JP2005316702A - Three-dimensional view display device - Google Patents

Three-dimensional view display device Download PDF

Info

Publication number
JP2005316702A
JP2005316702A JP2004133665A JP2004133665A JP2005316702A JP 2005316702 A JP2005316702 A JP 2005316702A JP 2004133665 A JP2004133665 A JP 2004133665A JP 2004133665 A JP2004133665 A JP 2004133665A JP 2005316702 A JP2005316702 A JP 2005316702A
Authority
JP
Japan
Prior art keywords
building
model
ceiling
shape
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133665A
Other languages
Japanese (ja)
Other versions
JP4311659B2 (en
Inventor
Tetsuo Kamikawa
哲生 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004133665A priority Critical patent/JP4311659B2/en
Publication of JP2005316702A publication Critical patent/JP2005316702A/en
Application granted granted Critical
Publication of JP4311659B2 publication Critical patent/JP4311659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional view display device capable of displaying a building ceiling having a complicated polygonal shape by use of a 3D graphics chip. <P>SOLUTION: This three-dimensional view display device has: a map data storage means 31 storing an attribute including at least one of a color, a pattern and a texture of the building ceiling and height information of a building, and a bottom shape of the building; a building 3D model generation means 32 generating a building 3D model shape showing coordinates of the building in a three-dimensional space by use of the height information and the bottom shape of the building stored in the map data storage means; and a 3D drawing means performing drawing of the front face of a building wall face constituting a building 3D model generated by the building 3D model generation means, drawing by at least one of the color, the pattern and the texture of the building ceiling stored in the map data storage means, of the rear face of the building wall face constituting the building 3D model generated by the building 3D model generation means, and hidden surface removal, by use of the three-dimensional graphics chip, and drawing a three-dimensional shape of the building. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、車両用ナビゲーションシステム、地理情報システム(GIS)等に利用される、都市景観を立体表示するための3次元景観表示装置に関する。   The present invention relates to a three-dimensional landscape display device for stereoscopic display of a city landscape, which is used in a vehicle navigation system, a geographic information system (GIS), and the like.

車両用ナビゲーションシステムに代表される従来の3次元景観表示装置においては、3次元地図表示時に、地図データの建物の底面形状(以下、底面ポリゴン形状あるいは底面ポリゴンの多角形形状ということもある。)と、建物の高さ(階数で表現されることもある。)とから、建物の高さ分だけ建物の底面形状である多角形を垂直に立てる方式で建物を3次元描画していた(例えば、特許文献1参照)。
また、従来の3次元景観表示装置で使用している2D(2次元)グラフィクスチップは、平面上への文字描画や多角形描画は得意とするものの、建物の3次元表示のような陰面消去を行う機能を備えていなかった。そこで、従来の3次元景観表示装置は、まず、建物を視点からの距離に応じてソーティングし、画面奥の建物から順に描画を行っていた。各建物の描画では、視点から見て奥の壁面から順に描画し、最後に天井面を多角形描画することにより陰面消去を行っていた。
In a conventional three-dimensional landscape display device typified by a vehicle navigation system, the bottom shape of a building of map data (hereinafter, sometimes referred to as a bottom polygon shape or a polygon shape of a bottom polygon) when displaying a three-dimensional map. From the height of the building (sometimes expressed by the number of floors), the building was drawn three-dimensionally in a way that the polygon, which is the bottom shape of the building, is set up vertically by the height of the building (for example, , See Patent Document 1).
In addition, 2D (2D) graphics chips used in conventional 3D landscape display devices are good at drawing characters and polygons on a flat surface, but they do hidden surface removal such as 3D display of buildings. There was no function to do. Therefore, the conventional 3D landscape display apparatus first sorts the buildings according to the distance from the viewpoint, and draws in order from the building at the back of the screen. In the drawing of each building, the hidden surface was erased by drawing in order from the back wall as viewed from the viewpoint, and finally drawing the ceiling surface in a polygon.

特開平2002−298162号公報(第25段落、第2図)Japanese Patent Laid-Open No. 2002-298162 (25th paragraph, FIG. 2)

今後、車両用ナビゲーションシステムに代表される3次元景観表示装置は、ますます表示の高速化、リアル化が求められており、従来のグラフィクスチップでは陰面消去機能を備えていないため、先に述べたようにCPU(中央演算処理装置)で陰面消去を行う必要があり、このような高速化の要求に答えることができなかった。そこで、3次元景観表示装置でもパソコンなどで用いられている本格的な3D(3次元)グラフィクスチップを使用することが今後予想される。   In the future, 3D landscape display devices represented by vehicle navigation systems are increasingly required to display faster and more realistically, and conventional graphics chips do not have a hidden surface removal function. Thus, it is necessary to perform hidden surface removal by a CPU (Central Processing Unit), and it has not been possible to answer such a demand for high speed. Therefore, it is expected that a 3D (3D) graphics chip used in a personal computer or the like will be used in a 3D landscape display device.

3Dグラフィクスチップは、通常Zバッファと呼ばれる奥行き値を記憶するバッファに各描画ピクセルの奥行き値を書き込むことにより、陰面消去をチップで行うことができる。3Dグラフィクスチップでの描画には、通常パソコンでは、例えば、Direct3D (Direct3D:3次元描画ライブラリ:参考文献=DirectX5オフィシャルマニュアル、米Microsoft Co.、アスキー出版局、1998)のような3D描画ライブラリを用いて描画する。また、3次元景観表示装置のような組込みシステムでは、チップメーカー提供の独自の3D描画ライブラリを用いることが多い。これらの3D描画ライブラリは、3Dグラフィクスチップの原理から、いずれも三角形での描画を基本としている。   The 3D graphics chip can perform hidden surface removal by the chip by writing the depth value of each drawing pixel in a buffer that stores a depth value, usually called a Z buffer. For drawing with a 3D graphics chip, a 3D drawing library such as Direct3D (Direct3D: 3D Drawing Library: Reference = DirectX5 Official Manual, Microsoft Co., ASCII Publishing Bureau, 1998) is usually used on a personal computer. And draw. Also, in an embedded system such as a 3D landscape display device, an original 3D drawing library provided by a chip manufacturer is often used. These 3D drawing libraries are all based on drawing with a triangle because of the principle of the 3D graphics chip.

そこで、3次元景観表示での建物描画において、建物壁面は、通常は4角形であるので、三角形2つとして3Dグラフィクスチップにより容易に陰面消去描画できる。地図平面部分(建物の底面部分)は、例えば5角形などの複雑な多角形形状を有している場合にも、従来の2Dグラフィクスチップの機能を用いて多角形描画を行えばよい。しかし、建物天井部分が例えば5角形などの複雑な多角形形状を有している場合は、3Dグラフィクスチップにより陰面消去描画できないという問題点があった。   Therefore, in the building drawing in the three-dimensional landscape display, the building wall surface is usually a quadrangular shape, so that the hidden surface can be easily drawn by using the 3D graphics chip as two triangles. Even when the map plane portion (the bottom portion of the building) has a complex polygonal shape such as a pentagon, for example, polygon drawing may be performed using the function of the conventional 2D graphics chip. However, when the building ceiling portion has a complicated polygonal shape such as a pentagon, for example, there is a problem that hidden surface erasure drawing cannot be performed by the 3D graphics chip.

本発明は、上記のような従来のものの問題点を解決するためになされたものであり、三角形しか描画できないが陰面消去の実施が可能な3Dグラフィクスチップを用いて、例えば5角形などの複雑な多角形形状を有する建物天井を表示することができる3次元景観表示装置を提供することを目的とするものである。   The present invention has been made in order to solve the above-described problems of the prior art, and uses a 3D graphics chip that can draw only a triangle but can perform hidden surface removal, for example, a complex shape such as a pentagon. An object of the present invention is to provide a three-dimensional landscape display device capable of displaying a building ceiling having a polygonal shape.

本発明に係る3次元景観表示装置は、建物天井の色、パターンおよびテクスチャの内の少なくとも1つと建物の高さ情報とを含む属性、並びに建物の底面形状を格納する地図データ格納手段と、前記地図データ格納手段に格納された建物の底面形状と高さ情報を用いて、建物の3次元空間での座標を示す建物3Dモデル形状を生成する建物3Dモデル生成手段と、3次元グラフィクスチップを用いて、前記建物3Dモデル生成手段で生成された建物3Dモデルを構成する建物壁面の表面の描画、前記建物3Dモデル生成手段で生成された建物3Dモデルを構成する建物壁面の裏面の前記地図データ格納手段に格納された建物天井の色、パターンおよびテクスチャの内の少なくとも1つでの描画、および陰面消去を行い、建物の3次元形状を描画する3D描画手段と、前記3D描画手段で描画された建物の3次元形状を表示する表示手段とを備えたものである。   The three-dimensional landscape display device according to the present invention includes a map data storage means for storing an attribute including at least one of a building ceiling color, pattern and texture and building height information, and a bottom shape of the building, Using a building 3D model generation unit that generates a building 3D model shape indicating coordinates in a three-dimensional space of the building using the bottom shape and height information of the building stored in the map data storage unit, and a three-dimensional graphics chip The drawing of the surface of the building wall constituting the building 3D model generated by the building 3D model generating means, and the map data storage of the back surface of the building wall forming the building 3D model generated by the building 3D model generating means Draws at least one of the color, pattern and texture of the building ceiling stored in the means and removes the hidden surface to draw the 3D shape of the building A 3D rendering unit which is obtained by a display means for displaying the three-dimensional shape of the drawn by 3D rendering unit building.

また、建物の高さ情報を含む属性、および建物の底面形状を格納する地図データ格納手段と、前記地図データ格納手段に格納された建物の底面形状と高さ情報を用いて、建物の3次元空間での座標を示す建物3Dモデル形状を生成する建物3Dモデル生成手段と、建物天井の多角形として前記建物の底面形状を三角形に分割する建物天井三角形分割手段と、3次元グラフィクスチップを用いて、前記建物3Dモデル生成手段で生成された建物3Dモデルを構成する建物壁面の表面および前記建物天井三角形分割手段により三角形に分割された天井の描画、並びに陰面消去を行い、建物の3次元形状を描画する3D描画手段と、前記3D描画手段で描画された建物の3次元形状を表示する表示手段とを備えたものである。   Further, the map data storage means for storing the attribute including the height information of the building and the bottom shape of the building, and the bottom shape and height information of the building stored in the map data storage means, the three-dimensional building Using a building 3D model generating means for generating a building 3D model shape indicating coordinates in space, a building ceiling triangulation means for dividing the bottom shape of the building into triangles as a building ceiling polygon, and a three-dimensional graphics chip The surface of the building wall constituting the building 3D model generated by the building 3D model generation means and the ceiling divided into triangles by the building ceiling triangulation means are drawn and the hidden surface is erased, and the three-dimensional shape of the building is obtained. 3D drawing means for drawing, and display means for displaying the three-dimensional shape of the building drawn by the 3D drawing means.

建物天井が、例えば5角形などの複雑な多角形から構成される場合にも、建物壁面の裏面を天井色または天井パターンまたは天井テクスチャで描画することにより、建物天井を多角形描画することなく、あたかも天井を描画しているかのように表示することができる。   Even when the building ceiling is composed of a complex polygon such as a pentagon, for example, by drawing the back of the building wall with a ceiling color or ceiling pattern or ceiling texture, It can be displayed as if it were drawing the ceiling.

また、建物天井が、例えば5角形などの複雑な多角形から構成される場合にも、三角形に分割することにより、三角形しか描画できない3Dグラフィクスチップを用いて描画することができる。これにより、建物天井にライティングを施したり、任意のテクスチャを貼ったりといった3Dグラフィクスチップのより高度でリアルな装飾機能を利用した3次元表示が可能となる。   In addition, even when the building ceiling is composed of a complex polygon such as a pentagon, for example, it can be drawn using a 3D graphics chip that can draw only triangles by dividing the triangle into triangles. As a result, 3D display using a more advanced and realistic decoration function of a 3D graphics chip, such as lighting on a building ceiling or pasting an arbitrary texture, becomes possible.

実施の形態1.
以下、本発明を車両用ナビゲーションシステムに適用した場合について説明する。
図1は本発明の実施の形態1による3次元景観表示装置を適用した車両用ナビゲーションシステムのハードウェア構成を示す概略構成図である。車両用ナビゲーションシステムは、図1に示すように、GPS(Global Positioning System)衛星から発信されるGPSデータを受信するGPS受信機11と、GPS受信機11により受信されたGPSデータに基づいて地図表示や経路案内や経路探索等の通常のナビゲーション処理を実施するマイクロプロセッサ15と、マイクロプロセッサ15の指示の下、動作プログラムにしたがってフレームバッファ19に地図表示などの描画内容を書き込むグラフィックスチップ18と、フレームバッファ19の描画内容を表示するディスプレイモニタ20とを備えている。
Embodiment 1 FIG.
Hereinafter, a case where the present invention is applied to a vehicle navigation system will be described.
FIG. 1 is a schematic configuration diagram showing a hardware configuration of a vehicle navigation system to which a three-dimensional landscape display device according to Embodiment 1 of the present invention is applied. As shown in FIG. 1, the vehicle navigation system includes a GPS receiver 11 that receives GPS data transmitted from a GPS (Global Positioning System) satellite, and a map display based on the GPS data received by the GPS receiver 11. A microprocessor 15 that performs normal navigation processing such as route guidance and route search, a graphics chip 18 that writes drawing contents such as a map display in the frame buffer 19 according to an operation program under the instruction of the microprocessor 15, And a display monitor 20 for displaying the drawing contents of the frame buffer 19.

さらに、マイクロプロセッサ15の動作プログラム等を格納するROM12と、マイクロプロセッサ15が処理を実行する際に各種のデータを一時的に格納するRAM13と、動作プログラムが使用するバックアップデータを保存する電池バックアップ付のSRAMやDRAM、または書き込み可能フラッシュROMなどの永続記憶部14と、CD−ROMやDVD−ROMやハードディスクなどの外部記憶装置16と、外部記憶装置16を制御する外部記憶インターフェイス部17とを備えている。
なお、ROM12のプログラムは起動時にRAM13に展開されることもある。
グラフィクスチップ18として、従来は陰面消去機能を持たないグラフィクスチップが用いられていたが、本実施の形態ではパソコンなどで用いられているグラフィクスチップで、三角形しか描画できないが陰面消去の実施が可能な3Dグラフィクスチップを使用する。
Furthermore, a ROM 12 that stores an operation program of the microprocessor 15, a RAM 13 that temporarily stores various data when the microprocessor 15 executes processing, and a battery backup that stores backup data used by the operation program A permanent storage unit 14 such as a SRAM, a DRAM, or a writable flash ROM, an external storage device 16 such as a CD-ROM, a DVD-ROM, or a hard disk, and an external storage interface unit 17 that controls the external storage device 16. ing.
Note that the program in the ROM 12 may be expanded in the RAM 13 at startup.
Conventionally, a graphics chip that does not have a hidden surface removal function has been used as the graphics chip 18, but in this embodiment, only a triangle can be drawn with a graphics chip used in a personal computer or the like, but hidden surface removal can be performed. A 3D graphics chip is used.

図2は、本発明の実施の形態1による車両用ナビゲーションシステムの機能構成を示す構成図である。これらの機能の処理は、図1のROM12に記憶された動作プログラムが実行する。ユーザインターフェイス部22は、操作メニューや目的地設定メニューの表示などを行う。自車位置検知部23は、図1のGPS受信機11と、外部記憶装置16に記憶された地図データから、車両の現在位置を推測する。経路探索部24は、車両の現在位置から目的地までの案内経路を算出する。経路案内部25は、探索された案内経路に従って音声と交差点案内図でドライバーに道案内を行う。地図表示を行う地図表示部(3次元景観表示部)26により、車両の自車位置は地図上に表示される。地図表示部26は、地図の3次元表示時に建物を3次元表示する建物3次元表示部27を含む。共通処理部28は、経路などの共通データの管理や、描画ライブラリなどの各種共通ライブラリの管理など、各部に共通の処理を行う。   FIG. 2 is a configuration diagram showing a functional configuration of the vehicle navigation system according to the first embodiment of the present invention. The processing of these functions is executed by an operation program stored in the ROM 12 of FIG. The user interface unit 22 displays an operation menu and a destination setting menu. The own vehicle position detection unit 23 estimates the current position of the vehicle from the GPS receiver 11 of FIG. 1 and the map data stored in the external storage device 16. The route search unit 24 calculates a guide route from the current position of the vehicle to the destination. The route guide unit 25 provides route guidance to the driver by voice and an intersection guide map according to the searched guide route. A map display unit (three-dimensional landscape display unit) 26 that displays a map displays the position of the vehicle on the map. The map display unit 26 includes a building three-dimensional display unit 27 that three-dimensionally displays a building when the map is three-dimensionally displayed. The common processing unit 28 performs processing common to each unit, such as management of common data such as paths and management of various common libraries such as a drawing library.

図3は、建物3次元表示部の構成を示す構成図である。地図データ格納手段31は、建物の底面形状(底面ポリゴン形状)とその属性(少なくとも建物の高さ情報を含む。)を記憶する。建物3Dモデル生成手段32は、あとで詳細に説明するように、地図データ格納手段31に格納された建物の底面ポリゴンの多角形形状と建物属性から、建物の高さ分だけ建物の底面形状である多角形を垂直に立てる方式で、建物の3次元空間での座標を示す3Dモデル(3次元形状)を生成する。
3D描画手段35は、この建物3Dモデルを構成する建物壁面の表面を、3Dグラフィクスチップを用いて描画する。この時、壁面には、建物の窓などを示すテクスチャを貼り付けたり、もしくは、窓等を上書き描画することにより壁面にテクスチャを描画する。さらに、3D描画手段35は、建物3Dモデルを構成する建物壁面の裏面を、3Dグラフィクスチップを用いて描画する。この時、建物壁面の裏面は、建物天井の色や、建物天井のパターンや、天井のテクスチャで描画する。
FIG. 3 is a configuration diagram illustrating a configuration of the building three-dimensional display unit. The map data storage means 31 stores the bottom shape of the building (bottom surface polygon shape) and its attributes (including at least the height information of the building). As will be described in detail later, the building 3D model generation unit 32 uses the bottom shape of the building by the height of the building from the polygonal shape and building attributes of the bottom polygon stored in the map data storage unit 31. A 3D model (three-dimensional shape) indicating coordinates in a three-dimensional space of a building is generated by a method in which a certain polygon is set up vertically.
The 3D drawing means 35 draws the surface of the building wall surface constituting the building 3D model using a 3D graphics chip. At this time, a texture indicating a building window or the like is pasted on the wall surface, or the texture is drawn on the wall surface by overwriting the window or the like. Furthermore, the 3D drawing means 35 draws the back surface of the building wall surface constituting the building 3D model using a 3D graphics chip. At this time, the back surface of the building wall is drawn with the color of the building ceiling, the pattern of the building ceiling, or the texture of the ceiling.

なお、3D描画手段35は、3Dグラフィクスチップを使用して描画を行うため、多角形を描画することはできず、三角形のみ描画することができるが、建物の壁面は、四角形から構成されるため、容易に三角形2つとして描画できる。以下の説明では、建物3Dモデル生成手段32が建物の壁面の四角形を三画形に分割して記憶する場合について説明するが、これに限るものではない。
建物の天井部分は、例えば5角形などの複雑な多角形形状を有する場合は、3Dグラフィクスチップでは描画することはできなかったが、本実施の形態では、建物壁面裏面を、建物天井の色や、建物天井のパターンや、天井のテクスチャで描画することにより、図4に例示するように、建物の天井部分を別途描画することなく、あたかも、天井を描画しているのと同じような画面表示効果を得ることができる。すなわち、建物天井を表示することができる。
Since the 3D drawing means 35 draws using a 3D graphics chip, the polygon cannot be drawn and only the triangle can be drawn, but the wall surface of the building is composed of a quadrangle. It can be easily drawn as two triangles. In the following description, the case where the building 3D model generation unit 32 stores the quadrangular shape of the wall surface of the building by dividing it into three shapes will be described, but the present invention is not limited to this.
If the ceiling of the building has a complex polygonal shape such as a pentagon, for example, it could not be drawn with a 3D graphics chip, but in this embodiment, the color of the building ceiling By drawing with the building ceiling pattern and ceiling texture, as shown in FIG. 4, the screen display is similar to drawing the ceiling without drawing the ceiling of the building separately. An effect can be obtained. That is, the building ceiling can be displayed.

壁面描画では、3Dグラフィクスのカリングという機能を用いると良い。カリング機能とは、図5に示すように、3Dグラフィクスへの設定により、画面座標に座標変換した後に、反時計周りの頂点順序となる面を非表示にしたり、時計回りの頂点順序となる面を非表示にしたりする機能のことである。例えば、代表的な3Dグラフィクスライブラリである、前出のDirect3Dでは、IDirect3DDevice8:: SetRenderState関数で、第一引き数を、D3DRS_CULLMODEに設定することによりカリングの設定を行う。第二引き数で、時計周りを非表示とするか(D3DCULL_CW)、反時計回りを非表示とするか(D3DCULL_CCW)、どちら周りでも表示とするか(D3DCULL_NONE)を設定する。このカリング機能を用いて、建物壁面を時計回りの頂点記述で記述し、表面描画時には、反時計回りを非表示とするカリング設定で描画し、裏面描画時には、時計回りを非表示とするカリング設定で描画すると、表面と裏面を描画できる。また、別の方法としては、建物壁面の表面を時計回りの頂点記述で記述し、建物壁面の裏面を反時計回りの頂点記述で記述し、反時計周りを非表示とするカリング設定で描画してもよい。   For wall drawing, a function called 3D graphics culling may be used. As shown in FIG. 5, the culling function is a surface that becomes non-displayed in the counterclockwise vertex order after the coordinate conversion into the screen coordinates by setting to 3D graphics, or the surface that becomes the clockwise vertex order. It is a function to hide. For example, in the above-described Direct3D, which is a representative 3D graphics library, culling is set by setting the first argument to D3DRS_CULLMODE with the IDirect3DDevice8 :: SetRenderState function. The second argument is used to set whether the clockwise rotation is hidden (D3DCULL_CW), the counterclockwise rotation is not displayed (D3DCULL_CCW), or whether it is displayed in either direction (D3DCULL_NONE). Using this culling function, the building wall surface is described with a clockwise vertex description, and when drawing on the front side, it is drawn with the culling setting to hide counterclockwise, and when drawing on the back side, the culling setting is set to hide clockwise. By drawing with, you can draw the front and back. Another method is to describe the surface of the building wall with a clockwise vertex description, describe the back of the building wall with a counterclockwise vertex description, and draw with a culling setting that hides the counterclockwise direction. May be.

ここで、建物3Dモデル生成手段32の動作を説明する。例えば図6に示すような建物の底面ポリゴン形状は、建物の高さ情報と共に地図データ格納手段31に格納されている。この建物の底面ポリゴン形状から、建物3Dモデルを生成するには、図7、図8に示すように、まず、底辺ABを建物の高さ分だけ垂直に立てた壁面の3次元空間での座標を示す3Dモデルを生成し、底辺BC、底辺CD、底辺DE、底辺EFと順に壁面を生成して建物3Dモデルを生成する。この時、三角形プリミティブは、時計回りに記述する。3次元座標には、図9(a)、(b)にそれぞれ示すような右手座標系または左手座標系を用いる。この時、壁面のy座標が建物の高さを示す。また三角形プリミティブは、図10に示すように、テクスチャのuv座標を持つ。3Dグラフィクスではテクスチャ座標を1より大きな値にすると、テクスチャを繰り返すことができる。例えば、3回テクスチャを繰り返したい時には、(u, v) = (3.0, 3.0)にすればよい。   Here, the operation of the building 3D model generation means 32 will be described. For example, the bottom polygon shape of the building as shown in FIG. 6 is stored in the map data storage means 31 together with the height information of the building. In order to generate a building 3D model from the bottom polygon shape of this building, as shown in FIGS. 7 and 8, first, the coordinates in the three-dimensional space of the wall with the base AB standing vertically by the height of the building are shown. 3D model is generated, and a building 3D model is generated by generating wall surfaces in order of the base BC, the base CD, the base DE, and the base EF. At this time, the triangle primitive is described clockwise. For the three-dimensional coordinates, a right-handed coordinate system or a left-handed coordinate system as shown in FIGS. 9A and 9B is used. At this time, the y coordinate of the wall surface indicates the height of the building. Further, as shown in FIG. 10, the triangle primitive has a texture uv coordinate. In 3D graphics, the texture can be repeated by setting the texture coordinates to a value greater than one. For example, if you want to repeat the texture three times, you can set (u, v) = (3.0, 3.0).

次に、3D描画手段35の動作を説明する。まず、建物壁面の表面の描画について説明する。建物壁面の表面は、図8の建物3Dモデルの記述(三角形プリミティブ)を図10に示すテクスチャで、半時計回りカリングで3D描画する。この動作のプログラム記述は図11に示すようになり、半時計周りカリングにより図12のような見栄えになる。3D描画では、3Dモデルをある視点から見た描画が可能であり、この視点から見た建物壁面の表面のみが表示される結果となる。もし、3Dモデルの頂点記述を半時計周りにした場合は、時計周りカリングで3D描画することにより同様の表示が得られる。   Next, the operation of the 3D drawing unit 35 will be described. First, drawing of the surface of a building wall surface will be described. On the surface of the building wall, the description (triangle primitive) of the building 3D model shown in FIG. 8 is drawn in 3D by counterclockwise culling with the texture shown in FIG. The program description of this operation is as shown in FIG. 11, and looks like FIG. 12 by counterclockwise culling. In the 3D drawing, the 3D model can be drawn from a certain viewpoint, and only the surface of the building wall surface viewed from this viewpoint is displayed. If the vertex description of the 3D model is made counterclockwise, the same display can be obtained by 3D drawing by clockwise culling.

次に、建物壁面の裏面の描画について説明する。建物壁面の裏面は、図8の底辺の3Dモデルの記述(三角形プリミティブ)を図13に示す天井テクスチャもしくは単色で、時計回りカリングで3D描画する。この動作のプログラム記述は図14のようになり、時計周りカリングにより図15のような見栄えになる。図12(建物壁面の表面)と同じ視点から見た建物壁面の裏面のみが表示される結果となる。この時、建物壁面の裏面の継ぎ目が見えないように、テクスチャを単色にしたり、ライティングをオフにする。もし、3Dモデルの頂点記述を半時計周りにした場合は、半時計回りカリングで3D描画することにより同様の表示が得られる。   Next, drawing of the back surface of a building wall surface will be described. On the back surface of the building wall, the description (triangular primitive) of the 3D model at the bottom of FIG. 8 is drawn in 3D by clockwise culling with the ceiling texture or single color shown in FIG. The program description of this operation is as shown in FIG. 14, and looks like FIG. 15 by clockwise culling. As a result, only the rear surface of the building wall surface viewed from the same viewpoint as FIG. 12 (the surface of the building wall surface) is displayed. At this time, the texture is set to a single color or lighting is turned off so that the seam on the back of the building wall is not visible. If the vertex description of the 3D model is made counterclockwise, the same display can be obtained by 3D drawing by counterclockwise culling.

3D描画手段35は、3Dグラフィクスチップによる陰面消去を実施するため、図12と図15の描画が陰面消去され、結果として図16のように擬似的に天井を描画したような建物の3D描画が得られる。   Since the 3D drawing means 35 performs hidden surface removal using a 3D graphics chip, the drawings in FIGS. 12 and 15 are erased from the hidden surface, and as a result, a 3D drawing of a building in which a ceiling is artificially drawn as shown in FIG. 16 is obtained. can get.

図3に戻って、建物3Dモデル格納手段36は、建物の壁面の実際のテクスチャや、実際の3次元形状などの建物のよりリアルな3Dモデルを格納している。格納建物3Dモデル使用判定手段37は、描画対象となる建物が、特定の地点、もしくは、特定の路線、もしくは、特定の領域、もしくは、特定のポリゴン属性に該当する時は、建物3Dモデル生成手段32の生成する建物3Dモデルではなく、建物3Dモデル格納手段36に格納された、よりリアルな建物3Dモデルを描画に使用する。
このことにより、図17に示すように、建物の底面ポリゴン形状のみから建物3Dモデルを生成して描画した3次元地図表示に比べ、より実際の景観に近い、リアルな建物3次元表示が可能となる。
Returning to FIG. 3, the building 3D model storage means 36 stores a more realistic 3D model of the building such as an actual texture of the wall surface of the building and an actual three-dimensional shape. The storage building 3D model use determining means 37 is a building 3D model generating means when the building to be rendered corresponds to a specific point, a specific route, a specific area, or a specific polygon attribute. Instead of the building 3D model generated by 32, a more realistic building 3D model stored in the building 3D model storage means 36 is used for drawing.
As a result, as shown in FIG. 17, it is possible to display a realistic building 3D display that is closer to the actual landscape than a 3D map display that is generated by drawing a building 3D model from only the bottom polygon shape of the building. Become.

実施の形態2.
なお、上記実施の形態では、建物3Dモデル格納手段36に格納する建物3Dモデルは、建物天井を含まない3次元形状データとした場合について説明したが、図18に示すように、多角形から構成される建物天井をあらかじめ三角形に分割して、天井面を含んだ建物3Dモデルとして格納してもよい。
このように、建物天井をあらかじめ三角形(あるいは擬似三角形)に分割しておくと、建物天井面にライティングを施したり、テクスチャをはりつけたりすることができ、単色もしくは単一パターンもしくは単一テクスチャでしか表現できない建物壁面裏面描画手段34での擬似天井描画に比べて、より多彩でリアルな表現が可能となる。
Embodiment 2. FIG.
In the above embodiment, the case where the building 3D model stored in the building 3D model storage means 36 is three-dimensional shape data not including the ceiling of the building has been described. However, as shown in FIG. The building ceiling may be divided into triangles in advance and stored as a building 3D model including the ceiling surface.
In this way, if the building ceiling is divided into triangles (or pseudo triangles) in advance, lighting can be applied to the building ceiling surface and textures can be applied, and only in a single color, single pattern or single texture. Compared with the pseudo ceiling drawing by the building wall back surface drawing means 34 that cannot be expressed, more various and realistic expressions are possible.

次に、3D描画手段35の動作を説明する。建物3Dモデル格納手段36に格納される建物3Dモデル(三角形プリミティブ)は、天井があらかじめ三角形分割されているため、直接、3D描画手段35により3D描画される。すなわち、3D描画手段35は、3Dグラフィクスチップを用いて、建物壁面の表面および天井の描画、並びに陰面消去を行い、建物の3次元形状を描画する。
多角形の三角形分割は、計算幾何学の代表的な三角形分割アルゴリズム用いると良い(例えばAtul Narkhede, Dinesh Manocha :"Fast Polygon Triangulation based on Seidel's Algorithm",インターネット<URL http://www.cs.unc.edu/~dm/CODE/GEM/chapter.html>)。
Next, the operation of the 3D drawing unit 35 will be described. The building 3D model (triangle primitive) stored in the building 3D model storage unit 36 is directly 3D-drawn by the 3D drawing unit 35 because the ceiling is pre-triangulated. That is, the 3D drawing means 35 draws the surface of the building wall surface and the ceiling, and erases the hidden surface by using the 3D graphics chip to draw the three-dimensional shape of the building.
Polygonal triangulation may be performed using a typical triangulation algorithm of computational geometry (for example, Atul Narkhede, Dinesh Manocha: "Fast Polygon Triangulation based on Seidel's Algorithm", Internet <URL http: //www.cs.unc .edu / ~ dm / CODE / GEM / chapter.html>).

実施の形態3.
図19は、本発明の実施の形態3における、建物3次元表示部の機能構成図である。他の構成は実施の形態1と同様であるので、以下では主に、実施の形態1との相違点について説明する。
地図データ格納手段31は、建物の底面形状(底面ポリゴン形状)とその属性(少なくとも建物の高さ情報を含む。)を記憶する。建物3Dモデル生成手段32は、地図データ格納手段31に格納された建物の底面ポリゴンの多角形形状と建物属性から、建物の高さ分だけ建物の底面形状である多角形を垂直に立てる方式で、建物の3次元空間での座標を示す3Dモデル(3次元形状)を生成する。ここまでは実施の形態1の場合と同様である。
次に、本実施の形態では、建物天井三角形分割手段38が、図20に示すように、建物の天井の多角形をオンラインで三角形に分割する。多角形の三角形分割には、計算幾何学の分野の三角形分割アルゴリズムを用いる。
次に、3D描画手段35は、3Dグラフィクスチップを用いて、建物3Dモデルを構成する建物壁面の表面および天井(建物天井三角形分割手段38により三角形に分割されている。)の描画並びに陰面消去を行い、建物の3次元形状を描画する。すなわち、三角形プリミティブを描画する。
Embodiment 3 FIG.
FIG. 19 is a functional configuration diagram of a building three-dimensional display unit according to Embodiment 3 of the present invention. Since the other configuration is the same as that of the first embodiment, differences from the first embodiment will be mainly described below.
The map data storage means 31 stores the bottom shape of the building (bottom surface polygon shape) and its attributes (including at least the height information of the building). The building 3D model generation means 32 is a method in which a polygon that is the bottom shape of the building is vertically set up by the height of the building from the polygonal shape and building attributes of the bottom polygon stored in the map data storage means 31. Then, a 3D model (three-dimensional shape) indicating the coordinates of the building in the three-dimensional space is generated. The steps so far are the same as those in the first embodiment.
Next, in the present embodiment, the building ceiling triangle dividing means 38 divides the polygon of the ceiling of the building into triangles online as shown in FIG. For the triangulation of a polygon, a triangulation algorithm in the field of computational geometry is used.
Next, the 3D drawing means 35 uses the 3D graphics chip to draw the surface and ceiling of the building wall constituting the building 3D model (divided into triangles by the building ceiling triangle dividing means 38) and hidden surface removal. And draw the 3D shape of the building. That is, a triangle primitive is drawn.

このように、建物の天井部分を三角形分割することにより、建物の天井にライティングを施したり、また、建物の天井に任意のテクスチャを貼ったりすることができ、よりリアルな描画が可能となる。   In this way, by dividing the ceiling portion of the building into triangles, lighting can be applied to the ceiling of the building, and an arbitrary texture can be attached to the ceiling of the building, thereby enabling more realistic drawing.

実施の形態4.
なお、上記実施の形態3では、建物3Dモデル格納手段36に格納する建物3Dモデルは、建物天井を多角形として記述した3次元形状データとした場合について説明したが、実施の形態2の図18に示したように、多角形から構成される建物天井をあらかじめ三角形に分割して、天井面を含んだ建物3Dモデルとして格納してもよい。
このように、建物天井をあらかじめ三角形に分割しておくと、建物天井三角形分割手段38でオンラインで多角形を三角形分割する手間が省けて、少ない処理負荷で描画が可能となる。
図21は、この時の建物3次元表示部の機能構成図であり、建物3Dモデル格納手段36に格納された建物モデルは、建物天井三角形分割手段38を経由せずに、直接、3D描画手段35により描画される。
Embodiment 4 FIG.
In the third embodiment, the building 3D model stored in the building 3D model storage means 36 has been described as a three-dimensional shape data in which the building ceiling is described as a polygon. However, FIG. 18 of the second embodiment. As shown in FIG. 5, the building ceiling composed of polygons may be divided into triangles in advance and stored as a building 3D model including the ceiling surface.
As described above, if the building ceiling is divided into triangles in advance, it is possible to save the time and effort of triangulating polygons online by the building ceiling triangle dividing means 38, and drawing can be performed with a small processing load.
FIG. 21 is a functional configuration diagram of the building 3D display unit at this time. The building model stored in the building 3D model storage unit 36 is directly converted into the 3D drawing unit without going through the building ceiling triangulation unit 38. 35 is drawn.

実施の形態1による車両用ナビゲーションシステムのハードウェア構成を示す概略構成図である。1 is a schematic configuration diagram illustrating a hardware configuration of a vehicle navigation system according to Embodiment 1. FIG. 実施の形態1による車両用ナビゲーションシステムの機能構成を示す構成図である。1 is a configuration diagram showing a functional configuration of a vehicle navigation system according to Embodiment 1. FIG. 実施の形態1に係り、図2の建物3次元表示部の機能構成を示す構成図である。FIG. 3 is a configuration diagram illustrating a functional configuration of a building three-dimensional display unit in FIG. 2 according to the first embodiment. 実施の形態1に係り、建物3次元表示部での描画の様子を説明する説明図である。FIG. 6 is an explanatory diagram for explaining a state of drawing on the building three-dimensional display unit according to the first embodiment. 実施の形態1に係り、カリング機能を説明する説明図である。FIG. 10 is an explanatory diagram for explaining a culling function according to the first embodiment. 実施の形態1に係り、地図データ格納手段に格納されている建物の底面ポリゴン形状を示す図である。It is a figure which concerns on Embodiment 1 and shows the bottom face polygon shape of the building stored in the map data storage means. 実施の形態1に係り、建物の底面ポリゴン形状からの建物3Dモデル生成について説明する図である。FIG. 10 is a diagram for describing building 3D model generation from a bottom polygon shape of a building according to the first embodiment. 実施の形態1に係り、建物3Dモデルの記述の一例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an example of a description of a building 3D model according to the first embodiment. 実施の形態1に係り、右手座標系(a)と左手座標系(b)による3次元座標を示す図である。FIG. 4 is a diagram illustrating three-dimensional coordinates according to the first embodiment using a right-handed coordinate system (a) and a left-handed coordinate system (b). 実施の形態1に係り、建物壁面表面のテクスチャのuv座標系の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a uv coordinate system of a texture on a building wall surface according to the first embodiment. 実施の形態1に係り、建物壁面表面の3D描画動作のプログラム記述の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a program description of a 3D drawing operation on a building wall surface according to the first embodiment. 実施の形態1に係り、建物壁面表面の3Dモデル描画結果の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a 3D model drawing result on a building wall surface according to the first embodiment. 実施の形態1に係り、建物壁面裏面のテクスチャのuv座標系の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a uv coordinate system of a texture on a back surface of a building wall according to the first embodiment. 実施の形態1に係り、建物壁面裏面の3D描画動作のプログラム記述の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a program description of a 3D drawing operation on the back surface of a building wall according to the first embodiment. 実施の形態1に係り、建物壁面裏面の3Dモデル描画結果の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a 3D model drawing result on the back surface of a building wall according to the first embodiment. 実施の形態1に係り、建物の3Dモデル描画結果の一例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an example of a 3D model drawing result of a building according to the first embodiment. 実施の形態1に係り、建物3Dモデル格納手段に格納されている3Dモデルとそれを用いた建物表示結果の一例を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 and shows an example of the 3D model stored in the building 3D model storage means, and the building display result using it. 実施の形態2に係り、建物3Dモデル格納手段に格納されている3Dモデルの一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a 3D model stored in a building 3D model storage unit according to the second embodiment. 実施の形態3に係り、建物3次元表示部の機能構成を示す構成図である。FIG. 10 is a configuration diagram illustrating a functional configuration of a building three-dimensional display unit according to the third embodiment. 実施の形態3に係り、建物底面ポリゴンの三角形分割について説明する図である。FIG. 10 is a diagram for explaining triangulation of a building bottom polygon according to the third embodiment. 実施の形態4に係り、建物3次元表示部の機能構成を示す構成図である。FIG. 16 is a configuration diagram illustrating a functional configuration of a building three-dimensional display unit according to the fourth embodiment.

符号の説明Explanation of symbols

11 GPS受信機、12 ROM、13は RAM、14 永続記憶部、15 マイクロプロセッサ、16 外部記憶装置、17 外部記憶インタフェース部、18 グラフィックスチップ、19 フレームバッファ、20 ディスプレイモニタ、22 ユーザインターフェイス部、23 自車位置検知部、24 経路探索部、25 経路案内部、26 地図表示部、27 建物3次元表示部、28 共通処理部、31地図データ格納手段、32 建物3Dモデル生成手段、35 3D描画手段、36 建物3Dモデル格納手段、37 格納建物3Dモデル使用判定手段、38 建物天井三角形分割手段。
11 GPS receiver, 12 ROM, 13 is RAM, 14 persistent storage, 15 microprocessor, 16 external storage, 17 external storage interface, 18 graphics chip, 19 frame buffer, 20 display monitor, 22 user interface, 23 vehicle position detection unit, 24 route search unit, 25 route guidance unit, 26 map display unit, 27 building 3D display unit, 28 common processing unit, 31 map data storage unit, 32 building 3D model generation unit, 35 3D drawing Means, 36 building 3D model storage means, 37 storage building 3D model use determining means, 38 building ceiling triangulation means.

Claims (4)

建物天井の色、パターンおよびテクスチャの内の少なくとも1つと建物の高さ情報とを含む属性、並びに建物の底面形状を格納する地図データ格納手段と、
前記地図データ格納手段に格納された建物の底面形状と高さ情報を用いて、建物の3次元空間での座標を示す建物3Dモデル形状を生成する建物3Dモデル生成手段と、
3次元グラフィクスチップを用いて、前記建物3Dモデル生成手段で生成された建物3Dモデルを構成する建物壁面の表面の描画、前記建物3Dモデル生成手段で生成された建物3Dモデルを構成する建物壁面の裏面の前記地図データ格納手段に格納された建物天井の色、パターンおよびテクスチャの内の少なくとも1つでの描画、および陰面消去を行い、建物の3次元形状を描画する3D描画手段と、
前記3D描画手段で描画された建物の3次元形状を表示する表示手段と
を備えた3次元景観表示装置。
Map data storage means for storing attributes including at least one of the color, pattern and texture of the building ceiling and the height information of the building, and the bottom shape of the building;
A building 3D model generating unit that generates a building 3D model shape indicating coordinates in a three-dimensional space of the building using the bottom shape and height information of the building stored in the map data storage unit;
Using a 3D graphics chip, drawing of the surface of the building wall surface constituting the building 3D model generated by the building 3D model generation unit, and the building wall surface of the building 3D model generated by the building 3D model generation unit 3D drawing means for drawing the three-dimensional shape of the building by drawing with at least one of the color, pattern and texture of the building ceiling stored in the map data storage means on the back side and removing the hidden surface;
A three-dimensional landscape display device comprising display means for displaying a three-dimensional shape of a building drawn by the 3D drawing means.
建物の高さ情報を含む属性、および建物の底面形状を格納する地図データ格納手段と、
前記地図データ格納手段に格納された建物の底面形状と高さ情報を用いて、建物の3次元空間での座標を示す建物3Dモデル形状を生成する建物3Dモデル生成手段と、
建物天井の多角形として前記建物の底面形状を三角形に分割する建物天井三角形分割手段と、
3次元グラフィクスチップを用いて、前記建物3Dモデル生成手段で生成された建物3Dモデルを構成する建物壁面の表面および前記建物天井三角形分割手段により三角形に分割された天井の描画、並びに陰面消去を行い、建物の3次元形状を描画する3D描画手段と、
前記3D描画手段で描画された建物の3次元形状を表示する表示手段と
を備えた3次元景観表示装置。
Map data storage means for storing attributes including building height information and the bottom shape of the building;
A building 3D model generating unit that generates a building 3D model shape indicating coordinates in a three-dimensional space of the building using the bottom shape and height information of the building stored in the map data storage unit;
Building ceiling triangulation means for dividing the bottom shape of the building into triangles as polygons of the building ceiling;
Using a three-dimensional graphics chip, the surface of the building wall constituting the building 3D model generated by the building 3D model generation means, the ceiling divided into triangles by the building ceiling triangulation means, and hidden surface removal are performed. 3D drawing means for drawing the three-dimensional shape of the building;
A three-dimensional landscape display device comprising display means for displaying a three-dimensional shape of a building drawn by the 3D drawing means.
建物の3Dモデル形状および壁面テクスチャを記述した建物の3Dモデルを格納する建物3Dモデル格納手段と、
描画対象となる建物が、特定の地点、特定の領域、特定の路線、および地図データ内の特定のポリゴン属性の内の少なくとも何れか1つに該当する場合に、建物3Dモデル生成手段で生成される建物3Dモデルに代わって前記建物3Dモデル格納手段内に格納された建物の3Dモデルを使用するよう判定する格納建物3Dモデル使用判定手段と
を備えたことを特徴とする請求項1または2に記載の3次元景観表示装置。
Building 3D model storage means for storing the 3D model of the building describing the 3D model shape and wall texture of the building;
When the building to be drawn corresponds to at least one of a specific point, a specific region, a specific route, and a specific polygon attribute in the map data, it is generated by the building 3D model generation means 3. A storage building 3D model use determination unit that determines to use a 3D model of a building stored in the building 3D model storage unit instead of the building 3D model storage unit. The three-dimensional landscape display device described.
建物3Dモデル格納手段は、建物を構成する四角以上の多角形の面をあらかじめ三角形に分割して三角形として格納することを特徴とする請求項3記載の3次元景観表示装置。 4. The 3D landscape display device according to claim 3, wherein the building 3D model storage means divides a polygonal surface of a square or more constituting the building into triangles in advance and stores them as triangles.
JP2004133665A 2004-04-28 2004-04-28 3D landscape display device Expired - Fee Related JP4311659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133665A JP4311659B2 (en) 2004-04-28 2004-04-28 3D landscape display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133665A JP4311659B2 (en) 2004-04-28 2004-04-28 3D landscape display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007336767A Division JP2008102963A (en) 2007-12-27 2007-12-27 Navigation system for vehicle

Publications (2)

Publication Number Publication Date
JP2005316702A true JP2005316702A (en) 2005-11-10
JP4311659B2 JP4311659B2 (en) 2009-08-12

Family

ID=35444065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133665A Expired - Fee Related JP4311659B2 (en) 2004-04-28 2004-04-28 3D landscape display device

Country Status (1)

Country Link
JP (1) JP4311659B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203940A (en) * 2007-02-16 2008-09-04 Hitachi Ltd Three-dimensional map display system, method of displaying three-dimensional map and program thereof
WO2016179825A1 (en) * 2015-05-14 2016-11-17 中国科学院深圳先进技术研究院 Navigation method based on three-dimensional scene
CN109903380A (en) * 2019-03-14 2019-06-18 广州世峰数字科技有限公司 A kind of three-dimensional building model and information show interface layout system
CN112434557A (en) * 2020-10-20 2021-03-02 深圳市华橙数字科技有限公司 Three-dimensional display method and device of motion trail, terminal and storage medium
CN113932810A (en) * 2021-07-22 2022-01-14 全图通位置网络有限公司 Urban rail three-dimensional navigation map optimization method based on multi-source geographic information model

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203940A (en) * 2007-02-16 2008-09-04 Hitachi Ltd Three-dimensional map display system, method of displaying three-dimensional map and program thereof
WO2016179825A1 (en) * 2015-05-14 2016-11-17 中国科学院深圳先进技术研究院 Navigation method based on three-dimensional scene
US10066956B2 (en) 2015-05-14 2018-09-04 Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences Navigation technology in three-dimensional scenes
CN109903380A (en) * 2019-03-14 2019-06-18 广州世峰数字科技有限公司 A kind of three-dimensional building model and information show interface layout system
CN112434557A (en) * 2020-10-20 2021-03-02 深圳市华橙数字科技有限公司 Three-dimensional display method and device of motion trail, terminal and storage medium
CN113932810A (en) * 2021-07-22 2022-01-14 全图通位置网络有限公司 Urban rail three-dimensional navigation map optimization method based on multi-source geographic information model
CN113932810B (en) * 2021-07-22 2023-11-07 全图通位置网络有限公司 Urban rail three-dimensional navigation map optimization method based on multisource geographic information model

Also Published As

Publication number Publication date
JP4311659B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
EP2602592B1 (en) Stylized procedural modeling for 3D navigation
KR100520708B1 (en) Method for displaying three dimensional map
JP4896761B2 (en) 3D map display system, 3D map display method, and program thereof
US8223145B2 (en) Method and system for 3D object positioning in 3D virtual environments
KR100506822B1 (en) Method for displaying three dimensional polygon on screen
JP2008077627A (en) Method and system for early z test in three-dimensional image rendering
US20130127852A1 (en) Methods for providing 3d building information
JP5964771B2 (en) 3D map display device, 3D map display method, and computer program
US9196088B2 (en) System and method for classification of three-dimensional models in a virtual environment
US20060164416A1 (en) Method, apparatus, and medium for three-dimensionally transforming two-dimensional flyover data in three-dimensional graphics environment and for three-dimensionally visualizing two-dimensional flyover data in three-dimensional graphics environment
US8441479B2 (en) Three dimensional data processing device and method, three dimensional image generating device, navigation device, and computer-readable medium containing three-dimensional data processing program
EP2589933B1 (en) Navigation device, method of predicting a visibility of a triangular face in an electronic map view
US20160012754A1 (en) Three-dimensional map display device
WO2014199859A1 (en) 3d map display system
JP4311659B2 (en) 3D landscape display device
JP4777786B2 (en) In-vehicle map display device
JP2008102963A (en) Navigation system for vehicle
JP2006268550A (en) Navigation device
JP2007149108A (en) Map data processing method, computer graphic processing method and computer graphic processor
JP2007279428A (en) Three-dimensional map display method, three-dimensional map display device, and navigation device
JP2004333155A (en) Information presenting device, information presenting method, and computer program
EP3241186B1 (en) System and method of shadow effect generation for concave objects with dynamic lighting in three-dimensional graphics
JP2002056400A (en) Map display device, map display method, computer program used in map display device and program storage medium
JP2007171230A (en) In-vehicle map display apparatus
JP2022018015A (en) Information processing device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080416

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees