル数の増加に伴う信号光の入力光パワ−Pinが時刻t0に増加を開始する。この変化は、光分岐カップラ4aとフォトダイオ−ド5aを通じてPin1として制御部8に認識される。PinとPin1の間にはAD変換等に起因する時間遅れτin'が存在する。Pinが時刻t0に増加し始めてから伝搬時間τf後の時刻t8に、出力光パワ−Poutが増加を開始する。このPoutの変化は、τoutだけ遅れたPout1として制御部8に認識される。制御部8ではPin1とPout1に基づいて現利得Gを求める。従ってType Aの場合には、Pin1がt1からt7にかけて増加するに従って現利得Gは減少する。そして、時刻t9からPout1が増加するに伴って現利得Gも増加する。
First, the case of Type A will be described. As the number of wavelength signal channels increases, the input light power -Pin of signal light starts increasing at time t0. This change is recognized by the
上述の現利得Gの変化に対応して、利得を一定に保つように制御部8は励起用光源6の駆動電流を制御する。その結果、励起用光源6の出力Ppumpは、まず現利得Gの減少に対応して時刻t1から制御遅延時間τcだけ遅れた時刻t5から増加し始め、そして現利得Gの増加に対応して時刻t9からτcだけ遅れた時刻t13から減少し始める。
In response to the change in the current gain G, the
上述の励起用光源の出力Ppumpの変化によって、出力光パワ−はPout'の如く変化する。Pout'は、先ず時刻t8からt13まではPpumpの影響が現れていないため、Poutと同様に増加する。Ppumpが増加し始めた時刻t5からτf経過したt13よりPpumpの増加による利得の増加によってPout'は更に増加し始める。その後、Ppumpの減少に伴って時刻t21からPout'は減少し始め、時刻t23から所定の出力値に収束する。 The output light power changes as Pout ′ due to the change in the output Ppump of the excitation light source. First, Pout ′ increases in the same manner as Pout since the influence of Ppump does not appear from time t8 to time t13. From time t5 when τf has elapsed from time t5 when Ppump starts to increase, Pout ′ starts to increase further due to an increase in gain due to an increase in Ppump. Thereafter, Pout ′ starts decreasing from time t21 as Ppump decreases, and converges to a predetermined output value from time t23.
出力光パワ−は全体としては上述の如く変化すると考えられるが、波長信号チャネル数の増加以前から入力されていた継続信号光の利得Gλsは次のように変化すると考えられる。先ず、時刻t8からPoutの増加と共にGλsは減少する。これは、励起用光源6の出力が波長信号チャネル数の増加以前の状態のため、継続信号光の増幅に寄与する励起光のエネルギ−が減少することによる。時刻t5から時刻t13までの時間τfの間はGλsの減少が続く。時刻t13からは、Ppumpの増加に伴ってGλsは増加に転じる。その後時刻t21からは、Ppumpの減少に伴ってGλsも減少し、時刻t27で波長信号チャネル数の増加以前の利得に収束する。
Although the output optical power is considered to change as described above, the gain Gλs of the continuous signal light input before the increase in the number of wavelength signal channels is considered to change as follows. First, Gλs decreases as Pout increases from time t8. This is because the energy of the pumping light that contributes to the amplification of the continuous signal light is reduced because the output of the pumping
次にType Bの場合を説明する。本発明に関わる伝搬遅延補償を行うType Bの場合には入力光パワ−デ−タはAD変換後、一旦メモリ9に記憶されてから制御部8の演算部に読み出される。従って、Type Bの場合のPinとPin1の間の時間遅れはType Aの場合のτin'よりも大きく、τinとなる。また、Pout、Pout1の変化はType Aの場合と同様である。
Next, the case of Type B will be described. In the case of Type B that performs propagation delay compensation according to the present invention, the input optical power data is temporarily stored in the memory 9 after being AD converted and then read out to the arithmetic unit of the
Type Bでは伝搬遅延補償を行う。従って、時刻t9における現利得Gの算出は時刻t9におけるPout1と時刻t2におけるPin1に基づいて行われる。時刻t2と時刻t9の間の時間がτf−τe(τe=τin−τout)である。この伝搬遅延補償によって現利得Gは時刻t9まで波長信号チャネル数の増加以前の値を保つ。時刻t9以降の波長信号チャネル数の増加がPout1に現れ出してからは、励起用光源6の出力Ppumpが変わっていないため、現利得Gは減少する。
In Type B, propagation delay compensation is performed. Accordingly, the current gain G at time t9 is calculated based on Pout1 at time t9 and Pin1 at time t2. The time between time t2 and time t9 is τf−τe (τe = τin−τout). By this propagation delay compensation, the current gain G maintains the value before the increase in the number of wavelength signal channels until time t9. After the increase in the number of wavelength signal channels after time t9 appears in Pout1, the output Ppump of the
上述の現利得Gの減少に対応して、時刻t9から制御遅延時間τcだけ遅れた時刻t13からPpumpは増加し始める。 Corresponding to the decrease in the current gain G described above, Ppump starts to increase from time t13 delayed by the control delay time τc from time t9.
この結果、出力光全体の光パワ−Pout'は次のように変化する。時刻t8から時刻t21まではPpumpの影響が現れていないため、Poutと同じ変化である。時刻t13から伝搬時間τfだけ経過した時刻t21から、Ppumpの増加に伴ってPout'は増加し、時刻t27に所定の値に収束する。 As a result, the optical power Pout ′ of the entire output light changes as follows. Since the influence of Ppump does not appear from time t8 to time t21, it is the same change as Pout. From time t21 when the propagation time τf has elapsed from time t13, Pout ′ increases as Ppump increases and converges to a predetermined value at time t27.
また、継続信号光の利得Gλsは次のように変化する。時刻t8から時刻t14まではType Aの場合と同様にGλsは減少し、時刻t14以降は一旦一定の値となる。そして、時刻t21からPpumpの増加に伴ってGλsは増加し、時刻t27に波長信号チャネル数の増加以前の利得に収束する。 Further, the gain Gλs of the continuous signal light changes as follows. From time t8 to time t14, Gλs decreases as in the case of Type A, and once reaches a constant value after time t14. Gλs increases as Ppump increases from time t21, and converges to the gain before the increase in the number of wavelength signal channels at time t27.
次にType Cの場合について説明する。Type CではType Bの伝搬遅延補償に加えて制御遅延も補償する。Type Cの場合も入力光パワ−デ−タはAD変換後、一旦メモリ9に記憶されてから制御部8の演算部に読み出される。従って、Type Cの場合のPinとPin1の間の時間遅れはType Aの場合のτin'よりも大きく、τinとなる。また、Pout、Pout1の変化はType Aの場合と同様である。
Next, the case of Type C will be described. Type C compensates for control delay in addition to Type B propagation delay compensation. Also in the case of Type C, the input optical power data is temporarily stored in the memory 9 after AD conversion, and then read out to the calculation unit of the
Type Cでは上述の如く伝搬遅延補償と制御遅延補償を行う。従って、時刻t6における現利得Gの算出は時刻t6におけるPout1と時刻t2におけるPin1に基づいて行われる。時刻t2と時刻t5の間の時間がτf−τe−τc(τe=τin−τout)である。この遅延補償によって現利得Gは時刻t5まで波長信号チャネル数の増加以前の値を保つ。時刻t5から時刻t9まではPin1のみの増加のため、現利得Gは減少する。時刻t9から時刻t11はPout1にPinの増加が現れ出しているが、励起用光源6の出力Ppumpが変わっていないため、現利得Gは引き続き減少する。時刻t11以降の現利得Gは、算出に用いるPin1が時刻t8以降は一定となっているため、時刻t15までやや増加する
In Type C, propagation delay compensation and control delay compensation are performed as described above. Accordingly, the current gain G at time t6 is calculated based on Pout1 at time t6 and Pin1 at time t2. The time between time t2 and time t5 is τf−τe−τc (τe = τin−τout). By this delay compensation, the current gain G maintains the value before the increase in the number of wavelength signal channels until time t5. From time t5 to time t9, the current gain G decreases because only Pin1 increases. From time t9 to time t11, an increase in Pin appears in Pout1, but since the output Ppump of the
上述の時刻t5以降の現利得Gの減少に対応して、時刻t5から制御遅延時間τcだけ遅れた時刻t9からPpumpは増加し始める。 Corresponding to the decrease in the current gain G after time t5 described above, Ppump starts to increase from time t9 which is delayed by the control delay time τc from time t5.
この結果、出力光全体の光パワ−Pout'は次のように変化する。時刻t8から時刻t17まではPpumpの影響が現れていないため、Poutと同じ変化である。時刻t9から伝搬時間τfだけ経過した時刻t17から、Ppumpの増加に伴ってPout'は増加し、時刻t27に所定の値に収束する。 As a result, the optical power Pout ′ of the entire output light changes as follows. Since the influence of Ppump does not appear from time t8 to time t17, it is the same change as Pout. From time t17 when the propagation time τf has elapsed from time t9, Pout ′ increases as Ppump increases and converges to a predetermined value at time t27.
また、継続信号光の利得Gλsは次のように変化する。時刻t8から時刻t14まではType Aの場合と同様にGλsは減少し、時刻t14以降は一旦一定の値となる。そしてGλsは、時刻t17からPpumpの増加に伴って増加し、更に時刻t23からはPpumpの減少に伴って減少し、時刻t27に波長信号チャネル数の増加以前の利得に収束する。 Further, the gain Gλs of the continuous signal light changes as follows. From time t8 to time t14, Gλs decreases as in the case of Type A, and once reaches a constant value after time t14. Gλs increases as Ppump increases from time t17, further decreases as Ppump decreases from time t23, and converges to the gain before the increase in the number of wavelength signal channels at time t27.
上記の3つの場合の継続信号光の利得Gλsの変化を比較すると、Type Aではかなり大きなオ−バ−シュ−トを示していることから、実際の動作では何回かのオ−バ−シュ−トとアンダ−シュ−トを経てから収束すると考えられる。従ってType Aでは収束までに時間を要することが予想される。また、Type Bではオ−バ−シュ−トは生じていないことから、Type Aよりも当初の利得に復帰してから収束するまでは比較的短時間であると思われるが、それまでの利得偏差が生じている状態が比較的長く続くことが予想される。Type Cでは、一旦当初の利得に復帰するまでの時間がType Bよりも短く、その後のオ−バ−シュ−トもType Aよりも小さいことから、利得偏差が生じている状態も比較的短時間であり、且つ収束にも余り時間を要しないことが予想される。 When the change in the gain Gλs of the continuous signal light in the above three cases is compared, since Type A shows a considerably large overshoot, several overshoots are observed in actual operation. -It is thought that it converges after passing through undershoot and undershoot. Therefore, Type A is expected to take time to converge. Also, since overshoot does not occur in Type B, it seems that it takes a relatively short time until it converges after returning to the original gain than Type A. It is expected that the state in which the deviation occurs will continue for a relatively long time. In Type C, the time until it returns to the initial gain is shorter than Type B, and the subsequent overshoot is also smaller than Type A. Therefore, the state where the gain deviation occurs is also relatively short. It is expected to be time and not require much time for convergence.
従って、波長チャネル数の増減に伴う利得変動への対処としては、Type AよりもType Bが望ましい制御であり、更にType BよりもType Cがより望ましい制御であると言える。 Therefore, it can be said that Type B is more desirable control than Type A and Type C is more desirable control than Type B for dealing with gain fluctuations due to increase / decrease in the number of wavelength channels.
尚、実際の光ファイバ増幅器においてはフィ−ドバック制御が施されているため、上記の各パラメ−タの時系列変化は図2とは多少異なったものとなる。 Incidentally, since feedback control is performed in an actual optical fiber amplifier, the time series change of each parameter described above is slightly different from that in FIG.
図3に本発明の利得制御動作を実現するための制御プログラムのフロ−チャ−トの一例を示す。図3(a)は入力光パワ−の時系列デ−タをメモリに保存する部分である。ステップS101にて動作に必要な各種設定値の読み込みを行う。また、ここで予め求めておいた伝搬時間τf、信号処理時間差τeの読み込みも行う。更に制御遅延時間の補償も行う場合にはτcの読み込みもS101で行う。次に、ステップS102にてフォトダイオ−ド5aの出力から得られた入力光パワ−Pin(t)をデジタルデ−タとして読み込み、ステップS103にてその値をメモリ9に保存する。ここでメモリ9は少なくとも、WARD・(τf−τe)/Δt+1 (Bite) (WARD:AD変換のWord数、Δt:サンプリング時間)が必要となる。このメモリ一杯までデ−タを記憶した後は最も古いデ−タを消して、最新のデ−タを記憶していく。
FIG. 3 shows an example of a flowchart of a control program for realizing the gain control operation of the present invention. FIG. 3 (a) is a part for storing time series data of input optical power in a memory. In step S101, various setting values necessary for the operation are read. Further, the propagation time τf and the signal processing time difference τe previously obtained are also read. Further, when the control delay time is also compensated, τc is also read in S101. Next, in step S102, the input optical power Pin (t) obtained from the output of the
図3(b)は図3(a)で保存した入力光デ−タと出力光パワ−デ−タから現利得を算出し、励起用光源6の駆動電流を制御する部分である。ステップS201にて動作に必要な各種設定値の読み込みを行う。S101と同様にここで予め求めておいた伝搬時間τf、信号処理時間差τeの読み込みも行い、更に制御遅延時間の補償も行う場合にはτcの読み込みも行う。ステップS202では、デ−タ保持時間τf−τeを算出し、現時点からどれだけ前のPinのデ−タを増幅利得計算に使用するかを求める。次にステップS203にて、ステップS103で保存された入力光パワ−の時系列デ−タの中から時刻(t−τf+τe)における値を読み出し、更にステップS204にて光出力パワ−デ−タPout(t)をフォトダイオ−ド5bの出力からAD変換して読み込む。ステップS203とS204は順番はこの通りである必要はなく、光出力パワ−デ−タの読み込みを先に行っても良い。そしてステップS205にて、これらの値から時刻tに於ける現利得G(t)を前述の式1や式2などを用いて算出し、ステップS206にて、S205で算出した現利得G(t)と利得設定値Gsetの差Eを利得エラ−として算出する。ステップS207で、利得エラ−Eから所定のアルゴリズム、例えば図3(b)のS207に示す式に基づいて励起用光源の駆動電流補正値ΔIを算出し、そしてステップS208で新たな駆動電流値を算出して、その値をステップS209で励起用光源6の駆動回路7に出力する。
FIG. 3B is a part for calculating the current gain from the input optical data and output optical power data stored in FIG. 3A and controlling the drive current of the pumping
尚、制御遅延時間も補償する場合には入力光パワ−の時系列デ−タの中から読み出す値は時刻(t−τf+τe+τc)の値とする。 When the control delay time is also compensated, the value read out from the time series data of the input optical power is the value of time (t-τf + τe + τc).
ここで、入力光パワ−と出力光パワ−のAD変換に於けるサンプリング周期は略同一の周期であることが望ましい。また、遅延時間τf−τeは予めサンプリング周期の値で割り切れる値にしておいてから設定することで、割り切れないときの処理を省略することができ、制御動作を高速化できる。制御遅延時間も補償する場合も同様にτf−τe−τcを予めサンプリング周期の値で割り切れる値にしておくことが望ましい。 Here, it is desirable that the sampling periods in the AD conversion of the input optical power and the output optical power are substantially the same period. Further, the delay time τf−τe is set in advance after being set to a value that is divisible by the value of the sampling period, so that the processing when it is not divisible can be omitted, and the control operation can be speeded up. Similarly, when compensating for the control delay time, it is desirable that τf−τe−τc be set to a value divisible by the value of the sampling period.
図4は本発明の第2の実施形態の構成例である。第1の実施形態との相違は、光分岐カップラ4a、4b間に光ファイバ増幅媒体1に加えて分散補償ファイバ10が接続されていることであり、そのため伝搬時間τfが図1の場合よりも大きくなる。
FIG. 4 is a configuration example of the second embodiment of the present invention. The difference from the first embodiment is that a
図5に示す実験系にて、実際に構成した本発明の実施形態の動作を確認した。波長λ1〜λ8の8波の信号光源100からの光を合波器102にて合波し、光SW103に入力する。光SW103からの出力と波長λsの残留信号光源101の出力を合波器105にて合波し、その出力を光分岐カップラ105にて一部を分岐した後、被測定光ファイバ増幅器106に入力する。被測定光ファイバ増幅器106からの出力の内、波長λsの信号光のみを狭帯域光フィルタ107にて抽出し、フォトダイオ−ド108に入力する。また、光分岐カップラ105にて分岐された信号光はフォトダイオ−ド109に入力する。フォトダイオ−ド108、109の出力をオシロスコ−プ110に入力し、フォトダイオ−ド109の出力を参照信号として、光SW103をON/OFFさせたときのフォトダイオ−ド108の出力の変化、即ち波長λSの残留信号光パワ−のレベル変化を観測した。
In the experimental system shown in FIG. 5, the operation of the actually configured embodiment of the present invention was confirmed. Light from the eight signal
被測定光ファイバ増幅器としては、図4に示す第2実施形態のものを用いた。被測定光ファイバアンプの構成条件及び動作条件は下記の通りである。
・伝搬遅延時間:44μsec
・τe+τc=600nsec
・分散補償ファイバでの損失を含めた増幅利得:27dB
・入出力光パワ−のAD変換におけるサンプリング周期:25nsec
・遅延補償:伝搬遅延補償と遅延補償を同時に実施
As the optical fiber amplifier to be measured, the one in the second embodiment shown in FIG. 4 was used. The configuration conditions and operating conditions of the optical fiber amplifier to be measured are as follows.
・ Propagation delay time: 44μsec
・ Τe + τc = 600nsec
・ Amplification gain including loss in dispersion compensating fiber: 27dB
・ Sampling period in AD conversion of input / output optical power: 25nsec
・ Delay compensation: Propagation delay compensation and delay compensation are performed simultaneously.
上記の動作条件の内、τe+τcとは入力光パワ−がフォトダイオ−ド5aに入力してから、それに対応した励起光が出力されるまでの時間とほぼ等しい。
Among the above operating conditions, τe + τc is substantially equal to the time from when the input light power is input to the
上記の動作条件の下で、次のような測定を行った。光SW103をONする(Add時)ことで、入力光パワ−を−22dBmから−7dBmまで15dB増加させた。また、逆に光SW103をOFFする(Drop時)ことで、入力光パワ−を−7dBmから−22dBmに減少させた。また、残留信号光の波長を1538.98nmの場合と、1545.32nmの場合について測定を行った。表1及び図6,7に実験結果を示す。 The following measurements were performed under the above operating conditions. By turning on the optical SW 103 (at the time of Add), the input optical power was increased by 15 dB from −22 dBm to −7 dBm. Conversely, by turning off the light SW 103 (Drop), the input light power was reduced from −7 dBm to −22 dBm. Further, the measurement was performed for the case where the wavelength of the residual signal light was 1538.98 nm and 1545.32 nm. The experimental results are shown in Table 1 and FIGS.
Add時、Drop時のいずれの場合でも残留信号光の利得の過渡変動を抑制することができた。 In both cases of Add and Drop, transient fluctuations in the gain of the residual signal light could be suppressed.
尚、本発明では入力光パワ−デ−タの時系列デ−タのみをメモリに保存している。従って、時間差τf―τe>0或いはτf―(τe+τc)>0となる場合が本発明の適用対象となる。図1の構成で光ファイバ増幅媒体1がEDF(Erbium Doped Fiber)の場合、そのEDFの長さは使用条件にもよるが数m〜数百m程度である。従って、EDFの長さが短い場合には伝搬時間τfが短く、時間差τf―τe≦0或いはτf―(τe+τc)≦0となることがある。その場合には遅延補償は行わないことになる。
In the present invention, only time series data of the input optical power data is stored in the memory. Accordingly, the case where the time difference τf−τe> 0 or τf− (τe + τc)> 0 is applied. In the configuration of FIG. 1, when the optical
伝搬遅延による過渡変動の大きさを測定した結果が図8である。図8は図4の構成において従来の制御方法を用いた場合に、分散補償ファイバ10の長さを変えて伝搬時間を変化させたときのAdd時とDrop時の利得の過渡変動量を調べたものである。尚、このときの光ファイバ増幅器902ではτe+τcは約600nsecであった。
FIG. 8 shows the result of measuring the magnitude of the transient fluctuation due to the propagation delay. FIG. 8 shows the amount of transient gain variation during Add and Drop when the length of the
図8(a)は0.01〜20μsecでの測定結果であり、図8(b)は5μsec以下の部分を拡大したものである。Drop時よりもAdd時の方が伝搬遅延時間の影響が大きい。また、約1.2μsecまではあまり大きな影響はないが、伝搬遅延時間がそれ以上になると特にAdd時に対してはほぼ直線的に利得変動量が増加している。また、約1.2μsecまでは伝搬遅延の影響があまり大きくない点についてであるが、伝搬遅延がほぼ0のとき、即ちτf―(τe+τc)がほぼ−(τe+τc)の時も利得変動量はあまり大きくない。このことから、−(τe+τc)≦τf―(τe+τc)≦τe+τc、即ち、0≦τf≦2・(τe+τc)の範囲では伝搬遅延に伴う利得の過渡変動量はあまり大きくないが、τf>2・τcでは伝搬遅延の増加と共に利得の過渡変動量が大きくなり、従って、本発明に関わる遅延補償を行う必要性が大きくなることが分かる。 FIG. 8A shows the measurement result at 0.01 to 20 μsec, and FIG. 8B is an enlarged view of the portion of 5 μsec or less. The influence of the propagation delay time is larger at the time of Add than at the time of Drop. Although there is not much influence up to about 1.2 μsec, when the propagation delay time is longer than that, the gain fluctuation amount increases almost linearly especially at the time of Add. Further, although the influence of the propagation delay is not so great until about 1.2 μsec, the gain fluctuation amount is not so great even when the propagation delay is almost 0, that is, when τf− (τe + τc) is approximately − (τe + τc). not big. From this, − (τe + τc) ≦ τf− (τe + τc) ≦ τe + τc, that is, in the range of 0 ≦ τf ≦ 2 · (τe + τc), the transient fluctuation amount of the gain accompanying the propagation delay is not so large, but τf> 2. It can be seen that with τc, the amount of transient fluctuation in gain increases with an increase in propagation delay, and therefore the necessity for delay compensation according to the present invention increases.
次に本発明の第3の実施形態について説明する。図9は本発明の第3の実施形態の構成を示す。信号光は左側の伝送用ファイバ3aから入力され、右側の伝送用ファイバ3bに出力される。初段の光ファイバ増幅部903aは、光ファイバ増幅媒体1a、励起光と信号光の合波器2a、光分岐カップラ4aと4b、フォトダイオ−ド5aと5b、励起用光源6a、励起用光源の駆動回路7a、制御部8aで構成される。2段目の光ファイバ増幅部903bは、光ファイバ増幅媒体1b、励起光と信号光の合波器2b、光分岐カップラ4c、フォトダイオ−ド5c、励起用光源6b、励起用光源の駆動回路7b、制御部8bで構成される。2段目の光ファイバ増幅部903bの増幅利得の算出に用いる入力光パワ−にはフォトダイオ−ド5aの出力から得られた値を初段と共通して用いる。また、初段と2段目の間は光ファイバ31で接続される。
Next, a third embodiment of the present invention will be described. FIG. 9 shows the configuration of the third embodiment of the present invention. The signal light is input from the
本実施形態において、光分岐カップラ4a、4b間の伝搬時間τfa、制御部8aに於ける入出力光パワ−デ−タ処理時間の差をτeaとすると、制御部8aのメモリ9aには少なくともτfa―τeaの時間分の入力光パワ−の時系列デ−タが保存され、入力光パワ−Pain(t−τfa+τea)と光出力パワ−Paout(t)を用いて利得制御を行う。また、光分岐カップラ4a、4c間の伝搬時間τfb、制御部8bに於ける入出力光パワ−デ−タ処理時間の差をτebとすると、制御部8bのメモリ9bには少なくともτfb―τebの時間分の入力光パワ−の時系列デ−タが保存され、入力光パワ−Pain(t−τfb+τeb)と光出力パワ−Pbout(t)を用いて利得制御を行う。尚、図9の構成においてもτfa―τea≦0、τfb―τeb≦0の場合には初段、或いは初段及び2段目の利得制御に本発明の遅延補償を用いた利得制御は適用されない。
In this embodiment, if the propagation time τfa between the optical branching
従来の多段光ファイバ増幅装置において、例えば図13に示すように初段と2段目の間の光ファイバ31の部分に分散補償ファイバ等の伝搬遅延を増大させ、且つ温度等によって損失が変動するような光学素子が挿入された場合には、光学素子の利得変動によって光ファイバ増幅装置全体の利得が変動することが考えられる。これに対して多段光ファイバ増幅装置の構成を図9の構成として、少なくとも最終段の光ファイバ増幅部の利得制御に本発明の遅延補償を用いた利得制御を用いることで、図13のように段間に分散補償ファイバ等の損失が変動する光学素子が挿入された場合でも、利得の過渡変動を抑制しつつ、光学素子の損失変動をも補償することができる。
In the conventional multistage optical fiber amplifier, for example, as shown in FIG. 13, the propagation delay of the dispersion compensating fiber or the like is increased in the portion of the
尚、上記の第3実施形態の説明は2段の光ファイバ増幅部で構成された多段光ファイバ増幅器903について説明したが、3段以上の光ファイバ増幅部で構成される多段光ファイバ増幅器にも適用可能であることはいうまでもない。
In the above description of the third embodiment, the multistage
また、本発明の利得制御を適用する光ファイバ増幅部は必ずしも最終段に限定されるものではなく、損失が変動する光学素子が挿入された位置よりも後段の少なくとも1つの光ファイバ増幅部に対して適用すればよい。 In addition, the optical fiber amplifying unit to which the gain control of the present invention is applied is not necessarily limited to the final stage, and at least one optical fiber amplifying part at a stage subsequent to the position where the optical element whose loss varies is inserted. And apply.
更に、本発明の利得制御を適用する光ファイバ増幅部の増幅利得の算出に用いる光入力パワ−デ−タには、損失が変動する光学素子が挿入された位置よりも前段の光パワ−であればよい。即ち図9では、光ファイバ増幅部903bの利得制御に用いる光入力パワ−をフォトダイオ−ド5aの出力から求めているが、例えばフォトダイオ−ド5bの出力から求めても良い。更には903aよりも前段の光ファイバ増幅部のフォトダイオ−ドの出力から求めても良い。
Furthermore, the optical input power data used to calculate the amplification gain of the optical fiber amplifier to which the gain control of the present invention is applied is the optical power upstream of the position where the optical element whose loss varies is inserted. I just need it. That is, in FIG. 9, the optical input power used for gain control of the
次に本発明の第4の実施形態について説明する。図10は本発明の第4の実施形態の構成を示す。信号光は左側の伝送用ファイバ3aから入力され、右側の伝送用ファイバ3bに出力される。Nを2以上の整数とし、nを1≦n≦Nの整数とすると、n段目の光ファイバ増幅部904−nは、光ファイバ増幅媒体1n、励起光と信号光の合波器2n、光分岐カップラ4nb、フォトダイオ−ド52n、励起用光源6n、励起用光源の駆動回路7n、制御部8nで構成される。但し、初段については上記の構成に加えて光分岐カップラ41aとフォトダイオ−ド51aを有する。また、各光ファイバ増幅部間は光ファイバ31〜3N−1で接続される。2段目以降の光ファイバ増幅部の増幅利得の算出に用いる入力光パワ−のデ−タは初段と共通にフォトダイオ−ド51aの出力から得られた値を用いる。
Next, a fourth embodiment of the present invention will be described. FIG. 10 shows the configuration of the fourth embodiment of the present invention. The signal light is input from the
本実施形態において、光分岐カップラ41a、4nb間の伝搬時間τfn、制御部8nに於ける入出力光パワ−デ−タ処理時間の差をτenとすると、制御部8nのメモリ9nには少なくともτfn―τenの時間分の入力光パワ−の時系列デ−タが保存され、入力光パワ−Pin(t−τfn+τen)とn段目の光出力パワ−Pnout(t)を用いて利得制御を行う。尚、図10の構成においてもτfn−τen≦0の場合には本発明の遅延補償を用いた利得制御は適用されない。 In this embodiment, if the propagation time τfn between the optical branching couplers 41a and 4nb and the difference between the input / output optical power data processing time in the control unit 8n are τen, the memory 9n of the control unit 8n has at least τfn. The time series data of input optical power for τen time is stored, and gain control is performed using the input optical power Pin (t−τfn + τen) and the nth optical output power Pnout (t) . Even in the configuration of FIG. 10, the gain control using the delay compensation of the present invention is not applied when τfn−τen ≦ 0.
多段光ファイバ増幅器904の構成を図10に示すような構成とすることによって、2段目以降の入力側光分岐カップラとフォトダイオ−ドを省略することができ、構成の簡素化を図ることができ、小型化と共に低コスト化を図ることができる。また、各光ファイバ増幅部の制御部への各種設定値の入力手段、各光ファイバ増幅部の制御部との通信I/F或いは伝送システムを構成する他の機器との通信I/F等を備えた中央制御部80を多段光ファイバ増幅器904に備えることで、操作性の向上或いは自動化等を図ることができる。
By configuring the multi-stage
901、902、908、909……光ファイバ増幅器
903、904,910………………多段光ファイバ増幅装置
903a、903b、910a、910b……光ファイバ増幅部
904−1〜904−N………………光ファイバ増幅部
1,1a、1b………光ファイバ増幅媒体
11〜1N……………光ファイバ増幅媒体
2、2a、2b………光合波器
21〜2N……………光合波器
3a、3b……………伝送用光ファイバ
31〜3N−1………光ファイバ
4a、4b……光分岐カップラ
41a、41b〜4Nb……光分岐カップラ
5a、5b、5c、5d……フォトダイオ−ド
51a、51b〜5Nb……フォトダイオ−ド
6、6a、6b………励起用光源
61〜6N……………励起用光源
7,7a、7b………駆動回路
71〜7N……………駆動回路
8,8a、8b………制御部
81〜8N……………制御部
80……………………中央制御部
9,9a、9b………メモリ
91〜9N……………メモリ
901, 902, 908, 909 ...
Claims (11)
前記光ファイバ増幅器に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段と、
前記光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の出力光パワ−を求める出力光パワ−検出手段と、
前記入力光パワ−の時系列デ−タを保存する記憶手段と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段を備えるとともに、
前記入力光パワ−の時刻tにおける値をPin(t)、前記出力光パワ−の時刻tにおける値をPout(t)、前記増幅利得の時刻tにおける値をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτeとし、
前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τeから時刻tまで前記記憶手段にて保持するとともに、
前記増幅利得G(t)をPout(t)とPin(t−τf+τe)に基づいて求める、
ことを特徴とする光ファイバ増幅器。 In an optical fiber amplifier comprising an optical fiber amplification medium and at least one excitation light source,
A part of the signal light input to the optical fiber amplifier is branched, the optical power of the branched signal light is detected, and the input optical power for obtaining the input optical power of the optical fiber amplifier based on the detection result -Detection means;
Output light for branching part of the signal light output from the optical fiber amplifying medium, detecting the optical power of the branched signal light, and determining the output optical power of the optical fiber amplifier based on the detection result Power detection means;
Storage means for storing time-series data of the input optical power;
Gain control means for obtaining an amplification gain based on data of the input optical power and the output optical power, and controlling a drive current of the pumping light source based on a deviation between the amplification gain and a desired target gain With
The value of the input optical power at time t is Pin (t), the value of the output optical power at time t is Pout (t), the value of the amplification gain at time t is G (t), and the input / output light The propagation time of the signal light between the optical couplers provided in the power detection means is τf, and the difference between the signal processing time of the input optical power data and the signal processing time of the output optical power data in the gain control means Is τe,
The time series data of the input optical power Pin (t) is held in the storage means at least from time t-τf + τe to time t,
The amplification gain G (t) is obtained based on Pout (t) and Pin (t−τf + τe).
An optical fiber amplifier.
前記光ファイバ増幅器に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段と、
前記光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅器の出力光パワ−を求める出力光パワ−検出手段と、
前記入力光パワ−の時系列デ−タを保存する記憶手段と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段を備えるとともに、
前記入力光パワ−の時刻tにおける値をPin(t)、前記出力光パワ−の時刻tにおける値をPout(t)、前記増幅利得の時刻tにおける値をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτe、前記利得制御手段に於ける演算から該演算に基づいて励起光パワ−が変化するまでに要する時間を制御遅延時間τcとし、
前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τe+τcから時刻tまで前記記憶手段にて保持するとともに、
前記増幅利得G(t)をPout(t)とPin(t−τf+τe+τc)に基づいて求める、
ことを特徴とする光ファイバ増幅器。 In an optical fiber amplifier comprising an optical fiber amplification medium and at least one excitation light source,
A part of the signal light input to the optical fiber amplifier is branched, the optical power of the branched signal light is detected, and the input optical power for obtaining the input optical power of the optical fiber amplifier based on the detection result -Detection means;
Output light for branching part of the signal light output from the optical fiber amplifying medium, detecting the optical power of the branched signal light, and determining the output optical power of the optical fiber amplifier based on the detection result Power detection means;
Storage means for storing time-series data of the input optical power;
Gain control means for obtaining an amplification gain based on data of the input optical power and the output optical power, and controlling a drive current of the pumping light source based on a deviation between the amplification gain and a desired target gain With
The value of the input optical power at time t is Pin (t), the value of the output optical power at time t is Pout (t), the value of the amplification gain at time t is G (t), and the input / output light The propagation time of the signal light between the optical couplers provided in the power detection means is τf, and the difference between the signal processing time of the input optical power data and the signal processing time of the output optical power data in the gain control means Τe, the time required from the calculation in the gain control means until the pumping light power changes based on the calculation is the control delay time τc,
The time series data of the input optical power Pin (t) is held in the storage means at least from time t-τf + τe + τc to time t,
The amplification gain G (t) is obtained based on Pout (t) and Pin (t−τf + τe + τc).
An optical fiber amplifier.
複数段接続された前記光ファイバ増幅部の内のいずれかの互いに隣り合った少なくとも2段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記互いに隣り合った少なくとも2段の光ファイバ増幅部の入力光パワ−を求める入力光パワ−検出手段と、
前記互いに隣り合った少なくとも2段の光ファイバ増幅部の内の最終段となる光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記最終段となる光ファイバ増幅部の出力光パワ−を求める出力光パワ−検出手段と、
前記入力光パワ−の時系列デ−タを保存する記憶手段と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記最終段となる光ファイバ増幅部の励起用光源の駆動電流を制御する利得制御手段を備えるとともに、
時刻tにおける入力光パワ−をPin(t)、時刻tにおける出力光パワ−をPout(t)、前記利得制御手段にて求められた時刻tにおける増幅利得をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記最終段となる光ファイバ増幅部の利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτeとし、
前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τeから時刻tまで前記記憶手段にて保持するとともに、
時刻tにおける増幅利得G(t)をPout(t)とPin(t−τf+τe)に基づいて求める、
ことを特徴とする多段光ファイバ増幅器。 In a multi-stage optical fiber amplifier in which at least one optical fiber amplifying medium and at least one pumping light source are provided in one stage, and the optical fiber amplifying part is connected in a plurality of stages along the propagation direction of the signal light.
A part of the signal light inputted to at least two adjacent optical fiber amplifiers among the optical fiber amplifiers connected in a plurality of stages is branched, and the optical power of the branched signal light is split. Input optical power detection means for obtaining the input optical power of at least two stages of optical fiber amplifiers adjacent to each other based on the detection result;
A part of the signal light output from the optical fiber amplifying medium of the optical fiber amplifying unit which is the final stage of the at least two optical fiber amplifying units adjacent to each other is branched, and the optical power of the branched signal light is split. Output optical power detection means for detecting the output optical power of the optical fiber amplification unit as the final stage based on the detection result;
Storage means for storing time-series data of the input optical power;
An amplification gain is obtained based on the data of the input optical power and the output optical power, and a pumping light source of the optical fiber amplification unit which is the final stage based on a deviation between the amplification gain and a desired target gain And gain control means for controlling the drive current of
The input optical power at time t is Pin (t), the output optical power at time t is Pout (t), the amplification gain at time t obtained by the gain control means is G (t), and the input / output light The propagation time of the signal light between the optical couplers provided in the power detection means is τf, and the signal processing time of the input optical power data and the output optical power in the gain control means of the optical fiber amplifier as the final stage Let τe be the difference in signal processing time of data,
The time series data of the input optical power Pin (t) is held in the storage means at least from time t-τf + τe to time t,
An amplification gain G (t) at time t is obtained based on Pout (t) and Pin (t−τf + τe).
A multistage optical fiber amplifier.
複数段接続された前記光ファイバ増幅部の内のいずれかの互いに隣り合った少なくとも2段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記互いに隣り合った少なくとも2段の光ファイバ増幅部の入力光パワ−を求める入力光パワ−検出手段と、
前記互いに隣り合った少なくとも2段の光ファイバ増幅部の内の最終段となる光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記最終段となる光ファイバ増幅部の出力光パワ−を求める出力光パワ−検出手段と、
前記入力光パワ−の時系列デ−タを保存する記憶手段と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記最終段となる光ファイバ増幅部の励起用光源の駆動電流を制御する利得制御手段を備えるとともに、
時刻tにおける入力光パワ−をPin(t)、時刻tにおける出力光パワ−をPout(t)、前記利得制御手段にて求められた時刻tにおける増幅利得をG(t)、前記入出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτf、前記最終段となる光ファイバ増幅部の利得制御手段における入力光パワ−デ−タの信号処理時間と出力光パワ−デ−タの信号処理時間の差をτe、前記利得制御手段に於ける演算から該演算に基づいて励起光パワ−が変化するまでに要する時間を制御遅延時間τcとし、
前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τe+τcから時刻tまで前記記憶手段にて保持するとともに、
時刻tにおける増幅利得G(t)をPout(t)とPin(t−τf+τe+τc)に基づいて求める、
ことを特徴とする多段光ファイバ増幅器。 In a multi-stage optical fiber amplifier in which at least one optical fiber amplifying medium and at least one pumping light source are provided in one stage, and the optical fiber amplifying part is connected in a plurality of stages along the propagation direction of the signal light.
A part of the signal light inputted to at least two adjacent optical fiber amplifiers among the optical fiber amplifiers connected in a plurality of stages is branched, and the optical power of the branched signal light is split. Input optical power detection means for obtaining the input optical power of at least two stages of optical fiber amplifiers adjacent to each other based on the detection result;
A part of the signal light output from the optical fiber amplifying medium of the optical fiber amplifying unit which is the final stage of the at least two optical fiber amplifying units adjacent to each other is branched, and the optical power of the branched signal light is split. Output optical power detection means for detecting the output optical power of the optical fiber amplification unit as the final stage based on the detection result;
Storage means for storing time-series data of the input optical power;
An amplification gain is obtained based on the data of the input optical power and the output optical power, and a pumping light source of the optical fiber amplification unit which is the final stage based on a deviation between the amplification gain and a desired target gain And gain control means for controlling the drive current of
The input optical power at time t is Pin (t), the output optical power at time t is Pout (t), the amplification gain at time t obtained by the gain control means is G (t), and the input / output light The propagation time of the signal light between the optical couplers provided in the power detection means is τf, and the signal processing time of the input optical power data and the output optical power in the gain control means of the optical fiber amplifier as the final stage The difference in signal processing time of data is τe, and the time required from the calculation in the gain control means until the pumping light power changes based on the calculation is the control delay time τc,
The time series data of the input optical power Pin (t) is held in the storage means at least from time t-τf + τe + τc to time t,
An amplification gain G (t) at time t is obtained based on Pout (t) and Pin (t−τf + τe + τc).
A multistage optical fiber amplifier.
前記多段光ファイバ増幅器の初段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記初段の光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段を備え、
更に、前記光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅部各段の出力光パワ−を求める出力光パワ−検出手段と、
前記入力光パワ−の時系列デ−タを保存する記憶手段と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段とを、
各光ファイバ増幅部毎に備えるとともに、
時刻tにおける前記入力光パワ−をPin(t)、時刻tにおけるn段目(1≦n≦N)の光ファイバ増幅部の前記出力光パワ−をPnout(t)、前記入力光パワ−検出手段に備えられた光カップラと前記n段目の光ファイバ増幅部の前記出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτfn、前記n段目の光ファイバ増幅部の前記利得制御手段における入力光パワ−デ−タの信号処理時間と前記n段目の光ファイバ増幅部の出力光パワ−デ−タの信号処理時間の差をτenとするとき、
前記入力光パワ−の時系列デ−タを少なくとも時刻t−τfn+τenから時刻tまで保持するとともに、
時刻tにおける前記n段目の光ファイバ増幅部の増幅利得Gn(t)をPnout(t)とPin(t−τfn+τen)に基づいて求める、
ことを特徴とする多段光ファイバ増幅器。 In a multistage optical fiber amplifier in which N (N is an integer of 2 or more) stages of optical fiber amplifiers including at least one optical fiber amplification medium and at least one excitation light source are connected.
Branching part of the signal light input to the first-stage optical fiber amplifier of the multi-stage optical fiber amplifier, detecting the optical power of the branched signal light, and detecting the first-stage optical fiber amplifier based on the detection result Input light power detecting means for obtaining the input light power of
Further, a part of the signal light output from the optical fiber amplification medium of the optical fiber amplifier is branched, the optical power of the branched signal light is detected, and each of the optical fiber amplifiers is detected based on the detection result. Output light power detecting means for obtaining the output light power of the stage;
Storage means for storing time-series data of the input optical power;
Gain control means for obtaining an amplification gain based on data of the input optical power and the output optical power, and controlling a drive current of the pumping light source based on a deviation between the amplification gain and a desired target gain And
While preparing for each optical fiber amplifier,
The input optical power at time t is Pin (t), the output optical power of the n-th stage (1 ≦ n ≦ N) optical fiber amplifier at time t is Pnout (t), and the input optical power is detected. The propagation time of the signal light between the optical coupler provided in the means and the optical coupler provided in the output optical power detection means of the n-th stage optical fiber amplifier is τfn, and the n-th stage optical fiber amplifier. When the difference between the signal processing time of the input optical power data in the gain control means and the signal processing time of the output optical power data of the n-th stage optical fiber amplifier is τen,
Holding the time series data of the input optical power from at least time t-τfn + τen to time t;
An amplification gain Gn (t) of the n-th stage optical fiber amplifier at time t is obtained based on Pnout (t) and Pin (t−τfn + τen).
A multistage optical fiber amplifier.
前記多段光ファイバ増幅器の初段の光ファイバ増幅部に入力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記初段の光ファイバ増幅器の入力光パワ−を求める入力光パワ−検出手段を備え、
更に、前記光ファイバ増幅部の光ファイバ増幅媒体から出力される信号光の一部を分岐し、分岐された信号光の光パワ−を検出し、その検出結果に基づいて前記光ファイバ増幅部各段の出力光パワ−を求める出力光パワ−検出手段と、
前記入力光パワ−の時系列デ−タを保存する記憶手段と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求め、前記増幅利得と所望の目標利得との偏差に基づいて前記励起用光源の駆動電流を制御する利得制御手段とを、
各光ファイバ増幅部毎に備えるとともに、
時刻tにおける前記入力光パワ−をPin(t)、時刻tにおけるn段目(1≦n≦N)の光ファイバ増幅部の前記出力光パワ−をPnout(t)、前記入力光パワ−検出手段に備えられた光カップラと前記n段目の光ファイバ増幅部の前記出力光パワ−検出手段に備えられた光カップラ間の信号光の伝搬時間をτfn、前記n段目の光ファイバ増幅部の前記利得制御手段における入力光パワ−デ−タの信号処理時間と前記n段目の光ファイバ増幅部の出力光パワ−デ−タの信号処理時間の差をτen、前記n段目の光ファイバ増幅部の利得制御手段に於ける演算から該演算に基づいて励起光パワ−が変化するまでに要する時間を制御遅延時間τcnとするとき、
前記入力光パワ−の時系列デ−タを少なくとも時刻t−τfn+τen+τcnから時刻tまで保持するとともに、
時刻tにおける前記n段目の光ファイバ増幅部の増幅利得Gn(t)をPnout(t)とPin(t−τfn+τen+τcn)に基づいて求める、
ことを特徴とする多段光ファイバ増幅器。 In a multistage optical fiber amplifier in which N (N is an integer of 2 or more) stages of optical fiber amplifiers including at least one optical fiber amplification medium and at least one excitation light source are connected.
Branching part of the signal light input to the first-stage optical fiber amplifier of the multi-stage optical fiber amplifier, detecting the optical power of the branched signal light, and detecting the optical power of the first-stage optical fiber amplifier based on the detection result Input light power detecting means for obtaining the input light power of
Further, a part of the signal light output from the optical fiber amplification medium of the optical fiber amplifier is branched, the optical power of the branched signal light is detected, and each of the optical fiber amplifiers is detected based on the detection result. Output light power detecting means for obtaining the output light power of the stage;
Storage means for storing time-series data of the input optical power;
Gain control means for obtaining an amplification gain based on data of the input optical power and the output optical power, and controlling a drive current of the pumping light source based on a deviation between the amplification gain and a desired target gain And
While preparing for each optical fiber amplifier,
The input optical power at time t is Pin (t), the output optical power of the n-th stage (1 ≦ n ≦ N) optical fiber amplifier at time t is Pnout (t), and the input optical power is detected. The propagation time of the signal light between the optical coupler provided in the means and the optical coupler provided in the output optical power detection means of the n-th stage optical fiber amplifier is τfn, and the n-th stage optical fiber amplifier. The difference between the signal processing time of the input optical power data in the gain control means and the signal processing time of the output optical power data of the n-th stage optical fiber amplifier is τen, and the n-th stage light When the time required from the calculation in the gain control means of the fiber amplifier to the change in pumping light power based on the calculation is defined as the control delay time τcn,
Holding time series data of the input optical power from at least time t-τfn + τen + τcn to time t;
An amplification gain Gn (t) of the n-th stage optical fiber amplifier at time t is obtained based on Pnout (t) and Pin (t−τfn + τen + τcn).
A multistage optical fiber amplifier.
前記光ファイバ増幅器に入力される信号光の光パワ−を求める入力光パワ−検出手順と、
前記光ファイバ増幅器から出力される信号光の光パワ−を求める出力光パワ−検出手順と、
前記入力光パワ−の時系列デ−タを保存する手順と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求める増幅利得算出手順と、
前記増幅利得と所望の目標利得との偏差を算出する利得偏差算出手順と、
前記利得偏差に基づいて前記励起用光源の駆動電流の補正量を算出する駆動電流補正量算出手順と、
前記補正量に基づいて新たな駆動電流設定値を算出する手順と、
前記新たな駆動電流設定値を出力し、励起用光源の出力を制御する制御出力手順を備え、
前記入力光パワ−検出手順で得られた時刻tにおける入力光パワ−の値をPin(t)、前記出力光パワ−検出手順で得られた時刻tにおける出力光パワ−の値をPout(t)、前記利得制御手順で得られた時刻tにおける増幅利得の値をG(t)、所定区間の信号光の伝搬時間をτf、前記入力光パワ−デ−タの信号処理時間と前記出力光パワ−デ−タの信号処理時間の差をτeとし、
前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τeから時刻tまで前記記憶手順にて保持するとともに、
前記増幅利得算出手順では前記増幅利得G(t)をPout(t)とPin(t−τf+τe)に基づいて求める、
ことを特徴とする光ファイバ増幅器の利得制御プログラム。 A program for controlling an amplification gain of an optical fiber amplifier including an optical fiber amplification medium and at least one excitation light source,
An input optical power detection procedure for obtaining optical power of signal light input to the optical fiber amplifier;
An output optical power detection procedure for determining the optical power of the signal light output from the optical fiber amplifier;
A procedure for storing time-series data of the input optical power;
An amplification gain calculation procedure for obtaining an amplification gain based on data of the input optical power and the output optical power;
A gain deviation calculation procedure for calculating a deviation between the amplification gain and a desired target gain;
A drive current correction amount calculation procedure for calculating a drive current correction amount of the excitation light source based on the gain deviation;
A procedure for calculating a new drive current set value based on the correction amount;
A control output procedure for outputting the new drive current set value and controlling the output of the excitation light source;
The input light power value at time t obtained by the input light power detection procedure is Pin (t), and the output light power value at time t obtained by the output light power detection procedure is Pout (t ), The gain value at time t obtained by the gain control procedure is G (t), the propagation time of signal light in a predetermined section is τf, the signal processing time of the input optical power data and the output light Let τe be the difference in signal processing time between power data,
Holding the time series data of the input optical power Pin (t) at least from time t-τf + τe to time t in the storing procedure;
In the amplification gain calculation procedure, the amplification gain G (t) is obtained based on Pout (t) and Pin (t−τf + τe).
A gain control program for an optical fiber amplifier.
前記光ファイバ増幅器に入力される信号光の光パワ−を求める入力光パワ−検出手順と、
前記光ファイバ増幅器から出力される信号光の光パワ−を求める出力光パワ−検出手順と、
前記入力光パワ−の時系列デ−タを保存する手順と、
前記入力光パワ−と前記出力光パワ−のデ−タに基づいて増幅利得を求める増幅利得算出手順と、
前記増幅利得と所望の目標利得との偏差を算出する利得偏差算出手順と、
前記利得偏差に基づいて前記励起用光源の駆動電流の補正量を算出する駆動電流補正量算出手順と、
前記補正量に基づいて新たな駆動電流設定値を算出する駆動電流設定値算出手順と、
前記新たな駆動電流設定値を出力し、励起用光源の出力を制御する制御出力手順を備え、
前記入力光パワ−検出手順で得られた時刻tにおける入力光パワ−の値をPin(t)、前記出力光パワ−検出手順で得られた時刻tにおける出力光パワ−の値をPout(t)、前記利得制御手順で得られた時刻tにおける増幅利得の値をG(t)、所定区間の信号光の伝搬時間をτf、前記入力光パワ−デ−タの信号処理時間と前記出力光パワ−デ−タの信号処理時間の差をτe、前記増幅利得算出手順に於ける演算から前記利得偏差算出手順、駆動電流補正量算出手順、前記駆動電流設定値算出手順、前記制御出力手順を経て、励起光パワ−が変化するまでに要する時間を制御遅延時間τcとし、
前記入力光パワ−Pin(t)の時系列デ−タを少なくとも時刻t−τf+τe+τcから時刻tまで前記記憶手順にて保持するとともに、
前記増幅利得算出手順では前記増幅利得G(t)をPout(t)とPin(t−τf+τe+τc)に基づいて求める、
ことを特徴とする光ファイバ増幅器の利得制御プログラム。 A program for controlling an amplification gain of an optical fiber amplifier including an optical fiber amplification medium and at least one excitation light source,
An input optical power detection procedure for obtaining optical power of signal light input to the optical fiber amplifier;
An output optical power detection procedure for determining the optical power of the signal light output from the optical fiber amplifier;
A procedure for storing time-series data of the input optical power;
An amplification gain calculation procedure for obtaining an amplification gain based on data of the input optical power and the output optical power;
A gain deviation calculation procedure for calculating a deviation between the amplification gain and a desired target gain;
A drive current correction amount calculation procedure for calculating a drive current correction amount of the excitation light source based on the gain deviation;
A drive current set value calculation procedure for calculating a new drive current set value based on the correction amount;
A control output procedure for outputting the new drive current set value and controlling the output of the excitation light source;
The value of input light power at time t obtained by the input light power detection procedure is Pin (t), and the value of output light power at time t obtained by the output light power detection procedure is Pout (t ), The gain value at time t obtained by the gain control procedure is G (t), the propagation time of signal light in a predetermined section is τf, the signal processing time of the input optical power data and the output light The difference in signal processing time of the power data is τe, and the gain deviation calculation procedure, the drive current correction amount calculation procedure, the drive current set value calculation procedure, and the control output procedure are calculated from the calculation in the amplification gain calculation procedure. Then, the time required for the pump light power to change is defined as the control delay time τc,
Holding the time series data of the input optical power Pin (t) at least from time t-τf + τe + τc to time t in the storing procedure;
In the amplification gain calculation procedure, the amplification gain G (t) is obtained based on Pout (t) and Pin (t−τf + τe + τc).
A gain control program for an optical fiber amplifier.
The propagation time τf is the time required for the signal light to propagate between the optical branching coupler inserted for detecting the input optical power and the optical branching coupler inserted for detecting the output optical power. The gain control program for an optical fiber amplifier according to claim 9 or 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004134991A JP4443994B2 (en) | 2004-04-30 | 2004-04-30 | Optical fiber amplifier and multistage optical fiber amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004134991A JP4443994B2 (en) | 2004-04-30 | 2004-04-30 | Optical fiber amplifier and multistage optical fiber amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005317815A true JP2005317815A (en) | 2005-11-10 |
JP4443994B2 JP4443994B2 (en) | 2010-03-31 |
Family
ID=35444909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004134991A Expired - Lifetime JP4443994B2 (en) | 2004-04-30 | 2004-04-30 | Optical fiber amplifier and multistage optical fiber amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4443994B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117411554A (en) * | 2023-12-15 | 2024-01-16 | 深圳市欧深特信息技术有限公司 | Control method of SOA in optical module and optical module |
-
2004
- 2004-04-30 JP JP2004134991A patent/JP4443994B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117411554A (en) * | 2023-12-15 | 2024-01-16 | 深圳市欧深特信息技术有限公司 | Control method of SOA in optical module and optical module |
CN117411554B (en) * | 2023-12-15 | 2024-03-29 | 深圳市欧深特信息技术有限公司 | Control method of SOA in optical module and optical module |
Also Published As
Publication number | Publication date |
---|---|
JP4443994B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3903650B2 (en) | Optical amplifier and optical amplifier control method | |
EP1283567B1 (en) | Automatic gain control device of optical fiber amplifier | |
JP4710357B2 (en) | Optical amplification apparatus, operation control method thereof, and program | |
CN101479896B (en) | Variable gain optical amplifiers | |
WO2017166869A1 (en) | Method for realizing precise target gain control for hybrid fibre amplifier, and hybrid fibre amplifier | |
JP6097698B2 (en) | Optical amplifier and optical amplifier control method | |
US20090190205A1 (en) | Raman amplifying device and control method | |
JP4443994B2 (en) | Optical fiber amplifier and multistage optical fiber amplifier | |
JP2006286918A (en) | Optical amplifier | |
JP4603361B2 (en) | Optical amplifier control device | |
US6900929B2 (en) | Noise figure measuring system for optical amplifier | |
JP5211796B2 (en) | Optical amplifier, input light level calculation method, and optical amplifier controller | |
WO2005002009A1 (en) | Amplification medium performance simulation device and method, and optical amplifier | |
US10971888B2 (en) | Optical amplifier | |
JP2005150435A (en) | Optical amplifier and control method thereof | |
JP5759437B2 (en) | Optical amplifier system and optical amplification method | |
JP2000022639A (en) | Optical amplifier | |
US7068422B2 (en) | Optical fiber amplification method and apparatus for controlling gain | |
JP6012579B2 (en) | Optical amplifier | |
JP5142024B2 (en) | Optical amplifier | |
JP4316407B2 (en) | Optical amplifier gain control method and optical amplifier using the same | |
JP4268153B2 (en) | Optical amplifier, optical amplifier control method, and optical amplification repeater communication system | |
JP2010008568A (en) | Light output control apparatus | |
JP2013523037A (en) | ASE correction of optical amplifier | |
JP5193505B2 (en) | Optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100113 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4443994 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |